1/*
2 *  arch/arm/common/dmabounce.c
3 *
4 *  Special dma_{map/unmap/dma_sync}_* routines for systems that have
5 *  limited DMA windows. These functions utilize bounce buffers to
6 *  copy data to/from buffers located outside the DMA region. This
7 *  only works for systems in which DMA memory is at the bottom of
8 *  RAM, the remainder of memory is at the top and the DMA memory
9 *  can be marked as ZONE_DMA. Anything beyond that such as discontiguous
10 *  DMA windows will require custom implementations that reserve memory
11 *  areas at early bootup.
12 *
13 *  Original version by Brad Parker (brad@heeltoe.com)
14 *  Re-written by Christopher Hoover <ch@murgatroid.com>
15 *  Made generic by Deepak Saxena <dsaxena@plexity.net>
16 *
17 *  Copyright (C) 2002 Hewlett Packard Company.
18 *  Copyright (C) 2004 MontaVista Software, Inc.
19 *
20 *  This program is free software; you can redistribute it and/or
21 *  modify it under the terms of the GNU General Public License
22 *  version 2 as published by the Free Software Foundation.
23 */
24
25#include <linux/module.h>
26#include <linux/init.h>
27#include <linux/slab.h>
28#include <linux/device.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmapool.h>
31#include <linux/list.h>
32
33#include <asm/cacheflush.h>
34
35#undef STATS
36
37#ifdef STATS
38#define DO_STATS(X) do { X ; } while (0)
39#else
40#define DO_STATS(X) do { } while (0)
41#endif
42
43/* ************************************************** */
44
45struct safe_buffer {
46	struct list_head node;
47
48	/* original request */
49	void		*ptr;
50	size_t		size;
51	int		direction;
52
53	/* safe buffer info */
54	struct dmabounce_pool *pool;
55	void		*safe;
56	dma_addr_t	safe_dma_addr;
57};
58
59struct dmabounce_pool {
60	unsigned long	size;
61	struct dma_pool	*pool;
62#ifdef STATS
63	unsigned long	allocs;
64#endif
65};
66
67struct dmabounce_device_info {
68	struct device *dev;
69	struct list_head safe_buffers;
70#ifdef STATS
71	unsigned long total_allocs;
72	unsigned long map_op_count;
73	unsigned long bounce_count;
74	int attr_res;
75#endif
76	struct dmabounce_pool	small;
77	struct dmabounce_pool	large;
78
79	rwlock_t lock;
80};
81
82#ifdef STATS
83static ssize_t dmabounce_show(struct device *dev, struct device_attribute *attr,
84			      char *buf)
85{
86	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
87	return sprintf(buf, "%lu %lu %lu %lu %lu %lu\n",
88		device_info->small.allocs,
89		device_info->large.allocs,
90		device_info->total_allocs - device_info->small.allocs -
91			device_info->large.allocs,
92		device_info->total_allocs,
93		device_info->map_op_count,
94		device_info->bounce_count);
95}
96
97static DEVICE_ATTR(dmabounce_stats, 0400, dmabounce_show, NULL);
98#endif
99
100
101/* allocate a 'safe' buffer and keep track of it */
102static inline struct safe_buffer *
103alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
104		  size_t size, enum dma_data_direction dir)
105{
106	struct safe_buffer *buf;
107	struct dmabounce_pool *pool;
108	struct device *dev = device_info->dev;
109	unsigned long flags;
110
111	dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
112		__func__, ptr, size, dir);
113
114	if (size <= device_info->small.size) {
115		pool = &device_info->small;
116	} else if (size <= device_info->large.size) {
117		pool = &device_info->large;
118	} else {
119		pool = NULL;
120	}
121
122	buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
123	if (buf == NULL) {
124		dev_warn(dev, "%s: kmalloc failed\n", __func__);
125		return NULL;
126	}
127
128	buf->ptr = ptr;
129	buf->size = size;
130	buf->direction = dir;
131	buf->pool = pool;
132
133	if (pool) {
134		buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
135					   &buf->safe_dma_addr);
136	} else {
137		buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
138					       GFP_ATOMIC);
139	}
140
141	if (buf->safe == NULL) {
142		dev_warn(dev,
143			 "%s: could not alloc dma memory (size=%d)\n",
144			 __func__, size);
145		kfree(buf);
146		return NULL;
147	}
148
149#ifdef STATS
150	if (pool)
151		pool->allocs++;
152	device_info->total_allocs++;
153#endif
154
155	write_lock_irqsave(&device_info->lock, flags);
156
157	list_add(&buf->node, &device_info->safe_buffers);
158
159	write_unlock_irqrestore(&device_info->lock, flags);
