• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/sound/sparc/
1/*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4 *
5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6 *
7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10 *
11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12 * on Sun SPARCStation 10, 20, LX and Voyager models.
13 *
14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15 *   data time multiplexer with ISDN support (aka T7259)
16 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18 *   Documentation:
19 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20 *     Sparc Technology Business (courtesy of Sun Support)
21 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22 *     available from the Lucent (formerly AT&T microelectronics) home
23 *     page.
24 *   - http://www.freesoft.org/Linux/DBRI/
25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27 *   Documentation: from the Crystal Semiconductor home page.
28 *
29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30 * memory and a serial device (long pipes, no. 0-15) or between two serial
31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32 * device (short pipes).
33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
34 * The timeslots are linked to 6 circular lists, one for each direction for
35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36 * (the second one is a monitor/tee pipe, valid only for serial input).
37 *
38 * The mmcodec is connected via the CHI bus and needs the data & some
39 * parameters (volume, output selection) time multiplexed in 8 byte
40 * chunks. It also has a control mode, which serves for audio format setting.
41 *
42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45 * audio devices. But the SUN HW group decided against it, at least on my
46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * connected.
48 *
49 * I've tried to stick to the following function naming conventions:
50 * snd_*	ALSA stuff
51 * cs4215_*	CS4215 codec specific stuff
52 * dbri_*	DBRI high-level stuff
53 * other	DBRI low-level stuff
54 */
55
56#include <linux/interrupt.h>
57#include <linux/delay.h>
58#include <linux/irq.h>
59#include <linux/io.h>
60#include <linux/dma-mapping.h>
61#include <linux/gfp.h>
62
63#include <sound/core.h>
64#include <sound/pcm.h>
65#include <sound/pcm_params.h>
66#include <sound/info.h>
67#include <sound/control.h>
68#include <sound/initval.h>
69
70#include <linux/of.h>
71#include <linux/of_device.h>
72#include <asm/atomic.h>
73
74MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
75MODULE_DESCRIPTION("Sun DBRI");
76MODULE_LICENSE("GPL");
77MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
78
79static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
80static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
81/* Enable this card */
82static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
83
84module_param_array(index, int, NULL, 0444);
85MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
86module_param_array(id, charp, NULL, 0444);
87MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
88module_param_array(enable, bool, NULL, 0444);
89MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
90
91#undef DBRI_DEBUG
92
93#define D_INT	(1<<0)
94#define D_GEN	(1<<1)
95#define D_CMD	(1<<2)
96#define D_MM	(1<<3)
97#define D_USR	(1<<4)
98#define D_DESC	(1<<5)
99
100static int dbri_debug;
101module_param(dbri_debug, int, 0644);
102MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
103
104#ifdef DBRI_DEBUG
105static char *cmds[] = {
106	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
107	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
108};
109
110#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
111
112#else
113#define dprintk(a, x...) do { } while (0)
114
115#endif				/* DBRI_DEBUG */
116
117#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
118				    (intr << 27) |	\
119				    value)
120
121/***************************************************************************
122	CS4215 specific definitions and structures
123****************************************************************************/
124
125struct cs4215 {
126	__u8 data[4];		/* Data mode: Time slots 5-8 */
127	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
128	__u8 onboard;
129	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
130	volatile __u32 status;
131	volatile __u32 version;
132	__u8 precision;		/* In bits, either 8 or 16 */
133	__u8 channels;		/* 1 or 2 */
134};
135
136/*
137 * Control mode first
138 */
139
140/* Time Slot 1, Status register */
141#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
142#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
143				/* 0: line: 2.8V, speaker 8V */
144#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
145#define CS4215_RSRVD_1  (1<<5)
146
147/* Time Slot 2, Data Format Register */
148#define CS4215_DFR_LINEAR16	0
149#define CS4215_DFR_ULAW		1
150#define CS4215_DFR_ALAW		2
151#define CS4215_DFR_LINEAR8	3
152#define CS4215_DFR_STEREO	(1<<2)
153static struct {
154	unsigned short freq;
155	unsigned char xtal;
156	unsigned char csval;
157} CS4215_FREQ[] = {
158	{  8000, (1 << 4), (0 << 3) },
159	{ 16000, (1 << 4), (1 << 3) },
160	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
161	{ 32000, (1 << 4), (3 << 3) },
162     /* {    NA, (1 << 4), (4 << 3) }, */
163     /* {    NA, (1 << 4), (5 << 3) }, */
164	{ 48000, (1 << 4), (6 << 3) },
165	{  9600, (1 << 4), (7 << 3) },
166	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
167	{ 11025, (2 << 4), (1 << 3) },
168	{ 18900, (2 << 4), (2 << 3) },
169	{ 22050, (2 << 4), (3 << 3) },
170	{ 37800, (2 << 4), (4 << 3) },
171	{ 44100, (2 << 4), (5 << 3) },
172	{ 33075, (2 << 4), (6 << 3) },
173	{  6615, (2 << 4), (7 << 3) },
174	{ 0, 0, 0}
175};
176
177#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
178
179#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
180
181/* Time Slot 3, Serial Port Control register */
182#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
183#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
184#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
185#define CS4215_BSEL_128	(1<<2)
186#define CS4215_BSEL_256	(2<<2)
187#define CS4215_MCK_MAST (0<<4)	/* Master clock */
188#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
189#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
190#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
191#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
192
193/* Time Slot 4, Test Register */
194#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
195#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
196
197/* Time Slot 5, Parallel Port Register */
198/* Read only here and the same as the in data mode */
199
200/* Time Slot 6, Reserved  */
201
202/* Time Slot 7, Version Register  */
203#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
204
205/* Time Slot 8, Reserved  */
206
207/*
208 * Data mode
209 */
210/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
211
212/* Time Slot 5, Output Setting  */
213#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
214#define CS4215_LE	(1<<6)	/* Line Out Enable */
215#define CS4215_HE	(1<<7)	/* Headphone Enable */
216
217/* Time Slot 6, Output Setting  */
218#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
219#define CS4215_SE	(1<<6)	/* Speaker Enable */
220#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
221
222/* Time Slot 7, Input Setting */
223#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
224#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
225#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
226#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
227#define CS4215_PIO1	(1<<7)
228
229/* Time Slot 8, Input Setting */
230#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
231#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
232
233/***************************************************************************
234		DBRI specific definitions and structures
235****************************************************************************/
236
237/* DBRI main registers */
238#define REG0	0x00		/* Status and Control */
239#define REG1	0x04		/* Mode and Interrupt */
240#define REG2	0x08		/* Parallel IO */
241#define REG3	0x0c		/* Test */
242#define REG8	0x20		/* Command Queue Pointer */
243#define REG9	0x24		/* Interrupt Queue Pointer */
244
245#define DBRI_NO_CMDS	64
246#define DBRI_INT_BLK	64
247#define DBRI_NO_DESCS	64
248#define DBRI_NO_PIPES	32
249#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
250
251#define DBRI_REC	0
252#define DBRI_PLAY	1
253#define DBRI_NO_STREAMS	2
254
255/* One transmit/receive descriptor */
256/* When ba != 0 descriptor is used */
257struct dbri_mem {
258	volatile __u32 word1;
259	__u32 ba;	/* Transmit/Receive Buffer Address */
260	__u32 nda;	/* Next Descriptor Address */
261	volatile __u32 word4;
262};
263
264/* This structure is in a DMA region where it can accessed by both
265 * the CPU and the DBRI
266 */
267struct dbri_dma {
268	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
269	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
270	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
271};
272
273#define dbri_dma_off(member, elem)	\
274	((u32)(unsigned long)		\
275	 (&(((struct dbri_dma *)0)->member[elem])))
276
277enum in_or_out { PIPEinput, PIPEoutput };
278
279struct dbri_pipe {
280	u32 sdp;		/* SDP command word */
281	int nextpipe;		/* Next pipe in linked list */
282	int length;		/* Length of timeslot (bits) */
283	int first_desc;		/* Index of first descriptor */
284	int desc;		/* Index of active descriptor */
285	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
286};
287
288/* Per stream (playback or record) information */
289struct dbri_streaminfo {
290	struct snd_pcm_substream *substream;
291	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
292	int size;		/* Size of DMA buffer             */
293	size_t offset;		/* offset in user buffer          */
294	int pipe;		/* Data pipe used                 */
295	int left_gain;		/* mixer elements                 */
296	int right_gain;
297};
298
299/* This structure holds the information for both chips (DBRI & CS4215) */
300struct snd_dbri {
301	int regs_size, irq;	/* Needed for unload */
302	struct platform_device *op;	/* OF device info */
303	spinlock_t lock;
304
305	struct dbri_dma *dma;	/* Pointer to our DMA block */
306	u32 dma_dvma;		/* DBRI visible DMA address */
307
308	void __iomem *regs;	/* dbri HW regs */
309	int dbri_irqp;		/* intr queue pointer */
310
311	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
312	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
313	spinlock_t cmdlock;	/* Protects cmd queue accesses */
314	s32 *cmdptr;		/* Pointer to the last queued cmd */
315
316	int chi_bpf;
317
318	struct cs4215 mm;	/* mmcodec special info */
319				/* per stream (playback/record) info */
320	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
321};
322
323#define DBRI_MAX_VOLUME		63	/* Output volume */
324#define DBRI_MAX_GAIN		15	/* Input gain */
325
326/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
327#define D_P		(1<<15)	/* Program command & queue pointer valid */
328#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
329#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
330#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
331#define D_X		(1<<7)	/* Sanity Timer Disable */
332#define D_T		(1<<6)	/* Permit activation of the TE interface */
333#define D_N		(1<<5)	/* Permit activation of the NT interface */
334#define D_C		(1<<4)	/* Permit activation of the CHI interface */
335#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
336#define D_D		(1<<2)	/* Disable Master Mode */
337#define D_H		(1<<1)	/* Halt for Analysis */
338#define D_R		(1<<0)	/* Soft Reset */
339
340/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
341#define D_LITTLE_END	(1<<8)	/* Byte Order */
342#define D_BIG_END	(0<<8)	/* Byte Order */
343#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
344#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
345#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
346#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
347#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
348
349/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
350#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
351#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
352#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
353#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
