1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affilates.
9 *
10 * Authors:
11 *   Avi Kivity   <avi@qumranet.com>
12 *   Yaniv Kamay  <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.  See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "iodev.h"
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/sysdev.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50
51#include <asm/processor.h>
52#include <asm/io.h>
53#include <asm/uaccess.h>
54#include <asm/pgtable.h>
55#include <asm-generic/bitops/le.h>
56
57#include "coalesced_mmio.h"
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/kvm.h>
61
62MODULE_AUTHOR("Qumranet");
63MODULE_LICENSE("GPL");
64
65/*
66 * Ordering of locks:
67 *
68 * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69 */
70
71DEFINE_SPINLOCK(kvm_lock);
72LIST_HEAD(vm_list);
73
74static cpumask_var_t cpus_hardware_enabled;
75static int kvm_usage_count = 0;
76static atomic_t hardware_enable_failed;
77
78struct kmem_cache *kvm_vcpu_cache;
79EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83struct dentry *kvm_debugfs_dir;
84
85static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86			   unsigned long arg);
87static int hardware_enable_all(void);
88static void hardware_disable_all(void);
89
90static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91
92static bool kvm_rebooting;
93
94static bool largepages_enabled = true;
95
96static struct page *hwpoison_page;
97static pfn_t hwpoison_pfn;
98
99static struct page *fault_page;
100static pfn_t fault_pfn;
101
102inline int kvm_is_mmio_pfn(pfn_t pfn)
103{
104	if (pfn_valid(pfn)) {
105		struct page *page = compound_head(pfn_to_page(pfn));
106		return PageReserved(page);
107	}
108
109	return true;
110}
111
112/*
113 * Switches to specified vcpu, until a matching vcpu_put()
114 */
115void vcpu_load(struct kvm_vcpu *vcpu)
116{
117	int cpu;
118
119	mutex_lock(&vcpu->mutex);
120	cpu = get_cpu();
121	preempt_notifier_register(&vcpu->preempt_notifier);
122	kvm_arch_vcpu_load(vcpu, cpu);
123	put_cpu();
124}
125
126void vcpu_put(struct kvm_vcpu *vcpu)
127{
128	preempt_disable();
129	kvm_arch_vcpu_put(vcpu);
130	preempt_notifier_unregister(&vcpu->preempt_notifier);
131	preempt_enable();
132	mutex_unlock(&vcpu->mutex);
133}
134
135static void ack_flush(void *_completed)
136{
137}
138
139static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
140{
141	int i, cpu, me;
142	cpumask_var_t cpus;
143	bool called = true;
144	struct kvm_vcpu *vcpu;
145
146	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
147
148	raw_spin_lock(&kvm->requests_lock);
149	me = smp_processor_id();
150	kvm_for_each_vcpu(i, vcpu, kvm) {
151		if (kvm_make_check_request(req, vcpu))
152			continue;
153		cpu = vcpu->cpu;
154		if (cpus != NULL && cpu != -1 && cpu != me)
155			cpumask_set_cpu(cpu, cpus);
156	}
157	if (unlikely(cpus == NULL))
158		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
159	else if (!cpumask_empty(cpus))
160		smp_call_function_many(cpus, ack_flush, NULL, 1);
161	else
162		called = false;
163	raw_spin_unlock(&kvm->requests_lock);
164	free_cpumask_var(cpus);
165	return called;
166}
167
168void kvm_flush_remote_tlbs(struct kvm *kvm)
169{
170	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
171		++kvm->stat.remote_tlb_flush;
172}
173
174void kvm_reload_remote_mmus(struct kvm *kvm)
175{
176	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
177}
178
179int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
180{
181	struct page *page;
182	int r;
183
184	mutex_init(&vcpu->mutex);
185	vcpu->cpu = -1;
186	vcpu->kvm = kvm;
187	vcpu->vcpu_id = id;
188	init_waitqueue_head(&vcpu->wq);
189
190	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
191	if (!page) {
192		r = -ENOMEM;
193		goto fail;
194	}
195	vcpu->run = page_address(page);
196
197	r = kvm_arch_vcpu_init(vcpu);
198	if (r < 0)
199		goto fail_free_run;
200	return 0;
201
202fail_free_run:
203	free_page((unsigned long)vcpu->run);
204fail:
205	return r;
206}
207EXPORT_SYMBOL_GPL(kvm_vcpu_init);
208
209void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
210{
211	kvm_arch_vcpu_uninit(vcpu);
212	free_page((unsigned long)vcpu->run);
213}
214EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
215
216#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
217static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
218{
219	return container_of(mn, struct kvm, mmu_notifier);
220}
221
222static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
223					     struct mm_struct *mm,
224					     unsigned long address)
225{
226	struct kvm *kvm = mmu_notifier_to_kvm(mn);
227	int need_tlb_flush, idx;
228
229	/*
230	 * When ->invalidate_page runs, the linux pte has been zapped
231	 * already but the page is still allocated until
232	 * ->invalidate_page returns. So if we increase the sequence
233	 * here the kvm page fault will notice if the spte can't be
234	 * established because the page is going to be freed. If
235	 * instead the kvm page fault establishes the spte before
236	 * ->invalidate_page runs, kvm_unmap_hva will release it
237	 * before returning.
238	 *
239	 * The sequence increase only need to be seen at spin_unlock
240	 * time, and not at spin_lock time.
241	 *
242	 * Increasing the sequence after the spin_unlock would be
243	 * unsafe because the kvm page fault could then establish the
244	 * pte after kvm_unmap_hva returned, without noticing the page
245	 * is going to be freed.
246	 */
247	idx = srcu_read_lock(&kvm->srcu);
248	spin_lock(&kvm->mmu_lock);
249	kvm->mmu_notifier_seq++;
250	need_tlb_flush = kvm_unmap_hva(kvm, address);
251	spin_unlock(&kvm->mmu_lock);
252	srcu_read_unlock(&kvm->srcu, idx);
253
254	/* we've to flush the tlb before the pages can be freed */
255	if (need_tlb_flush)
256		kvm_flush_remote_tlbs(kvm);
257
258}
259
260static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
261					struct mm_struct *mm,
262					unsigned long address,
263					pte_t pte)
264{
265	struct kvm *kvm = mmu_notifier_to_kvm(mn);
266	int idx;
267
268	idx = srcu_read_lock(&kvm->srcu);
269	spin_lock(&kvm->mmu_lock);
270	kvm->mmu_notifier_seq++;
271	kvm_set_spte_hva(kvm, address, pte);
272	spin_unlock(&kvm->mmu_lock);
273	srcu_read_unlock(&kvm->srcu, idx);
274}
275
276static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
277						    struct mm_struct *mm,
278						    unsigned long start,
279						    unsigned long end)
280{
281	struct kvm *kvm = mmu_notifier_to_kvm(mn);
282	int need_tlb_flush = 0, idx;
283
284	idx = srcu_read_lock(&kvm->srcu);
285	spin_lock(&kvm->mmu_lock);
286	/*
287	 * The count increase must become visible at unlock time as no
288	 * spte can be established without taking the mmu_lock and
289	 * count is also read inside the mmu_lock critical section.
290	 */
291	kvm->mmu_notifier_count++;
292	for (; start < end; start += PAGE_SIZE)
293		need_tlb_flush |= kvm_unmap_hva(kvm, start);
294	spin_unlock(&kvm->mmu_lock);
295	srcu_read_unlock(&kvm->srcu, idx);
296
297	/* we've to flush the tlb before the pages can be freed */
298	if (need_tlb_flush)
299		kvm_flush_remote_tlbs(kvm);
300}
301
302static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
303						  struct mm_struct *mm,
304						  unsigned long start,
305						  unsigned long end)
306{
307	struct kvm *kvm = mmu_notifier_to_kvm(mn);
308
309	spin_lock(&kvm->mmu_lock);
310	/*
311	 * This sequence increase will notify the kvm page fault that
312	 * the page that is going to be mapped in the spte could have
313	 * been freed.
