1/*
2 *  linux/arch/arm/kernel/smp.c
3 *
4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/cache.h>
17#include <linux/profile.h>
18#include <linux/errno.h>
19#include <linux/mm.h>
20#include <linux/cpu.h>
21#include <linux/smp.h>
22#include <linux/seq_file.h>
23#include <linux/irq.h>
24
25#include <asm/atomic.h>
26#include <asm/cacheflush.h>
27#include <asm/cpu.h>
28#include <asm/mmu_context.h>
29#include <asm/pgtable.h>
30#include <asm/pgalloc.h>
31#include <asm/processor.h>
32#include <asm/tlbflush.h>
33#include <asm/ptrace.h>
34
35/*
36 * bitmask of present and online CPUs.
37 * The present bitmask indicates that the CPU is physically present.
38 * The online bitmask indicates that the CPU is up and running.
39 */
40cpumask_t cpu_possible_map;
41EXPORT_SYMBOL(cpu_possible_map);
42cpumask_t cpu_online_map;
43EXPORT_SYMBOL(cpu_online_map);
44
45/*
46 * as from 2.5, kernels no longer have an init_tasks structure
47 * so we need some other way of telling a new secondary core
48 * where to place its SVC stack
49 */
50struct secondary_data secondary_data;
51
52/*
53 * structures for inter-processor calls
54 * - A collection of single bit ipi messages.
55 */
56struct ipi_data {
57	spinlock_t lock;
58	unsigned long ipi_count;
59	unsigned long bits;
60};
61
62static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
63	.lock	= SPIN_LOCK_UNLOCKED,
64};
65
66enum ipi_msg_type {
67	IPI_TIMER,
68	IPI_RESCHEDULE,
69	IPI_CALL_FUNC,
70	IPI_CPU_STOP,
71};
72
73struct smp_call_struct {
74	void (*func)(void *info);
75	void *info;
76	int wait;
77	cpumask_t pending;
78	cpumask_t unfinished;
79};
80
81static struct smp_call_struct * volatile smp_call_function_data;
82static DEFINE_SPINLOCK(smp_call_function_lock);
83
84int __cpuinit __cpu_up(unsigned int cpu)
85{
86	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
87	struct task_struct *idle = ci->idle;
88	pgd_t *pgd;
89	pmd_t *pmd;
90	int ret;
91
92	/*
93	 * Spawn a new process manually, if not already done.
94	 * Grab a pointer to its task struct so we can mess with it
95	 */
96	if (!idle) {
97		idle = fork_idle(cpu);
98		if (IS_ERR(idle)) {
99			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
100			return PTR_ERR(idle);
101		}
102		ci->idle = idle;
103	}
104
105	/*
106	 * Allocate initial page tables to allow the new CPU to
107	 * enable the MMU safely.  This essentially means a set
108	 * of our "standard" page tables, with the addition of
109	 * a 1:1 mapping for the physical address of the kernel.
110	 */
111	pgd = pgd_alloc(&init_mm);
112	pmd = pmd_offset(pgd, PHYS_OFFSET);
113	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
114		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
115
116	/*
117	 * We need to tell the secondary core where to find
118	 * its stack and the page tables.
119	 */
120	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
121	secondary_data.pgdir = virt_to_phys(pgd);
122	wmb();
123
124	/*
125	 * Now bring the CPU into our world.
126	 */
127	ret = boot_secondary(cpu, idle);
128	if (ret == 0) {
129		unsigned long timeout;
130
131		/*
132		 * CPU was successfully started, wait for it
133		 * to come online or time out.
134		 */
135		timeout = jiffies + HZ;
136		while (time_before(jiffies, timeout)) {
137			if (cpu_online(cpu))
138				break;
139
140			udelay(10);
141			barrier();
142		}
143
144		if (!cpu_online(cpu))
145			ret = -EIO;
146	}
147
148	secondary_data.stack = NULL;
149	secondary_data.pgdir = 0;
150
151	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
152	pgd_free(pgd);
153
154	if (ret) {
155		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
156
157	}
158
159	return ret;
160}
161
162#ifdef CONFIG_HOTPLUG_CPU
163/*
164 * __cpu_disable runs on the processor to be shutdown.