354#define D_ENPIO		(0xf0)	/* Enable all the pins */
355#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
356#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
357#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
358#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
359
360/* DBRI Commands (Page 20) */
361#define D_WAIT		0x0	/* Stop execution */
362#define D_PAUSE		0x1	/* Flush long pipes */
363#define D_JUMP		0x2	/* New command queue */
364#define D_IIQ		0x3	/* Initialize Interrupt Queue */
365#define D_REX		0x4	/* Report command execution via interrupt */
366#define D_SDP		0x5	/* Setup Data Pipe */
367#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
368#define D_DTS		0x7	/* Define Time Slot */
369#define D_SSP		0x8	/* Set short Data Pipe */
370#define D_CHI		0x9	/* Set CHI Global Mode */
371#define D_NT		0xa	/* NT Command */
372#define D_TE		0xb	/* TE Command */
373#define D_CDEC		0xc	/* Codec setup */
374#define D_TEST		0xd	/* No comment */
375#define D_CDM		0xe	/* CHI Data mode command */
376
377/* Special bits for some commands */
378#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
379
380/* Setup Data Pipe */
381/* IRM */
382#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
383#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
384#define D_SDP_EVERY	(3<<18)	/* Report any changes */
385#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
386#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
387
388/* Pipe data MODE */
389#define D_SDP_MEM	(0<<13)	/* To/from memory */
390#define D_SDP_HDLC	(2<<13)
391#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
392#define D_SDP_SER	(4<<13)	/* Serial to serial */
393#define D_SDP_FIXED	(6<<13)	/* Short only */
394#define D_SDP_MODE(v)	((v)&(7<<13))
395
396#define D_SDP_TO_SER	(1<<12)	/* Direction */
397#define D_SDP_FROM_SER	(0<<12)	/* Direction */
398#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
399#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
400#define D_SDP_P		(1<<10)	/* Pointer Valid */
401#define D_SDP_A		(1<<8)	/* Abort */
402#define D_SDP_C		(1<<7)	/* Clear */
403
404/* Define Time Slot */
405#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
406#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
407#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
408#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
409#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
410#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
411
412/* Time Slot defines */
413#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
414#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
415#define D_TS_DI		(1<<13)	/* Data Invert */
416#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
417#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
418#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
419#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
420#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
421#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
422
423/* Concentration Highway Interface Modes */
424#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
425#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
426#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
427#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
428#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
429#define D_CHI_FD	(1<<11)	/* Frame Drive */
430#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
431
432/* NT: These are here for completeness */
433#define D_NT_FBIT	(1<<17)	/* Frame Bit */
434#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
435#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
436#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
437#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
438#define D_NT_FT		(1<<12)	/* Fixed Timing */
439#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
440#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
441#define D_NT_ACT	(1<<9)	/* Activate Interface */
442#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
443#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
444#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
445#define D_NT_FACT	(1<<1)	/* Force Activation */
446#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
447
448/* Codec Setup */
449#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
450#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
451#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
452
453/* Test */
454#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
455#define D_TEST_SIZE(v)	((v)<<11)	/* */
456#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
457#define D_TEST_PROC	0x6	/* Microprocessor test */
458#define D_TEST_SER	0x7	/* Serial-Controller test */
459#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
460#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
461#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
462#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
463#define D_TEST_DUMP	0xe	/* ROM Dump */
464
465/* CHI Data Mode */
466#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
467#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
468#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
469#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
470#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
471#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
472
473/* The Interrupts */
474#define D_INTR_BRDY	1	/* Buffer Ready for processing */
475#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
476#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
477#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
478#define D_INTR_EOL	5	/* End of List */
479#define D_INTR_CMDI	6	/* Command has bean read */
480#define D_INTR_XCMP	8	/* Transmission of frame complete */
481#define D_INTR_SBRI	9	/* BRI status change info */
482#define D_INTR_FXDT	10	/* Fixed data change */
483#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
484#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
485#define D_INTR_DBYT	12	/* Dropped by frame slip */
486#define D_INTR_RBYT	13	/* Repeated by frame slip */
487#define D_INTR_LINT	14	/* Lost Interrupt */
488#define D_INTR_UNDR	15	/* DMA underrun */
489
490#define D_INTR_TE	32
491#define D_INTR_NT	34
492#define D_INTR_CHI	36
493#define D_INTR_CMD	38
494
495#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
496#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
497#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
498#define D_INTR_GETVAL(v)	((v) & 0xffff)
499#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
500
501#define D_P_0		0	/* TE receive anchor */
502#define D_P_1		1	/* TE transmit anchor */
503#define D_P_2		2	/* NT transmit anchor */
504#define D_P_3		3	/* NT receive anchor */
505#define D_P_4		4	/* CHI send data */
506#define D_P_5		5	/* CHI receive data */
507#define D_P_6		6	/* */
508#define D_P_7		7	/* */
509#define D_P_8		8	/* */
510#define D_P_9		9	/* */
511#define D_P_10		10	/* */
512#define D_P_11		11	/* */
513#define D_P_12		12	/* */
514#define D_P_13		13	/* */
515#define D_P_14		14	/* */
516#define D_P_15		15	/* */
517#define D_P_16		16	/* CHI anchor pipe */
518#define D_P_17		17	/* CHI send */
519#define D_P_18		18	/* CHI receive */
520#define D_P_19		19	/* CHI receive */
521#define D_P_20		20	/* CHI receive */
522#define D_P_21		21	/* */
523#define D_P_22		22	/* */
524#define D_P_23		23	/* */
525#define D_P_24		24	/* */
526#define D_P_25		25	/* */
527#define D_P_26		26	/* */
528#define D_P_27		27	/* */
529#define D_P_28		28	/* */
530#define D_P_29		29	/* */
531#define D_P_30		30	/* */
532#define D_P_31		31	/* */
533
534/* Transmit descriptor defines */
535#define DBRI_TD_F	(1 << 31)	/* End of Frame */
536#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
537#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
538#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
539#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
540#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
541#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
542#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
543#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
544#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
545#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
546			/* Maximum buffer size per TD: almost 8KB */
547#define DBRI_TD_MAXCNT	((1 << 13) - 4)
548
549/* Receive descriptor defines */
550#define DBRI_RD_F	(1 << 31)	/* End of Frame */
551#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
552#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
553#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
554#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
555#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
556#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
557#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
558#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
559#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
560#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
561
562/* stream_info[] access */
563/* Translate the ALSA direction into the array index */
564#define DBRI_STREAMNO(substream)				\
565		(substream->stream ==				\
566		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
567
568/* Return a pointer to dbri_streaminfo */
569#define DBRI_STREAM(dbri, substream)	\
570		&dbri->stream_info[DBRI_STREAMNO(substream)]
571
572/*
573 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
574 * So we have to reverse the bits. Note: not all bit lengths are supported
575 */
576static __u32 reverse_bytes(__u32 b, int len)
577{
578	switch (len) {
579	case 32:
580		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
581	case 16:
582		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
583	case 8:
584		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
585	case 4:
586		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
587	case 2:
588		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
589	case 1:
590	case 0:
591		break;
592	default:
593		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
594	};
595
596	return b;
597}
598
599/*
600****************************************************************************
601************** DBRI initialization and command synchronization *************
602****************************************************************************
603
604Commands are sent to the DBRI by building a list of them in memory,
605then writing the address of the first list item to DBRI register 8.
606The list is terminated with a WAIT command, which generates a
607CPU interrupt to signal completion.
608
609Since the DBRI can run in parallel with the CPU, several means of
610synchronization present themselves. The method implemented here uses
611the dbri_cmdwait() to wait for execution of batch of sent commands.
612
613A circular command buffer is used here. A new command is being added
614while another can be executed. The scheme works by adding two WAIT commands
615after each sent batch of commands. When the next batch is prepared it is
616added after the WAIT commands then the WAITs are replaced with single JUMP
617command to the new batch. The the DBRI is forced to reread the last WAIT
618command (replaced by the JUMP by then). If the DBRI is still executing
619previous commands the request to reread the WAIT command is ignored.
620
621Every time a routine wants to write commands to the DBRI, it must
622first call dbri_cmdlock() and get pointer to a free space in
623dbri->dma->cmd buffer. After this, the commands can be written to
624the buffer, and dbri_cmdsend() is called with the final pointer value
625to send them to the DBRI.
626
627*/
628
629#define MAXLOOPS 20
630/*
631 * Wait for the current command string to execute
632 */
633static void dbri_cmdwait(struct snd_dbri *dbri)
634{
635	int maxloops = MAXLOOPS;
636	unsigned long flags;
637
638	/* Delay if previous commands are still being processed */
639	spin_lock_irqsave(&dbri->lock, flags);
640	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
641		spin_unlock_irqrestore(&dbri->lock, flags);
642		msleep_interruptible(1);
643		spin_lock_irqsave(&dbri->lock, flags);
644	}
645	spin_unlock_irqrestore(&dbri->lock, flags);
646
647	if (maxloops == 0)
648		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
649	else
650		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
651			MAXLOOPS - maxloops - 1);
652}
653/*
654 * Lock the command queue and return pointer to space for len cmd words
655 * It locks the cmdlock spinlock.