314	 */
315	kvm->mmu_notifier_seq++;
316	/*
317	 * The above sequence increase must be visible before the
318	 * below count decrease but both values are read by the kvm
319	 * page fault under mmu_lock spinlock so we don't need to add
320	 * a smb_wmb() here in between the two.
321	 */
322	kvm->mmu_notifier_count--;
323	spin_unlock(&kvm->mmu_lock);
324
325	BUG_ON(kvm->mmu_notifier_count < 0);
326}
327
328static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
329					      struct mm_struct *mm,
330					      unsigned long address)
331{
332	struct kvm *kvm = mmu_notifier_to_kvm(mn);
333	int young, idx;
334
335	idx = srcu_read_lock(&kvm->srcu);
336	spin_lock(&kvm->mmu_lock);
337	young = kvm_age_hva(kvm, address);
338	spin_unlock(&kvm->mmu_lock);
339	srcu_read_unlock(&kvm->srcu, idx);
340
341	if (young)
342		kvm_flush_remote_tlbs(kvm);
343
344	return young;
345}
346
347static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
348				     struct mm_struct *mm)
349{
350	struct kvm *kvm = mmu_notifier_to_kvm(mn);
351	int idx;
352
353	idx = srcu_read_lock(&kvm->srcu);
354	kvm_arch_flush_shadow(kvm);
355	srcu_read_unlock(&kvm->srcu, idx);
356}
357
358static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
359	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
360	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
361	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
362	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
363	.change_pte		= kvm_mmu_notifier_change_pte,
364	.release		= kvm_mmu_notifier_release,
365};
366
367static int kvm_init_mmu_notifier(struct kvm *kvm)
368{
369	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
370	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
371}
372
373#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
374
375static int kvm_init_mmu_notifier(struct kvm *kvm)
376{
377	return 0;
378}
379
380#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
381
382static struct kvm *kvm_create_vm(void)
383{
384	int r = 0, i;
385	struct kvm *kvm = kvm_arch_create_vm();
386
387	if (IS_ERR(kvm))
388		goto out;
389
390	r = hardware_enable_all();
391	if (r)
392		goto out_err_nodisable;
393
394#ifdef CONFIG_HAVE_KVM_IRQCHIP
395	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
396	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
397#endif
398
399	r = -ENOMEM;
400	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
401	if (!kvm->memslots)
402		goto out_err;
403	if (init_srcu_struct(&kvm->srcu))
404		goto out_err;
405	for (i = 0; i < KVM_NR_BUSES; i++) {
406		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
407					GFP_KERNEL);
408		if (!kvm->buses[i]) {
409			cleanup_srcu_struct(&kvm->srcu);
410			goto out_err;
411		}
412	}
413
414	r = kvm_init_mmu_notifier(kvm);
415	if (r) {
416		cleanup_srcu_struct(&kvm->srcu);
417		goto out_err;
418	}
419
420	kvm->mm = current->mm;
421	atomic_inc(&kvm->mm->mm_count);
422	spin_lock_init(&kvm->mmu_lock);
423	raw_spin_lock_init(&kvm->requests_lock);
424	kvm_eventfd_init(kvm);
425	mutex_init(&kvm->lock);
426	mutex_init(&kvm->irq_lock);
427	mutex_init(&kvm->slots_lock);
428	atomic_set(&kvm->users_count, 1);
429	spin_lock(&kvm_lock);
430	list_add(&kvm->vm_list, &vm_list);
431	spin_unlock(&kvm_lock);
432out:
433	return kvm;
434
435out_err:
436	hardware_disable_all();
437out_err_nodisable:
438	for (i = 0; i < KVM_NR_BUSES; i++)
439		kfree(kvm->buses[i]);
440	kfree(kvm->memslots);
441	kfree(kvm);
442	return ERR_PTR(r);
443}
444
445/*
446 * Free any memory in @free but not in @dont.
447 */
448static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
449				  struct kvm_memory_slot *dont)
450{
451	int i;
452
453	if (!dont || free->rmap != dont->rmap)
454		vfree(free->rmap);
455
456	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
457		vfree(free->dirty_bitmap);
458
459
460	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
461		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
462			vfree(free->lpage_info[i]);
463			free->lpage_info[i] = NULL;
464		}
465	}
466
467	free->npages = 0;
468	free->dirty_bitmap = NULL;
469	free->rmap = NULL;
470}
471
472void kvm_free_physmem(struct kvm *kvm)
473{
474	int i;
475	struct kvm_memslots *slots = kvm->memslots;
476
477	for (i = 0; i < slots->nmemslots; ++i)
478		kvm_free_physmem_slot(&slots->memslots[i], NULL);
479
480	kfree(kvm->memslots);
481}
482
483static void kvm_destroy_vm(struct kvm *kvm)
484{
485	int i;
486	struct mm_struct *mm = kvm->mm;
487
488	kvm_arch_sync_events(kvm);
489	spin_lock(&kvm_lock);
490	list_del(&kvm->vm_list);
491	spin_unlock(&kvm_lock);
492	kvm_free_irq_routing(kvm);
493	for (i = 0; i < KVM_NR_BUSES; i++)
494		kvm_io_bus_destroy(kvm->buses[i]);
495	kvm_coalesced_mmio_free(kvm);
496#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
497	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
498#else
499	kvm_arch_flush_shadow(kvm);
500#endif
501	kvm_arch_destroy_vm(kvm);
502	hardware_disable_all();
503	mmdrop(mm);
504}
505
506void kvm_get_kvm(struct kvm *kvm)
507{
508	atomic_inc(&kvm->users_count);
509}
510EXPORT_SYMBOL_GPL(kvm_get_kvm);
511
512void kvm_put_kvm(struct kvm *kvm)
513{
514	if (atomic_dec_and_test(&kvm->users_count))
515		kvm_destroy_vm(kvm);
516}
517EXPORT_SYMBOL_GPL(kvm_put_kvm);
518
519
520static int kvm_vm_release(struct inode *inode, struct file *filp)
521{
522	struct kvm *kvm = filp->private_data;
523
524	kvm_irqfd_release(kvm);
525
526	kvm_put_kvm(kvm);
527	return 0;
528}
529
530/*
531 * Allocate some memory and give it an address in the guest physical address
532 * space.
533 *
534 * Discontiguous memory is allowed, mostly for framebuffers.
535 *
536 * Must be called holding mmap_sem for write.
