1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2003-2006 Silicon Graphics, Inc.  All Rights Reserved.
7 */
8
9#include <linux/types.h>
10#include <linux/interrupt.h>
11#include <linux/pci.h>
12#include <asm/sn/sn_sal.h>
13#include <asm/sn/addrs.h>
14#include <asm/sn/io.h>
15#include <asm/sn/pcidev.h>
16#include <asm/sn/pcibus_provider_defs.h>
17#include <asm/sn/tioce_provider.h>
18
19/*
20 * 1/26/2006
21 *
22 * WAR for SGI PV 944642.  For revA TIOCE, need to use the following recipe
23 * (taken from the above PV) before and after accessing tioce internal MMR's
24 * to avoid tioce lockups.
25 *
26 * The recipe as taken from the PV:
27 *
28 *	if(mmr address < 0x45000) {
29 *		if(mmr address == 0 or 0x80)
30 *			mmr wrt or read address 0xc0
31 *		else if(mmr address == 0x148 or 0x200)
32 *			mmr wrt or read address 0x28
33 *		else
34 *			mmr wrt or read address 0x158
35 *
36 *		do desired mmr access (rd or wrt)
37 *
38 *		if(mmr address == 0x100)
39 *			mmr wrt or read address 0x38
40 *		mmr wrt or read address 0xb050
41 *	} else
42 *		do desired mmr access
43 *
44 * According to hw, we can use reads instead of writes to the above addres
45 *
46 * Note this WAR can only to be used for accessing internal MMR's in the
47 * TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff.  This includes the
48 * "Local CE Registers and Memories" and "PCI Compatible Config Space" address
49 * spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
50 *
51 * All registers defined in struct tioce will meet that criteria.
52 */
53
54static void inline
55tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
56{
57	u64 mmr_base;
58	u64 mmr_offset;
59
60	if (kern->ce_common->ce_rev != TIOCE_REV_A)
61		return;
62
63	mmr_base = kern->ce_common->ce_pcibus.bs_base;
64	mmr_offset = (unsigned long)mmr_addr - mmr_base;
65
66	if (mmr_offset < 0x45000) {
67		u64 mmr_war_offset;
68
69		if (mmr_offset == 0 || mmr_offset == 0x80)
70			mmr_war_offset = 0xc0;
71		else if (mmr_offset == 0x148 || mmr_offset == 0x200)
72			mmr_war_offset = 0x28;
73		else
74			mmr_war_offset = 0x158;
75
76		readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
77	}
78}
79
80static void inline
81tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
82{
83	u64 mmr_base;
84	u64 mmr_offset;
85
86	if (kern->ce_common->ce_rev != TIOCE_REV_A)
87		return;
88
89	mmr_base = kern->ce_common->ce_pcibus.bs_base;
90	mmr_offset = (unsigned long)mmr_addr - mmr_base;
91
92	if (mmr_offset < 0x45000) {
93		if (mmr_offset == 0x100)
94			readq_relaxed((void __iomem *)(mmr_base + 0x38));
95		readq_relaxed((void __iomem *)(mmr_base + 0xb050));
96	}
97}
98
99/* load mmr contents into a variable */
100#define tioce_mmr_load(kern, mmrp, varp) do {\
101	tioce_mmr_war_pre(kern, mmrp); \
102	*(varp) = readq_relaxed(mmrp); \
103	tioce_mmr_war_post(kern, mmrp); \
104} while (0)
105
106/* store variable contents into mmr */
107#define tioce_mmr_store(kern, mmrp, varp) do {\
108	tioce_mmr_war_pre(kern, mmrp); \
109	writeq(*varp, mmrp); \
110	tioce_mmr_war_post(kern, mmrp); \
111} while (0)
112
113/* store immediate value into mmr */
114#define tioce_mmr_storei(kern, mmrp, val) do {\
115	tioce_mmr_war_pre(kern, mmrp); \
116	writeq(val, mmrp); \
117	tioce_mmr_war_post(kern, mmrp); \
118} while (0)
119
120/* set bits (immediate value) into mmr */