656 */
657static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
658{
659	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
660	len += 2;
661	spin_lock(&dbri->cmdlock);
662	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
663		return dbri->cmdptr + 2;
664	else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
665		return dbri->dma->cmd;
666	else
667		printk(KERN_ERR "DBRI: no space for commands.");
668
669	return NULL;
670}
671
672/*
673 * Send prepared cmd string. It works by writing a JUMP cmd into
674 * the last WAIT cmd and force DBRI to reread the cmd.
675 * The JUMP cmd points to the new cmd string.
676 * It also releases the cmdlock spinlock.
677 *
678 * Lock must be held before calling this.
679 */
680static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
681{
682	s32 tmp, addr;
683	static int wait_id = 0;
684
685	wait_id++;
686	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
687	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
688	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
689
690	/* Replace the last command with JUMP */
691	addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
692	*(dbri->cmdptr+1) = addr;
693	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
694
695#ifdef DBRI_DEBUG
696	if (cmd > dbri->cmdptr) {
697		s32 *ptr;
698
699		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
700			dprintk(D_CMD, "cmd: %lx:%08x\n",
701				(unsigned long)ptr, *ptr);
702	} else {
703		s32 *ptr = dbri->cmdptr;
704
705		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
706		ptr++;
707		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
708		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
709			dprintk(D_CMD, "cmd: %lx:%08x\n",
710				(unsigned long)ptr, *ptr);
711	}
712#endif
713
714	/* Reread the last command */
715	tmp = sbus_readl(dbri->regs + REG0);
716	tmp |= D_P;
717	sbus_writel(tmp, dbri->regs + REG0);
718
719	dbri->cmdptr = cmd;
720	spin_unlock(&dbri->cmdlock);
721}
722
723/* Lock must be held when calling this */
724static void dbri_reset(struct snd_dbri *dbri)
725{
726	int i;
727	u32 tmp;
728
729	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
730		sbus_readl(dbri->regs + REG0),
731		sbus_readl(dbri->regs + REG2),
732		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
733
734	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
735	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
736		udelay(10);
737
738	/* A brute approach - DBRI falls back to working burst size by itself
739	 * On SS20 D_S does not work, so do not try so high. */
740	tmp = sbus_readl(dbri->regs + REG0);
741	tmp |= D_G | D_E;
742	tmp &= ~D_S;
743	sbus_writel(tmp, dbri->regs + REG0);
744}
745
746/* Lock must not be held before calling this */
747static void __devinit dbri_initialize(struct snd_dbri *dbri)
748{
749	s32 *cmd;
750	u32 dma_addr;
751	unsigned long flags;
752	int n;
753
754	spin_lock_irqsave(&dbri->lock, flags);
755
756	dbri_reset(dbri);
757
758	/* Initialize pipes */
759	for (n = 0; n < DBRI_NO_PIPES; n++)
760		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
761
762	spin_lock_init(&dbri->cmdlock);
763	/*
764	 * Initialize the interrupt ring buffer.
765	 */
766	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
767	dbri->dma->intr[0] = dma_addr;
768	dbri->dbri_irqp = 1;
769	/*
770	 * Set up the interrupt queue
771	 */
772	spin_lock(&dbri->cmdlock);
773	cmd = dbri->cmdptr = dbri->dma->cmd;
774	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
775	*(cmd++) = dma_addr;
776	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
777	dbri->cmdptr = cmd;
778	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
779	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
780	dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
781	sbus_writel(dma_addr, dbri->regs + REG8);
782	spin_unlock(&dbri->cmdlock);
783
784	spin_unlock_irqrestore(&dbri->lock, flags);
785	dbri_cmdwait(dbri);
786}
787
788/*
789****************************************************************************
790************************** DBRI data pipe management ***********************
791****************************************************************************
792
793While DBRI control functions use the command and interrupt buffers, the
794main data path takes the form of data pipes, which can be short (command
795and interrupt driven), or long (attached to DMA buffers).  These functions
796provide a rudimentary means of setting up and managing the DBRI's pipes,
797but the calling functions have to make sure they respect the pipes' linked
798list ordering, among other things.  The transmit and receive functions
799here interface closely with the transmit and receive interrupt code.
800
801*/
802static inline int pipe_active(struct snd_dbri *dbri, int pipe)
803{
804	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
805}
806
807/* reset_pipe(dbri, pipe)
808 *
809 * Called on an in-use pipe to clear anything being transmitted or received
810 * Lock must be held before calling this.
811 */
812static void reset_pipe(struct snd_dbri *dbri, int pipe)
813{
814	int sdp;
815	int desc;
816	s32 *cmd;
817
818	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
819		printk(KERN_ERR "DBRI: reset_pipe called with "
820			"illegal pipe number\n");
821		return;
822	}
823
824	sdp = dbri->pipes[pipe].sdp;
825	if (sdp == 0) {
826		printk(KERN_ERR "DBRI: reset_pipe called "
827			"on uninitialized pipe\n");
828		return;
829	}
830
831	cmd = dbri_cmdlock(dbri, 3);
832	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
833	*(cmd++) = 0;
834	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
835	dbri_cmdsend(dbri, cmd, 3);
836
837	desc = dbri->pipes[pipe].first_desc;
838	if (desc >= 0)
839		do {
840			dbri->dma->desc[desc].ba = 0;
841			dbri->dma->desc[desc].nda = 0;
842			desc = dbri->next_desc[desc];
843		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
844
845	dbri->pipes[pipe].desc = -1;
846	dbri->pipes[pipe].first_desc = -1;
847}
848
849/*
850 * Lock must be held before calling this.
851 */
852static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
853{
854	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
855		printk(KERN_ERR "DBRI: setup_pipe called "
856			"with illegal pipe number\n");
857		return;
858	}
859
860	if ((sdp & 0xf800) != sdp) {
861		printk(KERN_ERR "DBRI: setup_pipe called "
862			"with strange SDP value\n");
863		/* sdp &= 0xf800; */
864	}
865
866	/* If this is a fixed receive pipe, arrange for an interrupt
867	 * every time its data changes
868	 */
869	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
870		sdp |= D_SDP_CHANGE;
871
872	sdp |= D_PIPE(pipe);
873	dbri->pipes[pipe].sdp = sdp;
874	dbri->pipes[pipe].desc = -1;
875	dbri->pipes[pipe].first_desc = -1;
876
877	reset_pipe(dbri, pipe);
878}
879
880/*
881 * Lock must be held before calling this.
882 */
883static void link_time_slot(struct snd_dbri *dbri, int pipe,
884			   int prevpipe, int nextpipe,
885			   int length, int cycle)
886{
887	s32 *cmd;
888	int val;
889
890	if (pipe < 0 || pipe > DBRI_MAX_PIPE
891			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
892			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
893		printk(KERN_ERR
894		    "DBRI: link_time_slot called with illegal pipe number\n");
895		return;
896	}
897
898	if (dbri->pipes[pipe].sdp == 0
899			|| dbri->pipes[prevpipe].sdp == 0
900			|| dbri->pipes[nextpipe].sdp == 0) {
901		printk(KERN_ERR "DBRI: link_time_slot called "
902			"on uninitialized pipe\n");
903		return;
904	}
905
906	dbri->pipes[prevpipe].nextpipe = pipe;
907	dbri->pipes[pipe].nextpipe = nextpipe;
908	dbri->pipes[pipe].length = length;
909
910	cmd = dbri_cmdlock(dbri, 4);
911
912	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
913		/* Deal with CHI special case:
914		 * "If transmission on edges 0 or 1 is desired, then cycle n
915		 *  (where n = # of bit times per frame...) must be used."
916		 *                  - DBRI data sheet, page 11
917		 */
918		if (prevpipe == 16 && cycle == 0)
919			cycle = dbri->chi_bpf;
920
921		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
922		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
923		*(cmd++) = 0;
924		*(cmd++) =
925		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
926	} else {
927		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
928		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
929		*(cmd++) =
930		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
931		*(cmd++) = 0;
932	}
933	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
934
935	dbri_cmdsend(dbri, cmd, 4);
936}
937
938
939/* xmit_fixed() / recv_fixed()
940 *
941 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
942 * expected to change much, and which we don't need to buffer.
943 * The DBRI only interrupts us when the data changes (receive pipes),
944 * or only changes the data when this function is called (transmit pipes).
945 * Only short pipes (numbers 16-31) can be used in fixed data mode.
946 *
947 * These function operate on a 32-bit field, no matter how large
948 * the actual time slot is.  The interrupt handler takes care of bit
949 * ordering and alignment.  An 8-bit time slot will always end up
950 * in the low-order 8 bits, filled either MSB-first or LSB-first,
951 * depending on the settings passed to setup_pipe().
952 *
953 * Lock must not be held before calling it.
954 */
955static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
956{
957	s32 *cmd;
958	unsigned long flags;
959
960	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
961		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
962		return;
963	}
964
965	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
966		printk(KERN_ERR "DBRI: xmit_fixed: "
967			"Uninitialized pipe %d\n", pipe);
968		return;
969	}
970
971	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
972		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
973		return;
974	}
975
976	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
977		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
978			pipe);
979		return;
980	}
981
982	/* DBRI short pipes always transmit LSB first */
983
984	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
985		data = reverse_bytes(data, dbri->pipes[pipe].length);
986
987	cmd = dbri_cmdlock(dbri, 3);
988
989	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
990	*(cmd++) = data;
991	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
992
993	spin_lock_irqsave(&dbri->lock, flags);
994	dbri_cmdsend(dbri, cmd, 3);
995	spin_unlock_irqrestore(&dbri->lock, flags);
996	dbri_cmdwait(dbri);
997
998}
999
1000static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1001{
1002	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1003		printk(KERN_ERR "DBRI: recv_fixed called with "
1004			"illegal pipe number\n");
1005		return;
1006	}
1007
1008	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1009		printk(KERN_ERR "DBRI: recv_fixed called on "
1010			"non-fixed pipe %d\n", pipe);
1011		return;
1012	}
1013
1014	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1015		printk(KERN_ERR "DBRI: recv_fixed called on "
1016			"transmit pipe %d\n", pipe);
1017		return;
1018	}
1019
1020	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1021}
1022
1023/* setup_descs()
1024 *
1025 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1026 * with a DMA buffer.