537 */
538int __kvm_set_memory_region(struct kvm *kvm,
539			    struct kvm_userspace_memory_region *mem,
540			    int user_alloc)
541{
542	int r, flush_shadow = 0;
543	gfn_t base_gfn;
544	unsigned long npages;
545	unsigned long i;
546	struct kvm_memory_slot *memslot;
547	struct kvm_memory_slot old, new;
548	struct kvm_memslots *slots, *old_memslots;
549
550	r = -EINVAL;
551	/* General sanity checks */
552	if (mem->memory_size & (PAGE_SIZE - 1))
553		goto out;
554	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
555		goto out;
556	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
557		goto out;
558	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
559		goto out;
560	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
561		goto out;
562
563	memslot = &kvm->memslots->memslots[mem->slot];
564	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
565	npages = mem->memory_size >> PAGE_SHIFT;
566
567	r = -EINVAL;
568	if (npages > KVM_MEM_MAX_NR_PAGES)
569		goto out;
570
571	if (!npages)
572		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
573
574	new = old = *memslot;
575
576	new.id = mem->slot;
577	new.base_gfn = base_gfn;
578	new.npages = npages;
579	new.flags = mem->flags;
580
581	/* Disallow changing a memory slot's size. */
582	r = -EINVAL;
583	if (npages && old.npages && npages != old.npages)
584		goto out_free;
585
586	/* Check for overlaps */
587	r = -EEXIST;
588	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
589		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
590
591		if (s == memslot || !s->npages)
592			continue;
593		if (!((base_gfn + npages <= s->base_gfn) ||
594		      (base_gfn >= s->base_gfn + s->npages)))
595			goto out_free;
596	}
597
598	/* Free page dirty bitmap if unneeded */
599	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
600		new.dirty_bitmap = NULL;
601
602	r = -ENOMEM;
603
604	/* Allocate if a slot is being created */
605#ifndef CONFIG_S390
606	if (npages && !new.rmap) {
607		new.rmap = vmalloc(npages * sizeof(*new.rmap));
608
609		if (!new.rmap)
610			goto out_free;
611
612		memset(new.rmap, 0, npages * sizeof(*new.rmap));
613
614		new.user_alloc = user_alloc;
615		new.userspace_addr = mem->userspace_addr;
616	}
617	if (!npages)
618		goto skip_lpage;
619
620	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
621		unsigned long ugfn;
622		unsigned long j;
623		int lpages;
624		int level = i + 2;
625
626		/* Avoid unused variable warning if no large pages */
627		(void)level;
628
629		if (new.lpage_info[i])
630			continue;
631
632		lpages = 1 + ((base_gfn + npages - 1)
633			     >> KVM_HPAGE_GFN_SHIFT(level));
634		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
635
636		new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
637
638		if (!new.lpage_info[i])
639			goto out_free;
640
641		memset(new.lpage_info[i], 0,
642		       lpages * sizeof(*new.lpage_info[i]));
643
644		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
645			new.lpage_info[i][0].write_count = 1;
646		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
647			new.lpage_info[i][lpages - 1].write_count = 1;
648		ugfn = new.userspace_addr >> PAGE_SHIFT;
649		/*
650		 * If the gfn and userspace address are not aligned wrt each
651		 * other, or if explicitly asked to, disable large page
652		 * support for this slot
653		 */
654		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
655		    !largepages_enabled)
656			for (j = 0; j < lpages; ++j)
657				new.lpage_info[i][j].write_count = 1;
658	}
659
660skip_lpage:
661
662	/* Allocate page dirty bitmap if needed */
663	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
664		unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
665
666		new.dirty_bitmap = vmalloc(dirty_bytes);
667		if (!new.dirty_bitmap)
668			goto out_free;
669		memset(new.dirty_bitmap, 0, dirty_bytes);
670		/* destroy any largepage mappings for dirty tracking */
671		if (old.npages)
672			flush_shadow = 1;
673	}
674#else  /* not defined CONFIG_S390 */
675	new.user_alloc = user_alloc;
676	if (user_alloc)
677		new.userspace_addr = mem->userspace_addr;
678#endif /* not defined CONFIG_S390 */
679
680	if (!npages) {
681		r = -ENOMEM;
682		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
683		if (!slots)
684			goto out_free;
685		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
686		if (mem->slot >= slots->nmemslots)
687			slots->nmemslots = mem->slot + 1;
688		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
689
690		old_memslots = kvm->memslots;
691		rcu_assign_pointer(kvm->memslots, slots);
692		synchronize_srcu_expedited(&kvm->srcu);
693		/* From this point no new shadow pages pointing to a deleted
694		 * memslot will be created.
695		 *
696		 * validation of sp->gfn happens in:
697		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
698		 * 	- kvm_is_visible_gfn (mmu_check_roots)
699		 */
700		kvm_arch_flush_shadow(kvm);
701		kfree(old_memslots);
702	}
703
704	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
705	if (r)
706		goto out_free;
707
708#ifdef CONFIG_DMAR
709	/* map the pages in iommu page table */
710	if (npages) {
711		r = kvm_iommu_map_pages(kvm, &new);
712		if (r)
713			goto out_free;
714	}
715#endif
716
717	r = -ENOMEM;
718	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
719	if (!slots)
720		goto out_free;
721	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
722	if (mem->slot >= slots->nmemslots)
723		slots->nmemslots = mem->slot + 1;
724
725	/* actual memory is freed via old in kvm_free_physmem_slot below */
726	if (!npages) {
727		new.rmap = NULL;
728		new.dirty_bitmap = NULL;
729		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
730			new.lpage_info[i] = NULL;
731	}
732
733	slots->memslots[mem->slot] = new;
734	old_memslots = kvm->memslots;
735	rcu_assign_pointer(kvm->memslots, slots);
736	synchronize_srcu_expedited(&kvm->srcu);
737
738	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
739
740	kvm_free_physmem_slot(&old, &new);
741	kfree(old_memslots);
742
743	if (flush_shadow)
744		kvm_arch_flush_shadow(kvm);
745
746	return 0;
747
748out_free:
749	kvm_free_physmem_slot(&new, &old);
750out:
751	return r;
752
753}
754EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
755
756int kvm_set_memory_region(struct kvm *kvm,
757			  struct kvm_userspace_memory_region *mem,
758			  int user_alloc)
759{
760	int r;
761
762	mutex_lock(&kvm->slots_lock);
763	r = __kvm_set_memory_region(kvm, mem, user_alloc);
764	mutex_unlock(&kvm->slots_lock);
765	return r;
766}
767EXPORT_SYMBOL_GPL(kvm_set_memory_region);
768
769int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
770				   struct
771				   kvm_userspace_memory_region *mem,
772				   int user_alloc)
773{
774	if (mem->slot >= KVM_MEMORY_SLOTS)
775		return -EINVAL;
776	return kvm_set_memory_region(kvm, mem, user_alloc);
777}
778
779int kvm_get_dirty_log(struct kvm *kvm,
780			struct kvm_dirty_log *log, int *is_dirty)
781{
782	struct kvm_memory_slot *memslot;
783	int r, i;
784	unsigned long n;
785	unsigned long any = 0;
786
787	r = -EINVAL;
788	if (log->slot >= KVM_MEMORY_SLOTS)
789		goto out;
790
791	memslot = &kvm->memslots->memslots[log->slot];
792	r = -ENOENT;
793	if (!memslot->dirty_bitmap)
794		goto out;
795
796	n = kvm_dirty_bitmap_bytes(memslot);
797
798	for (i = 0; !any && i < n/sizeof(long); ++i)
799		any = memslot->dirty_bitmap[i];
800
801	r = -EFAULT;