160
161	return buf;
162}
163
164/* determine if a buffer is from our "safe" pool */
165static inline struct safe_buffer *
166find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
167{
168	struct safe_buffer *b, *rb = NULL;
169	unsigned long flags;
170
171	read_lock_irqsave(&device_info->lock, flags);
172
173	list_for_each_entry(b, &device_info->safe_buffers, node)
174		if (b->safe_dma_addr == safe_dma_addr) {
175			rb = b;
176			break;
177		}
178
179	read_unlock_irqrestore(&device_info->lock, flags);
180	return rb;
181}
182
183static inline void
184free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
185{
186	unsigned long flags;
187
188	dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
189
190	write_lock_irqsave(&device_info->lock, flags);
191
192	list_del(&buf->node);
193
194	write_unlock_irqrestore(&device_info->lock, flags);
195
196	if (buf->pool)
197		dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
198	else
199		dma_free_coherent(device_info->dev, buf->size, buf->safe,
200				    buf->safe_dma_addr);
201
202	kfree(buf);
203}
204
205/* ************************************************** */
206
207static inline dma_addr_t
208map_single(struct device *dev, void *ptr, size_t size,
209		enum dma_data_direction dir)
210{
211	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
212	dma_addr_t dma_addr;
213	int needs_bounce = 0;
214
215	if (device_info)
216		DO_STATS ( device_info->map_op_count++ );
217
218	dma_addr = virt_to_dma(dev, ptr);
219
220	if (dev->dma_mask) {
221		unsigned long mask = *dev->dma_mask;
222		unsigned long limit;
223
224		limit = (mask + 1) & ~mask;
225		if (limit && size > limit) {
226			dev_err(dev, "DMA mapping too big (requested %#x "
227				"mask %#Lx)\n", size, *dev->dma_mask);
228			return ~0;
229		}
230
231		/*
232		 * Figure out if we need to bounce from the DMA mask.
233		 */
234		needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
235	}
236
237	if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
238		struct safe_buffer *buf;
239
240		buf = alloc_safe_buffer(device_info, ptr, size, dir);
241		if (buf == 0) {
242			dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
243			       __func__, ptr);
244			return 0;
245		}
246
247		dev_dbg(dev,
248			"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
249			__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
250			buf->safe, (void *) buf->safe_dma_addr);
251
252		if ((dir == DMA_TO_DEVICE) ||
253		    (dir == DMA_BIDIRECTIONAL)) {
254			dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
255				__func__, ptr, buf->safe, size);
256			memcpy(buf->safe, ptr, size);
257		}
258		ptr = buf->safe;
259
260		dma_addr = buf->safe_dma_addr;
261	} else {
262		/*
263		 * We don't need to sync the DMA buffer since
264		 * it was allocated via the coherent allocators.
265		 */
266		consistent_sync(ptr, size, dir);
267	}
268
269	return dma_addr;
270}
271
272static inline void
273unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
274		enum dma_data_direction dir)
275{
276	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
277	struct safe_buffer *buf = NULL;
278
279	/*
280	 * Trying to unmap an invalid mapping
281	 */
282	if (dma_mapping_error(dma_addr)) {
283		dev_err(dev, "Trying to unmap invalid mapping\n");
284		return;
285	}
286
287	if (device_info)
288		buf = find_safe_buffer(device_info, dma_addr);
289
290	if (buf) {
291		BUG_ON(buf->size != size);
292
293		dev_dbg(dev,
294			"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
295			__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
296			buf->safe, (void *) buf->safe_dma_addr);
297
298		DO_STATS ( device_info->bounce_count++ );
299
300		if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
301			void *ptr = buf->ptr;
302
303			dev_dbg(dev,
304				"%s: copy back safe %p to unsafe %p size %d\n",
305				__func__, buf->safe, ptr, size);
306			memcpy(ptr, buf->safe, size);
307
308			/*
309			 * DMA buffers must have the same cache properties
310			 * as if they were really used for DMA - which means
311			 * data must be written back to RAM.  Note that
312			 * we don't use dmac_flush_range() here for the
313			 * bidirectional case because we know the cache
314			 * lines will be coherent with the data written.