1027 *
1028 * Only pipe numbers 0-15 can be used in this mode.
1029 *
1030 * This function takes a stream number pointing to a data buffer,
1031 * and work by building chains of descriptors which identify the
1032 * data buffers.  Buffers too large for a single descriptor will
1033 * be spread across multiple descriptors.
1034 *
1035 * All descriptors create a ring buffer.
1036 *
1037 * Lock must be held before calling this.
1038 */
1039static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1040{
1041	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1042	__u32 dvma_buffer;
1043	int desc;
1044	int len;
1045	int first_desc = -1;
1046	int last_desc = -1;
1047
1048	if (info->pipe < 0 || info->pipe > 15) {
1049		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1050		return -2;
1051	}
1052
1053	if (dbri->pipes[info->pipe].sdp == 0) {
1054		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1055		       info->pipe);
1056		return -2;
1057	}
1058
1059	dvma_buffer = info->dvma_buffer;
1060	len = info->size;
1061
1062	if (streamno == DBRI_PLAY) {
1063		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1064			printk(KERN_ERR "DBRI: setup_descs: "
1065				"Called on receive pipe %d\n", info->pipe);
1066			return -2;
1067		}
1068	} else {
1069		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1070			printk(KERN_ERR
1071			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1072			     info->pipe);
1073			return -2;
1074		}
1075		/* Should be able to queue multiple buffers
1076		 * to receive on a pipe
1077		 */
1078		if (pipe_active(dbri, info->pipe)) {
1079			printk(KERN_ERR "DBRI: recv_on_pipe: "
1080				"Called on active pipe %d\n", info->pipe);
1081			return -2;
1082		}
1083
1084		/* Make sure buffer size is multiple of four */
1085		len &= ~3;
1086	}
1087
1088	/* Free descriptors if pipe has any */
1089	desc = dbri->pipes[info->pipe].first_desc;
1090	if (desc >= 0)
1091		do {
1092			dbri->dma->desc[desc].ba = 0;
1093			dbri->dma->desc[desc].nda = 0;
1094			desc = dbri->next_desc[desc];
1095		} while (desc != -1 &&
1096			 desc != dbri->pipes[info->pipe].first_desc);
1097
1098	dbri->pipes[info->pipe].desc = -1;
1099	dbri->pipes[info->pipe].first_desc = -1;
1100
1101	desc = 0;
1102	while (len > 0) {
1103		int mylen;
1104
1105		for (; desc < DBRI_NO_DESCS; desc++) {
1106			if (!dbri->dma->desc[desc].ba)
1107				break;
1108		}
1109
1110		if (desc == DBRI_NO_DESCS) {
1111			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1112			return -1;
1113		}
1114
1115		if (len > DBRI_TD_MAXCNT)
1116			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1117		else
1118			mylen = len;
1119
1120		if (mylen > period)
1121			mylen = period;
1122
1123		dbri->next_desc[desc] = -1;
1124		dbri->dma->desc[desc].ba = dvma_buffer;
1125		dbri->dma->desc[desc].nda = 0;
1126
1127		if (streamno == DBRI_PLAY) {
1128			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1129			dbri->dma->desc[desc].word4 = 0;
1130			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1131		} else {
1132			dbri->dma->desc[desc].word1 = 0;
1133			dbri->dma->desc[desc].word4 =
1134			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1135		}
1136
1137		if (first_desc == -1)
1138			first_desc = desc;
1139		else {
1140			dbri->next_desc[last_desc] = desc;
1141			dbri->dma->desc[last_desc].nda =
1142			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1143		}
1144
1145		last_desc = desc;
1146		dvma_buffer += mylen;
1147		len -= mylen;
1148	}
1149
1150	if (first_desc == -1 || last_desc == -1) {
1151		printk(KERN_ERR "DBRI: setup_descs: "
1152			" Not enough descriptors available\n");
1153		return -1;
1154	}
1155
1156	dbri->dma->desc[last_desc].nda =
1157	    dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1158	dbri->next_desc[last_desc] = first_desc;
1159	dbri->pipes[info->pipe].first_desc = first_desc;
1160	dbri->pipes[info->pipe].desc = first_desc;
1161
1162#ifdef DBRI_DEBUG
1163	for (desc = first_desc; desc != -1;) {
1164		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1165			desc,
1166			dbri->dma->desc[desc].word1,
1167			dbri->dma->desc[desc].ba,
1168			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1169			desc = dbri->next_desc[desc];
1170			if (desc == first_desc)
1171				break;
1172	}
1173#endif
1174	return 0;
1175}
1176
1177/*
1178****************************************************************************
1179************************** DBRI - CHI interface ****************************
1180****************************************************************************
1181
1182The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1183multiplexed serial interface which the DBRI can operate in either master
1184(give clock/frame sync) or slave (take clock/frame sync) mode.
1185
1186*/
1187
1188enum master_or_slave { CHImaster, CHIslave };
1189
1190/*
1191 * Lock must not be held before calling it.
1192 */
1193static void reset_chi(struct snd_dbri *dbri,
1194		      enum master_or_slave master_or_slave,
1195		      int bits_per_frame)
1196{
1197	s32 *cmd;
1198	int val;
1199
1200	/* Set CHI Anchor: Pipe 16 */
1201
1202	cmd = dbri_cmdlock(dbri, 4);
1203	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1204		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1205	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1206	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1207	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1208	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1209	dbri_cmdsend(dbri, cmd, 4);
1210
1211	dbri->pipes[16].sdp = 1;
1212	dbri->pipes[16].nextpipe = 16;
1213
1214	cmd = dbri_cmdlock(dbri, 4);
1215
1216	if (master_or_slave == CHIslave) {
1217		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1218		 *
1219		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1220		 * IR     = give immediate CHI status interrupt
1221		 * EN     = give CHI status interrupt upon change
1222		 */
1223		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1224	} else {
1225		/* Setup DBRI for CHI Master - generate clock, FS
1226		 *
1227		 * BPF				=  bits per 8 kHz frame
1228		 * 12.288 MHz / CHICM_divisor	= clock rate
1229		 * FD = 1 - drive CHIFS on rising edge of CHICK
1230		 */
1231		int clockrate = bits_per_frame * 8;
1232		int divisor = 12288 / clockrate;
1233
1234		if (divisor > 255 || divisor * clockrate != 12288)
1235			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1236				"in setup_chi\n");
1237
1238		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1239				    | D_CHI_BPF(bits_per_frame));
1240	}
1241
1242	dbri->chi_bpf = bits_per_frame;
1243
1244	/* CHI Data Mode
1245	 *
1246	 * RCE   =  0 - receive on falling edge of CHICK
1247	 * XCE   =  1 - transmit on rising edge of CHICK
1248	 * XEN   =  1 - enable transmitter
1249	 * REN   =  1 - enable receiver
1250	 */
1251
1252	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1253	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1254	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1255
1256	dbri_cmdsend(dbri, cmd, 4);
1257}
1258
1259/*
1260****************************************************************************
1261*********************** CS4215 audio codec management **********************
1262****************************************************************************
1263
1264In the standard SPARC audio configuration, the CS4215 codec is attached
1265to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1266
1267 * Lock must not be held before calling it.
1268
1269*/
1270static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1271{
1272	unsigned long flags;
1273
1274	spin_lock_irqsave(&dbri->lock, flags);
1275	/*
1276	 * Data mode:
1277	 * Pipe  4: Send timeslots 1-4 (audio data)
1278	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1279	 * Pipe  6: Receive timeslots 1-4 (audio data)
1280	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1281	 *          interrupt, and the rest of the data (slot 5 and 8) is
1282	 *          not relevant for us (only for doublechecking).
1283	 *
1284	 * Control mode:
1285	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1286	 * Pipe 18: Receive timeslot 1 (clb).
1287	 * Pipe 19: Receive timeslot 7 (version).
1288	 */
1289
1290	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1291	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1292	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1293	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1294
1295	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1296	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1297	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1298	spin_unlock_irqrestore(&dbri->lock, flags);
1299
1300	dbri_cmdwait(dbri);
1301}
1302
1303static __devinit int cs4215_init_data(struct cs4215 *mm)
1304{
1305	/*
1306	 * No action, memory resetting only.
1307	 *
1308	 * Data Time Slot 5-8
1309	 * Speaker,Line and Headphone enable. Gain set to the half.
1310	 * Input is mike.
1311	 */
1312	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1313	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1314	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1315	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1316
1317	/*
1318	 * Control Time Slot 1-4
1319	 * 0: Default I/O voltage scale
1320	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1321	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1322	 * 3: Tests disabled
1323	 */
1324	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1325	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1326	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1327	mm->ctrl[3] = 0;
1328
1329	mm->status = 0;
1330	mm->version = 0xff;
1331	mm->precision = 8;	/* For ULAW */
1332	mm->channels = 1;
1333
1334	return 0;
1335}
1336
1337static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1338{
1339	if (muted) {
1340		dbri->mm.data[0] |= 63;
1341		dbri->mm.data[1] |= 63;
1342		dbri->mm.data[2] &= ~15;
1343		dbri->mm.data[3] &= ~15;
1344	} else {
1345		/* Start by setting the playback attenuation. */
1346		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1347		int left_gain = info->left_gain & 0x3f;
1348		int right_gain = info->right_gain & 0x3f;
1349
1350		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1351		dbri->mm.data[1] &= ~0x3f;
1352		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1353		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1354
1355		/* Now set the recording gain. */
1356		info = &dbri->stream_info[DBRI_REC];
1357		left_gain = info->left_gain & 0xf;
1358		right_gain = info->right_gain & 0xf;
1359		dbri->mm.data[2] |= CS4215_LG(left_gain);
1360		dbri->mm.data[3] |= CS4215_RG(right_gain);
1361	}
1362
1363	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1364}
1365
1366/*
1367 * Set the CS4215 to data mode.