802	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
803		goto out;
804
805	if (any)
806		*is_dirty = 1;
807
808	r = 0;
809out:
810	return r;
811}
812
813void kvm_disable_largepages(void)
814{
815	largepages_enabled = false;
816}
817EXPORT_SYMBOL_GPL(kvm_disable_largepages);
818
819int is_error_page(struct page *page)
820{
821	return page == bad_page || page == hwpoison_page || page == fault_page;
822}
823EXPORT_SYMBOL_GPL(is_error_page);
824
825int is_error_pfn(pfn_t pfn)
826{
827	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
828}
829EXPORT_SYMBOL_GPL(is_error_pfn);
830
831int is_hwpoison_pfn(pfn_t pfn)
832{
833	return pfn == hwpoison_pfn;
834}
835EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
836
837int is_fault_pfn(pfn_t pfn)
838{
839	return pfn == fault_pfn;
840}
841EXPORT_SYMBOL_GPL(is_fault_pfn);
842
843static inline unsigned long bad_hva(void)
844{
845	return PAGE_OFFSET;
846}
847
848int kvm_is_error_hva(unsigned long addr)
849{
850	return addr == bad_hva();
851}
852EXPORT_SYMBOL_GPL(kvm_is_error_hva);
853
854struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
855{
856	int i;
857	struct kvm_memslots *slots = kvm_memslots(kvm);
858
859	for (i = 0; i < slots->nmemslots; ++i) {
860		struct kvm_memory_slot *memslot = &slots->memslots[i];
861
862		if (gfn >= memslot->base_gfn
863		    && gfn < memslot->base_gfn + memslot->npages)
864			return memslot;
865	}
866	return NULL;
867}
868EXPORT_SYMBOL_GPL(gfn_to_memslot);
869
870int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
871{
872	int i;
873	struct kvm_memslots *slots = kvm_memslots(kvm);
874
875	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
876		struct kvm_memory_slot *memslot = &slots->memslots[i];
877
878		if (memslot->flags & KVM_MEMSLOT_INVALID)
879			continue;
880
881		if (gfn >= memslot->base_gfn
882		    && gfn < memslot->base_gfn + memslot->npages)
883			return 1;
884	}
885	return 0;
886}
887EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
888
889unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
890{
891	struct vm_area_struct *vma;
892	unsigned long addr, size;
893
894	size = PAGE_SIZE;
895
896	addr = gfn_to_hva(kvm, gfn);
897	if (kvm_is_error_hva(addr))
898		return PAGE_SIZE;
899
900	down_read(&current->mm->mmap_sem);
901	vma = find_vma(current->mm, addr);
902	if (!vma)
903		goto out;
904
905	size = vma_kernel_pagesize(vma);
906
907out:
908	up_read(&current->mm->mmap_sem);
909
910	return size;
911}
912
913int memslot_id(struct kvm *kvm, gfn_t gfn)
914{
915	int i;
916	struct kvm_memslots *slots = kvm_memslots(kvm);
917	struct kvm_memory_slot *memslot = NULL;
918
919	for (i = 0; i < slots->nmemslots; ++i) {
920		memslot = &slots->memslots[i];
921
922		if (gfn >= memslot->base_gfn
923		    && gfn < memslot->base_gfn + memslot->npages)
924			break;
925	}
926
927	return memslot - slots->memslots;
928}
929
930static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
931{
932	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
933}
934
935unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
936{
937	struct kvm_memory_slot *slot;
938
939	slot = gfn_to_memslot(kvm, gfn);
940	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
941		return bad_hva();
942	return gfn_to_hva_memslot(slot, gfn);
943}
944EXPORT_SYMBOL_GPL(gfn_to_hva);
945
946static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
947{
948	struct page *page[1];
949	int npages;
950	pfn_t pfn;
951
952	might_sleep();
953
954	npages = get_user_pages_fast(addr, 1, 1, page);
955
956	if (unlikely(npages != 1)) {
957		struct vm_area_struct *vma;
958
959		down_read(&current->mm->mmap_sem);
960		if (is_hwpoison_address(addr)) {
961			up_read(&current->mm->mmap_sem);
962			get_page(hwpoison_page);
963			return page_to_pfn(hwpoison_page);
964		}
965
966		vma = find_vma(current->mm, addr);
967
968		if (vma == NULL || addr < vma->vm_start ||
969		    !(vma->vm_flags & VM_PFNMAP)) {
970			up_read(&current->mm->mmap_sem);
971			get_page(fault_page);
972			return page_to_pfn(fault_page);
973		}
974
975		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
976		up_read(&current->mm->mmap_sem);
977		BUG_ON(!kvm_is_mmio_pfn(pfn));
978	} else
979		pfn = page_to_pfn(page[0]);
980
981	return pfn;
982}
983
984pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
985{
986	unsigned long addr;
987
988	addr = gfn_to_hva(kvm, gfn);
989	if (kvm_is_error_hva(addr)) {
990		get_page(bad_page);
991		return page_to_pfn(bad_page);
992	}
993
994	return hva_to_pfn(kvm, addr);
995}
996EXPORT_SYMBOL_GPL(gfn_to_pfn);
997
998pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
999			 struct kvm_memory_slot *slot, gfn_t gfn)
1000{
1001	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1002	return hva_to_pfn(kvm, addr);
1003}
1004
1005struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1006{
1007	pfn_t pfn;
1008
1009	pfn = gfn_to_pfn(kvm, gfn);
1010	if (!kvm_is_mmio_pfn(pfn))
1011		return pfn_to_page(pfn);
1012
1013	WARN_ON(kvm_is_mmio_pfn(pfn));
1014
1015	get_page(bad_page);
1016	return bad_page;
1017}
1018
1019EXPORT_SYMBOL_GPL(gfn_to_page);
1020
1021void kvm_release_page_clean(struct page *page)
1022{
1023	kvm_release_pfn_clean(page_to_pfn(page));
1024}
1025EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1026
1027void kvm_release_pfn_clean(pfn_t pfn)
1028{
1029	if (!kvm_is_mmio_pfn(pfn))
1030		put_page(pfn_to_page(pfn));
1031}
1032EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1033
1034void kvm_release_page_dirty(struct page *page)
1035{
1036	kvm_release_pfn_dirty(page_to_pfn(page));
1037}
1038EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1039
1040void kvm_release_pfn_dirty(pfn_t pfn)
1041{
1042	kvm_set_pfn_dirty(pfn);
1043	kvm_release_pfn_clean(pfn);
1044}
1045EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1046
1047void kvm_set_page_dirty(struct page *page)
1048{
1049	kvm_set_pfn_dirty(page_to_pfn(page));
1050}
1051EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1052
1053void kvm_set_pfn_dirty(pfn_t pfn)
1054{
1055	if (!kvm_is_mmio_pfn(pfn)) {
1056		struct page *page = pfn_to_page(pfn);
1057		if (!PageReserved(page))
1058			SetPageDirty(page);
1059	}
1060}
1061EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1062
1063void kvm_set_pfn_accessed(pfn_t pfn)
1064{
1065	if (!kvm_is_mmio_pfn(pfn))
1066		mark_page_accessed(pfn_to_page(pfn));
1067}
1068EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1069
1070void kvm_get_pfn(pfn_t pfn)
1071{
1072	if (!kvm_is_mmio_pfn(pfn))
1073		get_page(pfn_to_page(pfn));
1074}
1075EXPORT_SYMBOL_GPL(kvm_get_pfn);
1076
1077static int next_segment(unsigned long len, int offset)
1078{
1079	if (len > PAGE_SIZE - offset)
1080		return PAGE_SIZE - offset;
1081	else
1082		return len;
1083}
1084
1085int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1086			int len)
1087{
1088	int r;
1089	unsigned long addr;
1090
1091	addr = gfn_to_hva(kvm, gfn);
1092	if (kvm_is_error_hva(addr))
1093		return -EFAULT;
1094	r = copy_from_user(data, (void __user *)addr + offset, len);
1095	if (r)
1096		return -EFAULT;
1097	return 0;
1098}
1099EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1100
1101int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1102{
1103	gfn_t gfn = gpa >> PAGE_SHIFT;
1104	int seg;
1105	int offset = offset_in_page(gpa);
1106	int ret;
1107
1108	while ((seg = next_segment(len, offset)) != 0) {
1109		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1110		if (ret < 0)
