1/* $Id: time.c,v 1.1.1.1 2007/08/03 18:51:41 Exp $
2 *
3 *  linux/arch/cris/arch-v10/kernel/time.c
4 *
5 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
6 *  Copyright (C) 1999-2002 Axis Communications AB
7 *
8 */
9
10#include <linux/timex.h>
11#include <linux/time.h>
12#include <linux/jiffies.h>
13#include <linux/interrupt.h>
14#include <linux/swap.h>
15#include <linux/sched.h>
16#include <linux/init.h>
17#include <asm/arch/svinto.h>
18#include <asm/types.h>
19#include <asm/signal.h>
20#include <asm/io.h>
21#include <asm/delay.h>
22#include <asm/rtc.h>
23
24/* define this if you need to use print_timestamp */
25/* it will make jiffies at 96 hz instead of 100 hz though */
26#undef USE_CASCADE_TIMERS
27
28extern void update_xtime_from_cmos(void);
29extern int set_rtc_mmss(unsigned long nowtime);
30extern int setup_irq(int, struct irqaction *);
31extern int have_rtc;
32
33unsigned long get_ns_in_jiffie(void)
34{
35	unsigned char timer_count, t1;
36	unsigned short presc_count;
37	unsigned long ns;
38	unsigned long flags;
39
40	local_irq_save(flags);
41	timer_count = *R_TIMER0_DATA;
42	presc_count = *R_TIM_PRESC_STATUS;
43	/* presc_count might be wrapped */
44	t1 = *R_TIMER0_DATA;
45
46	if (timer_count != t1){
47		/* it wrapped, read prescaler again...  */
48		presc_count = *R_TIM_PRESC_STATUS;
49		timer_count = t1;
50	}
51	local_irq_restore(flags);
52	if (presc_count >= PRESCALE_VALUE/2 ){
53		presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
54	} else {
55		presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
56	}
57
58	ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
59	     ( (presc_count) * (1000000000/PRESCALE_FREQ));
60	return ns;
61}
62
63unsigned long do_slow_gettimeoffset(void)
64{
65	unsigned long count, t1;
66	unsigned long usec_count = 0;
67	unsigned short presc_count;
68
69	static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */
70	static unsigned long jiffies_p = 0;
71
72	/*
73	 * cache volatile jiffies temporarily; we have IRQs turned off.
74	 */
75	unsigned long jiffies_t;
76
77	/* The timer interrupt comes from Etrax timer 0. In order to get
78	 * better precision, we check the current value. It might have
79	 * underflowed already though.
80	 */
81
82#ifndef CONFIG_SVINTO_SIM
83	/* Not available in the xsim simulator. */
84	count = *R_TIMER0_DATA;
85	presc_count = *R_TIM_PRESC_STATUS;
86	/* presc_count might be wrapped */
87	t1 = *R_TIMER0_DATA;
88	if (count != t1){
89		/* it wrapped, read prescaler again...  */
90		presc_count = *R_TIM_PRESC_STATUS;
91		count = t1;
92	}
93#else
94	count = 0;
95	presc_count = 0;
96#endif
97
98 	jiffies_t = jiffies;
99
100	/*
101	 * avoiding timer inconsistencies (they are rare, but they happen)...
102	 * there are one problem that must be avoided here:
103	 *  1. the timer counter underflows
104	 */
105	if( jiffies_t == jiffies_p ) {
106		if( count > count_p ) {
107			/* Timer wrapped, use new count and prescale
108			 * increase the time corresponding to one jiffie
109			 */
110			usec_count = 1000000/HZ;
111		}
112	} else
113		jiffies_p = jiffies_t;
114        count_p = count;
115	if (presc_count >= PRESCALE_VALUE/2 ){
116		presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
117	} else {
118		presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
119	}
120	/* Convert timer value to usec */
121	usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) +
122	              (( (presc_count) * (1000000000/PRESCALE_FREQ))/1000);
123
124	return usec_count;
125}
126
127/* Excerpt from the Etrax100 HSDD about the built-in watchdog:
128 *
129 * 3.10.4 Watchdog timer
130
131 * When the watchdog timer is started, it generates an NMI if the watchdog
132 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
133 * stopped after an additional 3.3 ms, the watchdog resets the chip.
134 * The watchdog timer is stopped after reset. The watchdog timer is controlled
135 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
136 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
137 * described in the table below:
138 *
139 *   Watchdog    Value written:
140 *   state:      To enable:  To key:      Operation:
141 *   --------    ----------  -------      ----------
142 *   stopped         0         X          No effect.
143 *   stopped         1       key_val      Start watchdog with key = key_val.
144 *   started         0       ~key         Stop watchdog
145 *   started         1       ~key         Restart watchdog with key = ~key.
146 *   started         X       new_key_val  Change key to new_key_val.
147 *
148 * Note: '~' is the bitwise NOT operator.
149 *
150 */
151
152/* right now, starting the watchdog is the same as resetting it */
153#define start_watchdog reset_watchdog
154
155#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
156static int watchdog_key = 0;  /* arbitrary number */
157#endif
158
159/* number of pages to consider "out of memory". it is normal that the memory
160 * is used though, so put this really low.