1368 */
1369static void cs4215_open(struct snd_dbri *dbri)
1370{
1371	int data_width;
1372	u32 tmp;
1373	unsigned long flags;
1374
1375	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1376		dbri->mm.channels, dbri->mm.precision);
1377
1378	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1379	 * to make sure this takes.  This avoids clicking noises.
1380	 */
1381
1382	cs4215_setdata(dbri, 1);
1383	udelay(125);
1384
1385	/*
1386	 * Data mode:
1387	 * Pipe  4: Send timeslots 1-4 (audio data)
1388	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1389	 * Pipe  6: Receive timeslots 1-4 (audio data)
1390	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1391	 *          interrupt, and the rest of the data (slot 5 and 8) is
1392	 *          not relevant for us (only for doublechecking).
1393	 *
1394	 * Just like in control mode, the time slots are all offset by eight
1395	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1396	 * even if it's the CHI master.  Don't ask me...
1397	 */
1398	spin_lock_irqsave(&dbri->lock, flags);
1399	tmp = sbus_readl(dbri->regs + REG0);
1400	tmp &= ~(D_C);		/* Disable CHI */
1401	sbus_writel(tmp, dbri->regs + REG0);
1402
1403	/* Switch CS4215 to data mode - set PIO3 to 1 */
1404	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1405		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1406
1407	reset_chi(dbri, CHIslave, 128);
1408
1409	/* Note: this next doesn't work for 8-bit stereo, because the two
1410	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1411	 * (See CS4215 datasheet Fig 15)
1412	 *
1413	 * DBRI non-contiguous mode would be required to make this work.
1414	 */
1415	data_width = dbri->mm.channels * dbri->mm.precision;
1416
1417	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1418	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1419	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1420	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1421
1422	tmp = sbus_readl(dbri->regs + REG0);
1423	tmp |= D_C;		/* Enable CHI */
1424	sbus_writel(tmp, dbri->regs + REG0);
1425	spin_unlock_irqrestore(&dbri->lock, flags);
1426
1427	cs4215_setdata(dbri, 0);
1428}
1429
1430/*
1431 * Send the control information (i.e. audio format)
1432 */
1433static int cs4215_setctrl(struct snd_dbri *dbri)
1434{
1435	int i, val;
1436	u32 tmp;
1437	unsigned long flags;
1438
1439
1440	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1441	 * to make sure this takes.  This avoids clicking noises.
1442	 */
1443	cs4215_setdata(dbri, 1);
1444	udelay(125);
1445
1446	/*
1447	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1448	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1449	 */
1450	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1451	sbus_writel(val, dbri->regs + REG2);
1452	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1453	udelay(34);
1454
1455	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1456	 * operate as CHI master, supplying clocking and frame synchronization.
1457	 *
1458	 * In Data mode, however, the CS4215 must be CHI master to insure
1459	 * that its data stream is synchronous with its codec.
1460	 *
1461	 * The upshot of all this?  We start by putting the DBRI into master
1462	 * mode, program the CS4215 in Control mode, then switch the CS4215
1463	 * into Data mode and put the DBRI into slave mode.  Various timing
1464	 * requirements must be observed along the way.
1465	 *
1466	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1467	 * others?), the addressing of the CS4215's time slots is
1468	 * offset by eight bits, so we add eight to all the "cycle"
1469	 * values in the Define Time Slot (DTS) commands.  This is
1470	 * done in hardware by a TI 248 that delays the DBRI->4215
1471	 * frame sync signal by eight clock cycles.  Anybody know why?
1472	 */
1473	spin_lock_irqsave(&dbri->lock, flags);
1474	tmp = sbus_readl(dbri->regs + REG0);
1475	tmp &= ~D_C;		/* Disable CHI */
1476	sbus_writel(tmp, dbri->regs + REG0);
1477
1478	reset_chi(dbri, CHImaster, 128);
1479
1480	/*
1481	 * Control mode:
1482	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1483	 * Pipe 18: Receive timeslot 1 (clb).
1484	 * Pipe 19: Receive timeslot 7 (version).
1485	 */
1486
1487	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1488	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1489	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1490	spin_unlock_irqrestore(&dbri->lock, flags);
1491
1492	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1493	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1494	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1495
1496	spin_lock_irqsave(&dbri->lock, flags);
1497	tmp = sbus_readl(dbri->regs + REG0);
1498	tmp |= D_C;		/* Enable CHI */
1499	sbus_writel(tmp, dbri->regs + REG0);
1500	spin_unlock_irqrestore(&dbri->lock, flags);
1501
1502	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1503		msleep_interruptible(1);
1504
1505	if (i == 0) {
1506		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1507			dbri->mm.status);
1508		return -1;
1509	}
1510
1511	/* Disable changes to our copy of the version number, as we are about
1512	 * to leave control mode.
1513	 */
1514	recv_fixed(dbri, 19, NULL);
1515
1516	/* Terminate CS4215 control mode - data sheet says
1517	 * "Set CLB=1 and send two more frames of valid control info"
1518	 */
1519	dbri->mm.ctrl[0] |= CS4215_CLB;
1520	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1521
1522	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1523	udelay(250);
1524
1525	cs4215_setdata(dbri, 0);
1526
1527	return 0;
1528}
1529
1530/*
1531 * Setup the codec with the sampling rate, audio format and number of
1532 * channels.
1533 * As part of the process we resend the settings for the data
1534 * timeslots as well.
1535 */
1536static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1537			  snd_pcm_format_t format, unsigned int channels)
1538{
1539	int freq_idx;
1540	int ret = 0;
1541
1542	/* Lookup index for this rate */
1543	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1544		if (CS4215_FREQ[freq_idx].freq == rate)
1545			break;
1546	}
1547	if (CS4215_FREQ[freq_idx].freq != rate) {
1548		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1549		return -1;
1550	}
1551
1552	switch (format) {
1553	case SNDRV_PCM_FORMAT_MU_LAW:
1554		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1555		dbri->mm.precision = 8;
1556		break;
1557	case SNDRV_PCM_FORMAT_A_LAW:
1558		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1559		dbri->mm.precision = 8;
1560		break;
1561	case SNDRV_PCM_FORMAT_U8:
1562		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1563		dbri->mm.precision = 8;
1564		break;
1565	case SNDRV_PCM_FORMAT_S16_BE:
1566		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1567		dbri->mm.precision = 16;
1568		break;
1569	default:
1570		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1571		return -1;
1572	}
1573
1574	/* Add rate parameters */
1575	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1576	dbri->mm.ctrl[2] = CS4215_XCLK |
1577	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1578
1579	dbri->mm.channels = channels;
1580	if (channels == 2)
1581		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1582
1583	ret = cs4215_setctrl(dbri);
1584	if (ret == 0)
1585		cs4215_open(dbri);	/* set codec to data mode */
1586
1587	return ret;
1588}
1589
1590/*
1591 *
1592 */
1593static __devinit int cs4215_init(struct snd_dbri *dbri)
1594{
1595	u32 reg2 = sbus_readl(dbri->regs + REG2);
1596	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1597
1598	/* Look for the cs4215 chips */
1599	if (reg2 & D_PIO2) {
1600		dprintk(D_MM, "Onboard CS4215 detected\n");
1601		dbri->mm.onboard = 1;
1602	}
1603	if (reg2 & D_PIO0) {
1604		dprintk(D_MM, "Speakerbox detected\n");
1605		dbri->mm.onboard = 0;
1606
1607		if (reg2 & D_PIO2) {
1608			printk(KERN_INFO "DBRI: Using speakerbox / "
1609			       "ignoring onboard mmcodec.\n");
1610			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1611		}
1612	}
1613
1614	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1615		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1616		return -EIO;
1617	}
1618
1619	cs4215_setup_pipes(dbri);
1620	cs4215_init_data(&dbri->mm);
1621
1622	/* Enable capture of the status & version timeslots. */
1623	recv_fixed(dbri, 18, &dbri->mm.status);
1624	recv_fixed(dbri, 19, &dbri->mm.version);
1625
1626	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1627	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1628		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1629			dbri->mm.offset);
1630		return -EIO;
1631	}
1632	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1633
1634	return 0;
1635}
1636
1637/*
1638****************************************************************************
1639*************************** DBRI interrupt handler *************************
1640****************************************************************************
1641
1642The DBRI communicates with the CPU mainly via a circular interrupt
1643buffer.  When an interrupt is signaled, the CPU walks through the
1644buffer and calls dbri_process_one_interrupt() for each interrupt word.
1645Complicated interrupts are handled by dedicated functions (which
1646appear first in this file).  Any pending interrupts can be serviced by
1647calling dbri_process_interrupt_buffer(), which works even if the CPU's
1648interrupts are disabled.
1649
1650*/
1651
1652/* xmit_descs()
1653 *
1654 * Starts transmitting the current TD's for recording/playing.
1655 * For playback, ALSA has filled the DMA memory with new data (we hope).