121#define tioce_mmr_seti(kern, mmrp, bits) do {\
122	u64 tmp; \
123	tioce_mmr_load(kern, mmrp, &tmp); \
124	tmp |= (bits); \
125	tioce_mmr_store(kern, mmrp, &tmp); \
126} while (0)
127
128/* clear bits (immediate value) into mmr */
129#define tioce_mmr_clri(kern, mmrp, bits) do { \
130	u64 tmp; \
131	tioce_mmr_load(kern, mmrp, &tmp); \
132	tmp &= ~(bits); \
133	tioce_mmr_store(kern, mmrp, &tmp); \
134} while (0)
135
136/**
137 * Bus address ranges for the 5 flavors of TIOCE DMA
138 */
139
140#define TIOCE_D64_MIN	0x8000000000000000UL
141#define TIOCE_D64_MAX	0xffffffffffffffffUL
142#define TIOCE_D64_ADDR(a)	((a) >= TIOCE_D64_MIN)
143
144#define TIOCE_D32_MIN	0x0000000080000000UL
145#define TIOCE_D32_MAX	0x00000000ffffffffUL
146#define TIOCE_D32_ADDR(a)	((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
147
148#define TIOCE_M32_MIN	0x0000000000000000UL
149#define TIOCE_M32_MAX	0x000000007fffffffUL
150#define TIOCE_M32_ADDR(a)	((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
151
152#define TIOCE_M40_MIN	0x0000004000000000UL
153#define TIOCE_M40_MAX	0x0000007fffffffffUL
154#define TIOCE_M40_ADDR(a)	((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
155
156#define TIOCE_M40S_MIN	0x0000008000000000UL
157#define TIOCE_M40S_MAX	0x000000ffffffffffUL
158#define TIOCE_M40S_ADDR(a)	((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
159
160/*
161 * ATE manipulation macros.
162 */
163
164#define ATE_PAGESHIFT(ps)	(__ffs(ps))
165#define ATE_PAGEMASK(ps)	((ps)-1)
166
167#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
168#define ATE_NPAGES(start, len, pagesize) \
169	(ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
170
171#define ATE_VALID(ate)	((ate) & (1UL << 63))
172#define ATE_MAKE(addr, ps, msi) \
173	(((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
174
175/*
176 * Flavors of ate-based mapping supported by tioce_alloc_map()
177 */
178
179#define TIOCE_ATE_M32	1
180#define TIOCE_ATE_M40	2
181#define TIOCE_ATE_M40S	3
182
183#define KB(x)	((u64)(x) << 10)
184#define MB(x)	((u64)(x) << 20)
185#define GB(x)	((u64)(x) << 30)
186
187/**
188 * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
189 * @ct_addr: system coretalk address
190 *
191 * Map @ct_addr into 64-bit CE bus space.  No device context is necessary
192 * and no CE mapping are consumed.
193 *
194 * Bits 53:0 come from the coretalk address.  The remaining bits are set as
195 * follows:
196 *
197 * 63    - must be 1 to indicate d64 mode to CE hardware
198 * 62    - barrier bit ... controlled with tioce_dma_barrier()
199 * 61    - msi bit ... specified through dma_flags
200 * 60:54 - reserved, MBZ
201 */
202static u64
203tioce_dma_d64(unsigned long ct_addr, int dma_flags)
204{
205	u64 bus_addr;
206
207	bus_addr = ct_addr | (1UL << 63);
208	if (dma_flags & SN_DMA_MSI)
209		bus_addr |= (1UL << 61);
210
211	return bus_addr;
212}
213
214/**
215 * pcidev_to_tioce - return misc ce related pointers given a pci_dev
216 * @pci_dev: pci device context
217 * @base: ptr to store struct tioce_mmr * for the CE holding this device
218 * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
219 * @port: ptr to store the CE port number that this device is on
220 *
221 * Return pointers to various CE-related structures for the CE upstream of
222 * @pci_dev.
