• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-WNDR4500-V1.0.1.40_1.0.68/ap/gpl/timemachine/gettext-0.17/gettext-tools/libgrep/
1/* Extended regular expression matching and search library,
2   version 0.12.
3   (Implements POSIX draft P1003.2/D11.2, except for some of the
4   internationalization features.)
5
6   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7   2002, 2003, 2004, 2006 Free Software Foundation, Inc.
8
9   This program is free software: you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined _AIX && !defined REGEX_MALLOC
24  #pragma alloca
25#endif
26
27#undef	_GNU_SOURCE
28#define _GNU_SOURCE
29
30#ifdef HAVE_CONFIG_H
31# include <config.h>
32#endif
33
34#ifndef INSIDE_RECURSION
35
36# include <stddef.h>
37
38# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
39
40/* For platform which support the ISO C amendement 1 functionality we
41   support user defined character classes.  */
42# if defined _LIBC || WIDE_CHAR_SUPPORT
43/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
44#  include <wchar.h>
45#  include <wctype.h>
46# endif
47
48# ifdef _LIBC
49/* We have to keep the namespace clean.  */
50#  define regfree(preg) __regfree (preg)
51#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
52#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
53#  define regerror(errcode, preg, errbuf, errbuf_size) \
54	__regerror(errcode, preg, errbuf, errbuf_size)
55#  define re_set_registers(bu, re, nu, st, en) \
56	__re_set_registers (bu, re, nu, st, en)
57#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
58	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
59#  define re_match(bufp, string, size, pos, regs) \
60	__re_match (bufp, string, size, pos, regs)
61#  define re_search(bufp, string, size, startpos, range, regs) \
62	__re_search (bufp, string, size, startpos, range, regs)
63#  define re_compile_pattern(pattern, length, bufp) \
64	__re_compile_pattern (pattern, length, bufp)
65#  define re_set_syntax(syntax) __re_set_syntax (syntax)
66#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
67	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
68#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
69
70#  define btowc __btowc
71#  define iswctype __iswctype
72#  define mbrtowc __mbrtowc
73#  define wcslen __wcslen
74#  define wcscoll __wcscoll
75#  define wcrtomb __wcrtomb
76#  define mempcpy __mempcpy
77
78/* We are also using some library internals.  */
79#  include <locale/localeinfo.h>
80#  include <locale/elem-hash.h>
81#  include <langinfo.h>
82#  include <locale/coll-lookup.h>
83# endif
84
85# ifdef _LIBC
86#  include <libintl.h>
87#  undef gettext
88#  define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
89   /* This define is so xgettext can find the internationalizable strings.  */
90#  define gettext_noop(msgid) msgid
91# else
92/* This is for other GNU distributions with internationalized messages.  */
93#  include "gettext.h"
94# endif
95
96/* Support for bounded pointers.  */
97# if !defined _LIBC && !defined __BOUNDED_POINTERS__
98#  define __bounded	/* nothing */
99#  define __unbounded	/* nothing */
100#  define __ptrvalue	/* nothing */
101# endif
102
103/* The `emacs' switch turns on certain matching commands
104   that make sense only in Emacs. */
105# ifdef emacs
106
107#  include "lisp.h"
108#  include "buffer.h"
109#  include "syntax.h"
110
111# else  /* not emacs */
112
113/* If we are not linking with Emacs proper,
114   we can't use the relocating allocator
115   even if config.h says that we can.  */
116#  undef REL_ALLOC
117
118#  include <stdlib.h>
119
120/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
121   If nothing else has been done, use the method below.  */
122#  ifdef INHIBIT_STRING_HEADER
123#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
124#    if !defined bzero && !defined bcopy
125#     undef INHIBIT_STRING_HEADER
126#    endif
127#   endif
128#  endif
129
130/* This is the normal way of making sure we have a bcopy and a bzero.
131   This is used in most programs--a few other programs avoid this
132   by defining INHIBIT_STRING_HEADER.  */
133#  ifndef INHIBIT_STRING_HEADER
134#   include <string.h>
135#   ifndef bzero
136#    ifndef _LIBC
137#     define bzero(s, n)	(memset (s, '\0', n), (s))
138#    else
139#     define bzero(s, n)	__bzero (s, n)
140#    endif
141#   endif
142#  endif
143
144/* Define the syntax stuff for \<, \>, etc.  */
145
146/* This must be nonzero for the wordchar and notwordchar pattern
147   commands in re_match_2.  */
148#  ifndef Sword
149#   define Sword 1
150#  endif
151
152#  ifdef SWITCH_ENUM_BUG
153#   define SWITCH_ENUM_CAST(x) ((int)(x))
154#  else
155#   define SWITCH_ENUM_CAST(x) (x)
156#  endif
157
158# endif /* not emacs */
159
160# include <limits.h>
161
162# ifndef MB_LEN_MAX
163#  define MB_LEN_MAX 1
164# endif
165
166/* Get the interface, including the syntax bits.  */
167# include <regex.h>
168
169/* isalpha etc. are used for the character classes.  */
170# include <ctype.h>
171
172/* Jim Meyering writes:
173
174   "... Some ctype macros are valid only for character codes that
175   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
176   using /bin/cc or gcc but without giving an ansi option).  So, all
177   ctype uses should be through macros like ISPRINT...  If
178   STDC_HEADERS is defined, then autoconf has verified that the ctype
179   macros don't need to be guarded with references to isascii. ...
180   Defining isascii to 1 should let any compiler worth its salt
181   eliminate the && through constant folding."
182   Solaris defines some of these symbols so we must undefine them first.  */
183
184# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
185#  define IN_CTYPE_DOMAIN(c) 1
186# else
187#  define IN_CTYPE_DOMAIN(c) isascii(c)
188# endif
189
190# ifdef isblank
191#  define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
192# else
193#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
194# endif
195# ifdef isgraph
196#  define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
197# else
198#  define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
199# endif
200
201# undef ISPRINT
202# define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
203# define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
204# define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
205# define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
206# define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
207# define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
208# define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
209# define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
210# define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
211# define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
212
213# ifdef _tolower
214#  define TOLOWER(c) _tolower(c)
215# else
216#  define TOLOWER(c) tolower(c)
217# endif
218
219# ifndef emacs
220/* How many characters in the character set.  */
221#  define CHAR_SET_SIZE 256
222
223#  ifdef SYNTAX_TABLE
224
225extern char *re_syntax_table;
226
227#  else /* not SYNTAX_TABLE */
228
229static char re_syntax_table[CHAR_SET_SIZE];
230
231static void
232init_syntax_once (void)
233{
234   register int c;
235   static int done = 0;
236
237   if (done)
238     return;
239   bzero (re_syntax_table, sizeof re_syntax_table);
240
241   for (c = 0; c < CHAR_SET_SIZE; ++c)
242     if (ISALNUM (c))
243	re_syntax_table[c] = Sword;
244
245   re_syntax_table['_'] = Sword;
246
247   done = 1;
248}
249
250#  endif /* not SYNTAX_TABLE */
251
252#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
253
254# endif /* emacs */
255
256/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
257   use `alloca' instead of `malloc'.  This is because using malloc in
258   re_search* or re_match* could cause memory leaks when C-g is used in
259   Emacs; also, malloc is slower and causes storage fragmentation.  On
260   the other hand, malloc is more portable, and easier to debug.
261
262   Because we sometimes use alloca, some routines have to be macros,
263   not functions -- `alloca'-allocated space disappears at the end of the
264   function it is called in.  */
265
266# ifdef REGEX_MALLOC
267
268#  define REGEX_ALLOCATE malloc
269#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
270#  define REGEX_FREE free
271
272# else /* not REGEX_MALLOC  */
273
274/* Emacs already defines alloca, sometimes.  */
275#  ifndef alloca
276
277/* Make alloca work the best possible way.  */
278#   include <alloca.h>
279
280#  endif /* not alloca */
281
282#  define REGEX_ALLOCATE alloca
283
284/* Assumes a `char *destination' variable.  */
285#  define REGEX_REALLOCATE(source, osize, nsize)			\
286  (destination = (char *) alloca (nsize),				\
287   memcpy (destination, source, osize))
288
289/* No need to do anything to free, after alloca.  */
290#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
291
292# endif /* not REGEX_MALLOC */
293
294/* Define how to allocate the failure stack.  */
295
296# if defined REL_ALLOC && defined REGEX_MALLOC
297
298#  define REGEX_ALLOCATE_STACK(size)				\
299  r_alloc (&failure_stack_ptr, (size))
300#  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
301  r_re_alloc (&failure_stack_ptr, (nsize))
302#  define REGEX_FREE_STACK(ptr)					\
303  r_alloc_free (&failure_stack_ptr)
304
305# else /* not using relocating allocator */
306
307#  ifdef REGEX_MALLOC
308
309#   define REGEX_ALLOCATE_STACK malloc
310#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
311#   define REGEX_FREE_STACK free
312
313#  else /* not REGEX_MALLOC */
314
315#   define REGEX_ALLOCATE_STACK alloca
316
317#   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
318   REGEX_REALLOCATE (source, osize, nsize)
319/* No need to explicitly free anything.  */
320#   define REGEX_FREE_STACK(arg)
321
322#  endif /* not REGEX_MALLOC */
323# endif /* not using relocating allocator */
324
325
326/* True if `size1' is non-NULL and PTR is pointing anywhere inside
327   `string1' or just past its end.  This works if PTR is NULL, which is
328   a good thing.  */
329# define FIRST_STRING_P(ptr) 					\
330  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
331
332/* (Re)Allocate N items of type T using malloc, or fail.  */
333# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
334# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
335# define RETALLOC_IF(addr, n, t) \
336  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
337# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
338
339# define BYTEWIDTH 8 /* In bits.  */
340
341# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
342
343# undef MAX
344# undef MIN
345# define MAX(a, b) ((a) > (b) ? (a) : (b))
346# define MIN(a, b) ((a) < (b) ? (a) : (b))
347
348typedef char boolean;
349# define false 0
350# define true 1
351
352static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
353					 reg_syntax_t syntax,
354					 struct re_pattern_buffer *bufp);
355
356static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
357				     const char *string1, int size1,
358				     const char *string2, int size2,
359				     int pos,
360				     struct re_registers *regs,
361				     int stop);
362static int byte_re_search_2 (struct re_pattern_buffer *bufp,
363			     const char *string1, int size1,
364			     const char *string2, int size2,
365			     int startpos, int range,
366			     struct re_registers *regs, int stop);
367static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
368
369#ifdef MBS_SUPPORT
370static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
371					reg_syntax_t syntax,
372					struct re_pattern_buffer *bufp);
373
374
375static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
376				    const char *cstring1, int csize1,
377				    const char *cstring2, int csize2,
378				    int pos,
379				    struct re_registers *regs,
380				    int stop,
381				    wchar_t *string1, int size1,
382				    wchar_t *string2, int size2,
383				    int *mbs_offset1, int *mbs_offset2);
384static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
385			    const char *string1, int size1,
386			    const char *string2, int size2,
387			    int startpos, int range,
388			    struct re_registers *regs, int stop);
389static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
390#endif
391
392/* These are the command codes that appear in compiled regular
393   expressions.  Some opcodes are followed by argument bytes.  A
394   command code can specify any interpretation whatsoever for its
395   arguments.  Zero bytes may appear in the compiled regular expression.  */
396
397typedef enum
398{
399  no_op = 0,
400
401  /* Succeed right away--no more backtracking.  */
402  succeed,
403
404        /* Followed by one byte giving n, then by n literal bytes.  */
405  exactn,
406
407# ifdef MBS_SUPPORT
408	/* Same as exactn, but contains binary data.  */
409  exactn_bin,
410# endif
411
412        /* Matches any (more or less) character.  */
413  anychar,
414
415        /* Matches any one char belonging to specified set.  First
416           following byte is number of bitmap bytes.  Then come bytes
417           for a bitmap saying which chars are in.  Bits in each byte
418           are ordered low-bit-first.  A character is in the set if its
419           bit is 1.  A character too large to have a bit in the map is
420           automatically not in the set.  */
421        /* ifdef MBS_SUPPORT, following element is length of character
422	   classes, length of collating symbols, length of equivalence
423	   classes, length of character ranges, and length of characters.
424	   Next, character class element, collating symbols elements,
425	   equivalence class elements, range elements, and character
426	   elements follow.
427	   See regex_compile function.  */
428  charset,
429
430        /* Same parameters as charset, but match any character that is
431           not one of those specified.  */
432  charset_not,
433
434        /* Start remembering the text that is matched, for storing in a
435           register.  Followed by one byte with the register number, in
436           the range 0 to one less than the pattern buffer's re_nsub
437           field.  Then followed by one byte with the number of groups
438           inner to this one.  (This last has to be part of the
439           start_memory only because we need it in the on_failure_jump
440           of re_match_2.)  */
441  start_memory,
442
443        /* Stop remembering the text that is matched and store it in a
444           memory register.  Followed by one byte with the register
445           number, in the range 0 to one less than `re_nsub' in the
446           pattern buffer, and one byte with the number of inner groups,
447           just like `start_memory'.  (We need the number of inner
448           groups here because we don't have any easy way of finding the
449           corresponding start_memory when we're at a stop_memory.)  */
450  stop_memory,
451
452        /* Match a duplicate of something remembered. Followed by one
453           byte containing the register number.  */
454  duplicate,
455
456        /* Fail unless at beginning of line.  */
457  begline,
458
459        /* Fail unless at end of line.  */
460  endline,
461
462        /* Succeeds if at beginning of buffer (if emacs) or at beginning
463           of string to be matched (if not).  */
464  begbuf,
465
466        /* Analogously, for end of buffer/string.  */
467  endbuf,
468
469        /* Followed by two byte relative address to which to jump.  */
470  jump,
471
472	/* Same as jump, but marks the end of an alternative.  */
473  jump_past_alt,
474
475        /* Followed by two-byte relative address of place to resume at
476           in case of failure.  */
477        /* ifdef MBS_SUPPORT, the size of address is 1.  */
478  on_failure_jump,
479
480        /* Like on_failure_jump, but pushes a placeholder instead of the
481           current string position when executed.  */
482  on_failure_keep_string_jump,
483
484        /* Throw away latest failure point and then jump to following
485           two-byte relative address.  */
486        /* ifdef MBS_SUPPORT, the size of address is 1.  */
487  pop_failure_jump,
488
489        /* Change to pop_failure_jump if know won't have to backtrack to
490           match; otherwise change to jump.  This is used to jump
491           back to the beginning of a repeat.  If what follows this jump
492           clearly won't match what the repeat does, such that we can be
493           sure that there is no use backtracking out of repetitions
494           already matched, then we change it to a pop_failure_jump.
495           Followed by two-byte address.  */
496        /* ifdef MBS_SUPPORT, the size of address is 1.  */
497  maybe_pop_jump,
498
499        /* Jump to following two-byte address, and push a dummy failure
500           point. This failure point will be thrown away if an attempt
501           is made to use it for a failure.  A `+' construct makes this
502           before the first repeat.  Also used as an intermediary kind
503           of jump when compiling an alternative.  */
504        /* ifdef MBS_SUPPORT, the size of address is 1.  */
505  dummy_failure_jump,
506
507	/* Push a dummy failure point and continue.  Used at the end of
508	   alternatives.  */
509  push_dummy_failure,
510
511        /* Followed by two-byte relative address and two-byte number n.
512           After matching N times, jump to the address upon failure.  */
513        /* ifdef MBS_SUPPORT, the size of address is 1.  */
514  succeed_n,
515
516        /* Followed by two-byte relative address, and two-byte number n.
517           Jump to the address N times, then fail.  */
518        /* ifdef MBS_SUPPORT, the size of address is 1.  */
519  jump_n,
520
521        /* Set the following two-byte relative address to the
522           subsequent two-byte number.  The address *includes* the two
523           bytes of number.  */
524        /* ifdef MBS_SUPPORT, the size of address is 1.  */
525  set_number_at,
526
527  wordchar,	/* Matches any word-constituent character.  */
528  notwordchar,	/* Matches any char that is not a word-constituent.  */
529
530  wordbeg,	/* Succeeds if at word beginning.  */
531  wordend,	/* Succeeds if at word end.  */
532
533  wordbound,	/* Succeeds if at a word boundary.  */
534  notwordbound	/* Succeeds if not at a word boundary.  */
535
536# ifdef emacs
537  ,before_dot,	/* Succeeds if before point.  */
538  at_dot,	/* Succeeds if at point.  */
539  after_dot,	/* Succeeds if after point.  */
540
541	/* Matches any character whose syntax is specified.  Followed by
542           a byte which contains a syntax code, e.g., Sword.  */
543  syntaxspec,
544
545	/* Matches any character whose syntax is not that specified.  */
546  notsyntaxspec
547# endif /* emacs */
548} re_opcode_t;
549#endif /* not INSIDE_RECURSION */
550
551
552#ifdef BYTE
553# define CHAR_T char
554# define UCHAR_T unsigned char
555# define COMPILED_BUFFER_VAR bufp->buffer
556# define OFFSET_ADDRESS_SIZE 2
557# define PREFIX(name) byte_##name
558# define ARG_PREFIX(name) name
559# define PUT_CHAR(c) putchar (c)
560#else
561# ifdef WCHAR
562#  define CHAR_T wchar_t
563#  define UCHAR_T wchar_t
564#  define COMPILED_BUFFER_VAR wc_buffer
565#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
566#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
567#  define PREFIX(name) wcs_##name
568#  define ARG_PREFIX(name) c##name
569/* Should we use wide stream??  */
570#  define PUT_CHAR(c) printf ("%C", c);
571#  define TRUE 1
572#  define FALSE 0
573# else
574#  ifdef MBS_SUPPORT
575#   define WCHAR
576#   define INSIDE_RECURSION
577#   include "regex.c"
578#   undef INSIDE_RECURSION
579#  endif
580#  define BYTE
581#  define INSIDE_RECURSION
582#  include "regex.c"
583#  undef INSIDE_RECURSION
584# endif
585#endif
586
587#if USE_UNLOCKED_IO
588# include "unlocked-io.h"
589#endif
590
591#ifdef INSIDE_RECURSION
592/* Common operations on the compiled pattern.  */
593
594/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
595/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
596
597# ifdef WCHAR
598#  define STORE_NUMBER(destination, number)				\
599  do {									\
600    *(destination) = (UCHAR_T)(number);				\
601  } while (0)
602# else /* BYTE */
603#  define STORE_NUMBER(destination, number)				\
604  do {									\
605    (destination)[0] = (number) & 0377;					\
606    (destination)[1] = (number) >> 8;					\
607  } while (0)
608# endif /* WCHAR */
609
610/* Same as STORE_NUMBER, except increment DESTINATION to
611   the byte after where the number is stored.  Therefore, DESTINATION
612   must be an lvalue.  */
613/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
614
615# define STORE_NUMBER_AND_INCR(destination, number)			\
616  do {									\
617    STORE_NUMBER (destination, number);					\
618    (destination) += OFFSET_ADDRESS_SIZE;				\
619  } while (0)
620
621/* Put into DESTINATION a number stored in two contiguous bytes starting
622   at SOURCE.  */
623/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
624
625# ifdef WCHAR
626#  define EXTRACT_NUMBER(destination, source)				\
627  do {									\
628    (destination) = *(source);						\
629  } while (0)
630# else /* BYTE */
631#  define EXTRACT_NUMBER(destination, source)				\
632  do {									\
633    (destination) = *(source) & 0377;					\
634    (destination) += (signed char) (*((source) + 1)) << 8;		\
635  } while (0)
636# endif
637
638# ifdef DEBUG
639static void
640PREFIX(extract_number) (int *dest, UCHAR_T *source)
641{
642#  ifdef WCHAR
643  *dest = *source;
644#  else /* BYTE */
645  signed char temp = source[1];
646  *dest = *source & 0377;
647  *dest += temp << 8;
648#  endif
649}
650
651#  ifndef EXTRACT_MACROS /* To debug the macros.  */
652#   undef EXTRACT_NUMBER
653#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
654#  endif /* not EXTRACT_MACROS */
655
656# endif /* DEBUG */
657
658/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
659   SOURCE must be an lvalue.  */
660
661# define EXTRACT_NUMBER_AND_INCR(destination, source)			\
662  do {									\
663    EXTRACT_NUMBER (destination, source);				\
664    (source) += OFFSET_ADDRESS_SIZE; 					\
665  } while (0)
666
667# ifdef DEBUG
668static void
669PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
670{
671  PREFIX(extract_number) (destination, *source);
672  *source += OFFSET_ADDRESS_SIZE;
673}
674
675#  ifndef EXTRACT_MACROS
676#   undef EXTRACT_NUMBER_AND_INCR
677#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
678  PREFIX(extract_number_and_incr) (&dest, &src)
679#  endif /* not EXTRACT_MACROS */
680
681# endif /* DEBUG */
682
683
684
685/* If DEBUG is defined, Regex prints many voluminous messages about what
686   it is doing (if the variable `debug' is nonzero).  If linked with the
687   main program in `iregex.c', you can enter patterns and strings
688   interactively.  And if linked with the main program in `main.c' and
689   the other test files, you can run the already-written tests.  */
690
691# ifdef DEBUG
692
693#  ifndef DEFINED_ONCE
694
695/* We use standard I/O for debugging.  */
696#   include <stdio.h>
697
698/* It is useful to test things that ``must'' be true when debugging.  */
699#   include <assert.h>
700
701static int debug;
702
703#   define DEBUG_STATEMENT(e) e
704#   define DEBUG_PRINT1(x) if (debug) printf (x)
705#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
706#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
707#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
708#  endif /* not DEFINED_ONCE */
709
710#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
711  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
712#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
713  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
714
715
716/* Print the fastmap in human-readable form.  */
717
718#  ifndef DEFINED_ONCE
719void
720print_fastmap (char *fastmap)
721{
722  unsigned was_a_range = 0;
723  unsigned i = 0;
724
725  while (i < (1 << BYTEWIDTH))
726    {
727      if (fastmap[i++])
728	{
729	  was_a_range = 0;
730          putchar (i - 1);
731          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
732            {
733              was_a_range = 1;
734              i++;
735            }
736	  if (was_a_range)
737            {
738              printf ("-");
739              putchar (i - 1);
740            }
741        }
742    }
743  putchar ('\n');
744}
745#  endif /* not DEFINED_ONCE */
746
747
748/* Print a compiled pattern string in human-readable form, starting at
749   the START pointer into it and ending just before the pointer END.  */
750
751void
752PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
753{
754  int mcnt, mcnt2;
755  UCHAR_T *p1;
756  UCHAR_T *p = start;
757  UCHAR_T *pend = end;
758
759  if (start == NULL)
760    {
761      printf ("(null)\n");
762      return;
763    }
764
765  /* Loop over pattern commands.  */
766  while (p < pend)
767    {
768#  ifdef _LIBC
769      printf ("%td:\t", p - start);
770#  else
771      printf ("%ld:\t", (long int) (p - start));
772#  endif
773
774      switch ((re_opcode_t) *p++)
775	{
776        case no_op:
777          printf ("/no_op");
778          break;
779
780	case exactn:
781	  mcnt = *p++;
782          printf ("/exactn/%d", mcnt);
783          do
784	    {
785              putchar ('/');
786	      PUT_CHAR (*p++);
787            }
788          while (--mcnt);
789          break;
790
791#  ifdef MBS_SUPPORT
792	case exactn_bin:
793	  mcnt = *p++;
794	  printf ("/exactn_bin/%d", mcnt);
795          do
796	    {
797	      printf("/%lx", (long int) *p++);
798            }
799          while (--mcnt);
800          break;
801#  endif /* MBS_SUPPORT */
802
803	case start_memory:
804          mcnt = *p++;
805          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
806          break;
807
808	case stop_memory:
809          mcnt = *p++;
810	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
811          break;
812
813	case duplicate:
814	  printf ("/duplicate/%ld", (long int) *p++);
815	  break;
816
817	case anychar:
818	  printf ("/anychar");
819	  break;
820
821	case charset:
822        case charset_not:
823          {
824#  ifdef WCHAR
825	    int i, length;
826	    wchar_t *workp = p;
827	    printf ("/charset [%s",
828	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
829	    p += 5;
830	    length = *workp++; /* the length of char_classes */
831	    for (i=0 ; i<length ; i++)
832	      printf("[:%lx:]", (long int) *p++);
833	    length = *workp++; /* the length of collating_symbol */
834	    for (i=0 ; i<length ;)
835	      {
836		printf("[.");
837		while(*p != 0)
838		  PUT_CHAR((i++,*p++));
839		i++,p++;
840		printf(".]");
841	      }
842	    length = *workp++; /* the length of equivalence_class */
843	    for (i=0 ; i<length ;)
844	      {
845		printf("[=");
846		while(*p != 0)
847		  PUT_CHAR((i++,*p++));
848		i++,p++;
849		printf("=]");
850	      }
851	    length = *workp++; /* the length of char_range */
852	    for (i=0 ; i<length ; i++)
853	      {
854		wchar_t range_start = *p++;
855		wchar_t range_end = *p++;
856		printf("%C-%C", range_start, range_end);
857	      }
858	    length = *workp++; /* the length of char */
859	    for (i=0 ; i<length ; i++)
860	      printf("%C", *p++);
861	    putchar (']');
862#  else
863            register int c, last = -100;
864	    register int in_range = 0;
865
866	    printf ("/charset [%s",
867	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
868
869            assert (p + *p < pend);
870
871            for (c = 0; c < 256; c++)
872	      if (c / 8 < *p
873		  && (p[1 + (c/8)] & (1 << (c % 8))))
874		{
875		  /* Are we starting a range?  */
876		  if (last + 1 == c && ! in_range)
877		    {
878		      putchar ('-');
879		      in_range = 1;
880		    }
881		  /* Have we broken a range?  */
882		  else if (last + 1 != c && in_range)
883              {
884		      putchar (last);
885		      in_range = 0;
886		    }
887
888		  if (! in_range)
889		    putchar (c);
890
891		  last = c;
892              }
893
894	    if (in_range)
895	      putchar (last);
896
897	    putchar (']');
898
899	    p += 1 + *p;
900#  endif /* WCHAR */
901	  }
902	  break;
903
904	case begline:
905	  printf ("/begline");
906          break;
907
908	case endline:
909          printf ("/endline");
910          break;
911
912	case on_failure_jump:
913          PREFIX(extract_number_and_incr) (&mcnt, &p);
914#  ifdef _LIBC
915  	  printf ("/on_failure_jump to %td", p + mcnt - start);
916#  else
917  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
918#  endif
919          break;
920
921	case on_failure_keep_string_jump:
922          PREFIX(extract_number_and_incr) (&mcnt, &p);
923#  ifdef _LIBC
924  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
925#  else
926  	  printf ("/on_failure_keep_string_jump to %ld",
927		  (long int) (p + mcnt - start));
928#  endif
929          break;
930
931	case dummy_failure_jump:
932          PREFIX(extract_number_and_incr) (&mcnt, &p);
933#  ifdef _LIBC
934  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
935#  else
936  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
937#  endif
938          break;
939
940	case push_dummy_failure:
941          printf ("/push_dummy_failure");
942          break;
943
944        case maybe_pop_jump:
945          PREFIX(extract_number_and_incr) (&mcnt, &p);
946#  ifdef _LIBC
947  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
948#  else
949  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
950#  endif
951	  break;
952
953        case pop_failure_jump:
954	  PREFIX(extract_number_and_incr) (&mcnt, &p);
955#  ifdef _LIBC
956  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
957#  else
958  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
959#  endif
960	  break;
961
962        case jump_past_alt:
963	  PREFIX(extract_number_and_incr) (&mcnt, &p);
964#  ifdef _LIBC
965  	  printf ("/jump_past_alt to %td", p + mcnt - start);
966#  else
967  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
968#  endif
969	  break;
970
971        case jump:
972	  PREFIX(extract_number_and_incr) (&mcnt, &p);
973#  ifdef _LIBC
974  	  printf ("/jump to %td", p + mcnt - start);
975#  else
976  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
977#  endif
978	  break;
979
980        case succeed_n:
981          PREFIX(extract_number_and_incr) (&mcnt, &p);
982	  p1 = p + mcnt;
983          PREFIX(extract_number_and_incr) (&mcnt2, &p);
984#  ifdef _LIBC
985	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
986#  else
987	  printf ("/succeed_n to %ld, %d times",
988		  (long int) (p1 - start), mcnt2);
989#  endif
990          break;
991
992        case jump_n:
993          PREFIX(extract_number_and_incr) (&mcnt, &p);
994	  p1 = p + mcnt;
995          PREFIX(extract_number_and_incr) (&mcnt2, &p);
996	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
997          break;
998
999        case set_number_at:
1000          PREFIX(extract_number_and_incr) (&mcnt, &p);
1001	  p1 = p + mcnt;
1002          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1003#  ifdef _LIBC
1004	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1005#  else
1006	  printf ("/set_number_at location %ld to %d",
1007		  (long int) (p1 - start), mcnt2);
1008#  endif
1009          break;
1010
1011        case wordbound:
1012	  printf ("/wordbound");
1013	  break;
1014
1015	case notwordbound:
1016	  printf ("/notwordbound");
1017          break;
1018
1019	case wordbeg:
1020	  printf ("/wordbeg");
1021	  break;
1022
1023	case wordend:
1024	  printf ("/wordend");
1025	  break;
1026
1027#  ifdef emacs
1028	case before_dot:
1029	  printf ("/before_dot");
1030          break;
1031
1032	case at_dot:
1033	  printf ("/at_dot");
1034          break;
1035
1036	case after_dot:
1037	  printf ("/after_dot");
1038          break;
1039
1040	case syntaxspec:
1041          printf ("/syntaxspec");
1042	  mcnt = *p++;
1043	  printf ("/%d", mcnt);
1044          break;
1045
1046	case notsyntaxspec:
1047          printf ("/notsyntaxspec");
1048	  mcnt = *p++;
1049	  printf ("/%d", mcnt);
1050	  break;
1051#  endif /* emacs */
1052
1053	case wordchar:
1054	  printf ("/wordchar");
1055          break;
1056
1057	case notwordchar:
1058	  printf ("/notwordchar");
1059          break;
1060
1061	case begbuf:
1062	  printf ("/begbuf");
1063          break;
1064
1065	case endbuf:
1066	  printf ("/endbuf");
1067          break;
1068
1069        default:
1070          printf ("?%ld", (long int) *(p-1));
1071	}
1072
1073      putchar ('\n');
1074    }
1075
1076#  ifdef _LIBC
1077  printf ("%td:\tend of pattern.\n", p - start);
1078#  else
1079  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1080#  endif
1081}
1082
1083
1084void
1085PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1086{
1087  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1088
1089  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1090				  + bufp->used / sizeof(UCHAR_T));
1091  printf ("%ld bytes used/%ld bytes allocated.\n",
1092	  bufp->used, bufp->allocated);
1093
1094  if (bufp->fastmap_accurate && bufp->fastmap)
1095    {
1096      printf ("fastmap: ");
1097      print_fastmap (bufp->fastmap);
1098    }
1099
1100#  ifdef _LIBC
1101  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1102#  else
1103  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1104#  endif
1105  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1106  printf ("can_be_null: %d\t", bufp->can_be_null);
1107  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1108  printf ("no_sub: %d\t", bufp->no_sub);
1109  printf ("not_bol: %d\t", bufp->not_bol);
1110  printf ("not_eol: %d\t", bufp->not_eol);
1111  printf ("syntax: %lx\n", bufp->syntax);
1112  /* Perhaps we should print the translate table?  */
1113}
1114
1115
1116void
1117PREFIX(print_double_string) (const CHAR_T *where,
1118			     const CHAR_T *string1,
1119			     const CHAR_T *string2,
1120			     int size1,
1121			     int size2)
1122{
1123  int this_char;
1124
1125  if (where == NULL)
1126    printf ("(null)");
1127  else
1128    {
1129      int cnt;
1130
1131      if (FIRST_STRING_P (where))
1132        {
1133          for (this_char = where - string1; this_char < size1; this_char++)
1134	    PUT_CHAR (string1[this_char]);
1135
1136          where = string2;
1137        }
1138
1139      cnt = 0;
1140      for (this_char = where - string2; this_char < size2; this_char++)
1141	{
1142	  PUT_CHAR (string2[this_char]);
1143	  if (++cnt > 100)
1144	    {
1145	      fputs ("...", stdout);
1146	      break;
1147	    }
1148	}
1149    }
1150}
1151
1152#  ifndef DEFINED_ONCE
1153void
1154printchar (c)
1155     int c;
1156{
1157  putc (c, stderr);
1158}
1159#  endif
1160
1161# else /* not DEBUG */
1162
1163#  ifndef DEFINED_ONCE
1164#   undef assert
1165#   define assert(e)
1166
1167#   define DEBUG_STATEMENT(e)
1168#   define DEBUG_PRINT1(x)
1169#   define DEBUG_PRINT2(x1, x2)
1170#   define DEBUG_PRINT3(x1, x2, x3)
1171#   define DEBUG_PRINT4(x1, x2, x3, x4)
1172#  endif /* not DEFINED_ONCE */
1173#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1174#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1175
1176# endif /* not DEBUG */
1177
1178
1179
1180# ifdef WCHAR
1181/* This  convert a multibyte string to a wide character string.