1656 */
1657static void xmit_descs(struct snd_dbri *dbri)
1658{
1659	struct dbri_streaminfo *info;
1660	s32 *cmd;
1661	unsigned long flags;
1662	int first_td;
1663
1664	if (dbri == NULL)
1665		return;		/* Disabled */
1666
1667	info = &dbri->stream_info[DBRI_REC];
1668	spin_lock_irqsave(&dbri->lock, flags);
1669
1670	if (info->pipe >= 0) {
1671		first_td = dbri->pipes[info->pipe].first_desc;
1672
1673		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1674
1675		/* Stream could be closed by the time we run. */
1676		if (first_td >= 0) {
1677			cmd = dbri_cmdlock(dbri, 2);
1678			*(cmd++) = DBRI_CMD(D_SDP, 0,
1679					    dbri->pipes[info->pipe].sdp
1680					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1681			*(cmd++) = dbri->dma_dvma +
1682				   dbri_dma_off(desc, first_td);
1683			dbri_cmdsend(dbri, cmd, 2);
1684
1685			/* Reset our admin of the pipe. */
1686			dbri->pipes[info->pipe].desc = first_td;
1687		}
1688	}
1689
1690	info = &dbri->stream_info[DBRI_PLAY];
1691
1692	if (info->pipe >= 0) {
1693		first_td = dbri->pipes[info->pipe].first_desc;
1694
1695		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1696
1697		/* Stream could be closed by the time we run. */
1698		if (first_td >= 0) {
1699			cmd = dbri_cmdlock(dbri, 2);
1700			*(cmd++) = DBRI_CMD(D_SDP, 0,
1701					    dbri->pipes[info->pipe].sdp
1702					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1703			*(cmd++) = dbri->dma_dvma +
1704				   dbri_dma_off(desc, first_td);
1705			dbri_cmdsend(dbri, cmd, 2);
1706
1707			/* Reset our admin of the pipe. */
1708			dbri->pipes[info->pipe].desc = first_td;
1709		}
1710	}
1711
1712	spin_unlock_irqrestore(&dbri->lock, flags);
1713}
1714
1715/* transmission_complete_intr()
1716 *
1717 * Called by main interrupt handler when DBRI signals transmission complete
1718 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1719 *
1720 * Walks through the pipe's list of transmit buffer descriptors and marks
1721 * them as available. Stops when the first descriptor is found without
1722 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1723 *
1724 * The DMA buffers are not released. They form a ring buffer and
1725 * they are filled by ALSA while others are transmitted by DMA.
1726 *
1727 */
1728
1729static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1730{
1731	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1732	int td = dbri->pipes[pipe].desc;
1733	int status;
1734
1735	while (td >= 0) {
1736		if (td >= DBRI_NO_DESCS) {
1737			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1738			return;
1739		}
1740
1741		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1742		if (!(status & DBRI_TD_TBC))
1743			break;
1744
1745		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1746
1747		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1748		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1749
1750		td = dbri->next_desc[td];
1751		dbri->pipes[pipe].desc = td;
1752	}
1753
1754	/* Notify ALSA */
1755	spin_unlock(&dbri->lock);
1756	snd_pcm_period_elapsed(info->substream);
1757	spin_lock(&dbri->lock);
1758}
1759
1760static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1761{
1762	struct dbri_streaminfo *info;
1763	int rd = dbri->pipes[pipe].desc;
1764	s32 status;
1765
1766	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1767		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1768		return;
1769	}
1770
1771	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1772	status = dbri->dma->desc[rd].word1;
1773	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1774
1775	info = &dbri->stream_info[DBRI_REC];
1776	info->offset += DBRI_RD_CNT(status);
1777
1778
1779	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1780		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1781
1782	/* Notify ALSA */
1783	spin_unlock(&dbri->lock);
1784	snd_pcm_period_elapsed(info->substream);
1785	spin_lock(&dbri->lock);
1786}
1787
1788static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1789{
1790	int val = D_INTR_GETVAL(x);
1791	int channel = D_INTR_GETCHAN(x);
1792	int command = D_INTR_GETCMD(x);
1793	int code = D_INTR_GETCODE(x);
1794#ifdef DBRI_DEBUG
1795	int rval = D_INTR_GETRVAL(x);
1796#endif
1797
1798	if (channel == D_INTR_CMD) {
1799		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1800			cmds[command], val);
1801	} else {
1802		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1803			channel, code, rval);
1804	}
1805
1806	switch (code) {
1807	case D_INTR_CMDI:
1808		if (command != D_WAIT)
1809			printk(KERN_ERR "DBRI: Command read interrupt\n");
1810		break;
1811	case D_INTR_BRDY:
1812		reception_complete_intr(dbri, channel);
1813		break;
1814	case D_INTR_XCMP:
1815	case D_INTR_MINT:
1816		transmission_complete_intr(dbri, channel);
1817		break;
1818	case D_INTR_UNDR:
1819		/* UNDR - Transmission underrun
1820		 * resend SDP command with clear pipe bit (C) set
1821		 */
1822		{
1823			printk(KERN_ERR "DBRI: Underrun error\n");
1824		}
1825		break;
1826	case D_INTR_FXDT:
1827		/* FXDT - Fixed data change */
1828		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1829			val = reverse_bytes(val, dbri->pipes[channel].length);
1830
1831		if (dbri->pipes[channel].recv_fixed_ptr)
1832			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1833		break;
1834	default:
1835		if (channel != D_INTR_CMD)
1836			printk(KERN_WARNING
1837			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1838	}
1839}
1840
1841/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1842 * buffer until it finds a zero word (indicating nothing more to do
1843 * right now).  Non-zero words require processing and are handed off
1844 * to dbri_process_one_interrupt AFTER advancing the pointer.
1845 */
1846static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1847{
1848	s32 x;
1849
1850	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1851		dbri->dma->intr[dbri->dbri_irqp] = 0;
1852		dbri->dbri_irqp++;
1853		if (dbri->dbri_irqp == DBRI_INT_BLK)
1854			dbri->dbri_irqp = 1;
1855
1856		dbri_process_one_interrupt(dbri, x);
1857	}
1858}
1859
1860static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1861{
1862	struct snd_dbri *dbri = dev_id;
1863	static int errcnt = 0;
1864	int x;
1865
1866	if (dbri == NULL)
1867		return IRQ_NONE;
1868	spin_lock(&dbri->lock);
1869
1870	/*
1871	 * Read it, so the interrupt goes away.
1872	 */
1873	x = sbus_readl(dbri->regs + REG1);
1874
1875	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1876		u32 tmp;
1877
1878		if (x & D_MRR)
1879			printk(KERN_ERR
1880			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1881			       x);
1882		if (x & D_MLE)
1883			printk(KERN_ERR
1884			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1885			       x);
1886		if (x & D_LBG)
1887			printk(KERN_ERR
1888			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1889		if (x & D_MBE)
1890			printk(KERN_ERR
1891			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1892
1893		/* Some of these SBus errors cause the chip's SBus circuitry
1894		 * to be disabled, so just re-enable and try to keep going.
1895		 *
1896		 * The only one I've seen is MRR, which will be triggered
1897		 * if you let a transmit pipe underrun, then try to CDP it.
1898		 *
1899		 * If these things persist, we reset the chip.
1900		 */
1901		if ((++errcnt) % 10 == 0) {
1902			dprintk(D_INT, "Interrupt errors exceeded.\n");
1903			dbri_reset(dbri);
1904		} else {
1905			tmp = sbus_readl(dbri->regs + REG0);
1906			tmp &= ~(D_D);
1907			sbus_writel(tmp, dbri->regs + REG0);
1908		}
1909	}
1910
1911	dbri_process_interrupt_buffer(dbri);
1912
1913	spin_unlock(&dbri->lock);
1914
1915	return IRQ_HANDLED;
1916}
1917
1918/****************************************************************************
1919		PCM Interface
1920****************************************************************************/
1921static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1922	.info		= SNDRV_PCM_INFO_MMAP |
1923			  SNDRV_PCM_INFO_INTERLEAVED |
1924			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1925			  SNDRV_PCM_INFO_MMAP_VALID |
1926			  SNDRV_PCM_INFO_BATCH,
1927	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1928			  SNDRV_PCM_FMTBIT_A_LAW |
1929			  SNDRV_PCM_FMTBIT_U8 |
1930			  SNDRV_PCM_FMTBIT_S16_BE,
1931	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1932	.rate_min		= 5512,
1933	.rate_max		= 48000,
1934	.channels_min		= 1,
1935	.channels_max		= 2,
1936	.buffer_bytes_max	= 64 * 1024,
1937	.period_bytes_min	= 1,
1938	.period_bytes_max	= DBRI_TD_MAXCNT,
1939	.periods_min		= 1,
1940	.periods_max		= 1024,
1941};
1942
1943static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1944			      struct snd_pcm_hw_rule *rule)
1945{
1946	struct snd_interval *c = hw_param_interval(params,
1947				SNDRV_PCM_HW_PARAM_CHANNELS);
1948	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
1949	struct snd_mask fmt;
1950
1951	snd_mask_any(&fmt);
1952	if (c->min > 1) {
1953		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
1954		return snd_mask_refine(f, &fmt);
1955	}
1956	return 0;
1957}
1958
1959static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
1960				struct snd_pcm_hw_rule *rule)
1961{
1962	struct snd_interval *c = hw_param_interval(params,
1963				SNDRV_PCM_HW_PARAM_CHANNELS);
1964	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
1965	struct snd_interval ch;
1966
1967	snd_interval_any(&ch);
1968	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
1969		ch.min = 1;
1970		ch.max = 1;
1971		ch.integer = 1;
1972		return snd_interval_refine(c, &ch);
1973	}
1974	return 0;
1975}
1976
1977static int snd_dbri_open(struct snd_pcm_substream *substream)
1978{
1979	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
1980	struct snd_pcm_runtime *runtime = substream->runtime;
1981	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1982	unsigned long flags;
1983
1984	dprintk(D_USR, "open audio output.\n");
1985	runtime->hw = snd_dbri_pcm_hw;
1986
1987	spin_lock_irqsave(&dbri->lock, flags);
1988	info->substream = substream;
1989	info->offset = 0;
1990	info->dvma_buffer = 0;
1991	info->pipe = -1;
1992	spin_unlock_irqrestore(&dbri->lock, flags);
1993
1994	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
1995			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
1996			    -1);
1997	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
1998			    snd_hw_rule_channels, NULL,
1999			    SNDRV_PCM_HW_PARAM_CHANNELS,
2000			    -1);
2001
2002	cs4215_open(dbri);
2003
2004	return 0;
2005}
2006
2007static int snd_dbri_close(struct snd_pcm_substream *substream)
2008{
2009	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2010	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2011
2012	dprintk(D_USR, "close audio output.\n");
2013	info->substream = NULL;
2014	info->offset = 0;
2015
2016	return 0;
2017}
2018
2019static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2020			      struct snd_pcm_hw_params *hw_params)
2021{
2022	struct snd_pcm_runtime *runtime = substream->runtime;
2023	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2024	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2025	int direction;
2026	int ret;
2027
2028	/* set sampling rate, audio format and number of channels */
2029	ret = cs4215_prepare(dbri, params_rate(hw_params),
2030			     params_format(hw_params),
2031			     params_channels(hw_params));
2032	if (ret != 0)
2033		return ret;
2034
2035	if ((ret = snd_pcm_lib_malloc_pages(substream,
2036				params_buffer_bytes(hw_params))) < 0) {
2037		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2038		return ret;
2039	}
2040
2041	/* hw_params can get called multiple times. Only map the DMA once.