1111			return ret;
1112		offset = 0;
1113		len -= seg;
1114		data += seg;
1115		++gfn;
1116	}
1117	return 0;
1118}
1119EXPORT_SYMBOL_GPL(kvm_read_guest);
1120
1121int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1122			  unsigned long len)
1123{
1124	int r;
1125	unsigned long addr;
1126	gfn_t gfn = gpa >> PAGE_SHIFT;
1127	int offset = offset_in_page(gpa);
1128
1129	addr = gfn_to_hva(kvm, gfn);
1130	if (kvm_is_error_hva(addr))
1131		return -EFAULT;
1132	pagefault_disable();
1133	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1134	pagefault_enable();
1135	if (r)
1136		return -EFAULT;
1137	return 0;
1138}
1139EXPORT_SYMBOL(kvm_read_guest_atomic);
1140
1141int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1142			 int offset, int len)
1143{
1144	int r;
1145	unsigned long addr;
1146
1147	addr = gfn_to_hva(kvm, gfn);
1148	if (kvm_is_error_hva(addr))
1149		return -EFAULT;
1150	r = copy_to_user((void __user *)addr + offset, data, len);
1151	if (r)
1152		return -EFAULT;
1153	mark_page_dirty(kvm, gfn);
1154	return 0;
1155}
1156EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1157
1158int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1159		    unsigned long len)
1160{
1161	gfn_t gfn = gpa >> PAGE_SHIFT;
1162	int seg;
1163	int offset = offset_in_page(gpa);
1164	int ret;
1165
1166	while ((seg = next_segment(len, offset)) != 0) {
1167		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1168		if (ret < 0)
1169			return ret;
1170		offset = 0;
1171		len -= seg;
1172		data += seg;
1173		++gfn;
1174	}
1175	return 0;
1176}
1177
1178int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1179{
1180	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1181}
1182EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1183
1184int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1185{
1186	gfn_t gfn = gpa >> PAGE_SHIFT;
1187	int seg;
1188	int offset = offset_in_page(gpa);
1189	int ret;
1190
1191        while ((seg = next_segment(len, offset)) != 0) {
1192		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1193		if (ret < 0)
1194			return ret;
1195		offset = 0;
1196		len -= seg;
1197		++gfn;
1198	}
1199	return 0;
1200}
1201EXPORT_SYMBOL_GPL(kvm_clear_guest);
1202
1203void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1204{
1205	struct kvm_memory_slot *memslot;
1206
1207	memslot = gfn_to_memslot(kvm, gfn);
1208	if (memslot && memslot->dirty_bitmap) {
1209		unsigned long rel_gfn = gfn - memslot->base_gfn;
1210
1211		generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1212	}
1213}
1214
1215/*
1216 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1217 */
1218void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1219{
1220	DEFINE_WAIT(wait);
1221
1222	for (;;) {
1223		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1224
1225		if (kvm_arch_vcpu_runnable(vcpu)) {
1226			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1227			break;
1228		}
1229		if (kvm_cpu_has_pending_timer(vcpu))
1230			break;
1231		if (signal_pending(current))
1232			break;
1233
1234		schedule();
1235	}
1236
1237	finish_wait(&vcpu->wq, &wait);
1238}
1239
1240void kvm_resched(struct kvm_vcpu *vcpu)
1241{
1242	if (!need_resched())
1243		return;
1244	cond_resched();
1245}
1246EXPORT_SYMBOL_GPL(kvm_resched);
1247
1248void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1249{
1250	ktime_t expires;
1251	DEFINE_WAIT(wait);
1252
1253	prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1254
1255	/* Sleep for 100 us, and hope lock-holder got scheduled */
1256	expires = ktime_add_ns(ktime_get(), 100000UL);
1257	schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1258
1259	finish_wait(&vcpu->wq, &wait);
1260}
1261EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1262
1263static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1264{
1265	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1266	struct page *page;
1267
1268	if (vmf->pgoff == 0)
1269		page = virt_to_page(vcpu->run);
1270#ifdef CONFIG_X86
1271	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1272		page = virt_to_page(vcpu->arch.pio_data);
1273#endif
1274#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1275	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1276		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1277#endif
1278	else
1279		return VM_FAULT_SIGBUS;
1280	get_page(page);
1281	vmf->page = page;
1282	return 0;
1283}
1284
1285static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1286	.fault = kvm_vcpu_fault,
1287};
1288
1289static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1290{
1291	vma->vm_ops = &kvm_vcpu_vm_ops;
1292	return 0;
1293}
1294
1295static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1296{
1297	struct kvm_vcpu *vcpu = filp->private_data;
1298
1299	kvm_put_kvm(vcpu->kvm);
1300	return 0;
1301}
1302
1303static struct file_operations kvm_vcpu_fops = {
1304	.release        = kvm_vcpu_release,
1305	.unlocked_ioctl = kvm_vcpu_ioctl,
1306	.compat_ioctl   = kvm_vcpu_ioctl,
1307	.mmap           = kvm_vcpu_mmap,
1308};
1309
1310/*
1311 * Allocates an inode for the vcpu.
1312 */
1313static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1314{
1315	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1316}
1317
1318/*
1319 * Creates some virtual cpus.  Good luck creating more than one.
1320 */
1321static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1322{
1323	int r;
1324	struct kvm_vcpu *vcpu, *v;
1325
1326	vcpu = kvm_arch_vcpu_create(kvm, id);
1327	if (IS_ERR(vcpu))
1328		return PTR_ERR(vcpu);
1329
1330	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1331
1332	r = kvm_arch_vcpu_setup(vcpu);
1333	if (r)
1334		return r;
1335
1336	mutex_lock(&kvm->lock);
1337	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1338		r = -EINVAL;
1339		goto vcpu_destroy;
1340	}
1341
1342	kvm_for_each_vcpu(r, v, kvm)
1343		if (v->vcpu_id == id) {
1344			r = -EEXIST;
1345			goto vcpu_destroy;
1346		}
1347
1348	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1349
1350	/* Now it's all set up, let userspace reach it */
1351	kvm_get_kvm(kvm);
1352	r = create_vcpu_fd(vcpu);
1353	if (r < 0) {
1354		kvm_put_kvm(kvm);
1355		goto vcpu_destroy;
1356	}
1357
1358	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1359	smp_wmb();
1360	atomic_inc(&kvm->online_vcpus);
1361
1362#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1363	if (kvm->bsp_vcpu_id == id)
1364		kvm->bsp_vcpu = vcpu;
1365#endif
1366	mutex_unlock(&kvm->lock);
1367	return r;
1368
1369vcpu_destroy:
1370	mutex_unlock(&kvm->lock);
1371	kvm_arch_vcpu_destroy(vcpu);
1372	return r;
1373}
1374
1375static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1376{
1377	if (sigset) {
1378		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1379		vcpu->sigset_active = 1;
1380		vcpu->sigset = *sigset;
1381	} else
1382		vcpu->sigset_active = 0;
1383	return 0;
1384}
1385
1386static long kvm_vcpu_ioctl(struct file *filp,
1387			   unsigned int ioctl, unsigned long arg)
1388{
1389	struct kvm_vcpu *vcpu = filp->private_data;
1390	void __user *argp = (void __user *)arg;
1391	int r;
1392	struct kvm_fpu *fpu = NULL;
1393	struct kvm_sregs *kvm_sregs = NULL;
1394
1395	if (vcpu->kvm->mm != current->mm)
1396		return -EIO;
1397
1398#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1399	/*
1400	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1401	 * so vcpu_load() would break it.