1182   And write their correspondances to offset_buffer(see below)
1183   and write whether each wchar_t is binary data to is_binary.
1184   This assume invalid multibyte sequences as binary data.
1185   We assume offset_buffer and is_binary is already allocated
1186   enough space.  */
1187
1188static size_t
1189convert_mbs_to_wcs (CHAR_T *dest,
1190		    const unsigned char* src,
1191
1192		    /* The length of multibyte string.  */
1193		    size_t len,
1194
1195		    /* Correspondences between src(char string) and
1196		       dest(wchar_t string) for optimization.  E.g.:
1197		       src  = "xxxyzz"
1198		       dest = {'X', 'Y', 'Z'}
1199			 (each "xxx", "y" and "zz" represent one
1200			  multibyte character corresponding to 'X',
1201			  'Y' and 'Z'.)
1202		       offset_buffer = {0, 0+3("xxx"), 0+3+1("y"),
1203					0+3+1+2("zz")}
1204				     = {0, 3, 4, 6} */
1205		    int *offset_buffer,
1206
1207		    char *is_binary)
1208{
1209  wchar_t *pdest = dest;
1210  const unsigned char *psrc = src;
1211  size_t wc_count = 0;
1212
1213  mbstate_t mbs;
1214  int i, consumed;
1215  size_t mb_remain = len;
1216  size_t mb_count = 0;
1217
1218  /* Initialize the conversion state.  */
1219  memset (&mbs, 0, sizeof (mbstate_t));
1220
1221  offset_buffer[0] = 0;
1222  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1223	 psrc += consumed)
1224    {
1225      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1226
1227      if (consumed <= 0)
1228	/* failed to convert. maybe src contains binary data.
1229	   So we consume 1 byte manualy.  */
1230	{
1231	  *pdest = *psrc;
1232	  consumed = 1;
1233	  is_binary[wc_count] = TRUE;
1234	}
1235      else
1236	is_binary[wc_count] = FALSE;
1237      /* In sjis encoding, we use yen sign as escape character in
1238	 place of reverse solidus. So we convert 0x5c(yen sign in
1239	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1240	 solidus in UCS2).  */
1241      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1242	*pdest = (wchar_t) *psrc;
1243
1244      offset_buffer[wc_count + 1] = mb_count += consumed;
1245    }
1246
1247  /* Fill remain of the buffer with sentinel.  */
1248  for (i = wc_count + 1 ; i <= len ; i++)
1249    offset_buffer[i] = mb_count + 1;
1250
1251  return wc_count;
1252}
1253
1254# endif /* WCHAR */
1255
1256#else /* not INSIDE_RECURSION */
1257
1258/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1259   also be assigned to arbitrarily: each pattern buffer stores its own
1260   syntax, so it can be changed between regex compilations.  */
1261/* This has no initializer because initialized variables in Emacs
1262   become read-only after dumping.  */
1263reg_syntax_t re_syntax_options;
1264
1265
1266/* Specify the precise syntax of regexps for compilation.  This provides
1267   for compatibility for various utilities which historically have
1268   different, incompatible syntaxes.
1269
1270   The argument SYNTAX is a bit mask comprised of the various bits
1271   defined in regex.h.  We return the old syntax.  */
1272
1273reg_syntax_t
1274re_set_syntax (reg_syntax_t syntax)
1275{
1276  reg_syntax_t ret = re_syntax_options;
1277
1278  re_syntax_options = syntax;
1279# ifdef DEBUG
1280  if (syntax & RE_DEBUG)
1281    debug = 1;
1282  else if (debug) /* was on but now is not */
1283    debug = 0;
1284# endif /* DEBUG */
1285  return ret;
1286}
1287# ifdef _LIBC
1288weak_alias (__re_set_syntax, re_set_syntax)
1289# endif
1290
1291/* This table gives an error message for each of the error codes listed
1292   in regex.h.  Obviously the order here has to be same as there.
1293   POSIX doesn't require that we do anything for REG_NOERROR,
1294   but why not be nice?  */
1295
1296static const char re_error_msgid[] =
1297  {
1298# define REG_NOERROR_IDX	0
1299    gettext_noop ("Success")	/* REG_NOERROR */
1300    "\0"
1301# define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1302    gettext_noop ("No match")	/* REG_NOMATCH */
1303    "\0"
1304# define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
1305    gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1306    "\0"
1307# define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1308    gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1309    "\0"
1310# define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1311    gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1312    "\0"
1313# define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
1314    gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1315    "\0"
1316# define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
1317    gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1318    "\0"
1319# define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
1320    gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
1321    "\0"
1322# define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1323    gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1324    "\0"
1325# define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1326    gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1327    "\0"
1328# define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
1329    gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1330    "\0"
1331# define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1332    gettext_noop ("Invalid range end")	/* REG_ERANGE */
1333    "\0"
1334# define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
1335    gettext_noop ("Memory exhausted") /* REG_ESPACE */
1336    "\0"
1337# define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
1338    gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1339    "\0"
1340# define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1341    gettext_noop ("Premature end of regular expression") /* REG_EEND */
1342    "\0"
1343# define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
1344    gettext_noop ("Regular expression too big") /* REG_ESIZE */
1345    "\0"
1346# define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
1347    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1348  };
1349
1350static const size_t re_error_msgid_idx[] =
1351  {
1352    REG_NOERROR_IDX,
1353    REG_NOMATCH_IDX,
1354    REG_BADPAT_IDX,
1355    REG_ECOLLATE_IDX,
1356    REG_ECTYPE_IDX,
1357    REG_EESCAPE_IDX,
1358    REG_ESUBREG_IDX,
1359    REG_EBRACK_IDX,
1360    REG_EPAREN_IDX,
1361    REG_EBRACE_IDX,
1362    REG_BADBR_IDX,
1363    REG_ERANGE_IDX,
1364    REG_ESPACE_IDX,
1365    REG_BADRPT_IDX,
1366    REG_EEND_IDX,
1367    REG_ESIZE_IDX,
1368    REG_ERPAREN_IDX
1369  };
1370
1371#endif /* INSIDE_RECURSION */
1372
1373#ifndef DEFINED_ONCE
1374/* Avoiding alloca during matching, to placate r_alloc.  */
1375
1376/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1377   searching and matching functions should not call alloca.  On some
1378   systems, alloca is implemented in terms of malloc, and if we're
1379   using the relocating allocator routines, then malloc could cause a
1380   relocation, which might (if the strings being searched are in the
1381   ralloc heap) shift the data out from underneath the regexp
1382   routines.
1383
1384   Here's another reason to avoid allocation: Emacs
1385   processes input from X in a signal handler; processing X input may
1386   call malloc; if input arrives while a matching routine is calling
1387   malloc, then we're scrod.  But Emacs can't just block input while
1388   calling matching routines; then we don't notice interrupts when
1389   they come in.  So, Emacs blocks input around all regexp calls
1390   except the matching calls, which it leaves unprotected, in the
1391   faith that they will not malloc.  */
1392
1393/* Normally, this is fine.  */
1394# define MATCH_MAY_ALLOCATE
1395
1396/* When using GNU C, we are not REALLY using the C alloca, no matter
1397   what config.h may say.  So don't take precautions for it.  */
1398# ifdef __GNUC__
1399#  undef C_ALLOCA
1400# endif
1401
1402/* The match routines may not allocate if (1) they would do it with malloc
1403   and (2) it's not safe for them to use malloc.
1404   Note that if REL_ALLOC is defined, matching would not use malloc for the
1405   failure stack, but we would still use it for the register vectors;
1406   so REL_ALLOC should not affect this.  */
1407# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1408#  undef MATCH_MAY_ALLOCATE
1409# endif
1410#endif /* not DEFINED_ONCE */
1411
1412#ifdef INSIDE_RECURSION
1413/* Failure stack declarations and macros; both re_compile_fastmap and
1414   re_match_2 use a failure stack.  These have to be macros because of
1415   REGEX_ALLOCATE_STACK.  */
1416
1417
1418/* Number of failure points for which to initially allocate space
1419   when matching.  If this number is exceeded, we allocate more
1420   space, so it is not a hard limit.  */
1421# ifndef INIT_FAILURE_ALLOC
1422#  define INIT_FAILURE_ALLOC 5
1423# endif
1424
1425/* Roughly the maximum number of failure points on the stack.  Would be
1426   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1427   This is a variable only so users of regex can assign to it; we never
1428   change it ourselves.  */
1429
1430# ifdef INT_IS_16BIT
1431
1432#  ifndef DEFINED_ONCE
1433#   if defined MATCH_MAY_ALLOCATE
1434/* 4400 was enough to cause a crash on Alpha OSF/1,
1435   whose default stack limit is 2mb.  */
1436long int re_max_failures = 4000;
1437#   else
1438long int re_max_failures = 2000;
1439#   endif
1440#  endif
1441
1442union PREFIX(fail_stack_elt)
1443{
1444  UCHAR_T *pointer;
1445  long int integer;
1446};
1447
1448typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1449
1450typedef struct
1451{
1452  PREFIX(fail_stack_elt_t) *stack;
1453  unsigned long int size;
1454  unsigned long int avail;		/* Offset of next open position.  */
1455} PREFIX(fail_stack_type);
1456
1457# else /* not INT_IS_16BIT */
1458
1459#  ifndef DEFINED_ONCE
1460#   if defined MATCH_MAY_ALLOCATE
1461/* 4400 was enough to cause a crash on Alpha OSF/1,
1462   whose default stack limit is 2mb.  */
1463int re_max_failures = 4000;
1464#   else
1465int re_max_failures = 2000;
1466#   endif
1467#  endif
1468
1469union PREFIX(fail_stack_elt)
1470{
1471  UCHAR_T *pointer;
1472  int integer;
1473};
1474
1475typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1476
1477typedef struct
1478{
1479  PREFIX(fail_stack_elt_t) *stack;
1480  unsigned size;
1481  unsigned avail;			/* Offset of next open position.  */
1482} PREFIX(fail_stack_type);
1483
1484# endif /* INT_IS_16BIT */
1485
1486# ifndef DEFINED_ONCE
1487#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1488#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1489#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1490# endif
1491
1492
1493/* Define macros to initialize and free the failure stack.
1494   Do `return -2' if the alloc fails.  */
1495
1496# ifdef MATCH_MAY_ALLOCATE
1497#  define INIT_FAIL_STACK()						\
1498  do {									\
1499    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1500      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1501									\
1502    if (fail_stack.stack == NULL)				\
1503      return -2;							\
1504									\
1505    fail_stack.size = INIT_FAILURE_ALLOC;			\
1506    fail_stack.avail = 0;					\
1507  } while (0)
1508
1509#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1510# else
1511#  define INIT_FAIL_STACK()						\
1512  do {									\
1513    fail_stack.avail = 0;					\
1514  } while (0)
1515
1516#  define RESET_FAIL_STACK()
1517# endif
1518
1519
1520/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1521
1522   Return 1 if succeeds, and 0 if either ran out of memory
1523   allocating space for it or it was already too large.
1524
1525   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1526
1527# define DOUBLE_FAIL_STACK(fail_stack)					\
1528  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1529   ? 0									\
1530   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1531        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1532          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1533          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1534									\
1535      (fail_stack).stack == NULL					\
1536      ? 0								\
1537      : ((fail_stack).size <<= 1, 					\
1538         1)))
1539
1540
1541/* Push pointer POINTER on FAIL_STACK.
1542   Return 1 if was able to do so and 0 if ran out of memory allocating
1543   space to do so.  */
1544# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1545  ((FAIL_STACK_FULL ()							\
1546    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1547   ? 0									\
1548   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1549      1))
1550
1551/* Push a pointer value onto the failure stack.
1552   Assumes the variable `fail_stack'.  Probably should only
1553   be called from within `PUSH_FAILURE_POINT'.  */
1554# define PUSH_FAILURE_POINTER(item)					\
1555  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1556
1557/* This pushes an integer-valued item onto the failure stack.
1558   Assumes the variable `fail_stack'.  Probably should only
1559   be called from within `PUSH_FAILURE_POINT'.  */
1560# define PUSH_FAILURE_INT(item)					\
1561  fail_stack.stack[fail_stack.avail++].integer = (item)
1562
1563/* Push a fail_stack_elt_t value onto the failure stack.
1564   Assumes the variable `fail_stack'.  Probably should only
1565   be called from within `PUSH_FAILURE_POINT'.  */
1566# define PUSH_FAILURE_ELT(item)					\
1567  fail_stack.stack[fail_stack.avail++] =  (item)
1568
1569/* These three POP... operations complement the three PUSH... operations.
1570   All assume that `fail_stack' is nonempty.  */
1571# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1572# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1573# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1574
1575/* Used to omit pushing failure point id's when we're not debugging.  */
1576# ifdef DEBUG
1577#  define DEBUG_PUSH PUSH_FAILURE_INT
1578#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1579# else
1580#  define DEBUG_PUSH(item)
1581#  define DEBUG_POP(item_addr)
1582# endif
1583
1584
1585/* Push the information about the state we will need
1586   if we ever fail back to it.
1587
1588   Requires variables fail_stack, regstart, regend, reg_info, and
1589   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1590   be declared.
1591
1592   Does `return FAILURE_CODE' if runs out of memory.  */
1593
1594# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1595  do {									\
1596    char *destination;							\
1597    /* Must be int, so when we don't save any registers, the arithmetic	\
1598       of 0 + -1 isn't done as unsigned.  */				\
1599    /* Can't be int, since there is not a shred of a guarantee that int	\
1600       is wide enough to hold a value of something to which pointer can	\
1601       be assigned */							\
1602    active_reg_t this_reg;						\
1603    									\
1604    DEBUG_STATEMENT (failure_id++);					\
1605    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1606    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1607    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1608    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1609									\
1610    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1611    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1612									\
1613    /* Ensure we have enough space allocated for what we will push.  */	\
1614    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1615      {									\
1616        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1617          return failure_code;						\
1618									\
1619        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1620		       (fail_stack).size);				\
1621        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1622      }									\
1623									\
1624    /* Push the info, starting with the registers.  */			\
1625    DEBUG_PRINT1 ("\n");						\
1626									\
1627    if (1)								\
1628      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1629	   this_reg++)							\
1630	{								\
1631	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1632	  DEBUG_STATEMENT (num_regs_pushed++);				\
1633									\
1634	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1635	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1636									\
1637	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1638	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1639									\
1640	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1641			reg_info[this_reg].word.pointer);		\
1642	  DEBUG_PRINT2 (" match_null=%d",				\
1643			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1644	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1645	  DEBUG_PRINT2 (" matched_something=%d",			\
1646			MATCHED_SOMETHING (reg_info[this_reg]));	\
1647	  DEBUG_PRINT2 (" ever_matched=%d",				\
1648			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1649	  DEBUG_PRINT1 ("\n");						\
1650	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1651	}								\
1652									\
1653    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1654    PUSH_FAILURE_INT (lowest_active_reg);				\
1655									\
1656    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1657    PUSH_FAILURE_INT (highest_active_reg);				\
1658									\
1659    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1660    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1661    PUSH_FAILURE_POINTER (pattern_place);				\
1662									\
1663    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1664    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1665				 size2);				\
1666    DEBUG_PRINT1 ("'\n");						\
1667    PUSH_FAILURE_POINTER (string_place);				\
1668									\
1669    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1670    DEBUG_PUSH (failure_id);						\
1671  } while (0)
1672
1673# ifndef DEFINED_ONCE
1674/* This is the number of items that are pushed and popped on the stack
1675   for each register.  */
1676#  define NUM_REG_ITEMS  3
1677
1678/* Individual items aside from the registers.  */
1679#  ifdef DEBUG
1680#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1681#  else
1682#   define NUM_NONREG_ITEMS 4
1683#  endif
1684
1685/* We push at most this many items on the stack.  */
1686/* We used to use (num_regs - 1), which is the number of registers
1687   this regexp will save; but that was changed to 5
1688   to avoid stack overflow for a regexp with lots of parens.  */
1689#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1690
1691/* We actually push this many items.  */
1692#  define NUM_FAILURE_ITEMS				\
1693  (((0							\
1694     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1695    * NUM_REG_ITEMS)					\
1696   + NUM_NONREG_ITEMS)
1697
1698/* How many items can still be added to the stack without overflowing it.  */
1699#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1700# endif /* not DEFINED_ONCE */
1701
1702
1703/* Pops what PUSH_FAIL_STACK pushes.
1704
1705   We restore into the parameters, all of which should be lvalues:
1706     STR -- the saved data position.
1707     PAT -- the saved pattern position.
1708     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1709     REGSTART, REGEND -- arrays of string positions.
1710     REG_INFO -- array of information about each subexpression.
1711
1712   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1713   `pend', `string1', `size1', `string2', and `size2'.  */
1714# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1715{									\
1716  DEBUG_STATEMENT (unsigned failure_id;)				\
1717  active_reg_t this_reg;						\
1718  const UCHAR_T *string_temp;						\
1719									\
1720  assert (!FAIL_STACK_EMPTY ());					\
1721									\
1722  /* Remove failure points and point to how many regs pushed.  */	\
1723  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1724  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1725  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1726									\
1727  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1728									\
1729  DEBUG_POP (&failure_id);						\
1730  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1731									\
1732  /* If the saved string location is NULL, it came from an		\
1733     on_failure_keep_string_jump opcode, and we want to throw away the	\
1734     saved NULL, thus retaining our current position in the string.  */	\
1735  string_temp = POP_FAILURE_POINTER ();					\
1736  if (string_temp != NULL)						\
1737    str = (const CHAR_T *) string_temp;					\
1738									\
1739  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1740  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1741  DEBUG_PRINT1 ("'\n");							\
1742									\
1743  pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1744  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1745  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1746									\
1747  /* Restore register info.  */						\
1748  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1749  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1750									\
1751  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1752  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1753									\
1754  if (1)								\
1755    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1756      {									\
1757	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1758									\
1759	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1760	DEBUG_PRINT2 ("      info: %p\n",				\
1761		      reg_info[this_reg].word.pointer);			\
1762									\
1763	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1764	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1765									\
1766	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1767	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1768      }									\
1769  else									\
1770    {									\
1771      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1772	{								\
1773	  reg_info[this_reg].word.integer = 0;				\
1774	  regend[this_reg] = 0;						\
1775	  regstart[this_reg] = 0;					\
1776	}								\
1777      highest_active_reg = high_reg;					\
1778    }									\
1779									\
1780  set_regs_matched_done = 0;						\
1781  DEBUG_STATEMENT (nfailure_points_popped++);				\
1782} /* POP_FAILURE_POINT */
1783
1784/* Structure for per-register (a.k.a. per-group) information.
1785   Other register information, such as the
1786   starting and ending positions (which are addresses), and the list of
1787   inner groups (which is a bits list) are maintained in separate
1788   variables.
1789
1790   We are making a (strictly speaking) nonportable assumption here: that
1791   the compiler will pack our bit fields into something that fits into
1792   the type of `word', i.e., is something that fits into one item on the
1793   failure stack.  */
1794
1795
1796/* Declarations and macros for re_match_2.  */
1797
1798typedef union
1799{
1800  PREFIX(fail_stack_elt_t) word;
1801  struct
1802  {
1803      /* This field is one if this group can match the empty string,
1804         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1805# define MATCH_NULL_UNSET_VALUE 3
1806    unsigned match_null_string_p : 2;
1807    unsigned is_active : 1;
1808    unsigned matched_something : 1;
1809    unsigned ever_matched_something : 1;
1810  } bits;
1811} PREFIX(register_info_type);
1812
1813# ifndef DEFINED_ONCE
1814#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1815#  define IS_ACTIVE(R)  ((R).bits.is_active)
1816#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1817#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1818
1819
1820/* Call this when have matched a real character; it sets `matched' flags
1821   for the subexpressions which we are currently inside.  Also records
1822   that those subexprs have matched.  */
1823#  define SET_REGS_MATCHED()						\
1824  do									\
1825    {									\
1826      if (!set_regs_matched_done)					\
1827	{								\
1828	  active_reg_t r;						\
1829	  set_regs_matched_done = 1;					\
1830	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1831	    {								\
1832	      MATCHED_SOMETHING (reg_info[r])				\
1833		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1834		= 1;							\
1835	    }								\
1836	}								\
1837    }									\
1838  while (0)
1839# endif /* not DEFINED_ONCE */
1840
1841/* Registers are set to a sentinel when they haven't yet matched.  */
1842static CHAR_T PREFIX(reg_unset_dummy);
1843# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1844# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1845
1846/* Subroutine declarations and macros for regex_compile.  */
1847static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1848static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1849			       int arg1, int arg2);
1850static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1851				int arg, UCHAR_T *end);
1852static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1853				int arg1, int arg2, UCHAR_T *end);
1854static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1855					 const CHAR_T *p,
1856					 reg_syntax_t syntax);
1857static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1858					 const CHAR_T *pend,
1859					 reg_syntax_t syntax);
1860# ifdef WCHAR
1861static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1862					const CHAR_T **p_ptr,
1863					const CHAR_T *pend,
1864					char *translate,
1865					reg_syntax_t syntax,
1866					UCHAR_T *b,
1867					CHAR_T *char_set);
1868static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1869# else /* BYTE */
1870static reg_errcode_t byte_compile_range (unsigned int range_start,
1871					 const char **p_ptr,
1872					 const char *pend,
1873					 char *translate,
1874					 reg_syntax_t syntax,
1875					 unsigned char *b);
1876# endif /* WCHAR */
1877
1878/* Fetch the next character in the uncompiled pattern---translating it
1879   if necessary.  Also cast from a signed character in the constant
1880   string passed to us by the user to an unsigned char that we can use
1881   as an array index (in, e.g., `translate').  */
1882/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1883   because it is impossible to allocate 4GB array for some encodings
1884   which have 4 byte character_set like UCS4.  */
1885# ifndef PATFETCH
1886#  ifdef WCHAR
1887#   define PATFETCH(c)							\
1888  do {if (p == pend) return REG_EEND;					\
1889    c = (UCHAR_T) *p++;							\
1890    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1891  } while (0)
1892#  else /* BYTE */
1893#   define PATFETCH(c)							\
1894  do {if (p == pend) return REG_EEND;					\
1895    c = (unsigned char) *p++;						\
1896    if (translate) c = (unsigned char) translate[c];			\
1897  } while (0)
1898#  endif /* WCHAR */
1899# endif
1900
1901/* Fetch the next character in the uncompiled pattern, with no
1902   translation.  */
1903# define PATFETCH_RAW(c)						\
1904  do {if (p == pend) return REG_EEND;					\
1905    c = (UCHAR_T) *p++; 	       					\
1906  } while (0)
1907
1908/* Go backwards one character in the pattern.  */
1909# define PATUNFETCH p--
1910
1911
1912/* If `translate' is non-null, return translate[D], else just D.  We
1913   cast the subscript to translate because some data is declared as
1914   `char *', to avoid warnings when a string constant is passed.  But
1915   when we use a character as a subscript we must make it unsigned.  */
1916/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1917   because it is impossible to allocate 4GB array for some encodings
1918   which have 4 byte character_set like UCS4.  */
1919
1920# ifndef TRANSLATE
1921#  ifdef WCHAR
1922#   define TRANSLATE(d) \
1923  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1924   ? (char) translate[(unsigned char) (d)] : (d))
1925# else /* BYTE */
1926#   define TRANSLATE(d) \
1927  (translate ? (char) translate[(unsigned char) (d)] : (d))
1928#  endif /* WCHAR */
1929# endif
1930
1931
1932/* Macros for outputting the compiled pattern into `buffer'.  */
1933
1934/* If the buffer isn't allocated when it comes in, use this.  */
1935# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1936
1937/* Make sure we have at least N more bytes of space in buffer.  */
1938# ifdef WCHAR
1939#  define GET_BUFFER_SPACE(n)						\
1940    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1941            + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1942      EXTEND_BUFFER ()
1943# else /* BYTE */
1944#  define GET_BUFFER_SPACE(n)						\
1945    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1946      EXTEND_BUFFER ()
1947# endif /* WCHAR */
1948
1949/* Make sure we have one more byte of buffer space and then add C to it.  */
1950# define BUF_PUSH(c)							\
1951  do {									\
1952    GET_BUFFER_SPACE (1);						\
1953    *b++ = (UCHAR_T) (c);						\
1954  } while (0)
1955
1956
1957/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1958# define BUF_PUSH_2(c1, c2)						\
1959  do {									\
1960    GET_BUFFER_SPACE (2);						\
1961    *b++ = (UCHAR_T) (c1);						\
1962    *b++ = (UCHAR_T) (c2);						\
1963  } while (0)
1964
1965
1966/* As with BUF_PUSH_2, except for three bytes.  */
1967# define BUF_PUSH_3(c1, c2, c3)						\
1968  do {									\
1969    GET_BUFFER_SPACE (3);						\
1970    *b++ = (UCHAR_T) (c1);						\
1971    *b++ = (UCHAR_T) (c2);						\
1972    *b++ = (UCHAR_T) (c3);						\
1973  } while (0)
1974
1975/* Store a jump with opcode OP at LOC to location TO.  We store a
1976   relative address offset by the three bytes the jump itself occupies.  */
1977# define STORE_JUMP(op, loc, to) \
1978 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1979
1980/* Likewise, for a two-argument jump.  */
1981# define STORE_JUMP2(op, loc, to, arg) \
1982  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1983
1984/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1985# define INSERT_JUMP(op, loc, to) \
1986  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1987
1988/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1989# define INSERT_JUMP2(op, loc, to, arg) \
1990  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1991	      arg, b)
1992
1993/* This is not an arbitrary limit: the arguments which represent offsets
1994   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1995   be too small, many things would have to change.  */
1996/* Any other compiler which, like MSC, has allocation limit below 2^16
1997   bytes will have to use approach similar to what was done below for
1998   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1999   reallocating to 0 bytes.  Such thing is not going to work too well.
2000   You have been warned!!  */
2001# ifndef DEFINED_ONCE
2002#  if defined _MSC_VER  && !defined WIN32
2003/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2004   The REALLOC define eliminates a flurry of conversion warnings,
2005   but is not required. */
2006#   define MAX_BUF_SIZE  65500L
2007#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2008#  else
2009#   define MAX_BUF_SIZE (1L << 16)
2010#   define REALLOC(p,s) realloc ((p), (s))
2011#  endif
2012
2013/* Extend the buffer by twice its current size via realloc and
2014   reset the pointers that pointed into the old block to point to the
2015   correct places in the new one.  If extending the buffer results in it
2016   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2017#  if __BOUNDED_POINTERS__
2018#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2019#   define MOVE_BUFFER_POINTER(P) \
2020  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2021#   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2022  else						\
2023    {						\
2024      SET_HIGH_BOUND (b);			\
2025      SET_HIGH_BOUND (begalt);			\
2026      if (fixup_alt_jump)			\
2027	SET_HIGH_BOUND (fixup_alt_jump);	\
2028      if (laststart)				\
2029	SET_HIGH_BOUND (laststart);		\
2030      if (pending_exact)			\
2031	SET_HIGH_BOUND (pending_exact);		\
2032    }
2033#  else
2034#   define MOVE_BUFFER_POINTER(P) (P) += incr
2035#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2036#  endif
2037# endif /* not DEFINED_ONCE */
2038
2039# ifdef WCHAR
2040#  define EXTEND_BUFFER()						\
2041  do {									\
2042    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2043    int wchar_count;							\
2044    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2045      return REG_ESIZE;							\
2046    bufp->allocated <<= 1;						\
2047    if (bufp->allocated > MAX_BUF_SIZE)					\
2048      bufp->allocated = MAX_BUF_SIZE;					\
2049    /* How many characters the new buffer can have?  */			\
2050    wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2051    if (wchar_count == 0) wchar_count = 1;				\
2052    /* Truncate the buffer to CHAR_T align.  */			\
2053    bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2054    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2055    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2056    if (COMPILED_BUFFER_VAR == NULL)					\
2057      return REG_ESPACE;						\
2058    /* If the buffer moved, move all the pointers into it.  */		\
2059    if (old_buffer != COMPILED_BUFFER_VAR)				\
2060      {									\
2061	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2062	MOVE_BUFFER_POINTER (b);					\
2063	MOVE_BUFFER_POINTER (begalt);					\
2064	if (fixup_alt_jump)						\
2065	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2066	if (laststart)							\
2067	  MOVE_BUFFER_POINTER (laststart);				\
2068	if (pending_exact)						\
2069	  MOVE_BUFFER_POINTER (pending_exact);				\
2070      }									\
2071    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2072  } while (0)
2073# else /* BYTE */
2074#  define EXTEND_BUFFER()						\
2075  do {									\
2076    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2077    if (bufp->allocated == MAX_BUF_SIZE)				\
2078      return REG_ESIZE;							\
2079    bufp->allocated <<= 1;						\
2080    if (bufp->allocated > MAX_BUF_SIZE)					\
2081      bufp->allocated = MAX_BUF_SIZE;					\
2082    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, bufp->allocated); \
2083    if (COMPILED_BUFFER_VAR == NULL)					\
2084      return REG_ESPACE;						\
2085    /* If the buffer moved, move all the pointers into it.  */		\
2086    if (old_buffer != COMPILED_BUFFER_VAR)				\
2087      {									\
2088	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2089	MOVE_BUFFER_POINTER (b);					\
2090	MOVE_BUFFER_POINTER (begalt);					\
2091	if (fixup_alt_jump)						\
2092	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2093	if (laststart)							\
2094	  MOVE_BUFFER_POINTER (laststart);				\
2095	if (pending_exact)						\
2096	  MOVE_BUFFER_POINTER (pending_exact);				\
2097      }									\
2098    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2099  } while (0)
2100# endif /* WCHAR */
2101
2102# ifndef DEFINED_ONCE
2103/* Since we have one byte reserved for the register number argument to
2104   {start,stop}_memory, the maximum number of groups we can report
2105   things about is what fits in that byte.  */
2106#  define MAX_REGNUM 255
2107
2108/* But patterns can have more than `MAX_REGNUM' registers.  We just
2109   ignore the excess.  */
2110typedef unsigned regnum_t;
2111
2112
2113/* Macros for the compile stack.  */
2114
2115/* Since offsets can go either forwards or backwards, this type needs to
2116   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2117/* int may be not enough when sizeof(int) == 2.  */
2118typedef long pattern_offset_t;
2119
2120typedef struct
2121{
2122  pattern_offset_t begalt_offset;
2123  pattern_offset_t fixup_alt_jump;
2124  pattern_offset_t inner_group_offset;
2125  pattern_offset_t laststart_offset;
2126  regnum_t regnum;
2127} compile_stack_elt_t;
2128
2129
2130typedef struct
2131{
2132  compile_stack_elt_t *stack;
2133  unsigned size;
2134  unsigned avail;			/* Offset of next open position.  */
2135} compile_stack_type;
2136
2137
2138#  define INIT_COMPILE_STACK_SIZE 32
2139
2140#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2141#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2142
2143/* The next available element.  */
2144#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2145
2146# endif /* not DEFINED_ONCE */
2147
2148/* Set the bit for character C in a list.  */
2149# ifndef DEFINED_ONCE
2150#  define SET_LIST_BIT(c)                               \
2151  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2152   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2153# endif /* DEFINED_ONCE */
2154
2155/* Get the next unsigned number in the uncompiled pattern.  */
2156# define GET_UNSIGNED_NUMBER(num) \
2157  {									\
2158    while (p != pend)							\
2159      {									\
2160	PATFETCH (c);							\
2161	if (c < '0' || c > '9')						\
2162	  break;							\
2163	if (num <= RE_DUP_MAX)						\
2164	  {								\
2165	    if (num < 0)						\
2166	      num = 0;							\
2167	    num = num * 10 + c - '0';					\
2168	  }								\
2169      }									\
2170  }
2171
2172# ifndef DEFINED_ONCE
2173#  if defined _LIBC || WIDE_CHAR_SUPPORT
2174/* The GNU C library provides support for user-defined character classes
2175   and the functions from ISO C amendement 1.  */
2176#   ifdef CHARCLASS_NAME_MAX
2177#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2178#   else
2179/* This shouldn't happen but some implementation might still have this
2180   problem.  Use a reasonable default value.  */
2181#    define CHAR_CLASS_MAX_LENGTH 256
2182#   endif
2183
2184#   ifdef _LIBC
2185#    define IS_CHAR_CLASS(string) __wctype (string)
2186#   else
2187#    define IS_CHAR_CLASS(string) wctype (string)
2188#   endif
2189#  else
2190#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2191
2192#   define IS_CHAR_CLASS(string)					\
2193   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2194    || STREQ (string, "lower") || STREQ (string, "digit")		\
2195    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2196    || STREQ (string, "space") || STREQ (string, "print")		\
2197    || STREQ (string, "punct") || STREQ (string, "graph")		\
2198    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2199#  endif
2200# endif /* DEFINED_ONCE */
2201
2202# ifndef MATCH_MAY_ALLOCATE
2203
2204/* If we cannot allocate large objects within re_match_2_internal,
2205   we make the fail stack and register vectors global.