165 */
166int __cpuexit __cpu_disable(void)
167{
168	unsigned int cpu = smp_processor_id();
169	struct task_struct *p;
170	int ret;
171
172	ret = mach_cpu_disable(cpu);
173	if (ret)
174		return ret;
175
176	/*
177	 * Take this CPU offline.  Once we clear this, we can't return,
178	 * and we must not schedule until we're ready to give up the cpu.
179	 */
180	cpu_clear(cpu, cpu_online_map);
181
182	/*
183	 * OK - migrate IRQs away from this CPU
184	 */
185	migrate_irqs();
186
187	/*
188	 * Stop the local timer for this CPU.
189	 */
190	local_timer_stop(cpu);
191
192	/*
193	 * Flush user cache and TLB mappings, and then remove this CPU
194	 * from the vm mask set of all processes.
195	 */
196	flush_cache_all();
197	local_flush_tlb_all();
198
199	read_lock(&tasklist_lock);
200	for_each_process(p) {
201		if (p->mm)
202			cpu_clear(cpu, p->mm->cpu_vm_mask);
203	}
204	read_unlock(&tasklist_lock);
205
206	return 0;
207}
208
209/*
210 * called on the thread which is asking for a CPU to be shutdown -
211 * waits until shutdown has completed, or it is timed out.
212 */
213void __cpuexit __cpu_die(unsigned int cpu)
214{
215	if (!platform_cpu_kill(cpu))
216		printk("CPU%u: unable to kill\n", cpu);
217}
218
219/*
220 * Called from the idle thread for the CPU which has been shutdown.
221 *
222 * Note that we disable IRQs here, but do not re-enable them
223 * before returning to the caller. This is also the behaviour
224 * of the other hotplug-cpu capable cores, so presumably coming
225 * out of idle fixes this.
226 */
227void __cpuexit cpu_die(void)
228{
229	unsigned int cpu = smp_processor_id();
230
231	local_irq_disable();
232	idle_task_exit();
233
234	/*
235	 * actual CPU shutdown procedure is at least platform (if not
236	 * CPU) specific
237	 */
238	platform_cpu_die(cpu);
239
240	/*
241	 * Do not return to the idle loop - jump back to the secondary
242	 * cpu initialisation.  There's some initialisation which needs
243	 * to be repeated to undo the effects of taking the CPU offline.
244	 */
245	__asm__("mov	sp, %0\n"
246	"	b	secondary_start_kernel"
247		:
248		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
249}
250#endif /* CONFIG_HOTPLUG_CPU */
251
252/*
253 * This is the secondary CPU boot entry.  We're using this CPUs
254 * idle thread stack, but a set of temporary page tables.
255 */
256asmlinkage void __cpuinit secondary_start_kernel(void)
257{
258	struct mm_struct *mm = &init_mm;
259	unsigned int cpu = smp_processor_id();
260
261	printk("CPU%u: Booted secondary processor\n", cpu);
262
263	/*
264	 * All kernel threads share the same mm context; grab a
265	 * reference and switch to it.
266	 */
267	atomic_inc(&mm->mm_users);
268	atomic_inc(&mm->mm_count);
269	current->active_mm = mm;
270	cpu_set(cpu, mm->cpu_vm_mask);
271	cpu_switch_mm(mm->pgd, mm);
272	enter_lazy_tlb(mm, current);
273	local_flush_tlb_all();
274
275	cpu_init();
276	preempt_disable();
277
278	/*
279	 * Give the platform a chance to do its own initialisation.
280	 */
281	platform_secondary_init(cpu);
282
283	/*
284	 * Enable local interrupts.