223 */
224static inline void
225pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
226		struct tioce_kernel **kernel, int *port)
227{
228	struct pcidev_info *pcidev_info;
229	struct tioce_common *ce_common;
230	struct tioce_kernel *ce_kernel;
231
232	pcidev_info = SN_PCIDEV_INFO(pdev);
233	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
234	ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
235
236	if (base)
237		*base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
238	if (kernel)
239		*kernel = ce_kernel;
240
241	/*
242	 * we use port as a zero-based value internally, even though the
243	 * documentation is 1-based.
244	 */
245	if (port)
246		*port =
247		    (pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
248}
249
250/**
251 * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
252 * space using one of the various ATE-based address modes.
253 * @ce_kern: tioce context
254 * @type: map mode to use
255 * @port: 0-based port that the requesting device is downstream of
256 * @ct_addr: the coretalk address to map
257 * @len: number of bytes to map
258 *
259 * Given the addressing type, set up various parameters that define the
260 * ATE pool to use.  Search for a contiguous block of entries to cover the
261 * length, and if enough resources exist, fill in the ATEs and construct a
262 * tioce_dmamap struct to track the mapping.
263 */
264static u64
265tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
266		u64 ct_addr, int len, int dma_flags)
267{
268	int i;
269	int j;
270	int first;
271	int last;
272	int entries;
273	int nates;
274	u64 pagesize;
275	int msi_capable, msi_wanted;
276	u64 *ate_shadow;
277	u64 __iomem *ate_reg;
278	u64 addr;
279	struct tioce __iomem *ce_mmr;
280	u64 bus_base;
281	struct tioce_dmamap *map;
282
283	ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
284
285	switch (type) {
286	case TIOCE_ATE_M32:
287		/*
288		 * The first 64 entries of the ate3240 pool are dedicated to
289		 * super-page (TIOCE_ATE_M40S) mode.
290		 */
291		first = 64;
292		entries = TIOCE_NUM_M3240_ATES - 64;
293		ate_shadow = ce_kern->ce_ate3240_shadow;
294		ate_reg = ce_mmr->ce_ure_ate3240;
295		pagesize = ce_kern->ce_ate3240_pagesize;
296		bus_base = TIOCE_M32_MIN;
297		msi_capable = 1;
298		break;
299	case TIOCE_ATE_M40:
300		first = 0;
301		entries = TIOCE_NUM_M40_ATES;
302		ate_shadow = ce_kern->ce_ate40_shadow;
303		ate_reg = ce_mmr->ce_ure_ate40;
304		pagesize = MB(64);
305		bus_base = TIOCE_M40_MIN;
306		msi_capable = 0;
307		break;
308	case TIOCE_ATE_M40S:
309		/*
310		 * ate3240 entries 0-31 are dedicated to port1 super-page
311		 * mappings.  ate3240 entries 32-63 are dedicated to port2.
312		 */
313		first = port * 32;
314		entries = 32;
315		ate_shadow = ce_kern->ce_ate3240_shadow;
316		ate_reg = ce_mmr->ce_ure_ate3240;
317		pagesize = GB(16);
318		bus_base = TIOCE_M40S_MIN;
319		msi_capable = 0;
320		break;
321	default:
322		return 0;
323	}
324
325	msi_wanted = dma_flags & SN_DMA_MSI;
326	if (msi_wanted && !msi_capable)
327		return 0;
328
329	nates = ATE_NPAGES(ct_addr, len, pagesize);
330	if (nates > entries)
331		return 0;
332
333	last = first + entries - nates;
334	for (i = first; i <= last; i++) {
335		if (ATE_VALID(ate_shadow[i]))
336			continue;
337
338		for (j = i; j < i + nates; j++)
339			if (ATE_VALID(ate_shadow[j]))
340				break;
341
342		if (j >= i + nates)
343			break;
344	}
345
346	if (i > last)
347		return 0;
348
349	map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
350	if (!map)
351		return 0;
352
353	addr = ct_addr;
354	for (j = 0; j < nates; j++) {
355		u64 ate;
356
357		ate = ATE_MAKE(addr, pagesize, msi_wanted);
358		ate_shadow[i + j] = ate;
359		tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
360		addr += pagesize;
361	}
362
363	map->refcnt = 1;
364	map->nbytes = nates * pagesize;
365	map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
366	map->pci_start = bus_base + (i * pagesize);
367	map->ate_hw = &ate_reg[i];
368	map->ate_shadow = &ate_shadow[i];
369	map->ate_count = nates;
370
371	list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