2206   The fail stack, we grow to the maximum size when a regexp
2207   is compiled.
2208   The register vectors, we adjust in size each time we
2209   compile a regexp, according to the number of registers it needs.  */
2210
2211static PREFIX(fail_stack_type) fail_stack;
2212
2213/* Size with which the following vectors are currently allocated.
2214   That is so we can make them bigger as needed,
2215   but never make them smaller.  */
2216#  ifdef DEFINED_ONCE
2217static int regs_allocated_size;
2218
2219static const char **     regstart, **     regend;
2220static const char ** old_regstart, ** old_regend;
2221static const char **best_regstart, **best_regend;
2222static const char **reg_dummy;
2223#  endif /* DEFINED_ONCE */
2224
2225static PREFIX(register_info_type) *PREFIX(reg_info);
2226static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2227
2228/* Make the register vectors big enough for NUM_REGS registers,
2229   but don't make them smaller.  */
2230
2231static void
2232PREFIX(regex_grow_registers) (int num_regs)
2233{
2234  if (num_regs > regs_allocated_size)
2235    {
2236      RETALLOC_IF (regstart,	 num_regs, const char *);
2237      RETALLOC_IF (regend,	 num_regs, const char *);
2238      RETALLOC_IF (old_regstart, num_regs, const char *);
2239      RETALLOC_IF (old_regend,	 num_regs, const char *);
2240      RETALLOC_IF (best_regstart, num_regs, const char *);
2241      RETALLOC_IF (best_regend,	 num_regs, const char *);
2242      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2243      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2244      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2245
2246      regs_allocated_size = num_regs;
2247    }
2248}
2249
2250# endif /* not MATCH_MAY_ALLOCATE */
2251
2252# ifndef DEFINED_ONCE
2253static boolean group_in_compile_stack (compile_stack_type
2254				       compile_stack,
2255				       regnum_t regnum);
2256# endif /* not DEFINED_ONCE */
2257
2258/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2259   Returns one of error codes defined in `regex.h', or zero for success.
2260
2261   Assumes the `allocated' (and perhaps `buffer') and `translate'
2262   fields are set in BUFP on entry.
2263
2264   If it succeeds, results are put in BUFP (if it returns an error, the
2265   contents of BUFP are undefined):
2266     `buffer' is the compiled pattern;
2267     `syntax' is set to SYNTAX;
2268     `used' is set to the length of the compiled pattern;
2269     `fastmap_accurate' is zero;
2270     `re_nsub' is the number of subexpressions in PATTERN;
2271     `not_bol' and `not_eol' are zero;
2272
2273   The `fastmap' and `newline_anchor' fields are neither
2274   examined nor set.  */
2275
2276/* Return, freeing storage we allocated.  */
2277# ifdef WCHAR
2278#  define FREE_STACK_RETURN(value)		\
2279  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2280# else
2281#  define FREE_STACK_RETURN(value)		\
2282  return (free (compile_stack.stack), value)
2283# endif /* WCHAR */
2284
2285static reg_errcode_t
2286PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2287		       size_t ARG_PREFIX(size),
2288		       reg_syntax_t syntax,
2289		       struct re_pattern_buffer *bufp)
2290{
2291  /* We fetch characters from PATTERN here.  Even though PATTERN is
2292     `char *' (i.e., signed), we declare these variables as unsigned, so
2293     they can be reliably used as array indices.  */
2294  register UCHAR_T c, c1;
2295
2296#ifdef WCHAR
2297  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2298  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2299  size_t size;
2300  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2301  int *mbs_offset = NULL;
2302  /* It hold whether each wchar_t is binary data or not.  */
2303  char *is_binary = NULL;
2304  /* A flag whether exactn is handling binary data or not.  */
2305  char is_exactn_bin = FALSE;
2306#endif /* WCHAR */
2307
2308  /* A random temporary spot in PATTERN.  */
2309  const CHAR_T *p1;
2310
2311  /* Points to the end of the buffer, where we should append.  */
2312  register UCHAR_T *b;
2313
2314  /* Keeps track of unclosed groups.  */
2315  compile_stack_type compile_stack;
2316
2317  /* Points to the current (ending) position in the pattern.  */
2318#ifdef WCHAR
2319  const CHAR_T *p;
2320  const CHAR_T *pend;
2321#else /* BYTE */
2322  const CHAR_T *p = pattern;
2323  const CHAR_T *pend = pattern + size;
2324#endif /* WCHAR */
2325
2326  /* How to translate the characters in the pattern.  */
2327  RE_TRANSLATE_TYPE translate = bufp->translate;
2328
2329  /* Address of the count-byte of the most recently inserted `exactn'
2330     command.  This makes it possible to tell if a new exact-match
2331     character can be added to that command or if the character requires
2332     a new `exactn' command.  */
2333  UCHAR_T *pending_exact = 0;
2334
2335  /* Address of start of the most recently finished expression.
2336     This tells, e.g., postfix * where to find the start of its
2337     operand.  Reset at the beginning of groups and alternatives.  */
2338  UCHAR_T *laststart = 0;
2339
2340  /* Address of beginning of regexp, or inside of last group.  */
2341  UCHAR_T *begalt;
2342
2343  /* Address of the place where a forward jump should go to the end of
2344     the containing expression.  Each alternative of an `or' -- except the
2345     last -- ends with a forward jump of this sort.  */
2346  UCHAR_T *fixup_alt_jump = 0;
2347
2348  /* Counts open-groups as they are encountered.  Remembered for the
2349     matching close-group on the compile stack, so the same register
2350     number is put in the stop_memory as the start_memory.  */
2351  regnum_t regnum = 0;
2352
2353#ifdef WCHAR
2354  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2355  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2356  mbs_offset = TALLOC(csize + 1, int);
2357  is_binary = TALLOC(csize + 1, char);
2358  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2359    {
2360      free(pattern);
2361      free(mbs_offset);
2362      free(is_binary);
2363      return REG_ESPACE;
2364    }
2365  pattern[csize] = L'\0';	/* sentinel */
2366  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2367  pend = p + size;
2368  if (size < 0)
2369    {
2370      free(pattern);
2371      free(mbs_offset);
2372      free(is_binary);
2373      return REG_BADPAT;
2374    }
2375#endif
2376
2377#ifdef DEBUG
2378  DEBUG_PRINT1 ("\nCompiling pattern: ");
2379  if (debug)
2380    {
2381      unsigned debug_count;
2382
2383      for (debug_count = 0; debug_count < size; debug_count++)
2384        PUT_CHAR (pattern[debug_count]);
2385      putchar ('\n');
2386    }
2387#endif /* DEBUG */
2388
2389  /* Initialize the compile stack.  */
2390  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2391  if (compile_stack.stack == NULL)
2392    {
2393#ifdef WCHAR
2394      free(pattern);
2395      free(mbs_offset);
2396      free(is_binary);
2397#endif
2398      return REG_ESPACE;
2399    }
2400
2401  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2402  compile_stack.avail = 0;
2403
2404  /* Initialize the pattern buffer.  */
2405  bufp->syntax = syntax;
2406  bufp->fastmap_accurate = 0;
2407  bufp->not_bol = bufp->not_eol = 0;
2408
2409  /* Set `used' to zero, so that if we return an error, the pattern
2410     printer (for debugging) will think there's no pattern.  We reset it
2411     at the end.  */
2412  bufp->used = 0;
2413
2414  /* Always count groups, whether or not bufp->no_sub is set.  */
2415  bufp->re_nsub = 0;
2416
2417#if !defined emacs && !defined SYNTAX_TABLE
2418  /* Initialize the syntax table.  */
2419   init_syntax_once ();
2420#endif
2421
2422  if (bufp->allocated == 0)
2423    {
2424      if (bufp->buffer)
2425	{ /* If zero allocated, but buffer is non-null, try to realloc
2426             enough space.  This loses if buffer's address is bogus, but
2427             that is the user's responsibility.  */
2428#ifdef WCHAR
2429	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2430	     buffer.  */
2431          free(bufp->buffer);
2432          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2433					UCHAR_T);
2434#else
2435          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2436#endif /* WCHAR */
2437        }
2438      else
2439        { /* Caller did not allocate a buffer.  Do it for them.  */
2440          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2441					UCHAR_T);
2442        }
2443
2444      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2445#ifdef WCHAR
2446      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2447#endif /* WCHAR */
2448      bufp->allocated = INIT_BUF_SIZE;
2449    }
2450#ifdef WCHAR
2451  else
2452    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2453#endif
2454
2455  begalt = b = COMPILED_BUFFER_VAR;
2456
2457  /* Loop through the uncompiled pattern until we're at the end.  */
2458  while (p != pend)
2459    {
2460      PATFETCH (c);
2461
2462      switch (c)
2463        {
2464        case '^':
2465          {
2466            if (   /* If at start of pattern, it's an operator.  */
2467                   p == pattern + 1
2468                   /* If context independent, it's an operator.  */
2469                || syntax & RE_CONTEXT_INDEP_ANCHORS
2470                   /* Otherwise, depends on what's come before.  */
2471                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2472              BUF_PUSH (begline);
2473            else
2474              goto normal_char;
2475          }
2476          break;
2477
2478
2479        case '$':
2480          {
2481            if (   /* If at end of pattern, it's an operator.  */
2482                   p == pend
2483                   /* If context independent, it's an operator.  */
2484                || syntax & RE_CONTEXT_INDEP_ANCHORS
2485                   /* Otherwise, depends on what's next.  */
2486                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2487               BUF_PUSH (endline);
2488             else
2489               goto normal_char;
2490           }
2491           break;
2492
2493
2494	case '+':
2495        case '?':
2496          if ((syntax & RE_BK_PLUS_QM)
2497              || (syntax & RE_LIMITED_OPS))
2498            goto normal_char;
2499        handle_plus:
2500        case '*':
2501          /* If there is no previous pattern... */
2502          if (!laststart)
2503            {
2504              if (syntax & RE_CONTEXT_INVALID_OPS)
2505                FREE_STACK_RETURN (REG_BADRPT);
2506              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2507                goto normal_char;
2508            }
2509
2510          {
2511            /* Are we optimizing this jump?  */
2512            boolean keep_string_p = false;
2513
2514            /* 1 means zero (many) matches is allowed.  */
2515            char zero_times_ok = 0, many_times_ok = 0;
2516
2517            /* If there is a sequence of repetition chars, collapse it
2518               down to just one (the right one).  We can't combine
2519               interval operators with these because of, e.g., `a{2}*',
2520               which should only match an even number of `a's.  */
2521
2522            for (;;)
2523              {
2524                zero_times_ok |= c != '+';
2525                many_times_ok |= c != '?';
2526
2527                if (p == pend)
2528                  break;
2529
2530                PATFETCH (c);
2531
2532                if (c == '*'
2533                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2534                  ;
2535
2536                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2537                  {
2538                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2539
2540                    PATFETCH (c1);
2541                    if (!(c1 == '+' || c1 == '?'))
2542                      {
2543                        PATUNFETCH;
2544                        PATUNFETCH;
2545                        break;
2546                      }
2547
2548                    c = c1;
2549                  }
2550                else
2551                  {
2552                    PATUNFETCH;
2553                    break;
2554                  }
2555
2556                /* If we get here, we found another repeat character.  */
2557               }
2558
2559            /* Star, etc. applied to an empty pattern is equivalent
2560               to an empty pattern.  */
2561            if (!laststart)
2562              break;
2563
2564            /* Now we know whether or not zero matches is allowed
2565               and also whether or not two or more matches is allowed.  */
2566            if (many_times_ok)
2567              { /* More than one repetition is allowed, so put in at the
2568                   end a backward relative jump from `b' to before the next
2569                   jump we're going to put in below (which jumps from
2570                   laststart to after this jump).
2571
2572                   But if we are at the `*' in the exact sequence `.*\n',
2573                   insert an unconditional jump backwards to the .,
2574                   instead of the beginning of the loop.  This way we only
2575                   push a failure point once, instead of every time
2576                   through the loop.  */
2577                assert (p - 1 > pattern);
2578
2579                /* Allocate the space for the jump.  */
2580                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2581
2582                /* We know we are not at the first character of the pattern,
2583                   because laststart was nonzero.  And we've already
2584                   incremented `p', by the way, to be the character after
2585                   the `*'.  Do we have to do something analogous here
2586                   for null bytes, because of RE_DOT_NOT_NULL?  */
2587                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2588		    && zero_times_ok
2589                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2590                    && !(syntax & RE_DOT_NEWLINE))
2591                  { /* We have .*\n.  */
2592                    STORE_JUMP (jump, b, laststart);
2593                    keep_string_p = true;
2594                  }
2595                else
2596                  /* Anything else.  */
2597                  STORE_JUMP (maybe_pop_jump, b, laststart -
2598			      (1 + OFFSET_ADDRESS_SIZE));
2599
2600                /* We've added more stuff to the buffer.  */
2601                b += 1 + OFFSET_ADDRESS_SIZE;
2602              }
2603
2604            /* On failure, jump from laststart to b + 3, which will be the
2605               end of the buffer after this jump is inserted.  */
2606	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2607	       'b + 3'.  */
2608            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2609            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2610                                       : on_failure_jump,
2611                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2612            pending_exact = 0;
2613            b += 1 + OFFSET_ADDRESS_SIZE;
2614
2615            if (!zero_times_ok)
2616              {
2617                /* At least one repetition is required, so insert a
2618                   `dummy_failure_jump' before the initial
2619                   `on_failure_jump' instruction of the loop. This
2620                   effects a skip over that instruction the first time
2621                   we hit that loop.  */
2622                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2623                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2624			     2 + 2 * OFFSET_ADDRESS_SIZE);
2625                b += 1 + OFFSET_ADDRESS_SIZE;
2626              }
2627            }
2628	  break;
2629
2630
2631	case '.':
2632          laststart = b;
2633          BUF_PUSH (anychar);
2634          break;
2635
2636
2637        case '[':
2638          {
2639            boolean had_char_class = false;
2640#ifdef WCHAR
2641	    CHAR_T range_start = 0xffffffff;
2642#else
2643	    unsigned int range_start = 0xffffffff;
2644#endif
2645            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2646
2647#ifdef WCHAR
2648	    /* We assume a charset(_not) structure as a wchar_t array.
2649	       charset[0] = (re_opcode_t) charset(_not)
2650               charset[1] = l (= length of char_classes)
2651               charset[2] = m (= length of collating_symbols)
2652               charset[3] = n (= length of equivalence_classes)
2653	       charset[4] = o (= length of char_ranges)
2654	       charset[5] = p (= length of chars)
2655
2656               charset[6] = char_class (wctype_t)
2657               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2658                         ...
2659               charset[l+5]  = char_class (wctype_t)
2660
2661               charset[l+6]  = collating_symbol (wchar_t)
2662                            ...
2663               charset[l+m+5]  = collating_symbol (wchar_t)
2664					ifdef _LIBC we use the index if
2665					_NL_COLLATE_SYMB_EXTRAMB instead of
2666					wchar_t string.
2667
2668               charset[l+m+6]  = equivalence_classes (wchar_t)
2669                              ...
2670               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2671					ifdef _LIBC we use the index in
2672					_NL_COLLATE_WEIGHT instead of
2673					wchar_t string.
2674
2675	       charset[l+m+n+6] = range_start
2676	       charset[l+m+n+7] = range_end
2677	                       ...
2678	       charset[l+m+n+2o+4] = range_start
2679	       charset[l+m+n+2o+5] = range_end
2680					ifdef _LIBC we use the value looked up
2681					in _NL_COLLATE_COLLSEQ instead of
2682					wchar_t character.
2683
2684	       charset[l+m+n+2o+6] = char
2685	                          ...
2686	       charset[l+m+n+2o+p+5] = char
2687
2688	     */
2689
2690	    /* We need at least 6 spaces: the opcode, the length of
2691               char_classes, the length of collating_symbols, the length of
2692               equivalence_classes, the length of char_ranges, the length of
2693               chars.  */
2694	    GET_BUFFER_SPACE (6);
2695
2696	    /* Save b as laststart. And We use laststart as the pointer
2697	       to the first element of the charset here.
2698	       In other words, laststart[i] indicates charset[i].  */
2699            laststart = b;
2700
2701            /* We test `*p == '^' twice, instead of using an if
2702               statement, so we only need one BUF_PUSH.  */
2703            BUF_PUSH (*p == '^' ? charset_not : charset);
2704            if (*p == '^')
2705              p++;
2706
2707            /* Push the length of char_classes, the length of
2708               collating_symbols, the length of equivalence_classes, the
2709               length of char_ranges and the length of chars.  */
2710            BUF_PUSH_3 (0, 0, 0);
2711            BUF_PUSH_2 (0, 0);
2712
2713            /* Remember the first position in the bracket expression.  */
2714            p1 = p;
2715
2716            /* charset_not matches newline according to a syntax bit.  */
2717            if ((re_opcode_t) b[-6] == charset_not
2718                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2719	      {
2720		BUF_PUSH('\n');
2721		laststart[5]++; /* Update the length of characters  */
2722	      }
2723
2724            /* Read in characters and ranges, setting map bits.  */
2725            for (;;)
2726              {
2727                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2728
2729                PATFETCH (c);
2730
2731                /* \ might escape characters inside [...] and [^...].  */
2732                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2733                  {
2734                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2735
2736                    PATFETCH (c1);
2737		    BUF_PUSH(c1);
2738		    laststart[5]++; /* Update the length of chars  */
2739		    range_start = c1;
2740                    continue;
2741                  }
2742
2743                /* Could be the end of the bracket expression.  If it's
2744                   not (i.e., when the bracket expression is `[]' so
2745                   far), the ']' character bit gets set way below.  */
2746                if (c == ']' && p != p1 + 1)
2747                  break;
2748
2749                /* Look ahead to see if it's a range when the last thing
2750                   was a character class.  */
2751                if (had_char_class && c == '-' && *p != ']')
2752                  FREE_STACK_RETURN (REG_ERANGE);
2753
2754                /* Look ahead to see if it's a range when the last thing
2755                   was a character: if this is a hyphen not at the
2756                   beginning or the end of a list, then it's the range
2757                   operator.  */
2758                if (c == '-'
2759                    && !(p - 2 >= pattern && p[-2] == '[')
2760                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2761                    && *p != ']')
2762                  {
2763                    reg_errcode_t ret;
2764		    /* Allocate the space for range_start and range_end.  */
2765		    GET_BUFFER_SPACE (2);
2766		    /* Update the pointer to indicate end of buffer.  */
2767                    b += 2;
2768                    ret = wcs_compile_range (range_start, &p, pend, translate,
2769                                         syntax, b, laststart);
2770                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2771                    range_start = 0xffffffff;
2772                  }
2773                else if (p[0] == '-' && p[1] != ']')
2774                  { /* This handles ranges made up of characters only.  */
2775                    reg_errcode_t ret;
2776
2777		    /* Move past the `-'.  */
2778                    PATFETCH (c1);
2779		    /* Allocate the space for range_start and range_end.  */
2780		    GET_BUFFER_SPACE (2);
2781		    /* Update the pointer to indicate end of buffer.  */
2782                    b += 2;
2783                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2784                                         laststart);
2785                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2786		    range_start = 0xffffffff;
2787                  }
2788
2789                /* See if we're at the beginning of a possible character
2790                   class.  */
2791                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2792                  { /* Leave room for the null.  */
2793                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2794
2795                    PATFETCH (c);
2796                    c1 = 0;
2797
2798                    /* If pattern is `[[:'.  */
2799                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2800
2801                    for (;;)
2802                      {
2803                        PATFETCH (c);
2804                        if ((c == ':' && *p == ']') || p == pend)
2805                          break;
2806			if (c1 < CHAR_CLASS_MAX_LENGTH)
2807			  str[c1++] = c;
2808			else
2809			  /* This is in any case an invalid class name.  */
2810			  str[0] = '\0';
2811                      }
2812                    str[c1] = '\0';
2813
2814                    /* If isn't a word bracketed by `[:' and `:]':
2815                       undo the ending character, the letters, and leave
2816                       the leading `:' and `[' (but store them as character).  */
2817                    if (c == ':' && *p == ']')
2818                      {
2819			wctype_t wt;
2820			uintptr_t alignedp;
2821
2822			/* Query the character class as wctype_t.  */
2823			wt = IS_CHAR_CLASS (str);
2824			if (wt == 0)
2825			  FREE_STACK_RETURN (REG_ECTYPE);
2826
2827                        /* Throw away the ] at the end of the character
2828                           class.  */
2829                        PATFETCH (c);
2830
2831                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2832
2833			/* Allocate the space for character class.  */
2834                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2835			/* Update the pointer to indicate end of buffer.  */
2836                        b += CHAR_CLASS_SIZE;
2837			/* Move data which follow character classes
2838			    not to violate the data.  */
2839                        insert_space(CHAR_CLASS_SIZE,
2840				     laststart + 6 + laststart[1],
2841				     b - 1);
2842			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2843				    + __alignof__(wctype_t) - 1)
2844			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2845			/* Store the character class.  */
2846                        *((wctype_t*)alignedp) = wt;
2847                        /* Update length of char_classes */
2848                        laststart[1] += CHAR_CLASS_SIZE;
2849
2850                        had_char_class = true;
2851                      }
2852                    else
2853                      {
2854                        c1++;
2855                        while (c1--)
2856                          PATUNFETCH;
2857                        BUF_PUSH ('[');
2858                        BUF_PUSH (':');
2859                        laststart[5] += 2; /* Update the length of characters  */
2860			range_start = ':';
2861                        had_char_class = false;
2862                      }
2863                  }
2864                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2865							  || *p == '.'))