2042	 */
2043	if (info->dvma_buffer == 0) {
2044		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2045			direction = DMA_TO_DEVICE;
2046		else
2047			direction = DMA_FROM_DEVICE;
2048
2049		info->dvma_buffer =
2050			dma_map_single(&dbri->op->dev,
2051				       runtime->dma_area,
2052				       params_buffer_bytes(hw_params),
2053				       direction);
2054	}
2055
2056	direction = params_buffer_bytes(hw_params);
2057	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2058		direction, info->dvma_buffer);
2059	return 0;
2060}
2061
2062static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2063{
2064	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2065	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2066	int direction;
2067
2068	dprintk(D_USR, "hw_free.\n");
2069
2070	/* hw_free can get called multiple times. Only unmap the DMA once.
2071	 */
2072	if (info->dvma_buffer) {
2073		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2074			direction = DMA_TO_DEVICE;
2075		else
2076			direction = DMA_FROM_DEVICE;
2077
2078		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2079				 substream->runtime->buffer_size, direction);
2080		info->dvma_buffer = 0;
2081	}
2082	if (info->pipe != -1) {
2083		reset_pipe(dbri, info->pipe);
2084		info->pipe = -1;
2085	}
2086
2087	return snd_pcm_lib_free_pages(substream);
2088}
2089
2090static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2091{
2092	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2093	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2094	int ret;
2095
2096	info->size = snd_pcm_lib_buffer_bytes(substream);
2097	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2098		info->pipe = 4;	/* Send pipe */
2099	else
2100		info->pipe = 6;	/* Receive pipe */
2101
2102	spin_lock_irq(&dbri->lock);
2103	info->offset = 0;
2104
2105	/* Setup the all the transmit/receive descriptors to cover the
2106	 * whole DMA buffer.
2107	 */
2108	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2109			  snd_pcm_lib_period_bytes(substream));
2110
2111	spin_unlock_irq(&dbri->lock);
2112
2113	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2114	return ret;
2115}
2116
2117static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2118{
2119	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2120	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2121	int ret = 0;
2122
2123	switch (cmd) {
2124	case SNDRV_PCM_TRIGGER_START:
2125		dprintk(D_USR, "start audio, period is %d bytes\n",
2126			(int)snd_pcm_lib_period_bytes(substream));
2127		/* Re-submit the TDs. */
2128		xmit_descs(dbri);
2129		break;
2130	case SNDRV_PCM_TRIGGER_STOP:
2131		dprintk(D_USR, "stop audio.\n");
2132		reset_pipe(dbri, info->pipe);
2133		break;
2134	default:
2135		ret = -EINVAL;
2136	}
2137
2138	return ret;
2139}
2140
2141static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2142{
2143	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2144	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2145	snd_pcm_uframes_t ret;
2146
2147	ret = bytes_to_frames(substream->runtime, info->offset)
2148		% substream->runtime->buffer_size;
2149	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2150		ret, substream->runtime->buffer_size);
2151	return ret;
2152}
2153
2154static struct snd_pcm_ops snd_dbri_ops = {
2155	.open = snd_dbri_open,
2156	.close = snd_dbri_close,
2157	.ioctl = snd_pcm_lib_ioctl,
2158	.hw_params = snd_dbri_hw_params,
2159	.hw_free = snd_dbri_hw_free,
2160	.prepare = snd_dbri_prepare,
2161	.trigger = snd_dbri_trigger,
2162	.pointer = snd_dbri_pointer,
2163};
2164
2165static int __devinit snd_dbri_pcm(struct snd_card *card)
2166{
2167	struct snd_pcm *pcm;
2168	int err;
2169
2170	if ((err = snd_pcm_new(card,
2171			       /* ID */		    "sun_dbri",
2172			       /* device */	    0,
2173			       /* playback count */ 1,
2174			       /* capture count */  1, &pcm)) < 0)
2175		return err;
2176
2177	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2178	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2179
2180	pcm->private_data = card->private_data;
2181	pcm->info_flags = 0;
2182	strcpy(pcm->name, card->shortname);
2183
2184	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2185			SNDRV_DMA_TYPE_CONTINUOUS,
2186			snd_dma_continuous_data(GFP_KERNEL),
2187			64 * 1024, 64 * 1024)) < 0)
2188		return err;
2189
2190	return 0;
2191}
2192
2193/*****************************************************************************
2194			Mixer interface
2195*****************************************************************************/
2196
2197static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2198				  struct snd_ctl_elem_info *uinfo)
2199{
2200	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2201	uinfo->count = 2;
2202	uinfo->value.integer.min = 0;
2203	if (kcontrol->private_value == DBRI_PLAY)
2204		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2205	else
2206		uinfo->value.integer.max = DBRI_MAX_GAIN;
2207	return 0;
2208}
2209
2210static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2211				 struct snd_ctl_elem_value *ucontrol)
2212{
2213	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2214	struct dbri_streaminfo *info;
2215
2216	if (snd_BUG_ON(!dbri))
2217		return -EINVAL;
2218	info = &dbri->stream_info[kcontrol->private_value];
2219
2220	ucontrol->value.integer.value[0] = info->left_gain;
2221	ucontrol->value.integer.value[1] = info->right_gain;
2222	return 0;
2223}
2224
2225static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2226				 struct snd_ctl_elem_value *ucontrol)
2227{
2228	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2229	struct dbri_streaminfo *info =
2230				&dbri->stream_info[kcontrol->private_value];
2231	unsigned int vol[2];
2232	int changed = 0;
2233
2234	vol[0] = ucontrol->value.integer.value[0];
2235	vol[1] = ucontrol->value.integer.value[1];
2236	if (kcontrol->private_value == DBRI_PLAY) {
2237		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2238			return -EINVAL;
2239	} else {
2240		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2241			return -EINVAL;
2242	}
2243
2244	if (info->left_gain != vol[0]) {
2245		info->left_gain = vol[0];
2246		changed = 1;
2247	}
2248	if (info->right_gain != vol[1]) {
2249		info->right_gain = vol[1];
2250		changed = 1;
2251	}
2252	if (changed) {
2253		/* First mute outputs, and wait 1/8000 sec (125 us)
2254		 * to make sure this takes.  This avoids clicking noises.
2255		 */
2256		cs4215_setdata(dbri, 1);
2257		udelay(125);
2258		cs4215_setdata(dbri, 0);
2259	}
2260	return changed;
2261}
2262
2263static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2264				  struct snd_ctl_elem_info *uinfo)
2265{
2266	int mask = (kcontrol->private_value >> 16) & 0xff;
2267
2268	uinfo->type = (mask == 1) ?
2269	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2270	uinfo->count = 1;
2271	uinfo->value.integer.min = 0;
2272	uinfo->value.integer.max = mask;
2273	return 0;
2274}
2275
2276static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2277				 struct snd_ctl_elem_value *ucontrol)
2278{
2279	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2280	int elem = kcontrol->private_value & 0xff;
2281	int shift = (kcontrol->private_value >> 8) & 0xff;
2282	int mask = (kcontrol->private_value >> 16) & 0xff;
2283	int invert = (kcontrol->private_value >> 24) & 1;
2284
2285	if (snd_BUG_ON(!dbri))
2286		return -EINVAL;
2287
2288	if (elem < 4)
2289		ucontrol->value.integer.value[0] =
2290		    (dbri->mm.data[elem] >> shift) & mask;
2291	else
2292		ucontrol->value.integer.value[0] =
2293		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2294
2295	if (invert == 1)
2296		ucontrol->value.integer.value[0] =
2297		    mask - ucontrol->value.integer.value[0];
2298	return 0;
2299}
2300
2301static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2302				 struct snd_ctl_elem_value *ucontrol)
2303{
2304	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2305	int elem = kcontrol->private_value & 0xff;
2306	int shift = (kcontrol->private_value >> 8) & 0xff;
2307	int mask = (kcontrol->private_value >> 16) & 0xff;
2308	int invert = (kcontrol->private_value >> 24) & 1;
2309	int changed = 0;
2310	unsigned short val;
2311
2312	if (snd_BUG_ON(!dbri))
2313		return -EINVAL;
2314
2315	val = (ucontrol->value.integer.value[0] & mask);
2316	if (invert == 1)
2317		val = mask - val;
2318	val <<= shift;
2319
2320	if (elem < 4) {
2321		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2322				       ~(mask << shift)) | val;
2323		changed = (val != dbri->mm.data[elem]);
2324	} else {
2325		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2326					   ~(mask << shift)) | val;
2327		changed = (val != dbri->mm.ctrl[elem - 4]);
2328	}
2329
2330	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2331		"mixer-value=%ld, mm-value=0x%x\n",
2332		mask, changed, ucontrol->value.integer.value[0],
2333		dbri->mm.data[elem & 3]);
2334
2335	if (changed) {
2336		/* First mute outputs, and wait 1/8000 sec (125 us)
2337		 * to make sure this takes.  This avoids clicking noises.