372
373	return (map->pci_start + (ct_addr - map->ct_start));
374}
375
376/**
377 * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
378 * @pdev: linux pci_dev representing the function
379 * @paddr: system physical address
380 *
381 * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
382 */
383static u64
384tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
385{
386	int dma_ok;
387	int port;
388	struct tioce __iomem *ce_mmr;
389	struct tioce_kernel *ce_kern;
390	u64 ct_upper;
391	u64 ct_lower;
392	dma_addr_t bus_addr;
393
394	if (dma_flags & SN_DMA_MSI)
395		return 0;
396
397	ct_upper = ct_addr & ~0x3fffffffUL;
398	ct_lower = ct_addr & 0x3fffffffUL;
399
400	pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
401
402	if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
403		u64 tmp;
404
405		ce_kern->ce_port[port].dirmap_shadow = ct_upper;
406		tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
407				 ct_upper);
408		tmp = ce_mmr->ce_ure_dir_map[port];
409		dma_ok = 1;
410	} else
411		dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
412
413	if (dma_ok) {
414		ce_kern->ce_port[port].dirmap_refcnt++;
415		bus_addr = TIOCE_D32_MIN + ct_lower;
416	} else
417		bus_addr = 0;
418
419	return bus_addr;
420}
421
422/**
423 * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
424 * the barrier bit.
425 * @bus_addr:  bus address to swizzle
426 *
427 * Given a TIOCE bus address, set the appropriate bit to indicate barrier
428 * attributes.
429 */
430static u64
431tioce_dma_barrier(u64 bus_addr, int on)
432{
433	u64 barrier_bit;
434
435	/* barrier not supported in M40/M40S mode */
436	if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
437		return bus_addr;
438
439	if (TIOCE_D64_ADDR(bus_addr))
440		barrier_bit = (1UL << 62);
441	else			/* must be m32 or d32 */
442		barrier_bit = (1UL << 30);
443
444	return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
445}
446
447/**
448 * tioce_dma_unmap - release CE mapping resources
449 * @pdev: linux pci_dev representing the function
450 * @bus_addr: bus address returned by an earlier tioce_dma_map
451 * @dir: mapping direction (unused)
452 *
453 * Locate mapping resources associated with @bus_addr and release them.
454 * For mappings created using the direct modes there are no resources
455 * to release.
456 */
457void
458tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
459{
460	int i;
461	int port;
462	struct tioce_kernel *ce_kern;
463	struct tioce __iomem *ce_mmr;
464	unsigned long flags;
465
466	bus_addr = tioce_dma_barrier(bus_addr, 0);
467	pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
468
469	/* nothing to do for D64 */
470
471	if (TIOCE_D64_ADDR(bus_addr))
472		return;
473
474	spin_lock_irqsave(&ce_kern->ce_lock, flags);
475
476	if (TIOCE_D32_ADDR(bus_addr)) {
477		if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
478			ce_kern->ce_port[port].dirmap_shadow = 0;
479			tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
480					 0);
481		}
482	} else {
483		struct tioce_dmamap *map;
484
485		list_for_each_entry(map, &ce_kern->ce_dmamap_list,
486				    ce_dmamap_list) {
487			u64 last;
488
489			last = map->pci_start + map->nbytes - 1;
490			if (bus_addr >= map->pci_start && bus_addr <= last)
491				break;
492		}
493
494		if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
495			printk(KERN_WARNING
496			       "%s:  %s - no map found for bus_addr 0x%lx\n",
497			       __FUNCTION__, pci_name(pdev), bus_addr);
498		} else if (--map->refcnt == 0) {
499			for (i = 0; i < map->ate_count; i++) {
500				map->ate_shadow[i] = 0;
501				tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
502			}
503
504			list_del(&map->ce_dmamap_list);
505			kfree(map);
506		}
507	}
508
509	spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
510}
511
512/**
513 * tioce_do_dma_map - map pages for PCI DMA
514 * @pdev: linux pci_dev representing the function
515 * @paddr: host physical address to map
516 * @byte_count: bytes to map
517 *
518 * This is the main wrapper for mapping host physical pages to CE PCI space.