2866		  {
2867		    CHAR_T str[128];	/* Should be large enough.  */
2868		    CHAR_T delim = *p; /* '=' or '.'  */
2869# ifdef _LIBC
2870		    uint32_t nrules =
2871		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2872# endif
2873		    PATFETCH (c);
2874		    c1 = 0;
2875
2876		    /* If pattern is `[[=' or '[[.'.  */
2877		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2878
2879		    for (;;)
2880		      {
2881			PATFETCH (c);
2882			if ((c == delim && *p == ']') || p == pend)
2883			  break;
2884			if (c1 < sizeof (str) - 1)
2885			  str[c1++] = c;
2886			else
2887			  /* This is in any case an invalid class name.  */
2888			  str[0] = '\0';
2889                      }
2890		    str[c1] = '\0';
2891
2892		    if (c == delim && *p == ']' && str[0] != '\0')
2893		      {
2894                        unsigned int i, offset;
2895			/* If we have no collation data we use the default
2896			   collation in which each character is in a class
2897			   by itself.  It also means that ASCII is the
2898			   character set and therefore we cannot have character
2899			   with more than one byte in the multibyte
2900			   representation.  */
2901
2902                        /* If not defined _LIBC, we push the name and
2903			   `\0' for the sake of matching performance.  */
2904			int datasize = c1 + 1;
2905
2906# ifdef _LIBC
2907			int32_t idx = 0;
2908			if (nrules == 0)
2909# endif
2910			  {
2911			    if (c1 != 1)
2912			      FREE_STACK_RETURN (REG_ECOLLATE);
2913			  }
2914# ifdef _LIBC
2915			else
2916			  {
2917			    const int32_t *table;
2918			    const int32_t *weights;
2919			    const int32_t *extra;
2920			    const int32_t *indirect;
2921			    wint_t *cp;
2922
2923			    /* This #include defines a local function!  */
2924#  include <locale/weightwc.h>
2925
2926			    if(delim == '=')
2927			      {
2928				/* We push the index for equivalence class.  */
2929				cp = (wint_t*)str;
2930
2931				table = (const int32_t *)
2932				  _NL_CURRENT (LC_COLLATE,
2933					       _NL_COLLATE_TABLEWC);
2934				weights = (const int32_t *)
2935				  _NL_CURRENT (LC_COLLATE,
2936					       _NL_COLLATE_WEIGHTWC);
2937				extra = (const int32_t *)
2938				  _NL_CURRENT (LC_COLLATE,
2939					       _NL_COLLATE_EXTRAWC);
2940				indirect = (const int32_t *)
2941				  _NL_CURRENT (LC_COLLATE,
2942					       _NL_COLLATE_INDIRECTWC);
2943
2944				idx = findidx ((const wint_t**)&cp);
2945				if (idx == 0 || cp < (wint_t*) str + c1)
2946				  /* This is no valid character.  */
2947				  FREE_STACK_RETURN (REG_ECOLLATE);
2948
2949				str[0] = (wchar_t)idx;
2950			      }
2951			    else /* delim == '.' */
2952			      {
2953				/* We push collation sequence value
2954				   for collating symbol.  */
2955				int32_t table_size;
2956				const int32_t *symb_table;
2957				const unsigned char *extra;
2958				int32_t idx;
2959				int32_t elem;
2960				int32_t second;
2961				int32_t hash;
2962				char char_str[c1];
2963
2964				/* We have to convert the name to a single-byte
2965				   string.  This is possible since the names
2966				   consist of ASCII characters and the internal
2967				   representation is UCS4.  */
2968				for (i = 0; i < c1; ++i)
2969				  char_str[i] = str[i];
2970
2971				table_size =
2972				  _NL_CURRENT_WORD (LC_COLLATE,
2973						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2974				symb_table = (const int32_t *)
2975				  _NL_CURRENT (LC_COLLATE,
2976					       _NL_COLLATE_SYMB_TABLEMB);
2977				extra = (const unsigned char *)
2978				  _NL_CURRENT (LC_COLLATE,
2979					       _NL_COLLATE_SYMB_EXTRAMB);
2980
2981				/* Locate the character in the hashing table.  */
2982				hash = elem_hash (char_str, c1);
2983
2984				idx = 0;
2985				elem = hash % table_size;
2986				second = hash % (table_size - 2);
2987				while (symb_table[2 * elem] != 0)
2988				  {
2989				    /* First compare the hashing value.  */
2990				    if (symb_table[2 * elem] == hash
2991					&& c1 == extra[symb_table[2 * elem + 1]]
2992					&& memcmp (char_str,
2993						   &extra[symb_table[2 * elem + 1]
2994							 + 1], c1) == 0)
2995				      {
2996					/* Yep, this is the entry.  */
2997					idx = symb_table[2 * elem + 1];
2998					idx += 1 + extra[idx];
2999					break;
3000				      }
3001
3002				    /* Next entry.  */
3003				    elem += second;
3004				  }
3005
3006				if (symb_table[2 * elem] != 0)
3007				  {
3008				    /* Compute the index of the byte sequence
3009				       in the table.  */
3010				    idx += 1 + extra[idx];
3011				    /* Adjust for the alignment.  */
3012				    idx = (idx + 3) & ~3;
3013
3014				    str[0] = (wchar_t) idx + 4;
3015				  }
3016				else if (symb_table[2 * elem] == 0 && c1 == 1)
3017				  {
3018				    /* No valid character.  Match it as a
3019				       single byte character.  */
3020				    had_char_class = false;
3021				    BUF_PUSH(str[0]);
3022				    /* Update the length of characters  */
3023				    laststart[5]++;
3024				    range_start = str[0];
3025
3026				    /* Throw away the ] at the end of the
3027				       collating symbol.  */
3028				    PATFETCH (c);
3029				    /* exit from the switch block.  */
3030				    continue;
3031				  }
3032				else
3033				  FREE_STACK_RETURN (REG_ECOLLATE);
3034			      }
3035			    datasize = 1;
3036			  }
3037# endif
3038                        /* Throw away the ] at the end of the equivalence
3039                           class (or collating symbol).  */
3040                        PATFETCH (c);
3041
3042			/* Allocate the space for the equivalence class
3043			   (or collating symbol) (and '\0' if needed).  */
3044                        GET_BUFFER_SPACE(datasize);
3045			/* Update the pointer to indicate end of buffer.  */
3046                        b += datasize;
3047
3048			if (delim == '=')
3049			  { /* equivalence class  */
3050			    /* Calculate the offset of char_ranges,
3051			       which is next to equivalence_classes.  */
3052			    offset = laststart[1] + laststart[2]
3053			      + laststart[3] +6;
3054			    /* Insert space.  */
3055			    insert_space(datasize, laststart + offset, b - 1);
3056
3057			    /* Write the equivalence_class and \0.  */
3058			    for (i = 0 ; i < datasize ; i++)
3059			      laststart[offset + i] = str[i];
3060
3061			    /* Update the length of equivalence_classes.  */
3062			    laststart[3] += datasize;
3063			    had_char_class = true;
3064			  }
3065			else /* delim == '.' */
3066			  { /* collating symbol  */
3067			    /* Calculate the offset of the equivalence_classes,
3068			       which is next to collating_symbols.  */
3069			    offset = laststart[1] + laststart[2] + 6;
3070			    /* Insert space and write the collationg_symbol
3071			       and \0.  */
3072			    insert_space(datasize, laststart + offset, b-1);
3073			    for (i = 0 ; i < datasize ; i++)
3074			      laststart[offset + i] = str[i];
3075
3076			    /* In re_match_2_internal if range_start < -1, we
3077			       assume -range_start is the offset of the
3078			       collating symbol which is specified as
3079			       the character of the range start.  So we assign
3080			       -(laststart[1] + laststart[2] + 6) to
3081			       range_start.  */
3082			    range_start = -(laststart[1] + laststart[2] + 6);
3083			    /* Update the length of collating_symbol.  */
3084			    laststart[2] += datasize;
3085			    had_char_class = false;
3086			  }
3087		      }
3088                    else
3089                      {
3090                        c1++;
3091                        while (c1--)
3092                          PATUNFETCH;
3093                        BUF_PUSH ('[');
3094                        BUF_PUSH (delim);
3095                        laststart[5] += 2; /* Update the length of characters  */
3096			range_start = delim;
3097                        had_char_class = false;
3098                      }
3099		  }
3100                else
3101                  {
3102                    had_char_class = false;
3103		    BUF_PUSH(c);
3104		    laststart[5]++;  /* Update the length of characters  */
3105		    range_start = c;
3106                  }
3107	      }
3108
3109#else /* BYTE */
3110            /* Ensure that we have enough space to push a charset: the
3111               opcode, the length count, and the bitset; 34 bytes in all.  */
3112	    GET_BUFFER_SPACE (34);
3113
3114            laststart = b;
3115
3116            /* We test `*p == '^' twice, instead of using an if
3117               statement, so we only need one BUF_PUSH.  */
3118            BUF_PUSH (*p == '^' ? charset_not : charset);
3119            if (*p == '^')
3120              p++;
3121
3122            /* Remember the first position in the bracket expression.  */
3123            p1 = p;
3124
3125            /* Push the number of bytes in the bitmap.  */
3126            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3127
3128            /* Clear the whole map.  */
3129            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3130
3131            /* charset_not matches newline according to a syntax bit.  */
3132            if ((re_opcode_t) b[-2] == charset_not
3133                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3134              SET_LIST_BIT ('\n');
3135
3136            /* Read in characters and ranges, setting map bits.  */
3137            for (;;)
3138              {
3139                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3140
3141                PATFETCH (c);
3142
3143                /* \ might escape characters inside [...] and [^...].  */
3144                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3145                  {
3146                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3147
3148                    PATFETCH (c1);
3149                    SET_LIST_BIT (c1);
3150		    range_start = c1;
3151                    continue;
3152                  }
3153
3154                /* Could be the end of the bracket expression.  If it's
3155                   not (i.e., when the bracket expression is `[]' so
3156                   far), the ']' character bit gets set way below.  */
3157                if (c == ']' && p != p1 + 1)
3158                  break;
3159
3160                /* Look ahead to see if it's a range when the last thing
3161                   was a character class.  */
3162                if (had_char_class && c == '-' && *p != ']')
3163                  FREE_STACK_RETURN (REG_ERANGE);
3164
3165                /* Look ahead to see if it's a range when the last thing
3166                   was a character: if this is a hyphen not at the
3167                   beginning or the end of a list, then it's the range
3168                   operator.  */
3169                if (c == '-'
3170                    && !(p - 2 >= pattern && p[-2] == '[')
3171                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3172                    && *p != ']')
3173                  {
3174                    reg_errcode_t ret
3175                      = byte_compile_range (range_start, &p, pend, translate,
3176					    syntax, b);
3177                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3178		    range_start = 0xffffffff;
3179                  }
3180
3181                else if (p[0] == '-' && p[1] != ']')
3182                  { /* This handles ranges made up of characters only.  */
3183                    reg_errcode_t ret;
3184
3185		    /* Move past the `-'.  */
3186                    PATFETCH (c1);
3187
3188                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3189                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3190		    range_start = 0xffffffff;
3191                  }
3192
3193                /* See if we're at the beginning of a possible character
3194                   class.  */
3195
3196                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3197                  { /* Leave room for the null.  */
3198                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3199
3200                    PATFETCH (c);
3201                    c1 = 0;
3202
3203                    /* If pattern is `[[:'.  */
3204                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3205
3206                    for (;;)
3207                      {
3208                        PATFETCH (c);
3209                        if ((c == ':' && *p == ']') || p == pend)
3210                          break;
3211			if (c1 < CHAR_CLASS_MAX_LENGTH)
3212			  str[c1++] = c;
3213			else
3214			  /* This is in any case an invalid class name.  */
3215			  str[0] = '\0';
3216                      }
3217                    str[c1] = '\0';
3218
3219                    /* If isn't a word bracketed by `[:' and `:]':
3220                       undo the ending character, the letters, and leave
3221                       the leading `:' and `[' (but set bits for them).  */
3222                    if (c == ':' && *p == ']')
3223                      {
3224# if defined _LIBC || WIDE_CHAR_SUPPORT
3225                        boolean is_lower = STREQ (str, "lower");
3226                        boolean is_upper = STREQ (str, "upper");
3227			wctype_t wt;
3228                        int ch;
3229
3230			wt = IS_CHAR_CLASS (str);
3231			if (wt == 0)
3232			  FREE_STACK_RETURN (REG_ECTYPE);
3233
3234                        /* Throw away the ] at the end of the character
3235                           class.  */
3236                        PATFETCH (c);
3237
3238                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3239
3240                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3241			  {
3242			    if (iswctype (btowc (ch), wt))
3243			      SET_LIST_BIT (ch);
3244
3245			    if (translate && (is_upper || is_lower)
3246				&& (ISUPPER (ch) || ISLOWER (ch)))
3247			      SET_LIST_BIT (ch);
3248			  }
3249
3250                        had_char_class = true;
3251# else
3252                        int ch;
3253                        boolean is_alnum = STREQ (str, "alnum");
3254                        boolean is_alpha = STREQ (str, "alpha");
3255                        boolean is_blank = STREQ (str, "blank");
3256                        boolean is_cntrl = STREQ (str, "cntrl");
3257                        boolean is_digit = STREQ (str, "digit");
3258                        boolean is_graph = STREQ (str, "graph");
3259                        boolean is_lower = STREQ (str, "lower");
3260                        boolean is_print = STREQ (str, "print");
3261                        boolean is_punct = STREQ (str, "punct");
3262                        boolean is_space = STREQ (str, "space");
3263                        boolean is_upper = STREQ (str, "upper");
3264                        boolean is_xdigit = STREQ (str, "xdigit");
3265
3266                        if (!IS_CHAR_CLASS (str))
3267			  FREE_STACK_RETURN (REG_ECTYPE);
3268
3269                        /* Throw away the ] at the end of the character
3270                           class.  */
3271                        PATFETCH (c);
3272
3273                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3274
3275                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3276                          {
3277			    /* This was split into 3 if's to
3278			       avoid an arbitrary limit in some compiler.  */
3279                            if (   (is_alnum  && ISALNUM (ch))
3280                                || (is_alpha  && ISALPHA (ch))
3281                                || (is_blank  && ISBLANK (ch))
3282                                || (is_cntrl  && ISCNTRL (ch)))
3283			      SET_LIST_BIT (ch);
3284			    if (   (is_digit  && ISDIGIT (ch))
3285                                || (is_graph  && ISGRAPH (ch))
3286                                || (is_lower  && ISLOWER (ch))
3287                                || (is_print  && ISPRINT (ch)))
3288			      SET_LIST_BIT (ch);
3289			    if (   (is_punct  && ISPUNCT (ch))
3290                                || (is_space  && ISSPACE (ch))
3291                                || (is_upper  && ISUPPER (ch))
3292                                || (is_xdigit && ISXDIGIT (ch)))
3293			      SET_LIST_BIT (ch);
3294			    if (   translate && (is_upper || is_lower)
3295				&& (ISUPPER (ch) || ISLOWER (ch)))
3296			      SET_LIST_BIT (ch);
3297                          }
3298                        had_char_class = true;
3299# endif	/* libc || wctype.h */
3300                      }
3301                    else
3302                      {
3303                        c1++;
3304                        while (c1--)
3305                          PATUNFETCH;
3306                        SET_LIST_BIT ('[');
3307                        SET_LIST_BIT (':');
3308			range_start = ':';
3309                        had_char_class = false;
3310                      }
3311                  }
3312                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3313		  {
3314		    unsigned char str[MB_LEN_MAX + 1];
3315# ifdef _LIBC
3316		    uint32_t nrules =
3317		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3318# endif
3319
3320		    PATFETCH (c);
3321		    c1 = 0;
3322
3323		    /* If pattern is `[[='.  */
3324		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3325
3326		    for (;;)
3327		      {
3328			PATFETCH (c);
3329			if ((c == '=' && *p == ']') || p == pend)
3330			  break;
3331			if (c1 < MB_LEN_MAX)
3332			  str[c1++] = c;
3333			else
3334			  /* This is in any case an invalid class name.  */
3335			  str[0] = '\0';
3336                      }
3337		    str[c1] = '\0';
3338
3339		    if (c == '=' && *p == ']' && str[0] != '\0')
3340		      {
3341			/* If we have no collation data we use the default
3342			   collation in which each character is in a class
3343			   by itself.  It also means that ASCII is the
3344			   character set and therefore we cannot have character
3345			   with more than one byte in the multibyte
3346			   representation.  */
3347# ifdef _LIBC
3348			if (nrules == 0)
3349# endif
3350			  {
3351			    if (c1 != 1)
3352			      FREE_STACK_RETURN (REG_ECOLLATE);
3353
3354			    /* Throw away the ] at the end of the equivalence
3355			       class.  */
3356			    PATFETCH (c);
3357
3358			    /* Set the bit for the character.  */
3359			    SET_LIST_BIT (str[0]);
3360			  }
3361# ifdef _LIBC
3362			else
3363			  {
3364			    /* Try to match the byte sequence in `str' against
3365			       those known to the collate implementation.
3366			       First find out whether the bytes in `str' are
3367			       actually from exactly one character.  */
3368			    const int32_t *table;
3369			    const unsigned char *weights;
3370			    const unsigned char *extra;
3371			    const int32_t *indirect;
3372			    int32_t idx;
3373			    const unsigned char *cp = str;
3374			    int ch;
3375
3376			    /* This #include defines a local function!  */
3377#  include <locale/weight.h>
3378
3379			    table = (const int32_t *)
3380			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3381			    weights = (const unsigned char *)
3382			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3383			    extra = (const unsigned char *)
3384			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3385			    indirect = (const int32_t *)
3386			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3387
3388			    idx = findidx (&cp);
3389			    if (idx == 0 || cp < str + c1)
3390			      /* This is no valid character.  */
3391			      FREE_STACK_RETURN (REG_ECOLLATE);
3392
3393			    /* Throw away the ] at the end of the equivalence
3394			       class.  */
3395			    PATFETCH (c);
3396
3397			    /* Now we have to go throught the whole table
3398			       and find all characters which have the same
3399			       first level weight.
3400
3401			       XXX Note that this is not entirely correct.
3402			       we would have to match multibyte sequences
3403			       but this is not possible with the current
3404			       implementation.  */
3405			    for (ch = 1; ch < 256; ++ch)
3406			      /* XXX This test would have to be changed if we
3407				 would allow matching multibyte sequences.  */
3408			      if (table[ch] > 0)
3409				{
3410				  int32_t idx2 = table[ch];
3411				  size_t len = weights[idx2];
3412
3413				  /* Test whether the lenghts match.  */
3414				  if (weights[idx] == len)
3415				    {
3416				      /* They do.  New compare the bytes of
3417					 the weight.  */
3418				      size_t cnt = 0;
3419
3420				      while (cnt < len
3421					     && (weights[idx + 1 + cnt]
3422						 == weights[idx2 + 1 + cnt]))
3423					++cnt;
3424
3425				      if (cnt == len)
3426					/* They match.  Mark the character as
3427					   acceptable.  */
3428					SET_LIST_BIT (ch);
3429				    }
3430				}
3431			  }
3432# endif
3433			had_char_class = true;
3434		      }
3435                    else
3436                      {
3437                        c1++;
3438                        while (c1--)
3439                          PATUNFETCH;
3440                        SET_LIST_BIT ('[');
3441                        SET_LIST_BIT ('=');
3442			range_start = '=';
3443                        had_char_class = false;
3444                      }
3445		  }
3446                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3447		  {
3448		    unsigned char str[128];	/* Should be large enough.  */
3449# ifdef _LIBC
3450		    uint32_t nrules =
3451		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3452# endif
3453
3454		    PATFETCH (c);
3455		    c1 = 0;
3456
3457		    /* If pattern is `[[.'.  */
3458		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3459
3460		    for (;;)
3461		      {
3462			PATFETCH (c);
3463			if ((c == '.' && *p == ']') || p == pend)
3464			  break;
3465			if (c1 < sizeof (str))
3466			  str[c1++] = c;
3467			else
3468			  /* This is in any case an invalid class name.  */
3469			  str[0] = '\0';
3470                      }
3471		    str[c1] = '\0';
3472
3473		    if (c == '.' && *p == ']' && str[0] != '\0')
3474		      {
3475			/* If we have no collation data we use the default
3476			   collation in which each character is the name
3477			   for its own class which contains only the one
3478			   character.  It also means that ASCII is the
3479			   character set and therefore we cannot have character
3480			   with more than one byte in the multibyte
3481			   representation.  */
3482# ifdef _LIBC
3483			if (nrules == 0)
3484# endif
3485			  {
3486			    if (c1 != 1)
3487			      FREE_STACK_RETURN (REG_ECOLLATE);
3488
3489			    /* Throw away the ] at the end of the equivalence
3490			       class.  */
3491			    PATFETCH (c);
3492
3493			    /* Set the bit for the character.  */
3494			    SET_LIST_BIT (str[0]);
3495			    range_start = ((const unsigned char *) str)[0];
3496			  }
3497# ifdef _LIBC
3498			else
3499			  {
3500			    /* Try to match the byte sequence in `str' against
3501			       those known to the collate implementation.
3502			       First find out whether the bytes in `str' are
3503			       actually from exactly one character.  */
3504			    int32_t table_size;
3505			    const int32_t *symb_table;
3506			    const unsigned char *extra;
3507			    int32_t idx;
3508			    int32_t elem;
3509			    int32_t second;
3510			    int32_t hash;
3511
3512			    table_size =
3513			      _NL_CURRENT_WORD (LC_COLLATE,
3514						_NL_COLLATE_SYMB_HASH_SIZEMB);
3515			    symb_table = (const int32_t *)
3516			      _NL_CURRENT (LC_COLLATE,
3517					   _NL_COLLATE_SYMB_TABLEMB);
3518			    extra = (const unsigned char *)
3519			      _NL_CURRENT (LC_COLLATE,
3520					   _NL_COLLATE_SYMB_EXTRAMB);
3521
3522			    /* Locate the character in the hashing table.  */
3523			    hash = elem_hash (str, c1);
3524
3525			    idx = 0;
3526			    elem = hash % table_size;
3527			    second = hash % (table_size - 2);
3528			    while (symb_table[2 * elem] != 0)
3529			      {
3530				/* First compare the hashing value.  */
3531				if (symb_table[2 * elem] == hash
3532				    && c1 == extra[symb_table[2 * elem + 1]]
3533				    && memcmp (str,
3534					       &extra[symb_table[2 * elem + 1]
3535						     + 1],
3536					       c1) == 0)
3537				  {
3538				    /* Yep, this is the entry.  */
3539				    idx = symb_table[2 * elem + 1];
3540				    idx += 1 + extra[idx];
3541				    break;
3542				  }
3543
3544				/* Next entry.  */
3545				elem += second;
3546			      }
3547
3548			    if (symb_table[2 * elem] == 0)
3549			      /* This is no valid character.  */
3550			      FREE_STACK_RETURN (REG_ECOLLATE);
3551
3552			    /* Throw away the ] at the end of the equivalence
3553			       class.  */
3554			    PATFETCH (c);
3555
3556			    /* Now add the multibyte character(s) we found
3557			       to the accept list.
3558
3559			       XXX Note that this is not entirely correct.
3560			       we would have to match multibyte sequences
3561			       but this is not possible with the current
3562			       implementation.  Also, we have to match
3563			       collating symbols, which expand to more than
3564			       one file, as a whole and not allow the
3565			       individual bytes.  */
3566			    c1 = extra[idx++];
3567			    if (c1 == 1)
3568			      range_start = extra[idx];
3569			    while (c1-- > 0)
3570			      {
3571				SET_LIST_BIT (extra[idx]);
3572				++idx;
3573			      }
3574			  }
3575# endif
3576			had_char_class = false;
3577		      }
3578                    else
3579                      {
3580                        c1++;
3581                        while (c1--)
3582                          PATUNFETCH;
3583                        SET_LIST_BIT ('[');
3584                        SET_LIST_BIT ('.');
3585			range_start = '.';
3586                        had_char_class = false;
3587                      }
3588		  }
3589                else
3590                  {
3591                    had_char_class = false;
3592                    SET_LIST_BIT (c);
3593		    range_start = c;
3594                  }
3595              }
3596
3597            /* Discard any (non)matching list bytes that are all 0 at the
3598               end of the map.  Decrease the map-length byte too.  */
3599            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3600              b[-1]--;
3601            b += b[-1];
3602#endif /* WCHAR */
3603          }
3604          break;
3605
3606
3607	case '(':
3608          if (syntax & RE_NO_BK_PARENS)
3609            goto handle_open;
3610          else
3611            goto normal_char;
3612
3613
3614        case ')':
3615          if (syntax & RE_NO_BK_PARENS)
3616            goto handle_close;
3617          else
3618            goto normal_char;
3619
3620
3621        case '\n':
3622          if (syntax & RE_NEWLINE_ALT)
3623            goto handle_alt;
3624          else
3625            goto normal_char;
3626
3627
3628	case '|':
3629          if (syntax & RE_NO_BK_VBAR)
3630            goto handle_alt;
3631          else
3632            goto normal_char;
3633
3634
3635        case '{':
3636           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3637             goto handle_interval;
3638           else
3639             goto normal_char;
3640
3641
3642        case '\\':
3643          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3644
3645          /* Do not translate the character after the \, so that we can
3646             distinguish, e.g., \B from \b, even if we normally would
3647             translate, e.g., B to b.  */
3648          PATFETCH_RAW (c);
3649
3650          switch (c)
3651            {
3652            case '(':
3653              if (syntax & RE_NO_BK_PARENS)
3654                goto normal_backslash;
3655
3656            handle_open:
3657              bufp->re_nsub++;
3658              regnum++;
3659
3660              if (COMPILE_STACK_FULL)
3661                {
3662                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3663                            compile_stack_elt_t);
3664                  if (compile_stack.stack == NULL) return REG_ESPACE;
3665
3666                  compile_stack.size <<= 1;
3667                }
3668
3669              /* These are the values to restore when we hit end of this
3670                 group.  They are all relative offsets, so that if the
3671                 whole pattern moves because of realloc, they will still
3672                 be valid.  */
3673              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3674              COMPILE_STACK_TOP.fixup_alt_jump
3675                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3676              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3677              COMPILE_STACK_TOP.regnum = regnum;
3678
3679              /* We will eventually replace the 0 with the number of
3680                 groups inner to this one.  But do not push a
3681                 start_memory for groups beyond the last one we can
3682                 represent in the compiled pattern.  */
3683              if (regnum <= MAX_REGNUM)
3684                {
3685                  COMPILE_STACK_TOP.inner_group_offset = b
3686		    - COMPILED_BUFFER_VAR + 2;
3687                  BUF_PUSH_3 (start_memory, regnum, 0);
3688                }
3689
3690              compile_stack.avail++;
3691
3692              fixup_alt_jump = 0;
3693              laststart = 0;
3694              begalt = b;
3695	      /* If we've reached MAX_REGNUM groups, then this open
3696		 won't actually generate any code, so we'll have to
3697		 clear pending_exact explicitly.  */
3698	      pending_exact = 0;
3699              break;
3700
3701
3702            case ')':
3703              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3704
3705              if (COMPILE_STACK_EMPTY)
3706		{
3707		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3708		    goto normal_backslash;
3709		  else
3710		    FREE_STACK_RETURN (REG_ERPAREN);
3711		}
3712
3713            handle_close:
3714              if (fixup_alt_jump)
3715                { /* Push a dummy failure point at the end of the
3716                     alternative for a possible future
3717                     `pop_failure_jump' to pop.  See comments at
3718                     `push_dummy_failure' in `re_match_2'.  */
3719                  BUF_PUSH (push_dummy_failure);
3720
3721                  /* We allocated space for this jump when we assigned
3722                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3723                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3724                }
3725
3726              /* See similar code for backslashed left paren above.  */
3727              if (COMPILE_STACK_EMPTY)
3728		{
3729		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3730		    goto normal_char;
3731		  else
3732		    FREE_STACK_RETURN (REG_ERPAREN);
3733		}
3734
3735              /* Since we just checked for an empty stack above, this
3736                 ``can't happen''.  */
3737              assert (compile_stack.avail != 0);
3738              {
3739                /* We don't just want to restore into `regnum', because
3740                   later groups should continue to be numbered higher,
3741                   as in `(ab)c(de)' -- the second group is #2.  */
3742                regnum_t this_group_regnum;
3743
3744                compile_stack.avail--;
3745                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3746                fixup_alt_jump
3747                  = COMPILE_STACK_TOP.fixup_alt_jump
3748                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3749                    : 0;
3750                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3751                this_group_regnum = COMPILE_STACK_TOP.regnum;
3752		/* If we've reached MAX_REGNUM groups, then this open
3753		   won't actually generate any code, so we'll have to
3754		   clear pending_exact explicitly.  */
3755		pending_exact = 0;
3756
3757                /* We're at the end of the group, so now we know how many
3758                   groups were inside this one.  */
3759                if (this_group_regnum <= MAX_REGNUM)
3760                  {
3761		    UCHAR_T *inner_group_loc
3762                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3763
3764                    *inner_group_loc = regnum - this_group_regnum;
3765                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3766                                regnum - this_group_regnum);
3767                  }
3768              }
3769              break;
3770
3771
3772            case '|':					/* `\|'.  */
3773              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3774                goto normal_backslash;
3775            handle_alt:
3776              if (syntax & RE_LIMITED_OPS)
3777                goto normal_char;
3778
3779              /* Insert before the previous alternative a jump which
3780                 jumps to this alternative if the former fails.  */
3781              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3782              INSERT_JUMP (on_failure_jump, begalt,
3783			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3784              pending_exact = 0;
3785              b += 1 + OFFSET_ADDRESS_SIZE;
3786
3787              /* The alternative before this one has a jump after it
3788                 which gets executed if it gets matched.  Adjust that
3789                 jump so it will jump to this alternative's analogous
3790                 jump (put in below, which in turn will jump to the next
3791                 (if any) alternative's such jump, etc.).  The last such
3792                 jump jumps to the correct final destination.  A picture:
3793                          _____ _____
3794                          |   | |   |
3795                          |   v |   v
3796                         a | b   | c
3797
3798                 If we are at `b', then fixup_alt_jump right now points to a
3799                 three-byte space after `a'.  We'll put in the jump, set
3800                 fixup_alt_jump to right after `b', and leave behind three
3801                 bytes which we'll fill in when we get to after `c'.  */
3802
3803              if (fixup_alt_jump)
3804                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3805
3806              /* Mark and leave space for a jump after this alternative,
3807                 to be filled in later either by next alternative or
3808                 when know we're at the end of a series of alternatives.  */
3809              fixup_alt_jump = b;
3810              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3811              b += 1 + OFFSET_ADDRESS_SIZE;
3812
3813              laststart = 0;
3814              begalt = b;
3815              break;
3816
3817
3818            case '{':
3819              /* If \{ is a literal.  */
3820              if (!(syntax & RE_INTERVALS)
3821                     /* If we're at `\{' and it's not the open-interval
3822                        operator.  */
3823		  || (syntax & RE_NO_BK_BRACES))
3824                goto normal_backslash;
3825
3826            handle_interval:
3827              {
3828                /* If got here, then the syntax allows intervals.  */
3829
3830                /* At least (most) this many matches must be made.  */
3831                int lower_bound = -1, upper_bound = -1;
3832
3833		/* Place in the uncompiled pattern (i.e., just after
3834		   the '{') to go back to if the interval is invalid.  */
3835		const CHAR_T *beg_interval = p;
3836
3837                if (p == pend)
3838		  goto invalid_interval;
3839
3840                GET_UNSIGNED_NUMBER (lower_bound);
3841
3842                if (c == ',')
3843                  {
3844                    GET_UNSIGNED_NUMBER (upper_bound);
3845		    if (upper_bound < 0)
3846		      upper_bound = RE_DUP_MAX;
3847                  }
3848                else
3849                  /* Interval such as `{1}' => match exactly once. */
3850                  upper_bound = lower_bound;
3851
3852                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3853		  goto invalid_interval;
3854
3855                if (!(syntax & RE_NO_BK_BRACES))
3856                  {
3857		    if (c != '\\' || p == pend)
3858		      goto invalid_interval;
3859                    PATFETCH (c);
3860                  }
3861
3862                if (c != '}')
3863		  goto invalid_interval;
3864
3865                /* If it's invalid to have no preceding re.  */
3866                if (!laststart)
3867                  {
3868		    if (syntax & RE_CONTEXT_INVALID_OPS
3869			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3870                      FREE_STACK_RETURN (REG_BADRPT);
3871                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3872                      laststart = b;
3873                    else
3874                      goto unfetch_interval;
3875                  }
3876
3877                /* We just parsed a valid interval.  */
3878
3879                if (RE_DUP_MAX < upper_bound)
3880		  FREE_STACK_RETURN (REG_BADBR);
3881
3882                /* If the upper bound is zero, don't want to succeed at
3883                   all; jump from `laststart' to `b + 3', which will be
3884		   the end of the buffer after we insert the jump.  */
3885		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3886		   instead of 'b + 3'.  */
3887                 if (upper_bound == 0)
3888                   {
3889                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3890                     INSERT_JUMP (jump, laststart, b + 1
3891				  + OFFSET_ADDRESS_SIZE);
3892                     b += 1 + OFFSET_ADDRESS_SIZE;
3893                   }
3894
3895                 /* Otherwise, we have a nontrivial interval.  When
3896                    we're all done, the pattern will look like:
3897                      set_number_at <jump count> <upper bound>
3898                      set_number_at <succeed_n count> <lower bound>
3899                      succeed_n <after jump addr> <succeed_n count>
3900                      <body of loop>
3901                      jump_n <succeed_n addr> <jump count>
3902                    (The upper bound and `jump_n' are omitted if
3903                    `upper_bound' is 1, though.)  */
3904                 else
3905                   { /* If the upper bound is > 1, we need to insert
3906                        more at the end of the loop.  */
3907                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3908		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3909
3910                     GET_BUFFER_SPACE (nbytes);
3911
3912                     /* Initialize lower bound of the `succeed_n', even
3913                        though it will be set during matching by its
3914                        attendant `set_number_at' (inserted next),
3915                        because `re_compile_fastmap' needs to know.
3916                        Jump to the `jump_n' we might insert below.  */
3917                     INSERT_JUMP2 (succeed_n, laststart,
3918                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3919				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3920				   , lower_bound);
3921                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3922
3923                     /* Code to initialize the lower bound.  Insert
3924                        before the `succeed_n'.  The `5' is the last two
3925                        bytes of this `set_number_at', plus 3 bytes of
3926                        the following `succeed_n'.  */
3927		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3928			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3929			of the following `succeed_n'.  */
3930                     PREFIX(insert_op2) (set_number_at, laststart, 1
3931				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3932                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3933
3934                     if (upper_bound > 1)
3935                       { /* More than one repetition is allowed, so
3936                            append a backward jump to the `succeed_n'
3937                            that starts this interval.
3938
3939                            When we've reached this during matching,
3940                            we'll have matched the interval once, so
3941                            jump back only `upper_bound - 1' times.  */
3942                         STORE_JUMP2 (jump_n, b, laststart
3943				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3944                                      upper_bound - 1);
3945                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3946
3947                         /* The location we want to set is the second
3948                            parameter of the `jump_n'; that is `b-2' as
3949                            an absolute address.  `laststart' will be
3950                            the `set_number_at' we're about to insert;
3951                            `laststart+3' the number to set, the source
3952                            for the relative address.  But we are
3953                            inserting into the middle of the pattern --
3954                            so everything is getting moved up by 5.
3955                            Conclusion: (b - 2) - (laststart + 3) + 5,
3956                            i.e., b - laststart.
3957
3958                            We insert this at the beginning of the loop
3959                            so that if we fail during matching, we'll
3960                            reinitialize the bounds.  */
3961                         PREFIX(insert_op2) (set_number_at, laststart,
3962					     b - laststart,
3963					     upper_bound - 1, b);
3964                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3965                       }
3966                   }
3967                pending_exact = 0;
3968		break;
3969
3970	      invalid_interval:
3971		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3972		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3973	      unfetch_interval:
3974		/* Match the characters as literals.  */
3975		p = beg_interval;
3976		c = '{';
3977		if (syntax & RE_NO_BK_BRACES)
3978		  goto normal_char;
3979		else
3980		  goto normal_backslash;
3981	      }
3982
3983#ifdef emacs
3984            /* There is no way to specify the before_dot and after_dot
3985               operators.  rms says this is ok.  --karl  */
3986            case '=':
3987              BUF_PUSH (at_dot);
3988              break;
3989
3990            case 's':
3991              laststart = b;
3992              PATFETCH (c);
3993              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3994              break;
3995
3996            case 'S':
3997              laststart = b;
3998              PATFETCH (c);
3999              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4000              break;
4001#endif /* emacs */
4002
4003
4004            case 'w':
4005	      if (syntax & RE_NO_GNU_OPS)
4006		goto normal_char;
4007              laststart = b;
4008              BUF_PUSH (wordchar);
4009              break;
4010
4011
4012            case 'W':
4013	      if (syntax & RE_NO_GNU_OPS)
4014		goto normal_char;
4015              laststart = b;
4016              BUF_PUSH (notwordchar);
4017              break;
4018
4019
4020            case '<':
4021	      if (syntax & RE_NO_GNU_OPS)
4022		goto normal_char;
4023              BUF_PUSH (wordbeg);
4024              break;
4025
4026            case '>':
4027	      if (syntax & RE_NO_GNU_OPS)
4028		goto normal_char;
4029              BUF_PUSH (wordend);
4030              break;
4031
4032            case 'b':
4033	      if (syntax & RE_NO_GNU_OPS)
4034		goto normal_char;
4035              BUF_PUSH (wordbound);
4036              break;
4037
4038            case 'B':
4039	      if (syntax & RE_NO_GNU_OPS)
4040		goto normal_char;
4041              BUF_PUSH (notwordbound);
4042              break;
4043
4044            case '`':
4045	      if (syntax & RE_NO_GNU_OPS)
4046		goto normal_char;
4047              BUF_PUSH (begbuf);
4048              break;
4049
4050            case '\'':
4051	      if (syntax & RE_NO_GNU_OPS)
4052		goto normal_char;
4053              BUF_PUSH (endbuf);
4054              break;
4055
4056            case '1': case '2': case '3': case '4': case '5':
4057            case '6': case '7': case '8': case '9':
4058              if (syntax & RE_NO_BK_REFS)
4059                goto normal_char;
4060
4061              c1 = c - '0';
4062
4063              if (c1 > regnum)
4064                FREE_STACK_RETURN (REG_ESUBREG);
4065
4066              /* Can't back reference to a subexpression if inside of it.  */
4067              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4068                goto normal_char;
4069
4070              laststart = b;
4071              BUF_PUSH_2 (duplicate, c1);
4072              break;
4073
4074
4075            case '+':
4076            case '?':
4077              if (syntax & RE_BK_PLUS_QM)
4078                goto handle_plus;
4079              else
4080                goto normal_backslash;
4081
4082            default:
4083            normal_backslash:
4084              /* You might think it would be useful for \ to mean
4085                 not to translate; but if we don't translate it
4086                 it will never match anything.  */
4087              c = TRANSLATE (c);
4088              goto normal_char;
4089            }
4090          break;
4091
4092
4093	default:
4094        /* Expects the character in `c'.  */
4095	normal_char:
4096	      /* If no exactn currently being built.  */
4097          if (!pending_exact
4098#ifdef WCHAR
4099	      /* If last exactn handle binary(or character) and
4100		 new exactn handle character(or binary).  */
4101	      || is_exactn_bin != is_binary[p - 1 - pattern]
4102#endif /* WCHAR */
4103
4104              /* If last exactn not at current position.  */
4105              || pending_exact + *pending_exact + 1 != b
4106
4107              /* We have only one byte following the exactn for the count.  */
4108	      || *pending_exact == (1 << BYTEWIDTH) - 1
4109
4110              /* If followed by a repetition operator.  */
4111              || *p == '*' || *p == '^'
4112	      || ((syntax & RE_BK_PLUS_QM)
4113		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4114		  : (*p == '+' || *p == '?'))