161 */
162
163#define WATCHDOG_MIN_FREE_PAGES 8
164
165void
166reset_watchdog(void)
167{
168#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
169	/* only keep watchdog happy as long as we have memory left! */
170	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
171		/* reset the watchdog with the inverse of the old key */
172		watchdog_key ^= 0x7; /* invert key, which is 3 bits */
173		*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
174			IO_STATE(R_WATCHDOG, enable, start);
175	}
176#endif
177}
178
179/* stop the watchdog - we still need the correct key */
180
181void
182stop_watchdog(void)
183{
184#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
185	watchdog_key ^= 0x7; /* invert key, which is 3 bits */
186	*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
187		IO_STATE(R_WATCHDOG, enable, stop);
188#endif
189}
190
191/* last time the cmos clock got updated */
192static long last_rtc_update = 0;
193
194/*
195 * timer_interrupt() needs to keep up the real-time clock,
196 * as well as call the "do_timer()" routine every clocktick
197 */
198
199//static unsigned short myjiff; /* used by our debug routine print_timestamp */
200
201extern void cris_do_profile(struct pt_regs *regs);
202
203static inline irqreturn_t
204timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
205{
206	/* acknowledge the timer irq */
207
208#ifdef USE_CASCADE_TIMERS
209	*R_TIMER_CTRL =
210		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
211		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
212		IO_STATE( R_TIMER_CTRL, i1, clr) |
213		IO_STATE( R_TIMER_CTRL, tm1, run) |
214		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
215		IO_STATE( R_TIMER_CTRL, i0, clr) |
216		IO_STATE( R_TIMER_CTRL, tm0, run) |
217		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
218#else
219	*R_TIMER_CTRL = r_timer_ctrl_shadow |
220		IO_STATE(R_TIMER_CTRL, i0, clr);
221#endif
222
223	/* reset watchdog otherwise it resets us! */
224
225	reset_watchdog();
226
227	/* call the real timer interrupt handler */
228
229	do_timer(1);
230
231        cris_do_profile(regs); /* Save profiling information */
232
233	/*
234	 * If we have an externally synchronized Linux clock, then update
235	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
236	 * called as close as possible to 500 ms before the new second starts.
237	 *
238	 * The division here is not time critical since it will run once in
239	 * 11 minutes
240	 */
241	if (ntp_synced() &&
242	    xtime.tv_sec > last_rtc_update + 660 &&
243	    (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
244	    (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
245		if (set_rtc_mmss(xtime.tv_sec) == 0)
246			last_rtc_update = xtime.tv_sec;
247		else
248			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
249	}
250        return IRQ_HANDLED;
251}
252
253/* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
254 * it needs to be IRQF_DISABLED to make the jiffies update work properly
255 */
256
257static struct irqaction irq2  = { timer_interrupt, IRQF_SHARED | IRQF_DISABLED,
258				  CPU_MASK_NONE, "timer", NULL, NULL};
259
260void __init
261time_init(void)
262{
263	/* probe for the RTC and read it if it exists
264	 * Before the RTC can be probed the loops_per_usec variable needs
265	 * to be initialized to make usleep work. A better value for
266	 * loops_per_usec is calculated by the kernel later once the
267	 * clock has started.
268	 */
269	loops_per_usec = 50;
270
271	if(RTC_INIT() < 0) {
272		/* no RTC, start at 1980 */
273		xtime.tv_sec = 0;
274		xtime.tv_nsec = 0;
275		have_rtc = 0;
276	} else {
277		/* get the current time */
278		have_rtc = 1;
279		update_xtime_from_cmos();
280	}
281
282	/*
283	 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
284	 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
285	 */
286	set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
287
288	/* Setup the etrax timers
289	 * Base frequency is 25000 hz, divider 250 -> 100 HZ
290	 * In normal mode, we use timer0, so timer1 is free. In cascade
291	 * mode (which we sometimes use for debugging) both timers are used.
292	 * Remember that linux/timex.h contains #defines that rely on the
293	 * timer settings below (hz and divide factor) !!!
294	 */
295
296#ifdef USE_CASCADE_TIMERS
297	*R_TIMER_CTRL =
298		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
299		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
300		IO_STATE( R_TIMER_CTRL, i1, nop) |
301		IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
302		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
303		IO_STATE( R_TIMER_CTRL, i0, nop) |
304		IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
305		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
306
307	*R_TIMER_CTRL = r_timer_ctrl_shadow =
308		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
309		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
310		IO_STATE( R_TIMER_CTRL, i1, nop) |
311		IO_STATE( R_TIMER_CTRL, tm1, run) |
312		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
313		IO_STATE( R_TIMER_CTRL, i0, nop) |
314		IO_STATE( R_TIMER_CTRL, tm0, run) |
315		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
316#else
317	*R_TIMER_CTRL =
318		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
319		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
320		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
321		IO_STATE(R_TIMER_CTRL, tm1,       stop_ld)  |
322		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
323		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
324		IO_STATE(R_TIMER_CTRL, tm0,       stop_ld)  |
325		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
326
327	*R_TIMER_CTRL = r_timer_ctrl_shadow =
328		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
329		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
330		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
331		IO_STATE(R_TIMER_CTRL, tm1,       run)      |
332		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
333		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
334		IO_STATE(R_TIMER_CTRL, tm0,       run)      |
335		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
336
337	*R_TIMER_PRESCALE = PRESCALE_VALUE;
338#endif
339
340	*R_IRQ_MASK0_SET =
341		IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
342
343	/* now actually register the timer irq handler that calls timer_interrupt() */
344
345	setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
346
347	/* enable watchdog if we should use one */
348
349#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
350	printk("Enabling watchdog...\n");
351	start_watchdog();
352
353	/* If we use the hardware watchdog, we want to trap it as an NMI
354	   and dump registers before it resets us.  For this to happen, we
355	   must set the "m" NMI enable flag (which once set, is unset only
356	   when an NMI is taken).
357
358	   The same goes for the external NMI, but that doesn't have any
359	   driver or infrastructure support yet.  */
360	asm ("setf m");
361
362	*R_IRQ_MASK0_SET =
363		IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
364	*R_VECT_MASK_SET =
365		IO_STATE(R_VECT_MASK_SET, nmi, set);
366#endif
367}
368