519 * The mapping mode used is based on the device's dma_mask.
520 */
521static u64
522tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
523		 int barrier, int dma_flags)
524{
525	unsigned long flags;
526	u64 ct_addr;
527	u64 mapaddr = 0;
528	struct tioce_kernel *ce_kern;
529	struct tioce_dmamap *map;
530	int port;
531	u64 dma_mask;
532
533	dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
534
535	/* cards must be able to address at least 31 bits */
536	if (dma_mask < 0x7fffffffUL)
537		return 0;
538
539	if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
540		ct_addr = PHYS_TO_TIODMA(paddr);
541	else
542		ct_addr = paddr;
543
544	/*
545	 * If the device can generate 64 bit addresses, create a D64 map.
546	 */
547	if (dma_mask == ~0UL) {
548		mapaddr = tioce_dma_d64(ct_addr, dma_flags);
549		if (mapaddr)
550			goto dma_map_done;
551	}
552
553	pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
554
555	spin_lock_irqsave(&ce_kern->ce_lock, flags);
556
557	/*
558	 * D64 didn't work ... See if we have an existing map that covers
559	 * this address range.  Must account for devices dma_mask here since
560	 * an existing map might have been done in a mode using more pci
561	 * address bits than this device can support.
562	 */
563	list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
564		u64 last;
565
566		last = map->ct_start + map->nbytes - 1;
567		if (ct_addr >= map->ct_start &&
568		    ct_addr + byte_count - 1 <= last &&
569		    map->pci_start <= dma_mask) {
570			map->refcnt++;
571			mapaddr = map->pci_start + (ct_addr - map->ct_start);
572			break;
573		}
574	}
575
576	/*
577	 * If we don't have a map yet, and the card can generate 40
578	 * bit addresses, try the M40/M40S modes.  Note these modes do not
579	 * support a barrier bit, so if we need a consistent map these
580	 * won't work.
581	 */
582	if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
583		/*
584		 * We have two options for 40-bit mappings:  16GB "super" ATEs
585		 * and 64MB "regular" ATEs.  We'll try both if needed for a
586		 * given mapping but which one we try first depends on the
587		 * size.  For requests >64MB, prefer to use a super page with
588		 * regular as the fallback. Otherwise, try in the reverse order.
589		 */
590
591		if (byte_count > MB(64)) {
592			mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
593						  port, ct_addr, byte_count,
594						  dma_flags);
595			if (!mapaddr)
596				mapaddr =
597				    tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
598						    ct_addr, byte_count,
599						    dma_flags);
600		} else {
601			mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
602						  ct_addr, byte_count,
603						  dma_flags);
604			if (!mapaddr)
605				mapaddr =
606				    tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
607						    port, ct_addr, byte_count,
608						    dma_flags);
609		}
610	}
611
612	/*
613	 * 32-bit direct is the next mode to try
614	 */
615	if (!mapaddr && dma_mask >= 0xffffffffUL)
616		mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
617
618	/*
619	 * Last resort, try 32-bit ATE-based map.
620	 */
621	if (!mapaddr)
622		mapaddr =
623		    tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
624				    byte_count, dma_flags);
625
626	spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
627
628dma_map_done:
629	if (mapaddr && barrier)
630		mapaddr = tioce_dma_barrier(mapaddr, 1);
631
632	return mapaddr;
633}
634
635/**
636 * tioce_dma - standard pci dma map interface
637 * @pdev: pci device requesting the map
638 * @paddr: system physical address to map into pci space
639 * @byte_count: # bytes to map
640 *
641 * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
642 * in the address.