4115	      || ((syntax & RE_INTERVALS)
4116                  && ((syntax & RE_NO_BK_BRACES)
4117		      ? *p == '{'
4118                      : (p[0] == '\\' && p[1] == '{'))))
4119	    {
4120	      /* Start building a new exactn.  */
4121
4122              laststart = b;
4123
4124#ifdef WCHAR
4125	      /* Is this exactn binary data or character? */
4126	      is_exactn_bin = is_binary[p - 1 - pattern];
4127	      if (is_exactn_bin)
4128		  BUF_PUSH_2 (exactn_bin, 0);
4129	      else
4130		  BUF_PUSH_2 (exactn, 0);
4131#else
4132	      BUF_PUSH_2 (exactn, 0);
4133#endif /* WCHAR */
4134	      pending_exact = b - 1;
4135            }
4136
4137	  BUF_PUSH (c);
4138          (*pending_exact)++;
4139	  break;
4140        } /* switch (c) */
4141    } /* while p != pend */
4142
4143
4144  /* Through the pattern now.  */
4145
4146  if (fixup_alt_jump)
4147    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4148
4149  if (!COMPILE_STACK_EMPTY)
4150    FREE_STACK_RETURN (REG_EPAREN);
4151
4152  /* If we don't want backtracking, force success
4153     the first time we reach the end of the compiled pattern.  */
4154  if (syntax & RE_NO_POSIX_BACKTRACKING)
4155    BUF_PUSH (succeed);
4156
4157#ifdef WCHAR
4158  free (pattern);
4159  free (mbs_offset);
4160  free (is_binary);
4161#endif
4162  free (compile_stack.stack);
4163
4164  /* We have succeeded; set the length of the buffer.  */
4165#ifdef WCHAR
4166  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4167#else
4168  bufp->used = b - bufp->buffer;
4169#endif
4170
4171#ifdef DEBUG
4172  if (debug)
4173    {
4174      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4175      PREFIX(print_compiled_pattern) (bufp);
4176    }
4177#endif /* DEBUG */
4178
4179#ifndef MATCH_MAY_ALLOCATE
4180  /* Initialize the failure stack to the largest possible stack.  This
4181     isn't necessary unless we're trying to avoid calling alloca in
4182     the search and match routines.  */
4183  {
4184    int num_regs = bufp->re_nsub + 1;
4185
4186    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4187       is strictly greater than re_max_failures, the largest possible stack
4188       is 2 * re_max_failures failure points.  */
4189    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4190      {
4191	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4192
4193# ifdef emacs
4194	if (! fail_stack.stack)
4195	  fail_stack.stack
4196	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4197				    * sizeof (PREFIX(fail_stack_elt_t)));
4198	else
4199	  fail_stack.stack
4200	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4201				     (fail_stack.size
4202				      * sizeof (PREFIX(fail_stack_elt_t))));
4203# else /* not emacs */
4204	if (! fail_stack.stack)
4205	  fail_stack.stack
4206	    = malloc (fail_stack.size * sizeof (PREFIX(fail_stack_elt_t)));
4207	else
4208	  fail_stack.stack
4209	    = realloc (fail_stack.stack,
4210		       fail_stack.size * sizeof (PREFIX(fail_stack_elt_t)));
4211# endif /* not emacs */
4212      }
4213
4214   PREFIX(regex_grow_registers) (num_regs);
4215  }
4216#endif /* not MATCH_MAY_ALLOCATE */
4217
4218  return REG_NOERROR;
4219} /* regex_compile */
4220
4221/* Subroutines for `regex_compile'.  */
4222
4223/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4224/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4225
4226static void
4227PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4228{
4229  *loc = (UCHAR_T) op;
4230  STORE_NUMBER (loc + 1, arg);
4231}
4232
4233
4234/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4235/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4236
4237static void
4238PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4239{
4240  *loc = (UCHAR_T) op;
4241  STORE_NUMBER (loc + 1, arg1);
4242  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4243}
4244
4245
4246/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4247   for OP followed by two-byte integer parameter ARG.  */
4248/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4249
4250static void
4251PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4252{
4253  register UCHAR_T *pfrom = end;
4254  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4255
4256  while (pfrom != loc)
4257    *--pto = *--pfrom;
4258
4259  PREFIX(store_op1) (op, loc, arg);
4260}
4261
4262
4263/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4264/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4265
4266static void
4267PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2,
4268		    UCHAR_T *end)
4269{
4270  register UCHAR_T *pfrom = end;
4271  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4272
4273  while (pfrom != loc)
4274    *--pto = *--pfrom;
4275
4276  PREFIX(store_op2) (op, loc, arg1, arg2);
4277}
4278
4279
4280/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4281   after an alternative or a begin-subexpression.  We assume there is at
4282   least one character before the ^.  */
4283
4284static boolean
4285PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4286			  reg_syntax_t syntax)
4287{
4288  const CHAR_T *prev = p - 2;
4289  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4290
4291  return
4292       /* After a subexpression?  */
4293       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4294       /* After an alternative?  */
4295    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4296}
4297
4298
4299/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4300   at least one character after the $, i.e., `P < PEND'.  */
4301
4302static boolean
4303PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4304			  reg_syntax_t syntax)
4305{
4306  const CHAR_T *next = p;
4307  boolean next_backslash = *next == '\\';
4308  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4309
4310  return
4311       /* Before a subexpression?  */
4312       (syntax & RE_NO_BK_PARENS ? *next == ')'
4313        : next_backslash && next_next && *next_next == ')')
4314       /* Before an alternative?  */
4315    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4316        : next_backslash && next_next && *next_next == '|');
4317}
4318
4319#else /* not INSIDE_RECURSION */
4320
4321/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4322   false if it's not.  */
4323
4324static boolean
4325group_in_compile_stack (compile_stack_type compile_stack,
4326			regnum_t regnum)
4327{
4328  int this_element;
4329
4330  for (this_element = compile_stack.avail - 1;
4331       this_element >= 0;
4332       this_element--)
4333    if (compile_stack.stack[this_element].regnum == regnum)
4334      return true;
4335
4336  return false;
4337}
4338#endif /* not INSIDE_RECURSION */
4339
4340#ifdef INSIDE_RECURSION
4341
4342#ifdef WCHAR
4343/* This insert space, which size is "num", into the pattern at "loc".
4344   "end" must point the end of the allocated buffer.  */
4345static void
4346insert_space (int num, CHAR_T *loc, CHAR_T *end)
4347{
4348  register CHAR_T *pto = end;
4349  register CHAR_T *pfrom = end - num;
4350
4351  while (pfrom >= loc)
4352    *pto-- = *pfrom--;
4353}
4354#endif /* WCHAR */
4355
4356#ifdef WCHAR
4357static reg_errcode_t
4358wcs_compile_range (CHAR_T range_start_char,
4359		   const CHAR_T **p_ptr, const CHAR_T *pend,
4360		   RE_TRANSLATE_TYPE translate, reg_syntax_t syntax,
4361		   CHAR_T *b, CHAR_T *char_set)
4362{
4363  const CHAR_T *p = *p_ptr;
4364  CHAR_T range_start, range_end;
4365  reg_errcode_t ret;
4366# ifdef _LIBC
4367  uint32_t nrules;
4368  uint32_t start_val, end_val;
4369# endif
4370  if (p == pend)
4371    return REG_ERANGE;
4372
4373# ifdef _LIBC
4374  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4375  if (nrules != 0)
4376    {
4377      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4378						       _NL_COLLATE_COLLSEQWC);
4379      const unsigned char *extra = (const unsigned char *)
4380	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4381
4382      if (range_start_char < -1)
4383	{
4384	  /* range_start is a collating symbol.  */
4385	  int32_t *wextra;
4386	  /* Retreive the index and get collation sequence value.  */
4387	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4388	  start_val = wextra[1 + *wextra];
4389	}
4390      else
4391	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4392
4393      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4394
4395      /* Report an error if the range is empty and the syntax prohibits
4396	 this.  */
4397      ret = ((syntax & RE_NO_EMPTY_RANGES)
4398	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4399
4400      /* Insert space to the end of the char_ranges.  */
4401      insert_space(2, b - char_set[5] - 2, b - 1);
4402      *(b - char_set[5] - 2) = (wchar_t)start_val;
4403      *(b - char_set[5] - 1) = (wchar_t)end_val;
4404      char_set[4]++; /* ranges_index */
4405    }
4406  else
4407# endif
4408    {
4409      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4410	range_start_char;
4411      range_end = TRANSLATE (p[0]);
4412      /* Report an error if the range is empty and the syntax prohibits
4413	 this.  */
4414      ret = ((syntax & RE_NO_EMPTY_RANGES)
4415	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4416
4417      /* Insert space to the end of the char_ranges.  */
4418      insert_space(2, b - char_set[5] - 2, b - 1);
4419      *(b - char_set[5] - 2) = range_start;
4420      *(b - char_set[5] - 1) = range_end;
4421      char_set[4]++; /* ranges_index */
4422    }
4423  /* Have to increment the pointer into the pattern string, so the
4424     caller isn't still at the ending character.  */
4425  (*p_ptr)++;
4426
4427  return ret;
4428}
4429#else /* BYTE */
4430/* Read the ending character of a range (in a bracket expression) from the
4431   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4432   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4433   Then we set the translation of all bits between the starting and
4434   ending characters (inclusive) in the compiled pattern B.
4435
4436   Return an error code.
4437
4438   We use these short variable names so we can use the same macros as
4439   `regex_compile' itself.  */
4440
4441static reg_errcode_t
4442byte_compile_range (unsigned int range_start_char,
4443		    const char **p_ptr, const char *pend,
4444		    RE_TRANSLATE_TYPE translate, reg_syntax_t syntax,
4445		    unsigned char *b)
4446{
4447  unsigned this_char;
4448  const char *p = *p_ptr;
4449  reg_errcode_t ret;
4450# if _LIBC
4451  const unsigned char *collseq;
4452  unsigned int start_colseq;
4453  unsigned int end_colseq;
4454# else
4455  unsigned end_char;
4456# endif
4457
4458  if (p == pend)
4459    return REG_ERANGE;
4460
4461  /* Have to increment the pointer into the pattern string, so the
4462     caller isn't still at the ending character.  */
4463  (*p_ptr)++;
4464
4465  /* Report an error if the range is empty and the syntax prohibits this.  */
4466  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4467
4468# if _LIBC
4469  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4470						 _NL_COLLATE_COLLSEQMB);
4471
4472  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4473  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4474  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4475    {
4476      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4477
4478      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4479	{
4480	  SET_LIST_BIT (TRANSLATE (this_char));
4481	  ret = REG_NOERROR;
4482	}
4483    }
4484# else
4485  /* Here we see why `this_char' has to be larger than an `unsigned
4486     char' -- we would otherwise go into an infinite loop, since all
4487     characters <= 0xff.  */
4488  range_start_char = TRANSLATE (range_start_char);
4489  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4490     and some compilers cast it to int implicitly, so following for_loop
4491     may fall to (almost) infinite loop.
4492     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4493     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4494  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4495
4496  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4497    {
4498      SET_LIST_BIT (TRANSLATE (this_char));
4499      ret = REG_NOERROR;
4500    }
4501# endif
4502
4503  return ret;
4504}
4505#endif /* WCHAR */
4506
4507/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4508   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4509   characters can start a string that matches the pattern.  This fastmap
4510   is used by re_search to skip quickly over impossible starting points.
4511
4512   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4513   area as BUFP->fastmap.
4514
4515   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4516   the pattern buffer.
4517
4518   Returns 0 if we succeed, -2 if an internal error.   */
4519
4520#ifdef WCHAR
4521/* local function for re_compile_fastmap.
4522   truncate wchar_t character to char.  */
4523
4524static unsigned char
4525truncate_wchar (CHAR_T c)
4526{
4527  unsigned char buf[MB_CUR_MAX];
4528  mbstate_t state;
4529  int retval;
4530  memset (&state, '\0', sizeof (state));
4531  retval = wcrtomb (buf, c, &state);
4532  return retval > 0 ? buf[0] : (unsigned char) c;
4533}
4534#endif /* WCHAR */
4535
4536static int
4537PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4538{
4539  int j, k;
4540#ifdef MATCH_MAY_ALLOCATE
4541  PREFIX(fail_stack_type) fail_stack;
4542#endif
4543#ifndef REGEX_MALLOC
4544  char *destination;
4545#endif
4546
4547  register char *fastmap = bufp->fastmap;
4548
4549#ifdef WCHAR
4550  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4551     pattern to (char*) in regex_compile.  */
4552  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4553  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4554#else /* BYTE */
4555  UCHAR_T *pattern = bufp->buffer;
4556  register UCHAR_T *pend = pattern + bufp->used;
4557#endif /* WCHAR */
4558  UCHAR_T *p = pattern;
4559
4560#ifdef REL_ALLOC
4561  /* This holds the pointer to the failure stack, when
4562     it is allocated relocatably.  */
4563  fail_stack_elt_t *failure_stack_ptr;
4564#endif
4565
4566  /* Assume that each path through the pattern can be null until
4567     proven otherwise.  We set this false at the bottom of switch
4568     statement, to which we get only if a particular path doesn't
4569     match the empty string.  */
4570  boolean path_can_be_null = true;
4571
4572  /* We aren't doing a `succeed_n' to begin with.  */
4573  boolean succeed_n_p = false;
4574
4575  assert (fastmap != NULL && p != NULL);
4576
4577  INIT_FAIL_STACK ();
4578  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4579  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4580  bufp->can_be_null = 0;
4581
4582  while (1)
4583    {
4584      if (p == pend || *p == succeed)
4585	{
4586	  /* We have reached the (effective) end of pattern.  */
4587	  if (!FAIL_STACK_EMPTY ())
4588	    {
4589	      bufp->can_be_null |= path_can_be_null;
4590
4591	      /* Reset for next path.  */
4592	      path_can_be_null = true;
4593
4594	      p = fail_stack.stack[--fail_stack.avail].pointer;
4595
4596	      continue;
4597	    }
4598	  else
4599	    break;
4600	}
4601
4602      /* We should never be about to go beyond the end of the pattern.  */
4603      assert (p < pend);
4604
4605      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4606	{
4607
4608        /* I guess the idea here is to simply not bother with a fastmap
4609           if a backreference is used, since it's too hard to figure out
4610           the fastmap for the corresponding group.  Setting
4611           `can_be_null' stops `re_search_2' from using the fastmap, so
4612           that is all we do.  */
4613	case duplicate:
4614	  bufp->can_be_null = 1;
4615          goto done;
4616
4617
4618      /* Following are the cases which match a character.  These end
4619         with `break'.  */
4620
4621#ifdef WCHAR
4622	case exactn:
4623          fastmap[truncate_wchar(p[1])] = 1;
4624	  break;
4625#else /* BYTE */
4626	case exactn:
4627          fastmap[p[1]] = 1;
4628	  break;
4629#endif /* WCHAR */
4630#ifdef MBS_SUPPORT
4631	case exactn_bin:
4632	  fastmap[p[1]] = 1;
4633	  break;
4634#endif
4635
4636#ifdef WCHAR
4637        /* It is hard to distinguish fastmap from (multi byte) characters
4638           which depends on current locale.  */
4639        case charset:
4640	case charset_not:
4641	case wordchar:
4642	case notwordchar:
4643          bufp->can_be_null = 1;
4644          goto done;
4645#else /* BYTE */
4646        case charset:
4647          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4648	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4649              fastmap[j] = 1;
4650	  break;
4651
4652
4653	case charset_not:
4654	  /* Chars beyond end of map must be allowed.  */
4655	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4656            fastmap[j] = 1;
4657
4658	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4659	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4660              fastmap[j] = 1;
4661          break;
4662
4663
4664	case wordchar:
4665	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4666	    if (SYNTAX (j) == Sword)
4667	      fastmap[j] = 1;
4668	  break;
4669
4670
4671	case notwordchar:
4672	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4673	    if (SYNTAX (j) != Sword)
4674	      fastmap[j] = 1;
4675	  break;
4676#endif /* WCHAR */
4677
4678        case anychar:
4679	  {
4680	    int fastmap_newline = fastmap['\n'];
4681
4682	    /* `.' matches anything ...  */
4683	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4684	      fastmap[j] = 1;
4685
4686	    /* ... except perhaps newline.  */
4687	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4688	      fastmap['\n'] = fastmap_newline;
4689
4690	    /* Return if we have already set `can_be_null'; if we have,
4691	       then the fastmap is irrelevant.  Something's wrong here.  */
4692	    else if (bufp->can_be_null)
4693	      goto done;
4694
4695	    /* Otherwise, have to check alternative paths.  */
4696	    break;
4697	  }
4698
4699#ifdef emacs
4700        case syntaxspec:
4701	  k = *p++;
4702	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4703	    if (SYNTAX (j) == (enum syntaxcode) k)
4704	      fastmap[j] = 1;
4705	  break;
4706
4707
4708	case notsyntaxspec:
4709	  k = *p++;
4710	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4711	    if (SYNTAX (j) != (enum syntaxcode) k)
4712	      fastmap[j] = 1;
4713	  break;
4714
4715
4716      /* All cases after this match the empty string.  These end with
4717         `continue'.  */
4718
4719
4720	case before_dot:
4721	case at_dot:
4722	case after_dot:
4723          continue;
4724#endif /* emacs */
4725
4726
4727        case no_op:
4728        case begline:
4729        case endline:
4730	case begbuf:
4731	case endbuf:
4732	case wordbound:
4733	case notwordbound:
4734	case wordbeg:
4735	case wordend:
4736        case push_dummy_failure:
4737          continue;
4738
4739
4740	case jump_n:
4741        case pop_failure_jump:
4742	case maybe_pop_jump:
4743	case jump:
4744        case jump_past_alt:
4745	case dummy_failure_jump:
4746          EXTRACT_NUMBER_AND_INCR (j, p);
4747	  p += j;
4748	  if (j > 0)
4749	    continue;
4750
4751          /* Jump backward implies we just went through the body of a
4752             loop and matched nothing.  Opcode jumped to should be
4753             `on_failure_jump' or `succeed_n'.  Just treat it like an
4754             ordinary jump.  For a * loop, it has pushed its failure
4755             point already; if so, discard that as redundant.  */
4756          if ((re_opcode_t) *p != on_failure_jump
4757	      && (re_opcode_t) *p != succeed_n)
4758	    continue;
4759
4760          p++;
4761          EXTRACT_NUMBER_AND_INCR (j, p);
4762          p += j;
4763
4764          /* If what's on the stack is where we are now, pop it.  */
4765          if (!FAIL_STACK_EMPTY ()
4766	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4767            fail_stack.avail--;
4768
4769          continue;
4770
4771
4772        case on_failure_jump:
4773        case on_failure_keep_string_jump:
4774	handle_on_failure_jump:
4775          EXTRACT_NUMBER_AND_INCR (j, p);
4776
4777          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4778             end of the pattern.  We don't want to push such a point,
4779             since when we restore it above, entering the switch will
4780             increment `p' past the end of the pattern.  We don't need
4781             to push such a point since we obviously won't find any more
4782             fastmap entries beyond `pend'.  Such a pattern can match
4783             the null string, though.  */
4784          if (p + j < pend)
4785            {
4786              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4787		{
4788		  RESET_FAIL_STACK ();
4789		  return -2;
4790		}
4791            }
4792          else
4793            bufp->can_be_null = 1;
4794
4795          if (succeed_n_p)
4796            {
4797              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4798              succeed_n_p = false;
4799	    }
4800
4801          continue;
4802
4803
4804	case succeed_n:
4805          /* Get to the number of times to succeed.  */
4806          p += OFFSET_ADDRESS_SIZE;
4807
4808          /* Increment p past the n for when k != 0.  */
4809          EXTRACT_NUMBER_AND_INCR (k, p);
4810          if (k == 0)
4811	    {
4812              p -= 2 * OFFSET_ADDRESS_SIZE;
4813  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4814              goto handle_on_failure_jump;
4815            }
4816          continue;
4817
4818
4819	case set_number_at:
4820          p += 2 * OFFSET_ADDRESS_SIZE;
4821          continue;
4822
4823
4824	case start_memory:
4825        case stop_memory:
4826	  p += 2;
4827	  continue;
4828
4829
4830	default:
4831          abort (); /* We have listed all the cases.  */
4832        } /* switch *p++ */
4833
4834      /* Getting here means we have found the possible starting
4835         characters for one path of the pattern -- and that the empty
4836         string does not match.  We need not follow this path further.
4837         Instead, look at the next alternative (remembered on the
4838         stack), or quit if no more.  The test at the top of the loop
4839         does these things.  */
4840      path_can_be_null = false;
4841      p = pend;
4842    } /* while p */
4843
4844  /* Set `can_be_null' for the last path (also the first path, if the
4845     pattern is empty).  */
4846  bufp->can_be_null |= path_can_be_null;
4847
4848 done:
4849  RESET_FAIL_STACK ();
4850  return 0;
4851}
4852
4853#else /* not INSIDE_RECURSION */
4854
4855int
4856re_compile_fastmap (struct re_pattern_buffer *bufp)
4857{
4858# ifdef MBS_SUPPORT
4859  if (MB_CUR_MAX != 1)
4860    return wcs_re_compile_fastmap(bufp);
4861  else
4862# endif
4863    return byte_re_compile_fastmap(bufp);
4864} /* re_compile_fastmap */
4865#ifdef _LIBC
4866weak_alias (__re_compile_fastmap, re_compile_fastmap)
4867#endif
4868
4869
4870/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4871   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4872   this memory for recording register information.  STARTS and ENDS
4873   must be allocated using the malloc library routine, and must each
4874   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4875
4876   If NUM_REGS == 0, then subsequent matches should allocate their own
4877   register data.
4878
4879   Unless this function is called, the first search or match using
4880   PATTERN_BUFFER will allocate its own register data, without
4881   freeing the old data.  */
4882
4883void
4884re_set_registers (struct re_pattern_buffer *bufp,
4885		  struct re_registers *regs,
4886		  unsigned int num_regs,
4887		  regoff_t *starts, regoff_t *ends)
4888{
4889  if (num_regs)
4890    {
4891      bufp->regs_allocated = REGS_REALLOCATE;
4892      regs->num_regs = num_regs;
4893      regs->start = starts;
4894      regs->end = ends;
4895    }
4896  else
4897    {
4898      bufp->regs_allocated = REGS_UNALLOCATED;
4899      regs->num_regs = 0;
4900      regs->start = regs->end = (regoff_t *) 0;
4901    }
4902}
4903#ifdef _LIBC
4904weak_alias (__re_set_registers, re_set_registers)
4905#endif
4906
4907/* Searching routines.  */
4908
4909/* Like re_search_2, below, but only one string is specified, and
4910   doesn't let you say where to stop matching.  */
4911
4912int
4913re_search (struct re_pattern_buffer *bufp,
4914	   const char *string,
4915	   int size, int startpos, int range,
4916	   struct re_registers *regs)
4917{
4918  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4919		      regs, size);
4920}
4921#ifdef _LIBC
4922weak_alias (__re_search, re_search)
4923#endif
4924
4925
4926/* Using the compiled pattern in BUFP->buffer, first tries to match the
4927   virtual concatenation of STRING1 and STRING2, starting first at index
4928   STARTPOS, then at STARTPOS + 1, and so on.
4929
4930   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4931
4932   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4933   only at STARTPOS; in general, the last start tried is STARTPOS +
4934   RANGE.
4935
4936   In REGS, return the indices of the virtual concatenation of STRING1
4937   and STRING2 that matched the entire BUFP->buffer and its contained
4938   subexpressions.
4939
4940   Do not consider matching one past the index STOP in the virtual
4941   concatenation of STRING1 and STRING2.
4942
4943   We return either the position in the strings at which the match was
4944   found, -1 if no match, or -2 if error (such as failure
4945   stack overflow).  */
4946
4947int
4948re_search_2 (struct re_pattern_buffer *bufp,
4949	     const char *string1, int size1,
4950	     const char *string2, int size2,
4951	     int startpos, int range,
4952	     struct re_registers *regs,
4953	     int stop)
4954{
4955# ifdef MBS_SUPPORT
4956  if (MB_CUR_MAX != 1)
4957    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4958			    range, regs, stop);
4959  else
4960# endif
4961    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962			     range, regs, stop);
4963} /* re_search_2 */
4964#ifdef _LIBC
4965weak_alias (__re_search_2, re_search_2)
4966#endif
4967
4968#endif /* not INSIDE_RECURSION */
4969
4970#ifdef INSIDE_RECURSION
4971
4972#ifdef MATCH_MAY_ALLOCATE
4973# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4974#else
4975# define FREE_VAR(var) if (var) free (var); var = NULL
4976#endif
4977
4978#ifdef WCHAR
4979# define MAX_ALLOCA_SIZE	2000
4980
4981# define FREE_WCS_BUFFERS() \
4982  do {									      \
4983    if (size1 > MAX_ALLOCA_SIZE)					      \
4984      {									      \
4985	free (wcs_string1);						      \
4986	free (mbs_offset1);						      \
4987      }									      \
4988    else								      \
4989      {									      \
4990	FREE_VAR (wcs_string1);						      \
4991	FREE_VAR (mbs_offset1);						      \
4992      }									      \
4993    if (size2 > MAX_ALLOCA_SIZE) 					      \
4994      {									      \
4995	free (wcs_string2);						      \
4996	free (mbs_offset2);						      \
4997      }									      \
4998    else								      \
4999      {									      \
5000	FREE_VAR (wcs_string2);						      \
5001	FREE_VAR (mbs_offset2);						      \
5002      }									      \
5003  } while (0)
5004
5005#endif
5006
5007
5008static int
5009PREFIX(re_search_2) (struct re_pattern_buffer *bufp,
5010		     const char *string1, int size1,
5011		     const char *string2, int size2,
5012		     int startpos, int range,
5013		     struct re_registers *regs,
5014		     int stop)
5015{
5016  int val;
5017  register char *fastmap = bufp->fastmap;
5018  register RE_TRANSLATE_TYPE translate = bufp->translate;
5019  int total_size = size1 + size2;
5020  int endpos = startpos + range;
5021#ifdef WCHAR
5022  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5023  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5024  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5025  int wcs_size1 = 0, wcs_size2 = 0;
5026  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5027  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5028  /* They hold whether each wchar_t is binary data or not.  */
5029  char *is_binary = NULL;
5030#endif /* WCHAR */
5031
5032  /* Check for out-of-range STARTPOS.  */
5033  if (startpos < 0 || startpos > total_size)
5034    return -1;
5035
5036  /* Fix up RANGE if it might eventually take us outside
5037     the virtual concatenation of STRING1 and STRING2.
5038     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5039  if (endpos < 0)
5040    range = 0 - startpos;
5041  else if (endpos > total_size)
5042    range = total_size - startpos;
5043
5044  /* If the search isn't to be a backwards one, don't waste time in a
5045     search for a pattern that must be anchored.  */
5046  if (bufp->used > 0 && range > 0
5047      && ((re_opcode_t) bufp->buffer[0] == begbuf
5048	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5049	  || ((re_opcode_t) bufp->buffer[0] == begline
5050	      && !bufp->newline_anchor)))
5051    {
5052      if (startpos > 0)
5053	return -1;
5054      else
5055	range = 1;
5056    }
5057
5058#ifdef emacs
5059  /* In a forward search for something that starts with \=.
5060     don't keep searching past point.  */
5061  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5062    {
5063      range = PT - startpos;
5064      if (range <= 0)
5065	return -1;
5066    }
5067#endif /* emacs */
5068
5069  /* Update the fastmap now if not correct already.  */
5070  if (fastmap && !bufp->fastmap_accurate)
5071    if (re_compile_fastmap (bufp) == -2)
5072      return -2;
5073
5074#ifdef WCHAR
5075  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5076     fill them with converted string.  */
5077  if (size1 != 0)
5078    {
5079      if (size1 > MAX_ALLOCA_SIZE)
5080	{
5081	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5082	  mbs_offset1 = TALLOC (size1 + 1, int);
5083	  is_binary = TALLOC (size1 + 1, char);
5084	}
5085      else
5086	{
5087	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5088	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5089	  is_binary = REGEX_TALLOC (size1 + 1, char);
5090	}
5091      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5092	{
5093	  if (size1 > MAX_ALLOCA_SIZE)
5094	    {
5095	      free (wcs_string1);
5096	      free (mbs_offset1);
5097	      free (is_binary);
5098	    }
5099	  else
5100	    {
5101	      FREE_VAR (wcs_string1);
5102	      FREE_VAR (mbs_offset1);
5103	      FREE_VAR (is_binary);
5104	    }
5105	  return -2;
5106	}
5107      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5108				     mbs_offset1, is_binary);
5109      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5110      if (size1 > MAX_ALLOCA_SIZE)
5111	free (is_binary);
5112      else
5113	FREE_VAR (is_binary);
5114    }
5115  if (size2 != 0)
5116    {
5117      if (size2 > MAX_ALLOCA_SIZE)
5118	{
5119	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5120	  mbs_offset2 = TALLOC (size2 + 1, int);
5121	  is_binary = TALLOC (size2 + 1, char);
5122	}
5123      else
5124	{
5125	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5126	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5127	  is_binary = REGEX_TALLOC (size2 + 1, char);
5128	}
5129      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5130	{
5131	  FREE_WCS_BUFFERS ();
5132	  if (size2 > MAX_ALLOCA_SIZE)
5133	    free (is_binary);
5134	  else
5135	    FREE_VAR (is_binary);
5136	  return -2;
5137	}
5138      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5139				     mbs_offset2, is_binary);
5140      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5141      if (size2 > MAX_ALLOCA_SIZE)
5142	free (is_binary);
5143      else
5144	FREE_VAR (is_binary);
5145    }
5146#endif /* WCHAR */
5147
5148
5149  /* Loop through the string, looking for a place to start matching.  */
5150  for (;;)
5151    {
5152      /* If a fastmap is supplied, skip quickly over characters that
5153         cannot be the start of a match.  If the pattern can match the
5154         null string, however, we don't need to skip characters; we want
5155         the first null string.  */
5156      if (fastmap && startpos < total_size && !bufp->can_be_null)
5157	{
5158	  if (range > 0)	/* Searching forwards.  */
5159	    {
5160	      register const char *d;
5161	      register int lim = 0;
5162	      int irange = range;
5163
5164              if (startpos < size1 && startpos + range >= size1)
5165                lim = range - (size1 - startpos);
5166
5167	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5168
5169              /* Written out as an if-else to avoid testing `translate'
5170                 inside the loop.  */
5171	      if (translate)
5172                while (range > lim
5173                       && !fastmap[(unsigned char)
5174				   translate[(unsigned char) *d++]])
5175                  range--;
5176	      else
5177                while (range > lim && !fastmap[(unsigned char) *d++])
5178                  range--;
5179
5180	      startpos += irange - range;
5181	    }
5182	  else				/* Searching backwards.  */
5183	    {
5184	      register CHAR_T c = (size1 == 0 || startpos >= size1
5185				      ? string2[startpos - size1]
5186				      : string1[startpos]);
5187
5188	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5189		goto advance;
5190	    }
5191	}
5192
5193      /* If can't match the null string, and that's all we have left, fail.  */
5194      if (range >= 0 && startpos == total_size && fastmap
5195          && !bufp->can_be_null)
5196       {
5197#ifdef WCHAR
5198         FREE_WCS_BUFFERS ();
5199#endif
5200         return -1;
5201       }
5202
5203#ifdef WCHAR
5204      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5205				     size2, startpos, regs, stop,
5206				     wcs_string1, wcs_size1,
5207				     wcs_string2, wcs_size2,
5208				     mbs_offset1, mbs_offset2);
5209#else /* BYTE */
5210      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5211				      size2, startpos, regs, stop);
5212#endif /* BYTE */
5213
5214#ifndef REGEX_MALLOC
5215# ifdef C_ALLOCA
5216      alloca (0);
5217# endif
5218#endif
5219
5220      if (val >= 0)
5221	{
5222#ifdef WCHAR
5223	  FREE_WCS_BUFFERS ();
5224#endif
5225	  return startpos;
5226	}
5227
5228      if (val == -2)
5229	{
5230#ifdef WCHAR
5231	  FREE_WCS_BUFFERS ();
5232#endif
5233	  return -2;
5234	}
5235
5236    advance:
5237      if (!range)
5238        break;
5239      else if (range > 0)
5240        {
5241          range--;
5242          startpos++;
5243        }
5244      else
5245        {
5246          range++;
5247          startpos--;
5248        }
5249    }
5250#ifdef WCHAR
5251  FREE_WCS_BUFFERS ();
5252#endif
5253  return -1;
5254}
5255
5256#ifdef WCHAR
5257/* This converts PTR, a pointer into one of the search wchar_t strings
5258   `string1' and `string2' into an multibyte string offset from the
5259   beginning of that string. We use mbs_offset to optimize.