285	 */
286	local_irq_enable();
287	local_fiq_enable();
288
289	calibrate_delay();
290
291	smp_store_cpu_info(cpu);
292
293	/*
294	 * OK, now it's safe to let the boot CPU continue
295	 */
296	cpu_set(cpu, cpu_online_map);
297
298	/*
299	 * Setup local timer for this CPU.
300	 */
301	local_timer_setup(cpu);
302
303	/*
304	 * OK, it's off to the idle thread for us
305	 */
306	cpu_idle();
307}
308
309/*
310 * Called by both boot and secondaries to move global data into
311 * per-processor storage.
312 */
313void __cpuinit smp_store_cpu_info(unsigned int cpuid)
314{
315	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
316
317	cpu_info->loops_per_jiffy = loops_per_jiffy;
318}
319
320void __init smp_cpus_done(unsigned int max_cpus)
321{
322	int cpu;
323	unsigned long bogosum = 0;
324
325	for_each_online_cpu(cpu)
326		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
327
328	printk(KERN_INFO "SMP: Total of %d processors activated "
329	       "(%lu.%02lu BogoMIPS).\n",
330	       num_online_cpus(),
331	       bogosum / (500000/HZ),
332	       (bogosum / (5000/HZ)) % 100);
333}
334
335void __init smp_prepare_boot_cpu(void)
336{
337	unsigned int cpu = smp_processor_id();
338
339	per_cpu(cpu_data, cpu).idle = current;
340}
341
342static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
343{
344	unsigned long flags;
345	unsigned int cpu;
346
347	local_irq_save(flags);
348
349	for_each_cpu_mask(cpu, callmap) {
350		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
351
352		spin_lock(&ipi->lock);
353		ipi->bits |= 1 << msg;
354		spin_unlock(&ipi->lock);
355	}
356
357	/*
358	 * Call the platform specific cross-CPU call function.
359	 */
360	smp_cross_call(callmap);
361
362	local_irq_restore(flags);
363}
364
365/*
366 * You must not call this function with disabled interrupts, from a
367 * hardware interrupt handler, nor from a bottom half handler.
368 */
369static int smp_call_function_on_cpu(void (*func)(void *info), void *info,
370				    int retry, int wait, cpumask_t callmap)
371{
372	struct smp_call_struct data;
373	unsigned long timeout;
374	int ret = 0;
375
376	data.func = func;
377	data.info = info;
378	data.wait = wait;
379
380	cpu_clear(smp_processor_id(), callmap);
381	if (cpus_empty(callmap))
382		goto out;
383
384	data.pending = callmap;
385	if (wait)
386		data.unfinished = callmap;
387
388	/*
389	 * try to get the mutex on smp_call_function_data
390	 */
391	spin_lock(&smp_call_function_lock);
392	smp_call_function_data = &data;
393
394	send_ipi_message(callmap, IPI_CALL_FUNC);
395
396	timeout = jiffies + HZ;
397	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
398		barrier();
399
400	/*
401	 * did we time out?