643 */
644static u64
645tioce_dma(struct pci_dev *pdev, u64 paddr, size_t byte_count, int dma_flags)
646{
647	return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
648}
649
650/**
651 * tioce_dma_consistent - consistent pci dma map interface
652 * @pdev: pci device requesting the map
653 * @paddr: system physical address to map into pci space
654 * @byte_count: # bytes to map
655 *
656 * Simply call tioce_do_dma_map() to create a map with the barrier bit set
657 * in the address.
658 */ static u64
659tioce_dma_consistent(struct pci_dev *pdev, u64 paddr, size_t byte_count, int dma_flags)
660{
661	return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
662}
663
664/**
665 * tioce_error_intr_handler - SGI TIO CE error interrupt handler
666 * @irq: unused
667 * @arg: pointer to tioce_common struct for the given CE
668 *
669 * Handle a CE error interrupt.  Simply a wrapper around a SAL call which
670 * defers processing to the SGI prom.
671 */ static irqreturn_t
672tioce_error_intr_handler(int irq, void *arg)
673{
674	struct tioce_common *soft = arg;
675	struct ia64_sal_retval ret_stuff;
676	ret_stuff.status = 0;
677	ret_stuff.v0 = 0;
678
679	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
680			soft->ce_pcibus.bs_persist_segment,
681			soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
682
683	if (ret_stuff.v0)
684		panic("tioce_error_intr_handler:  Fatal TIOCE error");
685
686	return IRQ_HANDLED;
687}
688
689/**
690 * tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
691 * @tioce_kernel: TIOCE context to reserve ATEs for
692 * @base: starting bus address to reserve
693 * @limit: last bus address to reserve
694 *
695 * If base/limit falls within the range of bus space mapped through the
696 * M32 space, reserve the resources corresponding to the range.
697 */
698static void
699tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
700{
701	int ate_index, last_ate, ps;
702	struct tioce __iomem *ce_mmr;
703
704	ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
705	ps = ce_kern->ce_ate3240_pagesize;
706	ate_index = ATE_PAGE(base, ps);
707	last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
708
709	if (ate_index < 64)
710		ate_index = 64;
711
712	if (last_ate >= TIOCE_NUM_M3240_ATES)
713		last_ate = TIOCE_NUM_M3240_ATES - 1;
714
715	while (ate_index <= last_ate) {
716		u64 ate;
717
718		ate = ATE_MAKE(0xdeadbeef, ps, 0);
719		ce_kern->ce_ate3240_shadow[ate_index] = ate;
720		tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
721				 ate);
722		ate_index++;
723	}
724}
725
726/**
727 * tioce_kern_init - init kernel structures related to a given TIOCE
728 * @tioce_common: ptr to a cached tioce_common struct that originated in prom
729 */
730static struct tioce_kernel *
731tioce_kern_init(struct tioce_common *tioce_common)
732{
733	int i;
734	int ps;
735	int dev;
736	u32 tmp;
737	unsigned int seg, bus;
738	struct tioce __iomem *tioce_mmr;
739	struct tioce_kernel *tioce_kern;
740
741	tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
742	if (!tioce_kern) {
743		return NULL;
744	}
745
746	tioce_kern->ce_common = tioce_common;
747	spin_lock_init(&tioce_kern->ce_lock);
748	INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
749	tioce_common->ce_kernel_private = (u64) tioce_kern;
750
751	/*
752	 * Determine the secondary bus number of the port2 logical PPB.
753	 * This is used to decide whether a given pci device resides on
754	 * port1 or port2.  Note:  We don't have enough plumbing set up
755	 * here to use pci_read_config_xxx() so use the raw_pci_ops vector.
756	 */
757
758	seg = tioce_common->ce_pcibus.bs_persist_segment;
759	bus = tioce_common->ce_pcibus.bs_persist_busnum;
760
761	raw_pci_ops->read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
762	tioce_kern->ce_port1_secondary = (u8) tmp;
763
764	/*
765	 * Set PMU pagesize to the largest size available, and zero out
766	 * the ATEs.