5260   See convert_mbs_to_wcs.  */
5261# define POINTER_TO_OFFSET(ptr)						\
5262  (FIRST_STRING_P (ptr)							\
5263   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5264   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5265		 + csize1)))
5266#else /* BYTE */
5267/* This converts PTR, a pointer into one of the search strings `string1'
5268   and `string2' into an offset from the beginning of that string.  */
5269# define POINTER_TO_OFFSET(ptr)			\
5270  (FIRST_STRING_P (ptr)				\
5271   ? ((regoff_t) ((ptr) - string1))		\
5272   : ((regoff_t) ((ptr) - string2 + size1)))
5273#endif /* WCHAR */
5274
5275/* Macros for dealing with the split strings in re_match_2.  */
5276
5277#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5278
5279/* Call before fetching a character with *d.  This switches over to
5280   string2 if necessary.  */
5281#define PREFETCH()							\
5282  while (d == dend)						    	\
5283    {									\
5284      /* End of string2 => fail.  */					\
5285      if (dend == end_match_2) 						\
5286        goto fail;							\
5287      /* End of string1 => advance to string2.  */ 			\
5288      d = string2;						        \
5289      dend = end_match_2;						\
5290    }
5291
5292/* Test if at very beginning or at very end of the virtual concatenation
5293   of `string1' and `string2'.  If only one string, it's `string2'.  */
5294#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5295#define AT_STRINGS_END(d) ((d) == end2)
5296
5297
5298/* Test if D points to a character which is word-constituent.  We have
5299   two special cases to check for: if past the end of string1, look at
5300   the first character in string2; and if before the beginning of
5301   string2, look at the last character in string1.  */
5302#ifdef WCHAR
5303/* Use internationalized API instead of SYNTAX.  */
5304# define WORDCHAR_P(d)							\
5305  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5306           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5307   || ((d) == end1 ? *string2						\
5308       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5309#else /* BYTE */
5310# define WORDCHAR_P(d)							\
5311  (SYNTAX ((d) == end1 ? *string2					\
5312           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5313   == Sword)
5314#endif /* WCHAR */
5315
5316/* Disabled due to a compiler bug -- see comment at case wordbound */
5317#if 0
5318/* Test if the character before D and the one at D differ with respect
5319   to being word-constituent.  */
5320#define AT_WORD_BOUNDARY(d)						\
5321  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5322   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5323#endif
5324
5325/* Free everything we malloc.  */
5326#ifdef MATCH_MAY_ALLOCATE
5327# ifdef WCHAR
5328#  define FREE_VARIABLES()						\
5329  do {									\
5330    REGEX_FREE_STACK (fail_stack.stack);				\
5331    FREE_VAR (regstart);						\
5332    FREE_VAR (regend);							\
5333    FREE_VAR (old_regstart);						\
5334    FREE_VAR (old_regend);						\
5335    FREE_VAR (best_regstart);						\
5336    FREE_VAR (best_regend);						\
5337    FREE_VAR (reg_info);						\
5338    FREE_VAR (reg_dummy);						\
5339    FREE_VAR (reg_info_dummy);						\
5340    if (!cant_free_wcs_buf)						\
5341      {									\
5342        FREE_VAR (string1);						\
5343        FREE_VAR (string2);						\
5344        FREE_VAR (mbs_offset1);						\
5345        FREE_VAR (mbs_offset2);						\
5346      }									\
5347  } while (0)
5348# else /* BYTE */
5349#  define FREE_VARIABLES()						\
5350  do {									\
5351    REGEX_FREE_STACK (fail_stack.stack);				\
5352    FREE_VAR (regstart);						\
5353    FREE_VAR (regend);							\
5354    FREE_VAR (old_regstart);						\
5355    FREE_VAR (old_regend);						\
5356    FREE_VAR (best_regstart);						\
5357    FREE_VAR (best_regend);						\
5358    FREE_VAR (reg_info);						\
5359    FREE_VAR (reg_dummy);						\
5360    FREE_VAR (reg_info_dummy);						\
5361  } while (0)
5362# endif /* WCHAR */
5363#else
5364# ifdef WCHAR
5365#  define FREE_VARIABLES()						\
5366  do {									\
5367    if (!cant_free_wcs_buf)						\
5368      {									\
5369        FREE_VAR (string1);						\
5370        FREE_VAR (string2);						\
5371        FREE_VAR (mbs_offset1);						\
5372        FREE_VAR (mbs_offset2);						\
5373      }									\
5374  } while (0)
5375# else /* BYTE */
5376#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5377# endif /* WCHAR */
5378#endif /* not MATCH_MAY_ALLOCATE */
5379
5380/* These values must meet several constraints.  They must not be valid
5381   register values; since we have a limit of 255 registers (because
5382   we use only one byte in the pattern for the register number), we can
5383   use numbers larger than 255.  They must differ by 1, because of
5384   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5385   be larger than the value for the highest register, so we do not try
5386   to actually save any registers when none are active.  */
5387#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5388#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5389
5390#else /* not INSIDE_RECURSION */
5391/* Matching routines.  */
5392
5393#ifndef emacs   /* Emacs never uses this.  */
5394/* re_match is like re_match_2 except it takes only a single string.  */
5395
5396int
5397re_match (struct re_pattern_buffer *bufp,
5398	  const char *string,
5399	  int size, int pos,
5400	  struct re_registers *regs)
5401{
5402  int result;
5403# ifdef MBS_SUPPORT
5404  if (MB_CUR_MAX != 1)
5405    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5406				      pos, regs, size,
5407				      NULL, 0, NULL, 0, NULL, NULL);
5408  else
5409# endif
5410    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5411				  pos, regs, size);
5412# ifndef REGEX_MALLOC
5413#  ifdef C_ALLOCA
5414  alloca (0);
5415#  endif
5416# endif
5417  return result;
5418}
5419# ifdef _LIBC
5420weak_alias (__re_match, re_match)
5421# endif
5422#endif /* not emacs */
5423
5424#endif /* not INSIDE_RECURSION */
5425
5426#ifdef INSIDE_RECURSION
5427static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5428						  UCHAR_T *end,
5429					PREFIX(register_info_type) *reg_info);
5430static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5431						UCHAR_T *end,
5432					PREFIX(register_info_type) *reg_info);
5433static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5434						      UCHAR_T *end,
5435					PREFIX(register_info_type) *reg_info);
5436static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5437				   int len, char *translate);
5438#else /* not INSIDE_RECURSION */
5439
5440/* re_match_2 matches the compiled pattern in BUFP against the
5441   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5442   and SIZE2, respectively).  We start matching at POS, and stop
5443   matching at STOP.
5444
5445   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5446   store offsets for the substring each group matched in REGS.  See the
5447   documentation for exactly how many groups we fill.
5448
5449   We return -1 if no match, -2 if an internal error (such as the
5450   failure stack overflowing).  Otherwise, we return the length of the
5451   matched substring.  */
5452
5453int
5454re_match_2 (struct re_pattern_buffer *bufp,
5455	    const char *string1, int size1,
5456	    const char *string2, int size2,
5457	    int pos, struct re_registers *regs,
5458	    int stop)
5459{
5460  int result;
5461# ifdef MBS_SUPPORT
5462  if (MB_CUR_MAX != 1)
5463    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5464				      pos, regs, stop,
5465				      NULL, 0, NULL, 0, NULL, NULL);
5466  else
5467# endif
5468    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5469				  pos, regs, stop);
5470
5471#ifndef REGEX_MALLOC
5472# ifdef C_ALLOCA
5473  alloca (0);
5474# endif
5475#endif
5476  return result;
5477}
5478#ifdef _LIBC
5479weak_alias (__re_match_2, re_match_2)
5480#endif
5481
5482#endif /* not INSIDE_RECURSION */
5483
5484#ifdef INSIDE_RECURSION
5485
5486#ifdef WCHAR
5487
5488/* This check the substring (from 0, to length) of the multibyte string,
5489   to which offset_buffer correspond. And count how many wchar_t_characters
5490   the substring occupy. We use offset_buffer to optimization.
5491   See convert_mbs_to_wcs.  */
5492
5493static int
5494count_mbs_length (int *offset_buffer, int length)
5495{
5496  int upper, lower;
5497
5498  /* Check whether the size is valid.  */
5499  if (length < 0)
5500    return -1;
5501
5502  if (offset_buffer == NULL)
5503    return 0;
5504
5505  /* If there are no multibyte character, offset_buffer[i] == i.
5506   Optmize for this case.  */
5507  if (offset_buffer[length] == length)
5508    return length;
5509
5510  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5511  upper = length;
5512  lower = 0;
5513
5514  while (true)
5515    {
5516      int middle = (lower + upper) / 2;
5517      if (middle == lower || middle == upper)
5518	break;
5519      if (offset_buffer[middle] > length)
5520	upper = middle;
5521      else if (offset_buffer[middle] < length)
5522	lower = middle;
5523      else
5524	return middle;
5525    }
5526
5527  return -1;
5528}
5529#endif /* WCHAR */
5530
5531/* This is a separate function so that we can force an alloca cleanup
5532   afterwards.  */
5533#ifdef WCHAR
5534static int
5535wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5536			 const char *cstring1, int csize1,
5537			 const char *cstring2, int csize2,
5538			 int pos,
5539			 struct re_registers *regs,
5540			 int stop,
5541			 /* string1 == string2 == NULL means
5542			    string1/2, size1/2 and mbs_offset1/2 need
5543			    setting up in this function.  */
5544			 /* We need wchar_t * buffers corresponding to
5545			    cstring1, cstring2.  */
5546			 wchar_t *string1, int size1,
5547			 wchar_t *string2, int size2,
5548			 /* Offset buffer for optimization.  See
5549			    convert_mbs_to_wc.  */
5550			 int *mbs_offset1,
5551			 int *mbs_offset2)
5552#else /* BYTE */
5553static int
5554byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5555			  const char *string1, int size1,
5556			  const char *string2, int size2,
5557			  int pos,
5558			  struct re_registers *regs,
5559			  int stop)
5560#endif /* BYTE */
5561{
5562  /* General temporaries.  */
5563  int mcnt;
5564  UCHAR_T *p1;
5565#ifdef WCHAR
5566  /* They hold whether each wchar_t is binary data or not.  */
5567  char *is_binary = NULL;
5568  /* If true, we can't free string1/2, mbs_offset1/2.  */
5569  int cant_free_wcs_buf = 1;
5570#endif /* WCHAR */
5571
5572  /* Just past the end of the corresponding string.  */
5573  const CHAR_T *end1, *end2;
5574
5575  /* Pointers into string1 and string2, just past the last characters in
5576     each to consider matching.  */
5577  const CHAR_T *end_match_1, *end_match_2;
5578
5579  /* Where we are in the data, and the end of the current string.  */
5580  const CHAR_T *d, *dend;
5581
5582  /* Where we are in the pattern, and the end of the pattern.  */
5583#ifdef WCHAR
5584  UCHAR_T *pattern, *p;
5585  register UCHAR_T *pend;
5586#else /* BYTE */
5587  UCHAR_T *p = bufp->buffer;
5588  register UCHAR_T *pend = p + bufp->used;
5589#endif /* WCHAR */
5590
5591  /* Mark the opcode just after a start_memory, so we can test for an
5592     empty subpattern when we get to the stop_memory.  */
5593  UCHAR_T *just_past_start_mem = 0;
5594
5595  /* We use this to map every character in the string.  */
5596  RE_TRANSLATE_TYPE translate = bufp->translate;
5597
5598  /* Failure point stack.  Each place that can handle a failure further
5599     down the line pushes a failure point on this stack.  It consists of
5600     restart, regend, and reg_info for all registers corresponding to
5601     the subexpressions we're currently inside, plus the number of such
5602     registers, and, finally, two char *'s.  The first char * is where
5603     to resume scanning the pattern; the second one is where to resume
5604     scanning the strings.  If the latter is zero, the failure point is
5605     a ``dummy''; if a failure happens and the failure point is a dummy,
5606     it gets discarded and the next next one is tried.  */
5607#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5608  PREFIX(fail_stack_type) fail_stack;
5609#endif
5610#ifdef DEBUG
5611  static unsigned failure_id;
5612  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5613#endif
5614
5615#ifdef REL_ALLOC
5616  /* This holds the pointer to the failure stack, when
5617     it is allocated relocatably.  */
5618  fail_stack_elt_t *failure_stack_ptr;
5619#endif
5620
5621  /* We fill all the registers internally, independent of what we
5622     return, for use in backreferences.  The number here includes
5623     an element for register zero.  */
5624  size_t num_regs = bufp->re_nsub + 1;
5625
5626  /* The currently active registers.  */
5627  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5628  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5629
5630  /* Information on the contents of registers. These are pointers into
5631     the input strings; they record just what was matched (on this
5632     attempt) by a subexpression part of the pattern, that is, the
5633     regnum-th regstart pointer points to where in the pattern we began
5634     matching and the regnum-th regend points to right after where we
5635     stopped matching the regnum-th subexpression.  (The zeroth register
5636     keeps track of what the whole pattern matches.)  */
5637#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5638  const CHAR_T **regstart, **regend;
5639#endif
5640
5641  /* If a group that's operated upon by a repetition operator fails to
5642     match anything, then the register for its start will need to be
5643     restored because it will have been set to wherever in the string we
5644     are when we last see its open-group operator.  Similarly for a
5645     register's end.  */
5646#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5647  const CHAR_T **old_regstart, **old_regend;
5648#endif
5649
5650  /* The is_active field of reg_info helps us keep track of which (possibly
5651     nested) subexpressions we are currently in. The matched_something
5652     field of reg_info[reg_num] helps us tell whether or not we have
5653     matched any of the pattern so far this time through the reg_num-th
5654     subexpression.  These two fields get reset each time through any
5655     loop their register is in.  */
5656#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5657  PREFIX(register_info_type) *reg_info;
5658#endif
5659
5660  /* The following record the register info as found in the above
5661     variables when we find a match better than any we've seen before.
5662     This happens as we backtrack through the failure points, which in
5663     turn happens only if we have not yet matched the entire string. */
5664  unsigned best_regs_set = false;
5665#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5666  const CHAR_T **best_regstart, **best_regend;
5667#endif
5668
5669  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5670     allocate space for that if we're not allocating space for anything
5671     else (see below).  Also, we never need info about register 0 for
5672     any of the other register vectors, and it seems rather a kludge to
5673     treat `best_regend' differently than the rest.  So we keep track of
5674     the end of the best match so far in a separate variable.  We
5675     initialize this to NULL so that when we backtrack the first time
5676     and need to test it, it's not garbage.  */
5677  const CHAR_T *match_end = NULL;
5678
5679  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5680  int set_regs_matched_done = 0;
5681
5682  /* Used when we pop values we don't care about.  */
5683#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5684  const CHAR_T **reg_dummy;
5685  PREFIX(register_info_type) *reg_info_dummy;
5686#endif
5687
5688#ifdef DEBUG
5689  /* Counts the total number of registers pushed.  */
5690  unsigned num_regs_pushed = 0;
5691#endif
5692
5693  /* Definitions for state transitions.  More efficiently for gcc.  */
5694#ifdef __GNUC__
5695# if defined HAVE_SUBTRACT_LOCAL_LABELS && defined SHARED
5696#  define NEXT \
5697      do								      \
5698	{								      \
5699	  int offset;							      \
5700	  const void *__unbounded ptr;					      \
5701	  offset = (p == pend						      \
5702		    ? 0 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]);   \
5703	  ptr = &&end_of_pattern + offset;				      \
5704	  goto *ptr;							      \
5705	}								      \
5706      while (0)
5707#  define REF(x) \
5708  &&label_##x - &&end_of_pattern
5709#  define JUMP_TABLE_TYPE const int
5710# else
5711#  define NEXT \
5712      do								      \
5713	{								      \
5714	  const void *__unbounded ptr;					      \
5715	  ptr = (p == pend ? &&end_of_pattern				      \
5716		 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]);	      \
5717	  goto *ptr;							      \
5718	}								      \
5719      while (0)
5720#  define REF(x) \
5721  &&label_##x
5722#  define JUMP_TABLE_TYPE const void *const
5723# endif
5724# define CASE(x) label_##x
5725  static JUMP_TABLE_TYPE jmptable[] =
5726    {
5727    REF (no_op),
5728    REF (succeed),
5729    REF (exactn),
5730# ifdef MBS_SUPPORT
5731    REF (exactn_bin),
5732# endif
5733    REF (anychar),
5734    REF (charset),
5735    REF (charset_not),
5736    REF (start_memory),
5737    REF (stop_memory),
5738    REF (duplicate),
5739    REF (begline),
5740    REF (endline),
5741    REF (begbuf),
5742    REF (endbuf),
5743    REF (jump),
5744    REF (jump_past_alt),
5745    REF (on_failure_jump),
5746    REF (on_failure_keep_string_jump),
5747    REF (pop_failure_jump),
5748    REF (maybe_pop_jump),
5749    REF (dummy_failure_jump),
5750    REF (push_dummy_failure),
5751    REF (succeed_n),
5752    REF (jump_n),
5753    REF (set_number_at),
5754    REF (wordchar),
5755    REF (notwordchar),
5756    REF (wordbeg),
5757    REF (wordend),
5758    REF (wordbound),
5759    REF (notwordbound)
5760# ifdef emacs
5761    ,REF (before_dot),
5762    REF (at_dot),
5763    REF (after_dot),
5764    REF (syntaxspec),
5765    REF (notsyntaxspec)
5766# endif
5767    };
5768#else
5769# define NEXT \
5770  break
5771# define CASE(x) \
5772  case x
5773#endif
5774
5775  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5776
5777  INIT_FAIL_STACK ();
5778
5779#ifdef MATCH_MAY_ALLOCATE
5780  /* Do not bother to initialize all the register variables if there are
5781     no groups in the pattern, as it takes a fair amount of time.  If
5782     there are groups, we include space for register 0 (the whole
5783     pattern), even though we never use it, since it simplifies the
5784     array indexing.  We should fix this.  */
5785  if (bufp->re_nsub)
5786    {
5787      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5788      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5789      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5790      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5791      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5792      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5793      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5794      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5795      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5796
5797      if (!(regstart && regend && old_regstart && old_regend && reg_info
5798            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5799        {
5800          FREE_VARIABLES ();
5801          return -2;
5802        }
5803    }
5804  else
5805    {
5806      /* We must initialize all our variables to NULL, so that
5807         `FREE_VARIABLES' doesn't try to free them.  */
5808      regstart = regend = old_regstart = old_regend = best_regstart
5809        = best_regend = reg_dummy = NULL;
5810      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5811    }
5812#endif /* MATCH_MAY_ALLOCATE */
5813
5814  /* The starting position is bogus.  */
5815#ifdef WCHAR
5816  if (pos < 0 || pos > csize1 + csize2)
5817#else /* BYTE */
5818  if (pos < 0 || pos > size1 + size2)
5819#endif
5820    {
5821      FREE_VARIABLES ();
5822      return -1;
5823    }
5824
5825#ifdef WCHAR
5826  /* Allocate wchar_t array for string1 and string2 and
5827     fill them with converted string.  */
5828  if (string1 == NULL && string2 == NULL)
5829    {
5830      /* We need seting up buffers here.  */
5831
5832      /* We must free wcs buffers in this function.  */
5833      cant_free_wcs_buf = 0;
5834
5835      if (csize1 != 0)
5836	{
5837	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5838	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5839	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5840	  if (!string1 || !mbs_offset1 || !is_binary)
5841	    {
5842	      FREE_VAR (string1);
5843	      FREE_VAR (mbs_offset1);
5844	      FREE_VAR (is_binary);
5845	      return -2;
5846	    }
5847	}
5848      if (csize2 != 0)
5849	{
5850	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5851	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5852	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5853	  if (!string2 || !mbs_offset2 || !is_binary)
5854	    {
5855	      FREE_VAR (string1);
5856	      FREE_VAR (mbs_offset1);
5857	      FREE_VAR (string2);
5858	      FREE_VAR (mbs_offset2);
5859	      FREE_VAR (is_binary);
5860	      return -2;
5861	    }
5862	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5863				     mbs_offset2, is_binary);
5864	  string2[size2] = L'\0'; /* for a sentinel  */
5865	  FREE_VAR (is_binary);
5866	}
5867    }
5868
5869  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5870     pattern to (char*) in regex_compile.  */
5871  p = pattern = (CHAR_T*)bufp->buffer;
5872  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5873
5874#endif /* WCHAR */
5875
5876  /* Initialize subexpression text positions to -1 to mark ones that no
5877     start_memory/stop_memory has been seen for. Also initialize the
5878     register information struct.  */
5879  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5880    {
5881      regstart[mcnt] = regend[mcnt]
5882        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5883
5884      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5885      IS_ACTIVE (reg_info[mcnt]) = 0;
5886      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5887      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5888    }
5889
5890  /* We move `string1' into `string2' if the latter's empty -- but not if
5891     `string1' is null.  */
5892  if (size2 == 0 && string1 != NULL)
5893    {
5894      string2 = string1;
5895      size2 = size1;
5896      string1 = 0;
5897      size1 = 0;
5898#ifdef WCHAR
5899      mbs_offset2 = mbs_offset1;
5900      csize2 = csize1;
5901      mbs_offset1 = NULL;
5902      csize1 = 0;
5903#endif
5904    }
5905  end1 = string1 + size1;
5906  end2 = string2 + size2;
5907
5908  /* Compute where to stop matching, within the two strings.  */
5909#ifdef WCHAR
5910  if (stop <= csize1)
5911    {
5912      mcnt = count_mbs_length(mbs_offset1, stop);
5913      end_match_1 = string1 + mcnt;
5914      end_match_2 = string2;
5915    }
5916  else
5917    {
5918      if (stop > csize1 + csize2)
5919	stop = csize1 + csize2;
5920      end_match_1 = end1;
5921      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5922      end_match_2 = string2 + mcnt;
5923    }
5924  if (mcnt < 0)
5925    { /* count_mbs_length return error.  */
5926      FREE_VARIABLES ();
5927      return -1;
5928    }
5929#else
5930  if (stop <= size1)
5931    {
5932      end_match_1 = string1 + stop;
5933      end_match_2 = string2;
5934    }
5935  else
5936    {
5937      end_match_1 = end1;
5938      end_match_2 = string2 + stop - size1;
5939    }
5940#endif /* WCHAR */
5941
5942  /* `p' scans through the pattern as `d' scans through the data.
5943     `dend' is the end of the input string that `d' points within.  `d'
5944     is advanced into the following input string whenever necessary, but
5945     this happens before fetching; therefore, at the beginning of the
5946     loop, `d' can be pointing at the end of a string, but it cannot
5947     equal `string2'.  */
5948#ifdef WCHAR
5949  if (size1 > 0 && pos <= csize1)
5950    {
5951      mcnt = count_mbs_length(mbs_offset1, pos);
5952      d = string1 + mcnt;
5953      dend = end_match_1;
5954    }
5955  else
5956    {
5957      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5958      d = string2 + mcnt;
5959      dend = end_match_2;
5960    }
5961
5962  if (mcnt < 0)
5963    { /* count_mbs_length return error.  */
5964      FREE_VARIABLES ();
5965      return -1;
5966    }
5967#else
5968  if (size1 > 0 && pos <= size1)
5969    {
5970      d = string1 + pos;
5971      dend = end_match_1;
5972    }
5973  else
5974    {
5975      d = string2 + pos - size1;
5976      dend = end_match_2;
5977    }
5978#endif /* WCHAR */
5979
5980  DEBUG_PRINT1 ("The compiled pattern is:\n");
5981  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5982  DEBUG_PRINT1 ("The string to match is: `");
5983  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5984  DEBUG_PRINT1 ("'\n");
5985
5986  /* This loops over pattern commands.  It exits by returning from the
5987     function if the match is complete, or it drops through if the match
5988     fails at this starting point in the input data.  */
5989  for (;;)
5990    {
5991#ifdef _LIBC
5992      DEBUG_PRINT2 ("\n%p: ", p);
5993#else
5994      DEBUG_PRINT2 ("\n0x%x: ", p);
5995#endif
5996
5997#ifdef __GNUC__
5998      NEXT;
5999#else
6000      if (p == pend)
6001#endif
6002	{
6003#ifdef __GNUC__
6004	end_of_pattern:
6005#endif
6006	  /* End of pattern means we might have succeeded.  */
6007	  DEBUG_PRINT1 ("end of pattern ... ");
6008
6009	  /* If we haven't matched the entire string, and we want the
6010	     longest match, try backtracking.  */
6011	  if (d != end_match_2)
6012	    {
6013	      /* 1 if this match is the best seen so far.  */
6014	      boolean best_match_p;
6015	      {
6016		/* 1 if this match ends in the same string (string1 or string2)
6017		   as the best previous match.  */
6018		boolean same_str_p = (FIRST_STRING_P (match_end)
6019				      == MATCHING_IN_FIRST_STRING);
6020
6021		/* AIX compiler got confused when this was combined
6022		   with the previous declaration.  */
6023		if (same_str_p)
6024		  best_match_p = d > match_end;
6025		else
6026		  best_match_p = !MATCHING_IN_FIRST_STRING;
6027	      }
6028
6029	      DEBUG_PRINT1 ("backtracking.\n");
6030
6031	      if (!FAIL_STACK_EMPTY ())
6032		{ /* More failure points to try.  */
6033
6034		  /* If exceeds best match so far, save it.  */
6035		  if (!best_regs_set || best_match_p)
6036		    {
6037		      best_regs_set = true;
6038		      match_end = d;
6039
6040		      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6041
6042		      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6043			{
6044			  best_regstart[mcnt] = regstart[mcnt];
6045			  best_regend[mcnt] = regend[mcnt];
6046			}
6047		    }
6048		  goto fail;
6049		}
6050
6051	      /* If no failure points, don't restore garbage.  And if
6052		 last match is real best match, don't restore second
6053		 best one. */
6054	      else if (best_regs_set && !best_match_p)
6055		{
6056		restore_best_regs:
6057		  /* Restore best match.  It may happen that `dend ==
6058		     end_match_1' while the restored d is in string2.
6059		     For example, the pattern `x.*y.*z' against the
6060		     strings `x-' and `y-z-', if the two strings are
6061		     not consecutive in memory.  */
6062		  DEBUG_PRINT1 ("Restoring best registers.\n");
6063
6064		  d = match_end;
6065		  dend = ((d >= string1 && d <= end1)
6066			  ? end_match_1 : end_match_2);
6067
6068		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6069		    {
6070		      regstart[mcnt] = best_regstart[mcnt];
6071		      regend[mcnt] = best_regend[mcnt];
6072		    }
6073		}
6074	    } /* d != end_match_2 */
6075
6076	succeed_label:
6077	  DEBUG_PRINT1 ("Accepting match.\n");
6078	  /* If caller wants register contents data back, do it.  */
6079	  if (regs && !bufp->no_sub)
6080	    {
6081	      /* Have the register data arrays been allocated?  */
6082	      if (bufp->regs_allocated == REGS_UNALLOCATED)
6083		{ /* No.  So allocate them with malloc.  We need one
6084		     extra element beyond `num_regs' for the `-1' marker
6085		     GNU code uses.  */
6086		  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6087		  regs->start = TALLOC (regs->num_regs, regoff_t);
6088		  regs->end = TALLOC (regs->num_regs, regoff_t);
6089		  if (regs->start == NULL || regs->end == NULL)
6090		    {
6091		      FREE_VARIABLES ();
6092		      return -2;
6093		    }
6094		  bufp->regs_allocated = REGS_REALLOCATE;
6095		}
6096	      else if (bufp->regs_allocated == REGS_REALLOCATE)
6097		{ /* Yes.  If we need more elements than were already
6098		     allocated, reallocate them.  If we need fewer, just
6099		     leave it alone.  */
6100		  if (regs->num_regs < num_regs + 1)
6101		    {
6102		      regs->num_regs = num_regs + 1;
6103		      RETALLOC (regs->start, regs->num_regs, regoff_t);
6104		      RETALLOC (regs->end, regs->num_regs, regoff_t);
6105		      if (regs->start == NULL || regs->end == NULL)
6106			{
6107			  FREE_VARIABLES ();
6108			  return -2;
6109			}
6110		    }
6111		}
6112	      else
6113		{
6114		  /* These braces fend off a "empty body in an else-statement"
6115		     warning under GCC when assert expands to nothing.  */
6116		  assert (bufp->regs_allocated == REGS_FIXED);
6117		}
6118
6119	      /* Convert the pointer data in `regstart' and `regend' to
6120		 indices.  Register zero has to be set differently,
6121		 since we haven't kept track of any info for it.  */
6122	      if (regs->num_regs > 0)
6123		{
6124		  regs->start[0] = pos;
6125#ifdef WCHAR
6126		  if (MATCHING_IN_FIRST_STRING)
6127		    regs->end[0] = (mbs_offset1 != NULL ?