402	 */
403	if (!cpus_empty(data.pending)) {
404		/*
405		 * this may be causing our panic - report it
406		 */
407		printk(KERN_CRIT
408		       "CPU%u: smp_call_function timeout for %p(%p)\n"
409		       "      callmap %lx pending %lx, %swait\n",
410		       smp_processor_id(), func, info, *cpus_addr(callmap),
411		       *cpus_addr(data.pending), wait ? "" : "no ");
412
413		/*
414		 * TRACE
415		 */
416		timeout = jiffies + (5 * HZ);
417		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
418			barrier();
419
420		if (cpus_empty(data.pending))
421			printk(KERN_CRIT "     RESOLVED\n");
422		else
423			printk(KERN_CRIT "     STILL STUCK\n");
424	}
425
426	/*
427	 * whatever happened, we're done with the data, so release it
428	 */
429	smp_call_function_data = NULL;
430	spin_unlock(&smp_call_function_lock);
431
432	if (!cpus_empty(data.pending)) {
433		ret = -ETIMEDOUT;
434		goto out;
435	}
436
437	if (wait)
438		while (!cpus_empty(data.unfinished))
439			barrier();
440 out:
441
442	return 0;
443}
444
445int smp_call_function(void (*func)(void *info), void *info, int retry,
446                      int wait)
447{
448	return smp_call_function_on_cpu(func, info, retry, wait,
449					cpu_online_map);
450}
451EXPORT_SYMBOL_GPL(smp_call_function);
452
453void show_ipi_list(struct seq_file *p)
454{
455	unsigned int cpu;
456
457	seq_puts(p, "IPI:");
458
459	for_each_present_cpu(cpu)
460		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
461
462	seq_putc(p, '\n');
463}
464
465void show_local_irqs(struct seq_file *p)
466{
467	unsigned int cpu;
468
469	seq_printf(p, "LOC: ");
470
471	for_each_present_cpu(cpu)
472		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
473
474	seq_putc(p, '\n');
475}
476
477static void ipi_timer(void)
478{
479	irq_enter();
480	profile_tick(CPU_PROFILING);
481	update_process_times(user_mode(get_irq_regs()));
482	irq_exit();
483}
484
485#ifdef CONFIG_LOCAL_TIMERS
486asmlinkage void __exception do_local_timer(struct pt_regs *regs)
487{
488	struct pt_regs *old_regs = set_irq_regs(regs);
489	int cpu = smp_processor_id();
490
491	if (local_timer_ack()) {
492		irq_stat[cpu].local_timer_irqs++;
493		ipi_timer();
494	}
495
496	set_irq_regs(old_regs);
497}
498#endif
499
500/*
501 * ipi_call_function - handle IPI from smp_call_function()
502 *
503 * Note that we copy data out of the cross-call structure and then
504 * let the caller know that we're here and have done with their data
505 */
506static void ipi_call_function(unsigned int cpu)
507{
508	struct smp_call_struct *data = smp_call_function_data;
509	void (*func)(void *info) = data->func;
510	void *info = data->info;
511	int wait = data->wait;
512
513	cpu_clear(cpu, data->pending);
514
515	func(info);
516
517	if (wait)
518		cpu_clear(cpu, data->unfinished);
519}
520
521static DEFINE_SPINLOCK(stop_lock);
522
523/*
524 * ipi_cpu_stop - handle IPI from smp_send_stop()
525 */
526static void ipi_cpu_stop(unsigned int cpu)
527{
528	spin_lock(&stop_lock);
529	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
530	dump_stack();
531	spin_unlock(&stop_lock);
532
533	cpu_clear(cpu, cpu_online_map);
534
535	local_fiq_disable();
536	local_irq_disable();
537
538	while (1)
539		cpu_relax();
540}
541
542/*
543 * Main handler for inter-processor interrupts
544 *
545 * For ARM, the ipimask now only identifies a single
546 * category of IPI (Bit 1 IPIs have been replaced by a
547 * different mechanism):
548 *
549 *  Bit 0 - Inter-processor function call
550 */
551asmlinkage void __exception do_IPI(struct pt_regs *regs)
552{
553	unsigned int cpu = smp_processor_id();
554	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
555	struct pt_regs *old_regs = set_irq_regs(regs);
556
557	ipi->ipi_count++;
558
559	for (;;) {
560		unsigned long msgs;
561
562		spin_lock(&ipi->lock);
563		msgs = ipi->bits;
564		ipi->bits = 0;
565		spin_unlock(&ipi->lock);
566
567		if (!msgs)
568			break;
569
570		do {
571			unsigned nextmsg;
572
573			nextmsg = msgs & -msgs;