767	 */
768
769	tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
770	tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
771		       CE_URE_PAGESIZE_MASK);
772	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
773		       CE_URE_256K_PAGESIZE);
774	ps = tioce_kern->ce_ate3240_pagesize = KB(256);
775
776	for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
777		tioce_kern->ce_ate40_shadow[i] = 0;
778		tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
779	}
780
781	for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
782		tioce_kern->ce_ate3240_shadow[i] = 0;
783		tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
784	}
785
786	/*
787	 * Reserve ATEs corresponding to reserved address ranges.  These
788	 * include:
789	 *
790	 *	Memory space covered by each PPB mem base/limit register
791	 * 	Memory space covered by each PPB prefetch base/limit register
792	 *
793	 * These bus ranges are for pio (downstream) traffic only, and so
794	 * cannot be used for DMA.
795	 */
796
797	for (dev = 1; dev <= 2; dev++) {
798		u64 base, limit;
799
800		/* mem base/limit */
801
802		raw_pci_ops->read(seg, bus, PCI_DEVFN(dev, 0),
803				  PCI_MEMORY_BASE, 2, &tmp);
804		base = (u64)tmp << 16;
805
806		raw_pci_ops->read(seg, bus, PCI_DEVFN(dev, 0),
807				  PCI_MEMORY_LIMIT, 2, &tmp);
808		limit = (u64)tmp << 16;
809		limit |= 0xfffffUL;
810
811		if (base < limit)
812			tioce_reserve_m32(tioce_kern, base, limit);
813
814		/*
815		 * prefetch mem base/limit.  The tioce ppb's have 64-bit
816		 * decoders, so read the upper portions w/o checking the
817		 * attributes.
818		 */
819
820		raw_pci_ops->read(seg, bus, PCI_DEVFN(dev, 0),
821				  PCI_PREF_MEMORY_BASE, 2, &tmp);
822		base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
823
824		raw_pci_ops->read(seg, bus, PCI_DEVFN(dev, 0),
825				  PCI_PREF_BASE_UPPER32, 4, &tmp);
826		base |= (u64)tmp << 32;
827
828		raw_pci_ops->read(seg, bus, PCI_DEVFN(dev, 0),
829				  PCI_PREF_MEMORY_LIMIT, 2, &tmp);
830
831		limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
832		limit |= 0xfffffUL;
833
834		raw_pci_ops->read(seg, bus, PCI_DEVFN(dev, 0),
835				  PCI_PREF_LIMIT_UPPER32, 4, &tmp);
836		limit |= (u64)tmp << 32;
837
838		if ((base < limit) && TIOCE_M32_ADDR(base))
839			tioce_reserve_m32(tioce_kern, base, limit);
840	}
841
842	return tioce_kern;
843}
844
845static void
846tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
847{
848	struct pcidev_info *pcidev_info;
849	struct tioce_common *ce_common;
850	struct tioce_kernel *ce_kern;
851	struct tioce __iomem *ce_mmr;
852	u64 force_int_val;
853
854	if (!sn_irq_info->irq_bridge)
855		return;
856
857	if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
858		return;
859
860	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
861	if (!pcidev_info)
862		return;
863
864	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
865	ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
866	ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
867
868	if (ce_common->ce_rev == TIOCE_REV_A) {
869		u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
870		u64 status;
871
872		tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
873		if (status & int_bit_mask) {
874			u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
875			u64 ctalk = sn_irq_info->irq_xtalkaddr;
876			u64 nasid, offset;
877
878			nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
879			offset = (ctalk & CTALK_NODE_OFFSET);
880			HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
881		}
882
883		return;
884	}
885
886	/*
887	 * irq_int_bit is originally set up by prom, and holds the interrupt
888	 * bit shift (not mask) as defined by the bit definitions in the
889	 * ce_adm_int mmr.  These shifts are not the same for the
890	 * ce_adm_force_int register, so do an explicit mapping here to make
891	 * things clearer.