6128				    mbs_offset1[d-string1] : 0);
6129		  else
6130		    regs->end[0] = csize1 + (mbs_offset2 != NULL
6131					     ? mbs_offset2[d-string2] : 0);
6132#else
6133		  regs->end[0] = (MATCHING_IN_FIRST_STRING
6134				  ? ((regoff_t) (d - string1))
6135				  : ((regoff_t) (d - string2 + size1)));
6136#endif /* WCHAR */
6137		}
6138
6139	      /* Go through the first `min (num_regs, regs->num_regs)'
6140		 registers, since that is all we initialized.  */
6141	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6142		   mcnt++)
6143		{
6144		  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6145		    regs->start[mcnt] = regs->end[mcnt] = -1;
6146		  else
6147		    {
6148		      regs->start[mcnt]
6149			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6150		      regs->end[mcnt]
6151			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6152		    }
6153		}
6154
6155	      /* If the regs structure we return has more elements than
6156		 were in the pattern, set the extra elements to -1.  If
6157		 we (re)allocated the registers, this is the case,
6158		 because we always allocate enough to have at least one
6159		 -1 at the end.  */
6160	      for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6161		regs->start[mcnt] = regs->end[mcnt] = -1;
6162	    } /* regs && !bufp->no_sub */
6163
6164	  DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6165			nfailure_points_pushed, nfailure_points_popped,
6166			nfailure_points_pushed - nfailure_points_popped);
6167	  DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6168
6169#ifdef WCHAR
6170	  if (MATCHING_IN_FIRST_STRING)
6171	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6172	  else
6173	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6174	      csize1;
6175	  mcnt -= pos;
6176#else
6177	  mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6178			    ? string1 : string2 - size1);
6179#endif /* WCHAR */
6180
6181	  DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6182
6183	  FREE_VARIABLES ();
6184	  return mcnt;
6185	}
6186
6187#ifndef __GNUC__
6188      /* Otherwise match next pattern command.  */
6189      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6190	{
6191#endif
6192        /* Ignore these.  Used to ignore the n of succeed_n's which
6193           currently have n == 0.  */
6194        CASE (no_op):
6195          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6196          NEXT;
6197
6198	CASE (succeed):
6199          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6200	  goto succeed_label;
6201
6202        /* Match the next n pattern characters exactly.  The following
6203           byte in the pattern defines n, and the n bytes after that
6204           are the characters to match.  */
6205	CASE (exactn):
6206#ifdef MBS_SUPPORT
6207	CASE (exactn_bin):
6208#endif
6209	  mcnt = *p++;
6210          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6211
6212          /* This is written out as an if-else so we don't waste time
6213             testing `translate' inside the loop.  */
6214          if (translate)
6215	    {
6216	      do
6217		{
6218		  PREFETCH ();
6219#ifdef WCHAR
6220		  if (*d <= 0xff)
6221		    {
6222		      if ((UCHAR_T) translate[(unsigned char) *d++]
6223			  != (UCHAR_T) *p++)
6224			goto fail;
6225		    }
6226		  else
6227		    {
6228		      if (*d++ != (CHAR_T) *p++)
6229			goto fail;
6230		    }
6231#else
6232		  if ((UCHAR_T) translate[(unsigned char) *d++]
6233		      != (UCHAR_T) *p++)
6234                    goto fail;
6235#endif /* WCHAR */
6236		}
6237	      while (--mcnt);
6238	    }
6239	  else
6240	    {
6241	      do
6242		{
6243		  PREFETCH ();
6244		  if (*d++ != (CHAR_T) *p++) goto fail;
6245		}
6246	      while (--mcnt);
6247	    }
6248	  SET_REGS_MATCHED ();
6249          NEXT;
6250
6251
6252        /* Match any character except possibly a newline or a null.  */
6253	CASE (anychar):
6254          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6255
6256          PREFETCH ();
6257
6258          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6259              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6260	    goto fail;
6261
6262          SET_REGS_MATCHED ();
6263          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6264          d++;
6265	  NEXT;
6266
6267
6268	CASE (charset):
6269	CASE (charset_not):
6270	  {
6271	    register UCHAR_T c;
6272#ifdef WCHAR
6273	    unsigned int i, char_class_length, coll_symbol_length,
6274              equiv_class_length, ranges_length, chars_length, length;
6275	    CHAR_T *workp, *workp2, *charset_top;
6276#define WORK_BUFFER_SIZE 128
6277            CHAR_T str_buf[WORK_BUFFER_SIZE];
6278# ifdef _LIBC
6279	    uint32_t nrules;
6280# endif /* _LIBC */
6281#endif /* WCHAR */
6282	    boolean invert = (re_opcode_t) *(p - 1) == charset_not;
6283
6284            DEBUG_PRINT2 ("EXECUTING charset%s.\n", invert ? "_not" : "");
6285	    PREFETCH ();
6286	    c = TRANSLATE (*d); /* The character to match.  */
6287#ifdef WCHAR
6288# ifdef _LIBC
6289	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6290# endif /* _LIBC */
6291	    charset_top = p - 1;
6292	    char_class_length = *p++;
6293	    coll_symbol_length = *p++;
6294	    equiv_class_length = *p++;
6295	    ranges_length = *p++;
6296	    chars_length = *p++;
6297	    /* p points charset[6], so the address of the next instruction
6298	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6299	       where l=length of char_classes, m=length of collating_symbol,
6300	       n=equivalence_class, o=length of char_range,
6301	       p'=length of character.  */
6302	    workp = p;
6303	    /* Update p to indicate the next instruction.  */
6304	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6305              2*ranges_length + chars_length;
6306
6307            /* match with char_class?  */
6308	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6309	      {
6310		wctype_t wctype;
6311		uintptr_t alignedp = ((uintptr_t)workp
6312				      + __alignof__(wctype_t) - 1)
6313		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6314		wctype = *((wctype_t*)alignedp);
6315		workp += CHAR_CLASS_SIZE;
6316		if (iswctype((wint_t)c, wctype))
6317		  goto char_set_matched;
6318	      }
6319
6320            /* match with collating_symbol?  */
6321# ifdef _LIBC
6322	    if (nrules != 0)
6323	      {
6324		const unsigned char *extra = (const unsigned char *)
6325		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6326
6327		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6328		     workp++)
6329		  {
6330		    int32_t *wextra;
6331		    wextra = (int32_t*)(extra + *workp++);
6332		    for (i = 0; i < *wextra; ++i)
6333		      if (TRANSLATE(d[i]) != wextra[1 + i])
6334			break;
6335
6336		    if (i == *wextra)
6337		      {
6338			/* Update d, however d will be incremented at
6339			   char_set_matched:, we decrement d here.  */
6340			d += i - 1;
6341			goto char_set_matched;
6342		      }
6343		  }
6344	      }
6345	    else /* (nrules == 0) */
6346# endif
6347	      /* If we can't look up collation data, we use wcscoll
6348		 instead.  */
6349	      {
6350		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6351		  {
6352		    const CHAR_T *backup_d = d, *backup_dend = dend;
6353		    length = wcslen (workp);
6354
6355		    /* If wcscoll(the collating symbol, whole string) > 0,
6356		       any substring of the string never match with the
6357		       collating symbol.  */
6358		    if (wcscoll (workp, d) > 0)
6359		      {
6360			workp += length + 1;
6361			continue;
6362		      }
6363
6364		    /* First, we compare the collating symbol with
6365		       the first character of the string.
6366		       If it don't match, we add the next character to
6367		       the compare buffer in turn.  */
6368		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6369		      {
6370			int match;
6371			if (d == dend)
6372			  {
6373			    if (dend == end_match_2)
6374			      break;
6375			    d = string2;
6376			    dend = end_match_2;
6377			  }
6378
6379			/* add next character to the compare buffer.  */
6380			str_buf[i] = TRANSLATE(*d);
6381			str_buf[i+1] = '\0';
6382
6383			match = wcscoll (workp, str_buf);
6384			if (match == 0)
6385			  goto char_set_matched;
6386
6387			if (match < 0)
6388			  /* (str_buf > workp) indicate (str_buf + X > workp),
6389			     because for all X (str_buf + X > str_buf).
6390			     So we don't need continue this loop.  */
6391			  break;
6392
6393			/* Otherwise(str_buf < workp),
6394			   (str_buf+next_character) may equals (workp).
6395			   So we continue this loop.  */
6396		      }
6397		    /* not matched */
6398		    d = backup_d;
6399		    dend = backup_dend;
6400		    workp += length + 1;
6401		  }
6402              }
6403            /* match with equivalence_class?  */
6404# ifdef _LIBC
6405	    if (nrules != 0)
6406	      {
6407                const CHAR_T *backup_d = d, *backup_dend = dend;
6408		/* Try to match the equivalence class against
6409		   those known to the collate implementation.  */
6410		const int32_t *table;
6411		const int32_t *weights;
6412		const int32_t *extra;
6413		const int32_t *indirect;
6414		int32_t idx, idx2;
6415		wint_t *cp;
6416		size_t len;
6417
6418		/* This #include defines a local function!  */
6419#  include <locale/weightwc.h>
6420
6421		table = (const int32_t *)
6422		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6423		weights = (const wint_t *)
6424		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6425		extra = (const wint_t *)
6426		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6427		indirect = (const int32_t *)
6428		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6429
6430		/* Write 1 collating element to str_buf, and
6431		   get its index.  */
6432		idx2 = 0;
6433
6434		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6435		  {
6436		    cp = (wint_t*)str_buf;
6437		    if (d == dend)
6438		      {
6439			if (dend == end_match_2)
6440			  break;
6441			d = string2;
6442			dend = end_match_2;
6443		      }
6444		    str_buf[i] = TRANSLATE(*(d+i));
6445		    str_buf[i+1] = '\0'; /* sentinel */
6446		    idx2 = findidx ((const wint_t**)&cp);
6447		  }
6448
6449		/* Update d, however d will be incremented at
6450		   char_set_matched:, we decrement d here.  */
6451		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6452		if (d >= dend)
6453		  {
6454		    if (dend == end_match_2)
6455			d = dend;
6456		    else
6457		      {
6458			d = string2;
6459			dend = end_match_2;
6460		      }
6461		  }
6462
6463		len = weights[idx2];
6464
6465		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6466		     workp++)
6467		  {
6468		    idx = (int32_t)*workp;
6469		    /* We already checked idx != 0 in regex_compile. */
6470
6471		    if (idx2 != 0 && len == weights[idx])
6472		      {
6473			int cnt = 0;
6474			while (cnt < len && (weights[idx + 1 + cnt]
6475					     == weights[idx2 + 1 + cnt]))
6476			  ++cnt;
6477
6478			if (cnt == len)
6479			  goto char_set_matched;
6480		      }
6481		  }
6482		/* not matched */
6483                d = backup_d;
6484                dend = backup_dend;
6485	      }
6486	    else /* (nrules == 0) */
6487# endif
6488	      /* If we can't look up collation data, we use wcscoll
6489		 instead.  */
6490	      {
6491		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6492		  {
6493		    const CHAR_T *backup_d = d, *backup_dend = dend;
6494		    length = wcslen (workp);
6495
6496		    /* If wcscoll(the collating symbol, whole string) > 0,
6497		       any substring of the string never match with the
6498		       collating symbol.  */
6499		    if (wcscoll (workp, d) > 0)
6500		      {
6501			workp += length + 1;
6502			break;
6503		      }
6504
6505		    /* First, we compare the equivalence class with
6506		       the first character of the string.
6507		       If it don't match, we add the next character to
6508		       the compare buffer in turn.  */
6509		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6510		      {
6511			int match;
6512			if (d == dend)
6513			  {
6514			    if (dend == end_match_2)
6515			      break;
6516			    d = string2;
6517			    dend = end_match_2;
6518			  }
6519
6520			/* add next character to the compare buffer.  */
6521			str_buf[i] = TRANSLATE(*d);
6522			str_buf[i+1] = '\0';
6523
6524			match = wcscoll (workp, str_buf);
6525
6526			if (match == 0)
6527			  goto char_set_matched;
6528
6529			if (match < 0)
6530			/* (str_buf > workp) indicate (str_buf + X > workp),
6531			   because for all X (str_buf + X > str_buf).
6532			   So we don't need continue this loop.  */
6533			  break;
6534
6535			/* Otherwise(str_buf < workp),
6536			   (str_buf+next_character) may equals (workp).
6537			   So we continue this loop.  */
6538		      }
6539		    /* not matched */
6540		    d = backup_d;
6541		    dend = backup_dend;
6542		    workp += length + 1;
6543		  }
6544	      }
6545
6546            /* match with char_range?  */
6547# ifdef _LIBC
6548	    if (nrules != 0)
6549	      {
6550		uint32_t collseqval;
6551		const char *collseq = (const char *)
6552		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6553
6554		collseqval = collseq_table_lookup (collseq, c);
6555
6556		for (; workp < p - chars_length ;)
6557		  {
6558		    uint32_t start_val, end_val;
6559
6560		    /* We already compute the collation sequence value
6561		       of the characters (or collating symbols).  */
6562		    start_val = (uint32_t) *workp++; /* range_start */
6563		    end_val = (uint32_t) *workp++; /* range_end */
6564
6565		    if (start_val <= collseqval && collseqval <= end_val)
6566		      goto char_set_matched;
6567		  }
6568	      }
6569	    else
6570# endif
6571	      {
6572		/* We set range_start_char at str_buf[0], range_end_char
6573		   at str_buf[4], and compared char at str_buf[2].  */
6574		str_buf[1] = 0;
6575		str_buf[2] = c;
6576		str_buf[3] = 0;
6577		str_buf[5] = 0;
6578		for (; workp < p - chars_length ;)
6579		  {
6580		    wchar_t *range_start_char, *range_end_char;
6581
6582		    /* match if (range_start_char <= c <= range_end_char).  */
6583
6584		    /* If range_start(or end) < 0, we assume -range_start(end)
6585		       is the offset of the collating symbol which is specified
6586		       as the character of the range start(end).  */
6587
6588		    /* range_start */
6589		    if (*workp < 0)
6590		      range_start_char = charset_top - (*workp++);
6591		    else
6592		      {
6593			str_buf[0] = *workp++;
6594			range_start_char = str_buf;
6595		      }
6596
6597		    /* range_end */
6598		    if (*workp < 0)
6599		      range_end_char = charset_top - (*workp++);
6600		    else
6601		      {
6602			str_buf[4] = *workp++;
6603			range_end_char = str_buf + 4;
6604		      }
6605
6606		    if (wcscoll (range_start_char, str_buf+2) <= 0
6607			&& wcscoll (str_buf+2, range_end_char) <= 0)
6608		      goto char_set_matched;
6609		  }
6610	      }
6611
6612            /* match with char?  */
6613	    for (; workp < p ; workp++)
6614	      if (c == *workp)
6615		goto char_set_matched;
6616
6617	    invert = !invert;
6618
6619	  char_set_matched:
6620	    if (invert) goto fail;
6621#else
6622            /* Cast to `unsigned' instead of `unsigned char' in case the
6623               bit list is a full 32 bytes long.  */
6624	    if (c < (unsigned) (*p * BYTEWIDTH)
6625		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6626	      invert = !invert;
6627
6628	    p += 1 + *p;
6629
6630	    if (!invert) goto fail;
6631#undef WORK_BUFFER_SIZE
6632#endif /* WCHAR */
6633	    SET_REGS_MATCHED ();
6634            d++;
6635	    NEXT;
6636	  }
6637
6638
6639        /* The beginning of a group is represented by start_memory.
6640           The arguments are the register number in the next byte, and the
6641           number of groups inner to this one in the next.  The text
6642           matched within the group is recorded (in the internal
6643           registers data structure) under the register number.  */
6644        CASE (start_memory):
6645	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6646			(long int) *p, (long int) p[1]);
6647
6648          /* Find out if this group can match the empty string.  */
6649	  p1 = p;		/* To send to group_match_null_string_p.  */
6650
6651          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6652            REG_MATCH_NULL_STRING_P (reg_info[*p])
6653              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6654
6655          /* Save the position in the string where we were the last time
6656             we were at this open-group operator in case the group is
6657             operated upon by a repetition operator, e.g., with `(a*)*b'
6658             against `ab'; then we want to ignore where we are now in
6659             the string in case this attempt to match fails.  */
6660          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6661                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6662                             : regstart[*p];
6663	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6664			 POINTER_TO_OFFSET (old_regstart[*p]));
6665
6666          regstart[*p] = d;
6667	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6668
6669          IS_ACTIVE (reg_info[*p]) = 1;
6670          MATCHED_SOMETHING (reg_info[*p]) = 0;
6671
6672	  /* Clear this whenever we change the register activity status.  */
6673	  set_regs_matched_done = 0;
6674
6675          /* This is the new highest active register.  */
6676          highest_active_reg = *p;
6677
6678          /* If nothing was active before, this is the new lowest active
6679             register.  */
6680          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6681            lowest_active_reg = *p;
6682
6683          /* Move past the register number and inner group count.  */
6684          p += 2;
6685	  just_past_start_mem = p;
6686
6687          NEXT;
6688
6689
6690        /* The stop_memory opcode represents the end of a group.  Its
6691           arguments are the same as start_memory's: the register
6692           number, and the number of inner groups.  */
6693	CASE (stop_memory):
6694	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6695			(long int) *p, (long int) p[1]);
6696
6697          /* We need to save the string position the last time we were at
6698             this close-group operator in case the group is operated
6699             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6700             against `aba'; then we want to ignore where we are now in
6701             the string in case this attempt to match fails.  */
6702          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6703                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6704			   : regend[*p];
6705	  DEBUG_PRINT2 ("      old_regend: %d\n",
6706			 POINTER_TO_OFFSET (old_regend[*p]));
6707
6708          regend[*p] = d;
6709	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6710
6711          /* This register isn't active anymore.  */
6712          IS_ACTIVE (reg_info[*p]) = 0;
6713
6714	  /* Clear this whenever we change the register activity status.  */
6715	  set_regs_matched_done = 0;
6716
6717          /* If this was the only register active, nothing is active
6718             anymore.  */
6719          if (lowest_active_reg == highest_active_reg)
6720            {
6721              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6722              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6723            }
6724          else
6725            { /* We must scan for the new highest active register, since
6726                 it isn't necessarily one less than now: consider
6727                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6728                 new highest active register is 1.  */
6729              UCHAR_T r = *p - 1;
6730              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6731                r--;
6732
6733              /* If we end up at register zero, that means that we saved
6734                 the registers as the result of an `on_failure_jump', not
6735                 a `start_memory', and we jumped to past the innermost
6736                 `stop_memory'.  For example, in ((.)*) we save
6737                 registers 1 and 2 as a result of the *, but when we pop
6738                 back to the second ), we are at the stop_memory 1.
6739                 Thus, nothing is active.  */
6740	      if (r == 0)
6741                {
6742                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6743                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6744                }
6745              else
6746                highest_active_reg = r;
6747            }
6748
6749          /* If just failed to match something this time around with a
6750             group that's operated on by a repetition operator, try to
6751             force exit from the ``loop'', and restore the register
6752             information for this group that we had before trying this
6753             last match.  */
6754          if ((!MATCHED_SOMETHING (reg_info[*p])
6755               || just_past_start_mem == p - 1)
6756	      && (p + 2) < pend)
6757            {
6758              boolean is_a_jump_n = false;
6759
6760              p1 = p + 2;
6761              mcnt = 0;
6762              switch ((re_opcode_t) *p1++)
6763                {
6764                  case jump_n:
6765		    is_a_jump_n = true;
6766                  case pop_failure_jump:
6767		  case maybe_pop_jump:
6768		  case jump:
6769		  case dummy_failure_jump:
6770                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6771		    if (is_a_jump_n)
6772		      p1 += OFFSET_ADDRESS_SIZE;
6773                    break;
6774
6775                  default:
6776                    /* do nothing */ ;
6777                }
6778	      p1 += mcnt;
6779
6780              /* If the next operation is a jump backwards in the pattern
6781	         to an on_failure_jump right before the start_memory
6782                 corresponding to this stop_memory, exit from the loop
6783                 by forcing a failure after pushing on the stack the
6784                 on_failure_jump's jump in the pattern, and d.  */
6785              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6786                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6787		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6788		{
6789                  /* If this group ever matched anything, then restore
6790                     what its registers were before trying this last
6791                     failed match, e.g., with `(a*)*b' against `ab' for
6792                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6793                     against `aba' for regend[3].
6794
6795                     Also restore the registers for inner groups for,
6796                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6797                     otherwise get trashed).  */
6798
6799                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6800		    {
6801		      unsigned r;
6802
6803                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6804
6805		      /* Restore this and inner groups' (if any) registers.  */
6806                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6807			   r++)
6808                        {
6809                          regstart[r] = old_regstart[r];
6810
6811                          /* xx why this test?  */
6812                          if (old_regend[r] >= regstart[r])
6813                            regend[r] = old_regend[r];
6814                        }
6815                    }
6816		  p1++;
6817                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6818                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6819
6820                  goto fail;
6821                }
6822            }
6823
6824          /* Move past the register number and the inner group count.  */
6825          p += 2;
6826          NEXT;
6827
6828
6829	/* \<digit> has been turned into a `duplicate' command which is
6830           followed by the numeric value of <digit> as the register number.  */
6831        CASE (duplicate):
6832	  {
6833	    register const CHAR_T *d2, *dend2;
6834	    int regno = *p++;   /* Get which register to match against.  */
6835	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6836
6837	    /* Can't back reference a group which we've never matched.  */
6838            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6839              goto fail;
6840
6841            /* Where in input to try to start matching.  */
6842            d2 = regstart[regno];
6843
6844            /* Where to stop matching; if both the place to start and
6845               the place to stop matching are in the same string, then
6846               set to the place to stop, otherwise, for now have to use
6847               the end of the first string.  */
6848
6849            dend2 = ((FIRST_STRING_P (regstart[regno])
6850		      == FIRST_STRING_P (regend[regno]))
6851		     ? regend[regno] : end_match_1);
6852	    for (;;)
6853	      {
6854		/* If necessary, advance to next segment in register
6855                   contents.  */
6856		while (d2 == dend2)
6857		  {
6858		    if (dend2 == end_match_2) break;
6859		    if (dend2 == regend[regno]) break;
6860
6861                    /* End of string1 => advance to string2. */
6862                    d2 = string2;
6863                    dend2 = regend[regno];
6864		  }
6865		/* At end of register contents => success */
6866		if (d2 == dend2) break;
6867
6868		/* If necessary, advance to next segment in data.  */
6869		PREFETCH ();
6870
6871		/* How many characters left in this segment to match.  */
6872		mcnt = dend - d;
6873
6874		/* Want how many consecutive characters we can match in
6875                   one shot, so, if necessary, adjust the count.  */
6876                if (mcnt > dend2 - d2)
6877		  mcnt = dend2 - d2;
6878
6879		/* Compare that many; failure if mismatch, else move
6880                   past them.  */
6881		if (translate
6882                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6883                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6884		  goto fail;
6885		d += mcnt, d2 += mcnt;
6886
6887		/* Do this because we've match some characters.  */
6888		SET_REGS_MATCHED ();
6889	      }
6890	  }
6891	  NEXT;
6892
6893
6894        /* begline matches the empty string at the beginning of the string
6895           (unless `not_bol' is set in `bufp'), and, if
6896           `newline_anchor' is set, after newlines.  */
6897	CASE (begline):
6898          DEBUG_PRINT1 ("EXECUTING begline.\n");
6899
6900          if (AT_STRINGS_BEG (d))
6901            {
6902              if (!bufp->not_bol)
6903		{
6904		  NEXT;
6905		}
6906            }
6907          else if (d[-1] == '\n' && bufp->newline_anchor)
6908            {
6909              NEXT;
6910            }
6911          /* In all other cases, we fail.  */
6912          goto fail;
6913
6914
6915        /* endline is the dual of begline.  */
6916	CASE (endline):
6917          DEBUG_PRINT1 ("EXECUTING endline.\n");
6918
6919          if (AT_STRINGS_END (d))
6920            {
6921              if (!bufp->not_eol)
6922		{
6923		  NEXT;
6924		}
6925            }
6926
6927          /* We have to ``prefetch'' the next character.  */
6928          else if ((d == end1 ? *string2 : *d) == '\n'
6929                   && bufp->newline_anchor)
6930            {
6931              NEXT;
6932            }
6933          goto fail;
6934
6935
6936	/* Match at the very beginning of the data.  */
6937        CASE (begbuf):
6938          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6939          if (AT_STRINGS_BEG (d))
6940	    {
6941	      NEXT;
6942	    }
6943          goto fail;
6944
6945
6946	/* Match at the very end of the data.  */
6947        CASE (endbuf):
6948          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6949	  if (AT_STRINGS_END (d))
6950	    {
6951	      NEXT;
6952	    }
6953          goto fail;
6954
6955
6956        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6957           pushes NULL as the value for the string on the stack.  Then
6958           `pop_failure_point' will keep the current value for the
6959           string, instead of restoring it.  To see why, consider
6960           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6961           then the . fails against the \n.  But the next thing we want
6962           to do is match the \n against the \n; if we restored the
6963           string value, we would be back at the foo.
6964
6965           Because this is used only in specific cases, we don't need to
6966           check all the things that `on_failure_jump' does, to make
6967           sure the right things get saved on the stack.  Hence we don't
6968           share its code.  The only reason to push anything on the
6969           stack at all is that otherwise we would have to change
6970           `anychar's code to do something besides goto fail in this
6971           case; that seems worse than this.  */
6972        CASE (on_failure_keep_string_jump):
6973          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6974
6975          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6976#ifdef _LIBC
6977          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6978#else
6979          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6980#endif
6981
6982          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6983          NEXT;
6984
6985
6986	/* Uses of on_failure_jump:
6987
6988           Each alternative starts with an on_failure_jump that points
6989           to the beginning of the next alternative.  Each alternative
6990           except the last ends with a jump that in effect jumps past
6991           the rest of the alternatives.  (They really jump to the
6992           ending jump of the following alternative, because tensioning
6993           these jumps is a hassle.)
6994
6995           Repeats start with an on_failure_jump that points past both
6996           the repetition text and either the following jump or
6997           pop_failure_jump back to this on_failure_jump.  */
6998	CASE (on_failure_jump):
6999        on_failure:
7000          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7001
7002          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7003#ifdef _LIBC
7004          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7005#else
7006          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7007#endif
7008
7009          /* If this on_failure_jump comes right before a group (i.e.,
7010             the original * applied to a group), save the information
7011             for that group and all inner ones, so that if we fail back
7012             to this point, the group's information will be correct.
7013             For example, in \(a*\)*\1, we need the preceding group,
7014             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
7015
7016          /* We can't use `p' to check ahead because we push
7017             a failure point to `p + mcnt' after we do this.  */
7018          p1 = p;
7019
7020          /* We need to skip no_op's before we look for the
7021             start_memory in case this on_failure_jump is happening as
7022             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7023             against aba.  */
7024          while (p1 < pend && (re_opcode_t) *p1 == no_op)
7025            p1++;
7026
7027          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7028            {
7029              /* We have a new highest active register now.  This will
7030                 get reset at the start_memory we are about to get to,
7031                 but we will have saved all the registers relevant to
7032                 this repetition op, as described above.  */
7033              highest_active_reg = *(p1 + 1) + *(p1 + 2);
7034              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7035                lowest_active_reg = *(p1 + 1);
7036            }
7037
7038          DEBUG_PRINT1 (":\n");
7039          PUSH_FAILURE_POINT (p + mcnt, d, -2);
7040          NEXT;
7041
7042
7043        /* A smart repeat ends with `maybe_pop_jump'.
7044	   We change it to either `pop_failure_jump' or `jump'.  */
7045        CASE (maybe_pop_jump):
7046          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7047          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7048          {
7049	    register UCHAR_T *p2 = p;
7050
7051            /* Compare the beginning of the repeat with what in the
7052               pattern follows its end. If we can establish that there
7053               is nothing that they would both match, i.e., that we
7054               would have to backtrack because of (as in, e.g., `a*a')
7055               then we can change to pop_failure_jump, because we'll
7056               never have to backtrack.
7057
7058               This is not true in the case of alternatives: in
7059               `(a|ab)*' we do need to backtrack to the `ab' alternative
7060               (e.g., if the string was `ab').  But instead of trying to
7061               detect that here, the alternative has put on a dummy
7062               failure point which is what we will end up popping.  */
7063
7064	    /* Skip over open/close-group commands.
7065	       If what follows this loop is a ...+ construct,
7066	       look at what begins its body, since we will have to
7067	       match at least one of that.  */
7068	    while (1)
7069	      {
7070		if (p2 + 2 < pend
7071		    && ((re_opcode_t) *p2 == stop_memory
7072			|| (re_opcode_t) *p2 == start_memory))
7073		  p2 += 3;
7074		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7075			 && (re_opcode_t) *p2 == dummy_failure_jump)
7076		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7077		else
7078		  break;
7079	      }
7080
7081	    p1 = p + mcnt;
7082	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7083	       to the `maybe_finalize_jump' of this case.  Examine what
7084	       follows.  */
7085
7086            /* If we're at the end of the pattern, we can change.  */
7087            if (p2 == pend)
7088	      {
7089		/* Consider what happens when matching ":\(.*\)"
7090		   against ":/".  I don't really understand this code
7091		   yet.  */
7092  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7093		  pop_failure_jump;
7094                DEBUG_PRINT1
7095                  ("  End of pattern: change to `pop_failure_jump'.\n");
7096              }
7097
7098            else if ((re_opcode_t) *p2 == exactn
7099#ifdef MBS_SUPPORT
7100		     || (re_opcode_t) *p2 == exactn_bin
7101#endif
7102		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7103	      {
7104		register UCHAR_T c
7105                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7106
7107                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7108#ifdef MBS_SUPPORT
7109		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7110#endif
7111		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7112                  {
7113  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7114		      pop_failure_jump;
7115#ifdef WCHAR
7116		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7117				    (wint_t) c,
7118				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7119#else
7120		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7121				    (char) c,
7122				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7123#endif
7124                  }
7125
7126#ifndef WCHAR
7127		else if ((re_opcode_t) p1[3] == charset
7128			 || (re_opcode_t) p1[3] == charset_not)
7129		  {
7130		    int invert = (re_opcode_t) p1[3] == charset_not;
7131
7132		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7133			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7134		      invert = !invert;
7135
7136                    /* `not' is equal to 1 if c would match, which means
7137                        that we can't change to pop_failure_jump.  */
7138		    if (!invert)
7139                      {
7140  		        p[-3] = (unsigned char) pop_failure_jump;
7141                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7142                      }
7143		  }
7144#endif /* not WCHAR */
7145	      }
7146#ifndef WCHAR
7147            else if ((re_opcode_t) *p2 == charset)
7148	      {
7149		/* We win if the first character of the loop is not part
7150                   of the charset.  */
7151                if ((re_opcode_t) p1[3] == exactn
7152 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7153 			  && (p2[2 + p1[5] / BYTEWIDTH]
7154 			      & (1 << (p1[5] % BYTEWIDTH)))))
7155		  {
7156		    p[-3] = (unsigned char) pop_failure_jump;
7157		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7158                  }
7159
7160		else if ((re_opcode_t) p1[3] == charset_not)
7161		  {
7162		    int idx;
7163		    /* We win if the charset_not inside the loop
7164		       lists every character listed in the charset after.  */
7165		    for (idx = 0; idx < (int) p2[1]; idx++)
7166		      if (! (p2[2 + idx] == 0
7167			     || (idx < (int) p1[4]
7168				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7169			break;
7170
7171		    if (idx == p2[1])
7172                      {
7173  		        p[-3] = (unsigned char) pop_failure_jump;
7174                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7175                      }
7176		  }
7177		else if ((re_opcode_t) p1[3] == charset)
7178		  {
7179		    int idx;
7180		    /* We win if the charset inside the loop
7181		       has no overlap with the one after the loop.  */
7182		    for (idx = 0;
7183			 idx < (int) p2[1] && idx < (int) p1[4];
7184			 idx++)
7185		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7186			break;
7187
7188		    if (idx == p2[1] || idx == p1[4])
7189                      {
7190  		        p[-3] = (unsigned char) pop_failure_jump;
7191                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7192                      }
7193		  }
7194	      }
7195#endif /* not WCHAR */
7196	  }
7197	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7198	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7199	    {
7200	      p[-1] = (UCHAR_T) jump;
7201              DEBUG_PRINT1 ("  Match => jump.\n");
7202	      goto unconditional_jump;
7203	    }
7204        /* Note fall through.  */
7205
7206
7207	/* The end of a simple repeat has a pop_failure_jump back to
7208           its matching on_failure_jump, where the latter will push a
7209           failure point.  The pop_failure_jump takes off failure
7210           points put on by this pop_failure_jump's matching
7211           on_failure_jump; we got through the pattern to here from the
7212           matching on_failure_jump, so didn't fail.  */
7213        CASE (pop_failure_jump):
7214          {
7215            /* We need to pass separate storage for the lowest and
7216               highest registers, even though we don't care about the
7217               actual values.  Otherwise, we will restore only one
7218               register from the stack, since lowest will == highest in
7219               `pop_failure_point'.  */
7220            active_reg_t dummy_low_reg, dummy_high_reg;
7221            UCHAR_T *pdummy = NULL;
7222            const CHAR_T *sdummy = NULL;
7223
7224            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7225            POP_FAILURE_POINT (sdummy, pdummy,
7226                               dummy_low_reg, dummy_high_reg,
7227                               reg_dummy, reg_dummy, reg_info_dummy);
7228          }
7229	  /* Note fall through.  */
7230
7231	unconditional_jump:
7232#ifdef _LIBC
7233	  DEBUG_PRINT2 ("\n%p: ", p);
7234#else
7235	  DEBUG_PRINT2 ("\n0x%x: ", p);
7236#endif
7237          /* Note fall through.  */
7238
7239        /* Unconditionally jump (without popping any failure points).  */
7240        CASE (jump):
7241	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7242          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7243	  p += mcnt;				/* Do the jump.  */
7244#ifdef _LIBC
7245          DEBUG_PRINT2 ("(to %p).\n", p);
7246#else
7247          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7248#endif
7249	  NEXT;
7250
7251
7252        /* We need this opcode so we can detect where alternatives end
7253           in `group_match_null_string_p' et al.  */
7254        CASE (jump_past_alt):
7255          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7256          goto unconditional_jump;
7257
7258
7259        /* Normally, the on_failure_jump pushes a failure point, which
7260           then gets popped at pop_failure_jump.  We will end up at
7261           pop_failure_jump, also, and with a pattern of, say, `a+', we
7262           are skipping over the on_failure_jump, so we have to push
7263           something meaningless for pop_failure_jump to pop.  */
7264        CASE (dummy_failure_jump):
7265          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7266          /* It doesn't matter what we push for the string here.  What
7267             the code at `fail' tests is the value for the pattern.  */
7268          PUSH_FAILURE_POINT (NULL, NULL, -2);
7269          goto unconditional_jump;
7270
7271
7272        /* At the end of an alternative, we need to push a dummy failure
7273           point in case we are followed by a `pop_failure_jump', because
7274           we don't want the failure point for the alternative to be
7275           popped.  For example, matching `(a|ab)*' against `aab'
7276           requires that we match the `ab' alternative.  */
7277        CASE (push_dummy_failure):
7278          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7279          /* See comments just above at `dummy_failure_jump' about the
7280             two zeroes.  */
7281          PUSH_FAILURE_POINT (NULL, NULL, -2);
7282          NEXT;
7283
7284        /* Have to succeed matching what follows at least n times.