1402	 */
1403	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1404		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1405#endif
1406
1407
1408	vcpu_load(vcpu);
1409	switch (ioctl) {
1410	case KVM_RUN:
1411		r = -EINVAL;
1412		if (arg)
1413			goto out;
1414		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1415		break;
1416	case KVM_GET_REGS: {
1417		struct kvm_regs *kvm_regs;
1418
1419		r = -ENOMEM;
1420		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1421		if (!kvm_regs)
1422			goto out;
1423		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1424		if (r)
1425			goto out_free1;
1426		r = -EFAULT;
1427		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1428			goto out_free1;
1429		r = 0;
1430out_free1:
1431		kfree(kvm_regs);
1432		break;
1433	}
1434	case KVM_SET_REGS: {
1435		struct kvm_regs *kvm_regs;
1436
1437		r = -ENOMEM;
1438		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1439		if (!kvm_regs)
1440			goto out;
1441		r = -EFAULT;
1442		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1443			goto out_free2;
1444		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1445		if (r)
1446			goto out_free2;
1447		r = 0;
1448out_free2:
1449		kfree(kvm_regs);
1450		break;
1451	}
1452	case KVM_GET_SREGS: {
1453		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1454		r = -ENOMEM;
1455		if (!kvm_sregs)
1456			goto out;
1457		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1458		if (r)
1459			goto out;
1460		r = -EFAULT;
1461		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1462			goto out;
1463		r = 0;
1464		break;
1465	}
1466	case KVM_SET_SREGS: {
1467		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1468		r = -ENOMEM;
1469		if (!kvm_sregs)
1470			goto out;
1471		r = -EFAULT;
1472		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1473			goto out;
1474		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1475		if (r)
1476			goto out;
1477		r = 0;
1478		break;
1479	}
1480	case KVM_GET_MP_STATE: {
1481		struct kvm_mp_state mp_state;
1482
1483		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1484		if (r)
1485			goto out;
1486		r = -EFAULT;
1487		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1488			goto out;
1489		r = 0;
1490		break;
1491	}
1492	case KVM_SET_MP_STATE: {
1493		struct kvm_mp_state mp_state;
1494
1495		r = -EFAULT;
1496		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1497			goto out;
1498		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1499		if (r)
1500			goto out;
1501		r = 0;
1502		break;
1503	}
1504	case KVM_TRANSLATE: {
1505		struct kvm_translation tr;
1506
1507		r = -EFAULT;
1508		if (copy_from_user(&tr, argp, sizeof tr))
1509			goto out;
1510		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1511		if (r)
1512			goto out;
1513		r = -EFAULT;
1514		if (copy_to_user(argp, &tr, sizeof tr))
1515			goto out;
1516		r = 0;
1517		break;
1518	}
1519	case KVM_SET_GUEST_DEBUG: {
1520		struct kvm_guest_debug dbg;
1521
1522		r = -EFAULT;
1523		if (copy_from_user(&dbg, argp, sizeof dbg))
1524			goto out;
1525		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1526		if (r)
1527			goto out;
1528		r = 0;
1529		break;
1530	}
1531	case KVM_SET_SIGNAL_MASK: {
1532		struct kvm_signal_mask __user *sigmask_arg = argp;
1533		struct kvm_signal_mask kvm_sigmask;
1534		sigset_t sigset, *p;
1535
1536		p = NULL;
1537		if (argp) {
1538			r = -EFAULT;
1539			if (copy_from_user(&kvm_sigmask, argp,
1540					   sizeof kvm_sigmask))
1541				goto out;
1542			r = -EINVAL;
1543			if (kvm_sigmask.len != sizeof sigset)
1544				goto out;
1545			r = -EFAULT;
1546			if (copy_from_user(&sigset, sigmask_arg->sigset,
1547					   sizeof sigset))
1548				goto out;
1549			p = &sigset;
1550		}
1551		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1552		break;
1553	}
1554	case KVM_GET_FPU: {
1555		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1556		r = -ENOMEM;
1557		if (!fpu)
1558			goto out;
1559		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1560		if (r)
1561			goto out;
1562		r = -EFAULT;
1563		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1564			goto out;
1565		r = 0;
1566		break;
1567	}
1568	case KVM_SET_FPU: {
1569		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1570		r = -ENOMEM;
1571		if (!fpu)
1572			goto out;
1573		r = -EFAULT;
1574		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1575			goto out;
1576		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1577		if (r)
1578			goto out;
1579		r = 0;
1580		break;
1581	}
1582	default:
1583		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1584	}
1585out:
1586	vcpu_put(vcpu);
1587	kfree(fpu);
1588	kfree(kvm_sregs);
1589	return r;
1590}
1591
1592static long kvm_vm_ioctl(struct file *filp,
1593			   unsigned int ioctl, unsigned long arg)
1594{
1595	struct kvm *kvm = filp->private_data;
1596	void __user *argp = (void __user *)arg;
1597	int r;
1598
1599	if (kvm->mm != current->mm)
1600		return -EIO;
1601	switch (ioctl) {
1602	case KVM_CREATE_VCPU:
1603		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1604		if (r < 0)
1605			goto out;
1606		break;
1607	case KVM_SET_USER_MEMORY_REGION: {
1608		struct kvm_userspace_memory_region kvm_userspace_mem;
1609
1610		r = -EFAULT;
1611		if (copy_from_user(&kvm_userspace_mem, argp,
1612						sizeof kvm_userspace_mem))
1613			goto out;
1614
1615		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1616		if (r)
1617			goto out;
1618		break;
1619	}
1620	case KVM_GET_DIRTY_LOG: {
1621		struct kvm_dirty_log log;
1622
1623		r = -EFAULT;
1624		if (copy_from_user(&log, argp, sizeof log))
1625			goto out;
1626		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1627		if (r)
1628			goto out;
1629		break;
1630	}
1631#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1632	case KVM_REGISTER_COALESCED_MMIO: {
1633		struct kvm_coalesced_mmio_zone zone;
1634		r = -EFAULT;
1635		if (copy_from_user(&zone, argp, sizeof zone))
1636			goto out;
1637		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1638		if (r)
1639			goto out;
1640		r = 0;
1641		break;
1642	}
1643	case KVM_UNREGISTER_COALESCED_MMIO: {
1644		struct kvm_coalesced_mmio_zone zone;
1645		r = -EFAULT;
1646		if (copy_from_user(&zone, argp, sizeof zone))
1647			goto out;
1648		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1649		if (r)
1650			goto out;
1651		r = 0;
1652		break;
1653	}
1654#endif
1655	case KVM_IRQFD: {
1656		struct kvm_irqfd data;
1657
1658		r = -EFAULT;
1659		if (copy_from_user(&data, argp, sizeof data))
1660			goto out;
1661		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1662		break;
1663	}
1664	case KVM_IOEVENTFD: {
1665		struct kvm_ioeventfd data;
1666
1667		r = -EFAULT;
1668		if (copy_from_user(&data, argp, sizeof data))
1669			goto out;
1670		r = kvm_ioeventfd(kvm, &data);
1671		break;
1672	}
1673#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1674	case KVM_SET_BOOT_CPU_ID:
1675		r = 0;
1676		mutex_lock(&kvm->lock);
1677		if (atomic_read(&kvm->online_vcpus) != 0)
1678			r = -EBUSY;
1679		else
1680			kvm->bsp_vcpu_id = arg;
1681		mutex_unlock(&kvm->lock);
1682		break;
1683#endif
1684	default:
1685		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1686		if (r == -ENOTTY)
1687			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1688	}
1689out:
1690	return r;
1691}
1692
1693#ifdef CONFIG_COMPAT
1694struct compat_kvm_dirty_log {
1695	__u32 slot;
1696	__u32 padding1;
1697	union {
1698		compat_uptr_t dirty_bitmap; /* one bit per page */
1699		__u64 padding2;
1700	};
1701};
1702
1703static long kvm_vm_compat_ioctl(struct file *filp,
1704			   unsigned int ioctl, unsigned long arg)
1705{
1706	struct kvm *kvm = filp->private_data;
1707	int r;
1708
1709	if (kvm->mm != current->mm)
1710		return -EIO;
1711	switch (ioctl) {
1712	case KVM_GET_DIRTY_LOG: {
1713		struct compat_kvm_dirty_log compat_log;
1714		struct kvm_dirty_log log;
1715
1716		r = -EFAULT;
1717		if (copy_from_user(&compat_log, (void __user *)arg,
1718				   sizeof(compat_log)))
1719			goto out;
1720		log.slot	 = compat_log.slot;
1721		log.padding1	 = compat_log.padding1;
1722		log.padding2	 = compat_log.padding2;
1723		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1724
1725		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1726		if (r)
1727			goto out;
1728		break;
1729	}
1730	default:
1731		r = kvm_vm_ioctl(filp, ioctl, arg);
1732	}
1733
1734out:
1735	return r;
1736}
1737#endif
1738
1739static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1740{
1741	struct page *page[1];
1742	unsigned long addr;
1743	int npages;
1744	gfn_t gfn = vmf->pgoff;
1745	struct kvm *kvm = vma->vm_file->private_data;
1746
1747	addr = gfn_to_hva(kvm, gfn);
1748	if (kvm_is_error_hva(addr))
1749		return VM_FAULT_SIGBUS;
1750
1751	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1752				NULL);
1753	if (unlikely(npages != 1))
1754		return VM_FAULT_SIGBUS;
1755
1756	vmf->page = page[0];
1757	return 0;
1758}
1759
1760static const struct vm_operations_struct kvm_vm_vm_ops = {
1761	.fault = kvm_vm_fault,
1762};
1763
1764static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1765{
1766	vma->vm_ops = &kvm_vm_vm_ops;
1767	return 0;
1768}
1769
1770static struct file_operations kvm_vm_fops = {
1771	.release        = kvm_vm_release,
1772	.unlocked_ioctl = kvm_vm_ioctl,
1773#ifdef CONFIG_COMPAT
1774	.compat_ioctl   = kvm_vm_compat_ioctl,
1775#endif
1776	.mmap           = kvm_vm_mmap,
1777};
1778
1779static int kvm_dev_ioctl_create_vm(void)
1780{
1781	int fd, r;
1782	struct kvm *kvm;
1783
1784	kvm = kvm_create_vm();
1785	if (IS_ERR(kvm))
1786		return PTR_ERR(kvm);
1787#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1788	r = kvm_coalesced_mmio_init(kvm);
1789	if (r < 0) {
1790		kvm_put_kvm(kvm);
1791		return r;
1792	}
1793#endif
1794	fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1795	if (fd < 0)
1796		kvm_put_kvm(kvm);
1797
1798	return fd;
1799}
1800
1801static long kvm_dev_ioctl_check_extension_generic(long arg)
1802{
1803	switch (arg) {
1804	case KVM_CAP_USER_MEMORY:
1805	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1806	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1807#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1808	case KVM_CAP_SET_BOOT_CPU_ID:
1809#endif
1810	case KVM_CAP_INTERNAL_ERROR_DATA:
1811		return 1;
1812#ifdef CONFIG_HAVE_KVM_IRQCHIP
1813	case KVM_CAP_IRQ_ROUTING:
1814		return KVM_MAX_IRQ_ROUTES;
1815#endif
1816	default:
1817		break;
1818	}
1819	return kvm_dev_ioctl_check_extension(arg);
1820}
1821
1822static long kvm_dev_ioctl(struct file *filp,
1823			  unsigned int ioctl, unsigned long arg)
1824{
1825	long r = -EINVAL;
1826
1827	switch (ioctl) {
1828	case KVM_GET_API_VERSION:
1829		r = -EINVAL;
1830		if (arg)
1831			goto out;
1832		r = KVM_API_VERSION;
1833		break;
1834	case KVM_CREATE_VM:
1835		r = -EINVAL;
1836		if (arg)
1837			goto out;
1838		r = kvm_dev_ioctl_create_vm();
1839		break;
1840	case KVM_CHECK_EXTENSION:
1841		r = kvm_dev_ioctl_check_extension_generic(arg);
1842		break;
1843	case KVM_GET_VCPU_MMAP_SIZE:
1844		r = -EINVAL;
1845		if (arg)
1846			goto out;
1847		r = PAGE_SIZE;     /* struct kvm_run */
1848#ifdef CONFIG_X86
1849		r += PAGE_SIZE;    /* pio data page */
1850#endif
1851#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1852		r += PAGE_SIZE;    /* coalesced mmio ring page */
1853#endif
1854		break;
1855	case KVM_TRACE_ENABLE:
1856	case KVM_TRACE_PAUSE:
1857	case KVM_TRACE_DISABLE:
1858		r = -EOPNOTSUPP;
1859		break;
1860	default:
1861		return kvm_arch_dev_ioctl(filp, ioctl, arg);
1862	}
1863out:
1864	return r;
1865}
1866
1867static struct file_operations kvm_chardev_ops = {
1868	.unlocked_ioctl = kvm_dev_ioctl,
1869	.compat_ioctl   = kvm_dev_ioctl,
1870};
1871
1872static struct miscdevice kvm_dev = {
1873	KVM_MINOR,
1874	"kvm",
1875	&kvm_chardev_ops,
1876};
1877
1878static void hardware_enable(void *junk)
1879{
1880	int cpu = raw_smp_processor_id();
1881	int r;
1882
1883	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1884		return;
1885
1886	cpumask_set_cpu(cpu, cpus_hardware_enabled);
1887
1888	r = kvm_arch_hardware_enable(NULL);
1889
1890	if (r) {
1891		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1892		atomic_inc(&hardware_enable_failed);
1893		printk(KERN_INFO "kvm: enabling virtualization on "
1894				 "CPU%d failed\n", cpu);
1895	}
1896}
1897
1898static void hardware_disable(void *junk)
1899{
1900	int cpu = raw_smp_processor_id();
1901
1902	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1903		return;
1904	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1905	kvm_arch_hardware_disable(NULL);
1906}
1907
1908static void hardware_disable_all_nolock(void)
1909{
1910	BUG_ON(!kvm_usage_count);
1911
1912	kvm_usage_count--;
1913	if (!kvm_usage_count)
1914		on_each_cpu(hardware_disable, NULL, 1);
1915}
1916
1917static void hardware_disable_all(void)
1918{
1919	spin_lock(&kvm_lock);
1920	hardware_disable_all_nolock();
1921	spin_unlock(&kvm_lock);
1922}
1923
1924static int hardware_enable_all(void)
1925{
1926	int r = 0;
1927
1928	spin_lock(&kvm_lock);
1929
1930	kvm_usage_count++;
1931	if (kvm_usage_count == 1) {
1932		atomic_set(&hardware_enable_failed, 0);
1933		on_each_cpu(hardware_enable, NULL, 1);
1934
1935		if (atomic_read(&hardware_enable_failed)) {
1936			hardware_disable_all_nolock();
1937			r = -EBUSY;
1938		}
1939	}
1940
1941	spin_unlock(&kvm_lock);
1942
1943	return r;
1944}
1945
1946static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1947			   void *v)
1948{
1949	int cpu = (long)v;
1950
1951	if (!kvm_usage_count)
1952		return NOTIFY_OK;
1953
1954	val &= ~CPU_TASKS_FROZEN;
1955	switch (val) {
1956	case CPU_DYING:
1957		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1958		       cpu);
1959		hardware_disable(NULL);
1960		break;
1961	case CPU_STARTING:
1962		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1963		       cpu);
1964		hardware_enable(NULL);
1965		break;
1966	}
1967	return NOTIFY_OK;
1968}
1969
1970
1971asmlinkage void kvm_handle_fault_on_reboot(void)
1972{
1973	if (kvm_rebooting) {
1974		/* spin while reset goes on */
1975		local_irq_enable();
1976		while (true)
1977			;
1978	}
1979	/* Fault while not rebooting.  We want the trace. */
1980	BUG();
1981}
1982EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1983
1984static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1985		      void *v)
1986{
1987	/*
1988	 * Some (well, at least mine) BIOSes hang on reboot if
1989	 * in vmx root mode.
1990	 *
1991	 * And Intel TXT required VMX off for all cpu when system shutdown.