574			msgs &= ~nextmsg;
575			nextmsg = ffz(~nextmsg);
576
577			switch (nextmsg) {
578			case IPI_TIMER:
579				ipi_timer();
580				break;
581
582			case IPI_RESCHEDULE:
583				/*
584				 * nothing more to do - eveything is
585				 * done on the interrupt return path
586				 */
587				break;
588
589			case IPI_CALL_FUNC:
590				ipi_call_function(cpu);
591				break;
592
593			case IPI_CPU_STOP:
594				ipi_cpu_stop(cpu);
595				break;
596
597			default:
598				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599				       cpu, nextmsg);
600				break;
601			}
602		} while (msgs);
603	}
604
605	set_irq_regs(old_regs);
606}
607
608void smp_send_reschedule(int cpu)
609{
610	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
611}
612
613void smp_send_timer(void)
614{
615	cpumask_t mask = cpu_online_map;
616	cpu_clear(smp_processor_id(), mask);
617	send_ipi_message(mask, IPI_TIMER);
618}
619
620void smp_send_stop(void)
621{
622	cpumask_t mask = cpu_online_map;
623	cpu_clear(smp_processor_id(), mask);
624	send_ipi_message(mask, IPI_CPU_STOP);
625}
626
627/*
628 * not supported here
629 */
630int __init setup_profiling_timer(unsigned int multiplier)
631{
632	return -EINVAL;
633}
634
635static int
636on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
637		 cpumask_t mask)
638{
639	int ret = 0;
640
641	preempt_disable();
642
643	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
644	if (cpu_isset(smp_processor_id(), mask))
645		func(info);
646
647	preempt_enable();
648
649	return ret;
650}
651
652/**********************************************************************/
653
654/*
655 * TLB operations
656 */
657struct tlb_args {
658	struct vm_area_struct *ta_vma;
659	unsigned long ta_start;
660	unsigned long ta_end;
661};
662
663static inline void ipi_flush_tlb_all(void *ignored)
664{
665	local_flush_tlb_all();
666}
667
668static inline void ipi_flush_tlb_mm(void *arg)
669{
670	struct mm_struct *mm = (struct mm_struct *)arg;
671
672	local_flush_tlb_mm(mm);
673}
674
675static inline void ipi_flush_tlb_page(void *arg)
676{
677	struct tlb_args *ta = (struct tlb_args *)arg;
678
679	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
680}
681
682static inline void ipi_flush_tlb_kernel_page(void *arg)
683{
684	struct tlb_args *ta = (struct tlb_args *)arg;
685
686	local_flush_tlb_kernel_page(ta->ta_start);
687}
688
689static inline void ipi_flush_tlb_range(void *arg)
690{
691	struct tlb_args *ta = (struct tlb_args *)arg;
692
693	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
694}
695
696static inline void ipi_flush_tlb_kernel_range(void *arg)
697{
698	struct tlb_args *ta = (struct tlb_args *)arg;
699
700	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
701}
702
703void flush_tlb_all(void)
704{
705	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
706}
707
708void flush_tlb_mm(struct mm_struct *mm)
709{
710	cpumask_t mask = mm->cpu_vm_mask;
711
712	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
713}
714
715void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
716{
717	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
718	struct tlb_args ta;
719
720	ta.ta_vma = vma;
721	ta.ta_start = uaddr;
722
723	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
724}
725
726void flush_tlb_kernel_page(unsigned long kaddr)
727{
728	struct tlb_args ta;
729
730	ta.ta_start = kaddr;
731
732	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
733}
734
735void flush_tlb_range(struct vm_area_struct *vma,
736                     unsigned long start, unsigned long end)
737{
738	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
739	struct tlb_args ta;
740
741	ta.ta_vma = vma;
742	ta.ta_start = start;
743	ta.ta_end = end;
744
745	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
746}
747
748void flush_tlb_kernel_range(unsigned long start, unsigned long end)
749{
750	struct tlb_args ta;
751
752	ta.ta_start = start;
753	ta.ta_end = end;
754
755	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
756}
757