7285           After that, handle like `on_failure_jump'.  */
7286        CASE (succeed_n):
7287          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7288          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7289
7290          assert (mcnt >= 0);
7291          /* Originally, this is how many times we HAVE to succeed.  */
7292          if (mcnt > 0)
7293            {
7294               mcnt--;
7295	       p += OFFSET_ADDRESS_SIZE;
7296               STORE_NUMBER_AND_INCR (p, mcnt);
7297#ifdef _LIBC
7298               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7299			     , mcnt);
7300#else
7301               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7302			     , mcnt);
7303#endif
7304            }
7305	  else if (mcnt == 0)
7306            {
7307#ifdef _LIBC
7308              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7309			    p + OFFSET_ADDRESS_SIZE);
7310#else
7311              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7312			    p + OFFSET_ADDRESS_SIZE);
7313#endif /* _LIBC */
7314
7315#ifdef WCHAR
7316	      p[1] = (UCHAR_T) no_op;
7317#else
7318	      p[2] = (UCHAR_T) no_op;
7319              p[3] = (UCHAR_T) no_op;
7320#endif /* WCHAR */
7321              goto on_failure;
7322            }
7323          NEXT;
7324
7325        CASE (jump_n):
7326          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7327          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7328
7329          /* Originally, this is how many times we CAN jump.  */
7330          if (mcnt)
7331            {
7332               mcnt--;
7333               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7334
7335#ifdef _LIBC
7336               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7337			     mcnt);
7338#else
7339               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7340			     mcnt);
7341#endif /* _LIBC */
7342	       goto unconditional_jump;
7343            }
7344          /* If don't have to jump any more, skip over the rest of command.  */
7345	  else
7346	    p += 2 * OFFSET_ADDRESS_SIZE;
7347          NEXT;
7348
7349	CASE (set_number_at):
7350	  {
7351            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7352
7353            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7354            p1 = p + mcnt;
7355            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7356#ifdef _LIBC
7357            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7358#else
7359            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7360#endif
7361	    STORE_NUMBER (p1, mcnt);
7362            NEXT;
7363          }
7364
7365#if 0
7366	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7367	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7368	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7369	   macro and introducing temporary variables works around the bug.  */
7370
7371	CASE (wordbound):
7372	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7373	  if (AT_WORD_BOUNDARY (d))
7374	    {
7375	      NEXT;
7376	    }
7377	  goto fail;
7378
7379	CASE (notwordbound):
7380	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7381	  if (AT_WORD_BOUNDARY (d))
7382	    goto fail;
7383	  NEXT;
7384#else
7385	CASE (wordbound):
7386	{
7387	  boolean prevchar, thischar;
7388
7389	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7390	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7391	    {
7392	      NEXT;
7393	    }
7394
7395	  prevchar = WORDCHAR_P (d - 1);
7396	  thischar = WORDCHAR_P (d);
7397	  if (prevchar != thischar)
7398	    {
7399	      NEXT;
7400	    }
7401	  goto fail;
7402	}
7403
7404      CASE (notwordbound):
7405	{
7406	  boolean prevchar, thischar;
7407
7408	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7409	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7410	    goto fail;
7411
7412	  prevchar = WORDCHAR_P (d - 1);
7413	  thischar = WORDCHAR_P (d);
7414	  if (prevchar != thischar)
7415	    goto fail;
7416	  NEXT;
7417	}
7418#endif
7419
7420	CASE (wordbeg):
7421          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7422	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7423	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7424	    {
7425	      NEXT;
7426	    }
7427          goto fail;
7428
7429	CASE (wordend):
7430          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7431	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7432              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7433	    {
7434	      NEXT;
7435	    }
7436          goto fail;
7437
7438#ifdef emacs
7439  	CASE (before_dot):
7440          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7441 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7442  	    goto fail;
7443  	  NEXT;
7444
7445  	CASE (at_dot):
7446          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7447 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7448  	    goto fail;
7449  	  NEXT;
7450
7451  	CASE (after_dot):
7452          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7453          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7454  	    goto fail;
7455  	  NEXT;
7456
7457	CASE (syntaxspec):
7458          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7459	  mcnt = *p++;
7460	  goto matchsyntax;
7461
7462        CASE (wordchar):
7463          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7464	  mcnt = (int) Sword;
7465        matchsyntax:
7466	  PREFETCH ();
7467	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7468	  d++;
7469	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7470	    goto fail;
7471          SET_REGS_MATCHED ();
7472	  NEXT;
7473
7474	CASE (notsyntaxspec):
7475          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7476	  mcnt = *p++;
7477	  goto matchnotsyntax;
7478
7479        CASE (notwordchar):
7480          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7481	  mcnt = (int) Sword;
7482        matchnotsyntax:
7483	  PREFETCH ();
7484	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7485	  d++;
7486	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7487	    goto fail;
7488	  SET_REGS_MATCHED ();
7489          NEXT;
7490
7491#else /* not emacs */
7492	CASE (wordchar):
7493          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7494	  PREFETCH ();
7495          if (!WORDCHAR_P (d))
7496            goto fail;
7497	  SET_REGS_MATCHED ();
7498          d++;
7499	  NEXT;
7500
7501	CASE (notwordchar):
7502          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7503	  PREFETCH ();
7504	  if (WORDCHAR_P (d))
7505            goto fail;
7506          SET_REGS_MATCHED ();
7507          d++;
7508	  NEXT;
7509#endif /* not emacs */
7510
7511#ifndef __GNUC__
7512        default:
7513          abort ();
7514	}
7515      continue;  /* Successfully executed one pattern command; keep going.  */
7516#endif
7517
7518
7519    /* We goto here if a matching operation fails. */
7520    fail:
7521      if (!FAIL_STACK_EMPTY ())
7522	{ /* A restart point is known.  Restore to that state.  */
7523          DEBUG_PRINT1 ("\nFAIL:\n");
7524          POP_FAILURE_POINT (d, p,
7525                             lowest_active_reg, highest_active_reg,
7526                             regstart, regend, reg_info);
7527
7528          /* If this failure point is a dummy, try the next one.  */
7529          if (!p)
7530	    goto fail;
7531
7532          /* If we failed to the end of the pattern, don't examine *p.  */
7533	  assert (p <= pend);
7534          if (p < pend)
7535            {
7536              boolean is_a_jump_n = false;
7537
7538              /* If failed to a backwards jump that's part of a repetition
7539                 loop, need to pop this failure point and use the next one.  */
7540              switch ((re_opcode_t) *p)
7541                {
7542                case jump_n:
7543                  is_a_jump_n = true;
7544                case maybe_pop_jump:
7545                case pop_failure_jump:
7546                case jump:
7547                  p1 = p + 1;
7548                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7549                  p1 += mcnt;
7550
7551                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7552                      || (!is_a_jump_n
7553                          && (re_opcode_t) *p1 == on_failure_jump))
7554                    goto fail;
7555                  break;
7556                default:
7557                  /* do nothing */ ;
7558                }
7559            }
7560
7561          if (d >= string1 && d <= end1)
7562	    dend = end_match_1;
7563        }
7564      else
7565        break;   /* Matching at this starting point really fails.  */
7566    } /* for (;;) */
7567
7568  if (best_regs_set)
7569    goto restore_best_regs;
7570
7571  FREE_VARIABLES ();
7572
7573  return -1;         			/* Failure to match.  */
7574} /* re_match_2 */
7575
7576/* Subroutine definitions for re_match_2.  */
7577
7578
7579/* We are passed P pointing to a register number after a start_memory.
7580
7581   Return true if the pattern up to the corresponding stop_memory can
7582   match the empty string, and false otherwise.
7583
7584   If we find the matching stop_memory, sets P to point to one past its number.
7585   Otherwise, sets P to an undefined byte less than or equal to END.
7586
7587   We don't handle duplicates properly (yet).  */
7588
7589static boolean
7590PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7591				   PREFIX(register_info_type) *reg_info)
7592{
7593  int mcnt;
7594  /* Point to after the args to the start_memory.  */
7595  UCHAR_T *p1 = *p + 2;
7596
7597  while (p1 < end)
7598    {
7599      /* Skip over opcodes that can match nothing, and return true or
7600	 false, as appropriate, when we get to one that can't, or to the
7601         matching stop_memory.  */
7602
7603      switch ((re_opcode_t) *p1)
7604        {
7605        /* Could be either a loop or a series of alternatives.  */
7606        case on_failure_jump:
7607          p1++;
7608          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7609
7610          /* If the next operation is not a jump backwards in the
7611	     pattern.  */
7612
7613	  if (mcnt >= 0)
7614	    {
7615              /* Go through the on_failure_jumps of the alternatives,
7616                 seeing if any of the alternatives cannot match nothing.
7617                 The last alternative starts with only a jump,
7618                 whereas the rest start with on_failure_jump and end
7619                 with a jump, e.g., here is the pattern for `a|b|c':
7620
7621                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7622                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7623                 /exactn/1/c
7624
7625                 So, we have to first go through the first (n-1)
7626                 alternatives and then deal with the last one separately.  */
7627
7628
7629              /* Deal with the first (n-1) alternatives, which start
7630                 with an on_failure_jump (see above) that jumps to right
7631                 past a jump_past_alt.  */
7632
7633              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7634		     jump_past_alt)
7635                {
7636                  /* `mcnt' holds how many bytes long the alternative
7637                     is, including the ending `jump_past_alt' and
7638                     its number.  */
7639
7640                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7641						(1 + OFFSET_ADDRESS_SIZE),
7642						reg_info))
7643                    return false;
7644
7645                  /* Move to right after this alternative, including the
7646		     jump_past_alt.  */
7647                  p1 += mcnt;
7648
7649                  /* Break if it's the beginning of an n-th alternative
7650                     that doesn't begin with an on_failure_jump.  */
7651                  if ((re_opcode_t) *p1 != on_failure_jump)
7652                    break;
7653
7654		  /* Still have to check that it's not an n-th
7655		     alternative that starts with an on_failure_jump.  */
7656		  p1++;
7657                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7658                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7659		      jump_past_alt)
7660                    {
7661		      /* Get to the beginning of the n-th alternative.  */
7662                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7663                      break;
7664                    }
7665                }
7666
7667              /* Deal with the last alternative: go back and get number
7668                 of the `jump_past_alt' just before it.  `mcnt' contains
7669                 the length of the alternative.  */
7670              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7671
7672              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7673                return false;
7674
7675              p1 += mcnt;	/* Get past the n-th alternative.  */
7676            } /* if mcnt > 0 */
7677          break;
7678
7679
7680        case stop_memory:
7681	  assert (p1[1] == **p);
7682          *p = p1 + 2;
7683          return true;
7684
7685
7686        default:
7687          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7688            return false;
7689        }
7690    } /* while p1 < end */
7691
7692  return false;
7693} /* group_match_null_string_p */
7694
7695
7696/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7697   It expects P to be the first byte of a single alternative and END one
7698   byte past the last. The alternative can contain groups.  */
7699
7700static boolean
7701PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7702				 PREFIX(register_info_type) *reg_info)
7703{
7704  int mcnt;
7705  UCHAR_T *p1 = p;
7706
7707  while (p1 < end)
7708    {
7709      /* Skip over opcodes that can match nothing, and break when we get
7710         to one that can't.  */
7711
7712      switch ((re_opcode_t) *p1)
7713        {
7714	/* It's a loop.  */
7715        case on_failure_jump:
7716          p1++;
7717          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7718          p1 += mcnt;
7719          break;
7720
7721	default:
7722          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7723            return false;
7724        }
7725    }  /* while p1 < end */
7726
7727  return true;
7728} /* alt_match_null_string_p */
7729
7730
7731/* Deals with the ops common to group_match_null_string_p and
7732   alt_match_null_string_p.
7733
7734   Sets P to one after the op and its arguments, if any.  */
7735
7736static boolean
7737PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7738				       PREFIX(register_info_type) *reg_info)
7739{
7740  int mcnt;
7741  boolean ret;
7742  int reg_no;
7743  UCHAR_T *p1 = *p;
7744
7745  switch ((re_opcode_t) *p1++)
7746    {
7747    case no_op:
7748    case begline:
7749    case endline:
7750    case begbuf:
7751    case endbuf:
7752    case wordbeg:
7753    case wordend:
7754    case wordbound:
7755    case notwordbound:
7756#ifdef emacs
7757    case before_dot:
7758    case at_dot:
7759    case after_dot:
7760#endif
7761      break;
7762
7763    case start_memory:
7764      reg_no = *p1;
7765      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7766      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7767
7768      /* Have to set this here in case we're checking a group which
7769         contains a group and a back reference to it.  */
7770
7771      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7772        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7773
7774      if (!ret)
7775        return false;
7776      break;
7777
7778    /* If this is an optimized succeed_n for zero times, make the jump.  */
7779    case jump:
7780      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7781      if (mcnt >= 0)
7782        p1 += mcnt;
7783      else
7784        return false;
7785      break;
7786
7787    case succeed_n:
7788      /* Get to the number of times to succeed.  */
7789      p1 += OFFSET_ADDRESS_SIZE;
7790      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7791
7792      if (mcnt == 0)
7793        {
7794          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7795          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7796          p1 += mcnt;
7797        }
7798      else
7799        return false;
7800      break;
7801
7802    case duplicate:
7803      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7804        return false;
7805      break;
7806
7807    case set_number_at:
7808      p1 += 2 * OFFSET_ADDRESS_SIZE;
7809
7810    default:
7811      /* All other opcodes mean we cannot match the empty string.  */
7812      return false;
7813  }
7814
7815  *p = p1;
7816  return true;
7817} /* common_op_match_null_string_p */
7818
7819
7820/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7821   bytes; nonzero otherwise.  */
7822
7823static int
7824PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
7825			register int len,
7826			RE_TRANSLATE_TYPE translate)
7827{
7828  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7829  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7830  while (len)
7831    {
7832#ifdef WCHAR
7833      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7834	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7835	return 1;
7836#else /* BYTE */
7837      if (translate[*p1++] != translate[*p2++]) return 1;
7838#endif /* WCHAR */
7839      len--;
7840    }
7841  return 0;
7842}
7843
7844
7845#else /* not INSIDE_RECURSION */
7846
7847/* Entry points for GNU code.  */
7848
7849/* re_compile_pattern is the GNU regular expression compiler: it
7850   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7851   Returns 0 if the pattern was valid, otherwise an error string.
7852
7853   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7854   are set in BUFP on entry.
7855
7856   We call regex_compile to do the actual compilation.  */
7857
7858const char *
7859re_compile_pattern (const char *pattern,
7860		    size_t length,
7861		    struct re_pattern_buffer *bufp)
7862{
7863  reg_errcode_t ret;
7864
7865  /* GNU code is written to assume at least RE_NREGS registers will be set
7866     (and at least one extra will be -1).  */
7867  bufp->regs_allocated = REGS_UNALLOCATED;
7868
7869  /* And GNU code determines whether or not to get register information
7870     by passing null for the REGS argument to re_match, etc., not by
7871     setting no_sub.  */
7872  bufp->no_sub = 0;
7873
7874  /* Match anchors at newline.  */
7875  bufp->newline_anchor = 1;
7876
7877# ifdef MBS_SUPPORT
7878  if (MB_CUR_MAX != 1)
7879    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7880  else
7881# endif
7882    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7883
7884  if (!ret)
7885    return NULL;
7886  return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7887}
7888#ifdef _LIBC
7889weak_alias (__re_compile_pattern, re_compile_pattern)
7890#endif
7891
7892/* Entry points compatible with 4.2 BSD regex library.  We don't define
7893   them unless specifically requested.  */
7894
7895#if defined _REGEX_RE_COMP || defined _LIBC
7896
7897/* BSD has one and only one pattern buffer.  */
7898static struct re_pattern_buffer re_comp_buf;
7899
7900char *
7901#ifdef _LIBC
7902/* Make these definitions weak in libc, so POSIX programs can redefine
7903   these names if they don't use our functions, and still use
7904   regcomp/regexec below without link errors.  */
7905weak_function
7906#endif
7907re_comp (const char *s)
7908{
7909  reg_errcode_t ret;
7910
7911  if (!s)
7912    {
7913      if (!re_comp_buf.buffer)
7914	return (char *) gettext ("No previous regular expression");
7915      return 0;
7916    }
7917
7918  if (!re_comp_buf.buffer)
7919    {
7920      re_comp_buf.buffer = malloc (200);
7921      if (re_comp_buf.buffer == NULL)
7922        return (char *) gettext (re_error_msgid
7923				 + re_error_msgid_idx[(int) REG_ESPACE]);
7924      re_comp_buf.allocated = 200;
7925
7926      re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
7927      if (re_comp_buf.fastmap == NULL)
7928	return (char *) gettext (re_error_msgid
7929				 + re_error_msgid_idx[(int) REG_ESPACE]);
7930    }
7931
7932  /* Since `re_exec' always passes NULL for the `regs' argument, we
7933     don't need to initialize the pattern buffer fields which affect it.  */
7934
7935  /* Match anchors at newlines.  */
7936  re_comp_buf.newline_anchor = 1;
7937
7938# ifdef MBS_SUPPORT
7939  if (MB_CUR_MAX != 1)
7940    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7941  else
7942# endif
7943    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7944
7945  if (!ret)
7946    return NULL;
7947
7948  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7949  return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7950}
7951
7952
7953int
7954#ifdef _LIBC
7955weak_function
7956#endif
7957re_exec (const char *s)
7958{
7959  const int len = strlen (s);
7960  return
7961    0 <= re_search (&re_comp_buf, s, len, 0, len, 0);
7962}
7963
7964#endif /* _REGEX_RE_COMP */
7965
7966/* POSIX.2 functions.  Don't define these for Emacs.  */
7967
7968#ifndef emacs
7969
7970/* regcomp takes a regular expression as a string and compiles it.
7971
7972   PREG is a regex_t *.  We do not expect any fields to be initialized,
7973   since POSIX says we shouldn't.  Thus, we set
7974
7975     `buffer' to the compiled pattern;
7976     `used' to the length of the compiled pattern;
7977     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7978       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7979       RE_SYNTAX_POSIX_BASIC;
7980     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7981     `fastmap' to an allocated space for the fastmap;
7982     `fastmap_accurate' to zero;
7983     `re_nsub' to the number of subexpressions in PATTERN.
7984
7985   PATTERN is the address of the pattern string.
7986
7987   CFLAGS is a series of bits which affect compilation.
7988
7989     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7990     use POSIX basic syntax.
7991
7992     If REG_NEWLINE is set, then . and [^...] don't match newline.
7993     Also, regexec will try a match beginning after every newline.
7994
7995     If REG_ICASE is set, then we considers upper- and lowercase
7996     versions of letters to be equivalent when matching.
7997
7998     If REG_NOSUB is set, then when PREG is passed to regexec, that
7999     routine will report only success or failure, and nothing about the
8000     registers.
8001
8002   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
8003   the return codes and their meanings.)  */
8004
8005int
8006regcomp (regex_t *preg, const char *pattern, int cflags)
8007{
8008  reg_errcode_t ret;
8009  reg_syntax_t syntax
8010    = (cflags & REG_EXTENDED) ?
8011      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8012
8013  /* regex_compile will allocate the space for the compiled pattern.  */
8014  preg->buffer = 0;
8015  preg->allocated = 0;
8016  preg->used = 0;
8017
8018  /* Try to allocate space for the fastmap.  */
8019  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8020
8021  if (cflags & REG_ICASE)
8022    {
8023      unsigned i;
8024
8025      preg->translate =
8026	(RE_TRANSLATE_TYPE)
8027	malloc (CHAR_SET_SIZE * sizeof (*(RE_TRANSLATE_TYPE)0));
8028      if (preg->translate == NULL)
8029        return (int) REG_ESPACE;
8030
8031      /* Map uppercase characters to corresponding lowercase ones.  */
8032      for (i = 0; i < CHAR_SET_SIZE; i++)
8033        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8034    }
8035  else
8036    preg->translate = NULL;
8037
8038  /* If REG_NEWLINE is set, newlines are treated differently.  */
8039  if (cflags & REG_NEWLINE)
8040    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
8041      syntax &= ~RE_DOT_NEWLINE;
8042      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8043      /* It also changes the matching behavior.  */
8044      preg->newline_anchor = 1;
8045    }
8046  else
8047    preg->newline_anchor = 0;
8048
8049  preg->no_sub = !!(cflags & REG_NOSUB);
8050
8051  /* POSIX says a null character in the pattern terminates it, so we
8052     can use strlen here in compiling the pattern.  */
8053# ifdef MBS_SUPPORT
8054  if (MB_CUR_MAX != 1)
8055    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8056  else
8057# endif
8058    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8059
8060  /* POSIX doesn't distinguish between an unmatched open-group and an
8061     unmatched close-group: both are REG_EPAREN.  */
8062  if (ret == REG_ERPAREN) ret = REG_EPAREN;
8063
8064  if (ret == REG_NOERROR && preg->fastmap)
8065    {
8066      /* Compute the fastmap now, since regexec cannot modify the pattern
8067	 buffer.  */
8068      if (re_compile_fastmap (preg) == -2)
8069	{
8070	  /* Some error occurred while computing the fastmap, just forget
8071	     about it.  */
8072	  free (preg->fastmap);
8073	  preg->fastmap = NULL;
8074	}
8075    }
8076
8077  return (int) ret;
8078}
8079#ifdef _LIBC
8080weak_alias (__regcomp, regcomp)
8081#endif
8082
8083
8084/* regexec searches for a given pattern, specified by PREG, in the
8085   string STRING.
8086
8087   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8088   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8089   least NMATCH elements, and we set them to the offsets of the
8090   corresponding matched substrings.
8091
8092   EFLAGS specifies `execution flags' which affect matching: if
8093   REG_NOTBOL is set, then ^ does not match at the beginning of the
8094   string; if REG_NOTEOL is set, then $ does not match at the end.
8095
8096   We return 0 if we find a match and REG_NOMATCH if not.  */
8097
8098int
8099regexec (const regex_t *preg, const char *string,
8100	 size_t nmatch, regmatch_t pmatch[], int eflags)
8101{
8102  int ret;
8103  struct re_registers regs;
8104  regex_t private_preg;
8105  int len = strlen (string);
8106  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8107
8108  private_preg = *preg;
8109
8110  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8111  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8112
8113  /* The user has told us exactly how many registers to return
8114     information about, via `nmatch'.  We have to pass that on to the
8115     matching routines.  */
8116  private_preg.regs_allocated = REGS_FIXED;
8117
8118  if (want_reg_info)
8119    {
8120      regs.num_regs = nmatch;
8121      regs.start = TALLOC (nmatch * 2, regoff_t);
8122      if (regs.start == NULL)
8123        return (int) REG_NOMATCH;
8124      regs.end = regs.start + nmatch;
8125    }
8126
8127  /* Perform the searching operation.  */
8128  ret = re_search (&private_preg, string, len,
8129                   /* start: */ 0, /* range: */ len,
8130                   want_reg_info ? &regs : 0);
8131
8132  /* Copy the register information to the POSIX structure.  */
8133  if (want_reg_info)
8134    {
8135      if (ret >= 0)
8136        {
8137          unsigned r;
8138
8139          for (r = 0; r < nmatch; r++)
8140            {
8141              pmatch[r].rm_so = regs.start[r];
8142              pmatch[r].rm_eo = regs.end[r];
8143            }
8144        }
8145
8146      /* If we needed the temporary register info, free the space now.  */
8147      free (regs.start);
8148    }
8149
8150  /* We want zero return to mean success, unlike `re_search'.  */
8151  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8152}
8153#ifdef _LIBC
8154weak_alias (__regexec, regexec)
8155#endif
8156
8157
8158/* Returns a message corresponding to an error code, ERRCODE, returned
8159   from either regcomp or regexec.   We don't use PREG here.  */
8160
8161size_t
8162regerror (int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
8163{
8164  const char *msg;
8165  size_t msg_size;
8166
8167  if (errcode < 0
8168      || errcode >= (int) (sizeof (re_error_msgid_idx)
8169			   / sizeof (re_error_msgid_idx[0])))
8170    /* Only error codes returned by the rest of the code should be passed
8171       to this routine.  If we are given anything else, or if other regex
8172       code generates an invalid error code, then the program has a bug.
8173       Dump core so we can fix it.  */
8174    abort ();
8175
8176  msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8177
8178  msg_size = strlen (msg) + 1; /* Includes the null.  */
8179
8180  if (errbuf_size != 0)
8181    {
8182      if (msg_size > errbuf_size)
8183        {
8184#if defined HAVE_MEMPCPY || defined _LIBC
8185	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8186#else
8187          memcpy (errbuf, msg, errbuf_size - 1);
8188          errbuf[errbuf_size - 1] = 0;
8189#endif
8190        }
8191      else
8192        memcpy (errbuf, msg, msg_size);
8193    }
8194
8195  return msg_size;
8196}
8197#ifdef _LIBC
8198weak_alias (__regerror, regerror)
8199#endif
8200
8201
8202/* Free dynamically allocated space used by PREG.  */
8203
8204void
8205regfree (regex_t *preg)
8206{
8207  if (preg->buffer != NULL)
8208    free (preg->buffer);
8209  preg->buffer = NULL;
8210
8211  preg->allocated = 0;
8212  preg->used = 0;
8213
8214  if (preg->fastmap != NULL)
8215    free (preg->fastmap);
8216  preg->fastmap = NULL;
8217  preg->fastmap_accurate = 0;
8218
8219  if (preg->translate != NULL)
8220    free (preg->translate);
8221  preg->translate = NULL;
8222}
8223#ifdef _LIBC
8224weak_alias (__regfree, regfree)
8225#endif
8226
8227#endif /* not emacs  */
8228
8229#endif /* not INSIDE_RECURSION */
8230
8231
8232#undef STORE_NUMBER
8233#undef STORE_NUMBER_AND_INCR
8234#undef EXTRACT_NUMBER
8235#undef EXTRACT_NUMBER_AND_INCR
8236
8237#undef DEBUG_PRINT_COMPILED_PATTERN
8238#undef DEBUG_PRINT_DOUBLE_STRING
8239
8240#undef INIT_FAIL_STACK
8241#undef RESET_FAIL_STACK
8242#undef DOUBLE_FAIL_STACK
8243#undef PUSH_PATTERN_OP
8244#undef PUSH_FAILURE_POINTER
8245#undef PUSH_FAILURE_INT
8246#undef PUSH_FAILURE_ELT
8247#undef POP_FAILURE_POINTER
8248#undef POP_FAILURE_INT
8249#undef POP_FAILURE_ELT
8250#undef DEBUG_PUSH
8251#undef DEBUG_POP
8252#undef PUSH_FAILURE_POINT
8253#undef POP_FAILURE_POINT
8254
8255#undef REG_UNSET_VALUE
8256#undef REG_UNSET
8257
8258#undef PATFETCH
8259#undef PATFETCH_RAW
8260#undef PATUNFETCH
8261#undef TRANSLATE
8262
8263#undef INIT_BUF_SIZE
8264#undef GET_BUFFER_SPACE
8265#undef BUF_PUSH
8266#undef BUF_PUSH_2
8267#undef BUF_PUSH_3
8268#undef STORE_JUMP
8269#undef STORE_JUMP2
8270#undef INSERT_JUMP
8271#undef INSERT_JUMP2
8272#undef EXTEND_BUFFER
8273#undef GET_UNSIGNED_NUMBER
8274#undef FREE_STACK_RETURN
8275
8276# undef POINTER_TO_OFFSET
8277# undef MATCHING_IN_FRST_STRING
8278# undef PREFETCH
8279# undef AT_STRINGS_BEG
8280# undef AT_STRINGS_END
8281# undef WORDCHAR_P
8282# undef FREE_VAR
8283# undef FREE_VARIABLES
8284# undef NO_HIGHEST_ACTIVE_REG
8285# undef NO_LOWEST_ACTIVE_REG
8286
8287# undef CHAR_T
8288# undef UCHAR_T
8289# undef COMPILED_BUFFER_VAR
8290# undef OFFSET_ADDRESS_SIZE
8291# undef CHAR_CLASS_SIZE
8292# undef PREFIX
8293# undef ARG_PREFIX
8294# undef PUT_CHAR
8295# undef BYTE
8296# undef WCHAR
8297
8298# define DEFINED_ONCE
8299