892	 */
893
894	switch (sn_irq_info->irq_int_bit) {
895	case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
896		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
897		break;
898	case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
899		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
900		break;
901	case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
902		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
903		break;
904	case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
905		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
906		break;
907	case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
908		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
909		break;
910	case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
911		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
912		break;
913	case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
914		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
915		break;
916	case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
917		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
918		break;
919	default:
920		return;
921	}
922	tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
923}
924
925/**
926 * tioce_target_interrupt - implement set_irq_affinity for tioce resident
927 * functions.  Note:  only applies to line interrupts, not MSI's.
928 *
929 * @sn_irq_info: SN IRQ context
930 *
931 * Given an sn_irq_info, set the associated CE device's interrupt destination
932 * register.  Since the interrupt destination registers are on a per-ce-slot
933 * basis, this will retarget line interrupts for all functions downstream of
934 * the slot.
935 */
936static void
937tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
938{
939	struct pcidev_info *pcidev_info;
940	struct tioce_common *ce_common;
941	struct tioce_kernel *ce_kern;
942	struct tioce __iomem *ce_mmr;
943	int bit;
944	u64 vector;
945
946	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
947	if (!pcidev_info)
948		return;
949
950	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
951	ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
952	ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
953
954	bit = sn_irq_info->irq_int_bit;
955
956	tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
957	vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
958	vector |= sn_irq_info->irq_xtalkaddr;
959	tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
960	tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
961
962	tioce_force_interrupt(sn_irq_info);
963}
964
965/**
966 * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
967 * @prom_bussoft: Common prom/kernel struct representing the bus
968 *
969 * Replicates the tioce_common pointed to by @prom_bussoft in kernel
970 * space.  Allocates and initializes a kernel-only area for a given CE,
971 * and sets up an irq for handling CE error interrupts.
972 *
973 * On successful setup, returns the kernel version of tioce_common back to
974 * the caller.
975 */
976static void *
977tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
978{
979	struct tioce_common *tioce_common;
980	struct tioce_kernel *tioce_kern;
981	struct tioce __iomem *tioce_mmr;
982
983	/*
984	 * Allocate kernel bus soft and copy from prom.
985	 */
986
987	tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
988	if (!tioce_common)
989		return NULL;
990
991	memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
992	tioce_common->ce_pcibus.bs_base = (unsigned long)
993		ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
994			sizeof(struct tioce_common));
995
996	tioce_kern = tioce_kern_init(tioce_common);
997	if (tioce_kern == NULL) {
998		kfree(tioce_common);
999		return NULL;
1000	}
1001
1002	/*
1003	 * Clear out any transient errors before registering the error
1004	 * interrupt handler.
1005	 */
1006
1007	tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
1008	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
1009	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
1010		       ~0ULL);
1011	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
1012
1013	if (request_irq(SGI_PCIASIC_ERROR,
1014			tioce_error_intr_handler,
1015			IRQF_SHARED, "TIOCE error", (void *)tioce_common))
1016		printk(KERN_WARNING
1017		       "%s:  Unable to get irq %d.  "
1018		       "Error interrupts won't be routed for "
1019		       "TIOCE bus %04x:%02x\n",
1020		       __FUNCTION__, SGI_PCIASIC_ERROR,
1021		       tioce_common->ce_pcibus.bs_persist_segment,
1022		       tioce_common->ce_pcibus.bs_persist_busnum);
1023
1024	return tioce_common;
1025}
1026
1027static struct sn_pcibus_provider tioce_pci_interfaces = {
1028	.dma_map = tioce_dma,
1029	.dma_map_consistent = tioce_dma_consistent,
1030	.dma_unmap = tioce_dma_unmap,
1031	.bus_fixup = tioce_bus_fixup,
1032	.force_interrupt = tioce_force_interrupt,
1033	.target_interrupt = tioce_target_interrupt
1034};
1035
1036/**
1037 * tioce_init_provider - init SN PCI provider ops for TIO CE
1038 */
1039int
1040tioce_init_provider(void)
1041{
1042	sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
1043	return 0;
1044}
1045