315			 */
316			dmac_clean_range(ptr, ptr + size);
317			outer_clean_range(__pa(ptr), __pa(ptr) + size);
318		}
319		free_safe_buffer(device_info, buf);
320	}
321}
322
323static inline void
324sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
325		enum dma_data_direction dir)
326{
327	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
328	struct safe_buffer *buf = NULL;
329
330	if (device_info)
331		buf = find_safe_buffer(device_info, dma_addr);
332
333	if (buf) {
334		/*
335		 * Both of these checks from original code need to be
336		 * commented out b/c some drivers rely on the following:
337		 *
338		 * 1) Drivers may map a large chunk of memory into DMA space
339		 *    but only sync a small portion of it. Good example is
340		 *    allocating a large buffer, mapping it, and then
341		 *    breaking it up into small descriptors. No point
342		 *    in syncing the whole buffer if you only have to
343		 *    touch one descriptor.
344		 *
345		 * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
346		 *    usually only synced in one dir at a time.
347		 *
348		 * See drivers/net/eepro100.c for examples of both cases.
349		 *
350		 * -ds
351		 *
352		 * BUG_ON(buf->size != size);
353		 * BUG_ON(buf->direction != dir);
354		 */
355
356		dev_dbg(dev,
357			"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
358			__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
359			buf->safe, (void *) buf->safe_dma_addr);
360
361		DO_STATS ( device_info->bounce_count++ );
362
363		switch (dir) {
364		case DMA_FROM_DEVICE:
365			dev_dbg(dev,
366				"%s: copy back safe %p to unsafe %p size %d\n",
367				__func__, buf->safe, buf->ptr, size);
368			memcpy(buf->ptr, buf->safe, size);
369			break;
370		case DMA_TO_DEVICE:
371			dev_dbg(dev,
372				"%s: copy out unsafe %p to safe %p, size %d\n",
373				__func__,buf->ptr, buf->safe, size);
374			memcpy(buf->safe, buf->ptr, size);
375			break;
376		case DMA_BIDIRECTIONAL:
377			BUG();	/* is this allowed?  what does it mean? */
378		default:
379			BUG();
380		}
381		/*
382		 * No need to sync the safe buffer - it was allocated
383		 * via the coherent allocators.
384		 */
385	} else {
386		consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
387	}
388}
389
390/* ************************************************** */
391
392/*
393 * see if a buffer address is in an 'unsafe' range.  if it is
394 * allocate a 'safe' buffer and copy the unsafe buffer into it.
395 * substitute the safe buffer for the unsafe one.
396 * (basically move the buffer from an unsafe area to a safe one)
397 */
398dma_addr_t
399dma_map_single(struct device *dev, void *ptr, size_t size,
400		enum dma_data_direction dir)
401{
402	dma_addr_t dma_addr;
403
404	dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
405		__func__, ptr, size, dir);
406
407	BUG_ON(dir == DMA_NONE);
408
409	dma_addr = map_single(dev, ptr, size, dir);
410
411	return dma_addr;
412}
413
414/*
415 * see if a mapped address was really a "safe" buffer and if so, copy
416 * the data from the safe buffer back to the unsafe buffer and free up
417 * the safe buffer.  (basically return things back to the way they
418 * should be)
419 */
420
421void
422dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
423			enum dma_data_direction dir)
424{
425	dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
426		__func__, (void *) dma_addr, size, dir);
427
428	BUG_ON(dir == DMA_NONE);
429
430	unmap_single(dev, dma_addr, size, dir);
431}
432
433int
434dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
435		enum dma_data_direction dir)
436{
437	int i;
438
439	dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
440		__func__, sg, nents, dir);
441
442	BUG_ON(dir == DMA_NONE);
443
444	for (i = 0; i < nents; i++, sg++) {
445		struct page *page = sg->page;
446		unsigned int offset = sg->offset;
447		unsigned int length = sg->length;
448		void *ptr = page_address(page) + offset;
449
450		sg->dma_address =
451			map_single(dev, ptr, length, dir);
452	}
453
454	return nents;
455}
456
457void
458dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
459		enum dma_data_direction dir)
460{
461	int i;
462
463	dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
464		__func__, sg, nents, dir);
465
466	BUG_ON(dir == DMA_NONE);
467
468	for (i = 0; i < nents; i++, sg++) {
469		dma_addr_t dma_addr = sg->dma_address;
470		unsigned int length = sg->length;
471
472		unmap_single(dev, dma_addr, length, dir);
473	}
474}
475
476void
477dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
478				enum dma_data_direction dir)
479{
480	dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