2338		 */
2339		cs4215_setdata(dbri, 1);
2340		udelay(125);
2341		cs4215_setdata(dbri, 0);
2342	}
2343	return changed;
2344}
2345
2346/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2347   timeslots. Shift is the bit offset in the timeslot, mask defines the
2348   number of bits. invert is a boolean for use with attenuation.
2349 */
2350#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2351{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2352  .info = snd_cs4215_info_single,				\
2353  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2354  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2355			((invert) << 24) },
2356
2357static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2358	{
2359	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2360	 .name  = "Playback Volume",
2361	 .info  = snd_cs4215_info_volume,
2362	 .get   = snd_cs4215_get_volume,
2363	 .put   = snd_cs4215_put_volume,
2364	 .private_value = DBRI_PLAY,
2365	 },
2366	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2367	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2368	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2369	{
2370	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2371	 .name  = "Capture Volume",
2372	 .info  = snd_cs4215_info_volume,
2373	 .get   = snd_cs4215_get_volume,
2374	 .put   = snd_cs4215_put_volume,
2375	 .private_value = DBRI_REC,
2376	 },
2377	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2378	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2379	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2380	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2381};
2382
2383static int __devinit snd_dbri_mixer(struct snd_card *card)
2384{
2385	int idx, err;
2386	struct snd_dbri *dbri;
2387
2388	if (snd_BUG_ON(!card || !card->private_data))
2389		return -EINVAL;
2390	dbri = card->private_data;
2391
2392	strcpy(card->mixername, card->shortname);
2393
2394	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2395		err = snd_ctl_add(card,
2396				snd_ctl_new1(&dbri_controls[idx], dbri));
2397		if (err < 0)
2398			return err;
2399	}
2400
2401	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2402		dbri->stream_info[idx].left_gain = 0;
2403		dbri->stream_info[idx].right_gain = 0;
2404	}
2405
2406	return 0;
2407}
2408
2409/****************************************************************************
2410			/proc interface
2411****************************************************************************/
2412static void dbri_regs_read(struct snd_info_entry *entry,
2413			   struct snd_info_buffer *buffer)
2414{
2415	struct snd_dbri *dbri = entry->private_data;
2416
2417	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2418	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2419	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2420	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2421}
2422
2423#ifdef DBRI_DEBUG
2424static void dbri_debug_read(struct snd_info_entry *entry,
2425			    struct snd_info_buffer *buffer)
2426{
2427	struct snd_dbri *dbri = entry->private_data;
2428	int pipe;
2429	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2430
2431	for (pipe = 0; pipe < 32; pipe++) {
2432		if (pipe_active(dbri, pipe)) {
2433			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2434			snd_iprintf(buffer,
2435				    "Pipe %d: %s SDP=0x%x desc=%d, "
2436				    "len=%d next %d\n",
2437				    pipe,
2438				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2439								 "input",
2440				    pptr->sdp, pptr->desc,
2441				    pptr->length, pptr->nextpipe);
2442		}
2443	}
2444}
2445#endif
2446
2447static void __devinit snd_dbri_proc(struct snd_card *card)
2448{
2449	struct snd_dbri *dbri = card->private_data;
2450	struct snd_info_entry *entry;
2451
2452	if (!snd_card_proc_new(card, "regs", &entry))
2453		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2454
2455#ifdef DBRI_DEBUG
2456	if (!snd_card_proc_new(card, "debug", &entry)) {
2457		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2458		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2459	}
2460#endif
2461}
2462
2463/*
2464****************************************************************************
2465**************************** Initialization ********************************
2466****************************************************************************
2467*/
2468static void snd_dbri_free(struct snd_dbri *dbri);
2469
2470static int __devinit snd_dbri_create(struct snd_card *card,
2471				     struct platform_device *op,
2472				     int irq, int dev)
2473{
2474	struct snd_dbri *dbri = card->private_data;
2475	int err;
2476
2477	spin_lock_init(&dbri->lock);
2478	dbri->op = op;
2479	dbri->irq = irq;
2480
2481	dbri->dma = dma_alloc_coherent(&op->dev,
2482				       sizeof(struct dbri_dma),
2483				       &dbri->dma_dvma, GFP_ATOMIC);
2484	if (!dbri->dma)
2485		return -ENOMEM;
2486	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2487
2488	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2489		dbri->dma, dbri->dma_dvma);
2490
2491	/* Map the registers into memory. */
2492	dbri->regs_size = resource_size(&op->resource[0]);
2493	dbri->regs = of_ioremap(&op->resource[0], 0,
2494				dbri->regs_size, "DBRI Registers");
2495	if (!dbri->regs) {
2496		printk(KERN_ERR "DBRI: could not allocate registers\n");
2497		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2498				  (void *)dbri->dma, dbri->dma_dvma);
2499		return -EIO;
2500	}
2501
2502	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2503			  "DBRI audio", dbri);
2504	if (err) {
2505		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2506		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2507		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2508				  (void *)dbri->dma, dbri->dma_dvma);
2509		return err;
2510	}
2511
2512	/* Do low level initialization of the DBRI and CS4215 chips */
2513	dbri_initialize(dbri);
2514	err = cs4215_init(dbri);
2515	if (err) {
2516		snd_dbri_free(dbri);
2517		return err;
2518	}
2519
2520	return 0;
2521}
2522
2523static void snd_dbri_free(struct snd_dbri *dbri)
2524{
2525	dprintk(D_GEN, "snd_dbri_free\n");
2526	dbri_reset(dbri);
2527
2528	if (dbri->irq)
2529		free_irq(dbri->irq, dbri);
2530
2531	if (dbri->regs)
2532		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2533
2534	if (dbri->dma)
2535		dma_free_coherent(&dbri->op->dev,
2536				  sizeof(struct dbri_dma),
2537				  (void *)dbri->dma, dbri->dma_dvma);
2538}
2539
2540static int __devinit dbri_probe(struct platform_device *op, const struct of_device_id *match)
2541{
2542	struct snd_dbri *dbri;
2543	struct resource *rp;
2544	struct snd_card *card;
2545	static int dev = 0;
2546	int irq;
2547	int err;
2548
2549	if (dev >= SNDRV_CARDS)
2550		return -ENODEV;
2551	if (!enable[dev]) {
2552		dev++;
2553		return -ENOENT;
2554	}
2555
2556	irq = op->archdata.irqs[0];
2557	if (irq <= 0) {
2558		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2559		return -ENODEV;
2560	}
2561
2562	err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2563			      sizeof(struct snd_dbri), &card);
2564	if (err < 0)
2565		return err;
2566
2567	strcpy(card->driver, "DBRI");
2568	strcpy(card->shortname, "Sun DBRI");
2569	rp = &op->resource[0];
2570	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2571		card->shortname,
2572		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2573
2574	err = snd_dbri_create(card, op, irq, dev);
2575	if (err < 0) {
2576		snd_card_free(card);
2577		return err;
2578	}
2579
2580	dbri = card->private_data;
2581	err = snd_dbri_pcm(card);
2582	if (err < 0)
2583		goto _err;
2584
2585	err = snd_dbri_mixer(card);
2586	if (err < 0)
2587		goto _err;
2588
2589	/* /proc file handling */
2590	snd_dbri_proc(card);
2591	dev_set_drvdata(&op->dev, card);
2592
2593	err = snd_card_register(card);
2594	if (err < 0)
2595		goto _err;
2596
2597	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2598	       dev, dbri->regs,
2599	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2600	dev++;
2601
2602	return 0;
2603
2604_err:
2605	snd_dbri_free(dbri);
2606	snd_card_free(card);
2607	return err;
2608}
2609
2610static int __devexit dbri_remove(struct platform_device *op)
2611{
2612	struct snd_card *card = dev_get_drvdata(&op->dev);
2613
2614	snd_dbri_free(card->private_data);
2615	snd_card_free(card);
2616
2617	dev_set_drvdata(&op->dev, NULL);
2618
2619	return 0;
2620}
2621
2622static const struct of_device_id dbri_match[] = {
2623	{
2624		.name = "SUNW,DBRIe",
2625	},
2626	{
2627		.name = "SUNW,DBRIf",
2628	},
2629	{},
2630};
2631
2632MODULE_DEVICE_TABLE(of, dbri_match);
2633
2634static struct of_platform_driver dbri_sbus_driver = {
2635	.driver = {
2636		.name = "dbri",
2637		.owner = THIS_MODULE,
2638		.of_match_table = dbri_match,
2639	},
2640	.probe		= dbri_probe,
2641	.remove		= __devexit_p(dbri_remove),
2642};
2643
2644/* Probe for the dbri chip and then attach the driver. */
2645static int __init dbri_init(void)
2646{
2647	return of_register_platform_driver(&dbri_sbus_driver);
2648}
2649
2650static void __exit dbri_exit(void)
2651{
2652	of_unregister_platform_driver(&dbri_sbus_driver);
2653}
2654
2655module_init(dbri_init);
2656module_exit(dbri_exit);
2657