1992	 */
1993	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1994	kvm_rebooting = true;
1995	on_each_cpu(hardware_disable, NULL, 1);
1996	return NOTIFY_OK;
1997}
1998
1999static struct notifier_block kvm_reboot_notifier = {
2000	.notifier_call = kvm_reboot,
2001	.priority = 0,
2002};
2003
2004static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2005{
2006	int i;
2007
2008	for (i = 0; i < bus->dev_count; i++) {
2009		struct kvm_io_device *pos = bus->devs[i];
2010
2011		kvm_iodevice_destructor(pos);
2012	}
2013	kfree(bus);
2014}
2015
2016/* kvm_io_bus_write - called under kvm->slots_lock */
2017int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2018		     int len, const void *val)
2019{
2020	int i;
2021	struct kvm_io_bus *bus;
2022
2023	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2024	for (i = 0; i < bus->dev_count; i++)
2025		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2026			return 0;
2027	return -EOPNOTSUPP;
2028}
2029
2030/* kvm_io_bus_read - called under kvm->slots_lock */
2031int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2032		    int len, void *val)
2033{
2034	int i;
2035	struct kvm_io_bus *bus;
2036
2037	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2038	for (i = 0; i < bus->dev_count; i++)
2039		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2040			return 0;
2041	return -EOPNOTSUPP;
2042}
2043
2044/* Caller must hold slots_lock. */
2045int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2046			    struct kvm_io_device *dev)
2047{
2048	struct kvm_io_bus *new_bus, *bus;
2049
2050	bus = kvm->buses[bus_idx];
2051	if (bus->dev_count > NR_IOBUS_DEVS-1)
2052		return -ENOSPC;
2053
2054	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2055	if (!new_bus)
2056		return -ENOMEM;
2057	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2058	new_bus->devs[new_bus->dev_count++] = dev;
2059	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2060	synchronize_srcu_expedited(&kvm->srcu);
2061	kfree(bus);
2062
2063	return 0;
2064}
2065
2066/* Caller must hold slots_lock. */
2067int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2068			      struct kvm_io_device *dev)
2069{
2070	int i, r;
2071	struct kvm_io_bus *new_bus, *bus;
2072
2073	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2074	if (!new_bus)
2075		return -ENOMEM;
2076
2077	bus = kvm->buses[bus_idx];
2078	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2079
2080	r = -ENOENT;
2081	for (i = 0; i < new_bus->dev_count; i++)
2082		if (new_bus->devs[i] == dev) {
2083			r = 0;
2084			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2085			break;
2086		}
2087
2088	if (r) {
2089		kfree(new_bus);
2090		return r;
2091	}
2092
2093	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2094	synchronize_srcu_expedited(&kvm->srcu);
2095	kfree(bus);
2096	return r;
2097}
2098
2099static struct notifier_block kvm_cpu_notifier = {
2100	.notifier_call = kvm_cpu_hotplug,
2101};
2102
2103static int vm_stat_get(void *_offset, u64 *val)
2104{
2105	unsigned offset = (long)_offset;
2106	struct kvm *kvm;
2107
2108	*val = 0;
2109	spin_lock(&kvm_lock);
2110	list_for_each_entry(kvm, &vm_list, vm_list)
2111		*val += *(u32 *)((void *)kvm + offset);
2112	spin_unlock(&kvm_lock);
2113	return 0;
2114}
2115
2116DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2117
2118static int vcpu_stat_get(void *_offset, u64 *val)
2119{
2120	unsigned offset = (long)_offset;
2121	struct kvm *kvm;
2122	struct kvm_vcpu *vcpu;
2123	int i;
2124
2125	*val = 0;
2126	spin_lock(&kvm_lock);
2127	list_for_each_entry(kvm, &vm_list, vm_list)
2128		kvm_for_each_vcpu(i, vcpu, kvm)
2129			*val += *(u32 *)((void *)vcpu + offset);
2130
2131	spin_unlock(&kvm_lock);
2132	return 0;
2133}
2134
2135DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2136
2137static const struct file_operations *stat_fops[] = {
2138	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2139	[KVM_STAT_VM]   = &vm_stat_fops,
2140};
2141
2142static void kvm_init_debug(void)
2143{
2144	struct kvm_stats_debugfs_item *p;
2145
2146	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2147	for (p = debugfs_entries; p->name; ++p)
2148		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2149						(void *)(long)p->offset,
2150						stat_fops[p->kind]);
2151}
2152
2153static void kvm_exit_debug(void)
2154{
2155	struct kvm_stats_debugfs_item *p;
2156
2157	for (p = debugfs_entries; p->name; ++p)
2158		debugfs_remove(p->dentry);
2159	debugfs_remove(kvm_debugfs_dir);
2160}
2161
2162static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2163{
2164	if (kvm_usage_count)
2165		hardware_disable(NULL);
2166	return 0;
2167}
2168
2169static int kvm_resume(struct sys_device *dev)
2170{
2171	if (kvm_usage_count)
2172		hardware_enable(NULL);
2173	return 0;
2174}
2175
2176static struct sysdev_class kvm_sysdev_class = {
2177	.name = "kvm",
2178	.suspend = kvm_suspend,
2179	.resume = kvm_resume,
2180};
2181
2182static struct sys_device kvm_sysdev = {
2183	.id = 0,
2184	.cls = &kvm_sysdev_class,
2185};
2186
2187struct page *bad_page;
2188pfn_t bad_pfn;
2189
2190static inline
2191struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2192{
2193	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2194}
2195
2196static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2197{
2198	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2199
2200	kvm_arch_vcpu_load(vcpu, cpu);
2201}
2202
2203static void kvm_sched_out(struct preempt_notifier *pn,
2204			  struct task_struct *next)
2205{
2206	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2207
2208	kvm_arch_vcpu_put(vcpu);
2209}
2210
2211int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2212		  struct module *module)
2213{
2214	int r;
2215	int cpu;
2216
2217	r = kvm_arch_init(opaque);
2218	if (r)
2219		goto out_fail;
2220
2221	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2222
2223	if (bad_page == NULL) {
2224		r = -ENOMEM;
2225		goto out;
2226	}
2227
2228	bad_pfn = page_to_pfn(bad_page);
2229
2230	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2231
2232	if (hwpoison_page == NULL) {
2233		r = -ENOMEM;
2234		goto out_free_0;
2235	}
2236
2237	hwpoison_pfn = page_to_pfn(hwpoison_page);
2238
2239	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2240
2241	if (fault_page == NULL) {
2242		r = -ENOMEM;
2243		goto out_free_0;
2244	}
2245
2246	fault_pfn = page_to_pfn(fault_page);
2247
2248	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2249		r = -ENOMEM;
2250		goto out_free_0;
2251	}
2252
2253	r = kvm_arch_hardware_setup();
2254	if (r < 0)
2255		goto out_free_0a;
2256
2257	for_each_online_cpu(cpu) {
2258		smp_call_function_single(cpu,
2259				kvm_arch_check_processor_compat,
2260				&r, 1);
2261		if (r < 0)
2262			goto out_free_1;
2263	}
2264
2265	r = register_cpu_notifier(&kvm_cpu_notifier);
2266	if (r)
2267		goto out_free_2;
2268	register_reboot_notifier(&kvm_reboot_notifier);
2269
2270	r = sysdev_class_register(&kvm_sysdev_class);
2271	if (r)
2272		goto out_free_3;
2273
2274	r = sysdev_register(&kvm_sysdev);
2275	if (r)
2276		goto out_free_4;
2277
2278	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2279	if (!vcpu_align)
2280		vcpu_align = __alignof__(struct kvm_vcpu);
2281	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2282					   0, NULL);
2283	if (!kvm_vcpu_cache) {
2284		r = -ENOMEM;
2285		goto out_free_5;
2286	}
2287
2288	kvm_chardev_ops.owner = module;
2289	kvm_vm_fops.owner = module;
2290	kvm_vcpu_fops.owner = module;
2291
2292	r = misc_register(&kvm_dev);
2293	if (r) {
2294		printk(KERN_ERR "kvm: misc device register failed\n");
2295		goto out_free;
2296	}
2297
2298	kvm_preempt_ops.sched_in = kvm_sched_in;
2299	kvm_preempt_ops.sched_out = kvm_sched_out;
2300
2301	kvm_init_debug();
2302
2303	return 0;
2304
2305out_free:
2306	kmem_cache_destroy(kvm_vcpu_cache);
2307out_free_5:
2308	sysdev_unregister(&kvm_sysdev);
2309out_free_4:
2310	sysdev_class_unregister(&kvm_sysdev_class);
2311out_free_3:
2312	unregister_reboot_notifier(&kvm_reboot_notifier);
2313	unregister_cpu_notifier(&kvm_cpu_notifier);
2314out_free_2:
2315out_free_1:
2316	kvm_arch_hardware_unsetup();
2317out_free_0a:
2318	free_cpumask_var(cpus_hardware_enabled);
2319out_free_0:
2320	if (fault_page)
2321		__free_page(fault_page);
2322	if (hwpoison_page)
2323		__free_page(hwpoison_page);
2324	__free_page(bad_page);
2325out:
2326	kvm_arch_exit();
2327out_fail:
2328	return r;
2329}
2330EXPORT_SYMBOL_GPL(kvm_init);
2331
2332void kvm_exit(void)
2333{
2334	kvm_exit_debug();
2335	misc_deregister(&kvm_dev);
2336	kmem_cache_destroy(kvm_vcpu_cache);
2337	sysdev_unregister(&kvm_sysdev);
2338	sysdev_class_unregister(&kvm_sysdev_class);
2339	unregister_reboot_notifier(&kvm_reboot_notifier);
2340	unregister_cpu_notifier(&kvm_cpu_notifier);
2341	on_each_cpu(hardware_disable, NULL, 1);
2342	kvm_arch_hardware_unsetup();
2343	kvm_arch_exit();
2344	free_cpumask_var(cpus_hardware_enabled);
2345	__free_page(hwpoison_page);
2346	__free_page(bad_page);
2347}
2348EXPORT_SYMBOL_GPL(kvm_exit);
2349