481		__func__, (void *) dma_addr, size, dir);
482
483	sync_single(dev, dma_addr, size, dir);
484}
485
486void
487dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
488				enum dma_data_direction dir)
489{
490	dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
491		__func__, (void *) dma_addr, size, dir);
492
493	sync_single(dev, dma_addr, size, dir);
494}
495
496void
497dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
498			enum dma_data_direction dir)
499{
500	int i;
501
502	dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
503		__func__, sg, nents, dir);
504
505	BUG_ON(dir == DMA_NONE);
506
507	for (i = 0; i < nents; i++, sg++) {
508		dma_addr_t dma_addr = sg->dma_address;
509		unsigned int length = sg->length;
510
511		sync_single(dev, dma_addr, length, dir);
512	}
513}
514
515void
516dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
517			enum dma_data_direction dir)
518{
519	int i;
520
521	dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
522		__func__, sg, nents, dir);
523
524	BUG_ON(dir == DMA_NONE);
525
526	for (i = 0; i < nents; i++, sg++) {
527		dma_addr_t dma_addr = sg->dma_address;
528		unsigned int length = sg->length;
529
530		sync_single(dev, dma_addr, length, dir);
531	}
532}
533
534static int
535dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
536		    unsigned long size)
537{
538	pool->size = size;
539	DO_STATS(pool->allocs = 0);
540	pool->pool = dma_pool_create(name, dev, size,
541				     0 /* byte alignment */,
542				     0 /* no page-crossing issues */);
543
544	return pool->pool ? 0 : -ENOMEM;
545}
546
547int
548dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
549			unsigned long large_buffer_size)
550{
551	struct dmabounce_device_info *device_info;
552	int ret;
553
554	device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
555	if (!device_info) {
556		printk(KERN_ERR
557			"Could not allocated dmabounce_device_info for %s",
558			dev->bus_id);
559		return -ENOMEM;
560	}
561
562	ret = dmabounce_init_pool(&device_info->small, dev,
563				  "small_dmabounce_pool", small_buffer_size);
564	if (ret) {
565		dev_err(dev,
566			"dmabounce: could not allocate DMA pool for %ld byte objects\n",
567			small_buffer_size);
568		goto err_free;
569	}
570
571	if (large_buffer_size) {
572		ret = dmabounce_init_pool(&device_info->large, dev,
573					  "large_dmabounce_pool",
574					  large_buffer_size);
575		if (ret) {
576			dev_err(dev,
577				"dmabounce: could not allocate DMA pool for %ld byte objects\n",
578				large_buffer_size);
579			goto err_destroy;
580		}
581	}
582
583	device_info->dev = dev;
584	INIT_LIST_HEAD(&device_info->safe_buffers);
585	rwlock_init(&device_info->lock);
586
587#ifdef STATS
588	device_info->total_allocs = 0;
589	device_info->map_op_count = 0;
590	device_info->bounce_count = 0;
591	device_info->attr_res = device_create_file(dev, &dev_attr_dmabounce_stats);
592#endif
593
594	dev->archdata.dmabounce = device_info;
595
596	printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
597		dev->bus_id, dev->bus->name);
598
599	return 0;
600
601 err_destroy:
602	dma_pool_destroy(device_info->small.pool);
603 err_free:
604	kfree(device_info);
605	return ret;
606}
607
608void
609dmabounce_unregister_dev(struct device *dev)
610{
611	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
612
613	dev->archdata.dmabounce = NULL;
614
615	if (!device_info) {
616		printk(KERN_WARNING
617			"%s: Never registered with dmabounce but attempting" \
618			"to unregister!\n", dev->bus_id);
619		return;
620	}
621
622	if (!list_empty(&device_info->safe_buffers)) {
623		printk(KERN_ERR
624			"%s: Removing from dmabounce with pending buffers!\n",
625			dev->bus_id);
626		BUG();
627	}
628
629	if (device_info->small.pool)
630		dma_pool_destroy(device_info->small.pool);
631	if (device_info->large.pool)
632		dma_pool_destroy(device_info->large.pool);
633
634#ifdef STATS
635	if (device_info->attr_res == 0)
636		device_remove_file(dev, &dev_attr_dmabounce_stats);
637#endif
638
639	kfree(device_info);
640
641	printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
642		dev->bus_id, dev->bus->name);
643}
644
645
646EXPORT_SYMBOL(dma_map_single);
647EXPORT_SYMBOL(dma_unmap_single);
648EXPORT_SYMBOL(dma_map_sg);
649EXPORT_SYMBOL(dma_unmap_sg);
650EXPORT_SYMBOL(dma_sync_single_for_cpu);
651EXPORT_SYMBOL(dma_sync_single_for_device);
652EXPORT_SYMBOL(dma_sync_sg);
653EXPORT_SYMBOL(dmabounce_register_dev);
654EXPORT_SYMBOL(dmabounce_unregister_dev);
655
656MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
657MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
658MODULE_LICENSE("GPL");
659