• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/net/mac80211/
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005, Devicescape Software, Inc.
4 * Copyright 2007, Mattias Nissler <mattias.nissler@gmx.de>
5 * Copyright 2007-2008, Stefano Brivio <stefano.brivio@polimi.it>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/netdevice.h>
13#include <linux/types.h>
14#include <linux/skbuff.h>
15#include <linux/debugfs.h>
16#include <linux/slab.h>
17#include <net/mac80211.h>
18#include "rate.h"
19#include "mesh.h"
20#include "rc80211_pid.h"
21
22
23/* This is an implementation of a TX rate control algorithm that uses a PID
24 * controller. Given a target failed frames rate, the controller decides about
25 * TX rate changes to meet the target failed frames rate.
26 *
27 * The controller basically computes the following:
28 *
29 * adj = CP * err + CI * err_avg + CD * (err - last_err) * (1 + sharpening)
30 *
31 * where
32 * 	adj	adjustment value that is used to switch TX rate (see below)
33 * 	err	current error: target vs. current failed frames percentage
34 * 	last_err	last error
35 * 	err_avg	average (i.e. poor man's integral) of recent errors
36 *	sharpening	non-zero when fast response is needed (i.e. right after
37 *			association or no frames sent for a long time), heading
38 * 			to zero over time
39 * 	CP	Proportional coefficient
40 * 	CI	Integral coefficient
41 * 	CD	Derivative coefficient
42 *
43 * CP, CI, CD are subject to careful tuning.
44 *
45 * The integral component uses a exponential moving average approach instead of
46 * an actual sliding window. The advantage is that we don't need to keep an
47 * array of the last N error values and computation is easier.
48 *
49 * Once we have the adj value, we map it to a rate by means of a learning
50 * algorithm. This algorithm keeps the state of the percentual failed frames
51 * difference between rates. The behaviour of the lowest available rate is kept
52 * as a reference value, and every time we switch between two rates, we compute
53 * the difference between the failed frames each rate exhibited. By doing so,
54 * we compare behaviours which different rates exhibited in adjacent timeslices,
55 * thus the comparison is minimally affected by external conditions. This
56 * difference gets propagated to the whole set of measurements, so that the
57 * reference is always the same. Periodically, we normalize this set so that
58 * recent events weigh the most. By comparing the adj value with this set, we
59 * avoid pejorative switches to lower rates and allow for switches to higher
60 * rates if they behaved well.
61 *
62 * Note that for the computations we use a fixed-point representation to avoid
63 * floating point arithmetic. Hence, all values are shifted left by
64 * RC_PID_ARITH_SHIFT.
65 */
66
67
68/* Adjust the rate while ensuring that we won't switch to a lower rate if it
69 * exhibited a worse failed frames behaviour and we'll choose the highest rate
70 * whose failed frames behaviour is not worse than the one of the original rate
71 * target. While at it, check that the new rate is valid. */
72static void rate_control_pid_adjust_rate(struct ieee80211_supported_band *sband,
73					 struct ieee80211_sta *sta,
74					 struct rc_pid_sta_info *spinfo, int adj,
75					 struct rc_pid_rateinfo *rinfo)
76{
77	int cur_sorted, new_sorted, probe, tmp, n_bitrates, band;
78	int cur = spinfo->txrate_idx;
79
80	band = sband->band;
81	n_bitrates = sband->n_bitrates;
82
83	/* Map passed arguments to sorted values. */
84	cur_sorted = rinfo[cur].rev_index;
85	new_sorted = cur_sorted + adj;
86
87	/* Check limits. */
88	if (new_sorted < 0)
89		new_sorted = rinfo[0].rev_index;
90	else if (new_sorted >= n_bitrates)
91		new_sorted = rinfo[n_bitrates - 1].rev_index;
92
93	tmp = new_sorted;
94
95	if (adj < 0) {
96		/* Ensure that the rate decrease isn't disadvantageous. */
97		for (probe = cur_sorted; probe >= new_sorted; probe--)
98			if (rinfo[probe].diff <= rinfo[cur_sorted].diff &&
99			    rate_supported(sta, band, rinfo[probe].index))
100				tmp = probe;
101	} else {
102		/* Look for rate increase with zero (or below) cost. */
103		for (probe = new_sorted + 1; probe < n_bitrates; probe++)
104			if (rinfo[probe].diff <= rinfo[new_sorted].diff &&
105			    rate_supported(sta, band, rinfo[probe].index))
106				tmp = probe;
107	}
108
109	/* Fit the rate found to the nearest supported rate. */
110	do {
111		if (rate_supported(sta, band, rinfo[tmp].index)) {
112			spinfo->txrate_idx = rinfo[tmp].index;
113			break;
114		}
115		if (adj < 0)
116			tmp--;
117		else
118			tmp++;
119	} while (tmp < n_bitrates && tmp >= 0);
120
121#ifdef CONFIG_MAC80211_DEBUGFS
122	rate_control_pid_event_rate_change(&spinfo->events,
123		spinfo->txrate_idx,
124		sband->bitrates[spinfo->txrate_idx].bitrate);
125#endif
126}
127
128/* Normalize the failed frames per-rate differences. */
129static void rate_control_pid_normalize(struct rc_pid_info *pinfo, int l)
130{
131	int i, norm_offset = pinfo->norm_offset;
132	struct rc_pid_rateinfo *r = pinfo->rinfo;
133
134	if (r[0].diff > norm_offset)
135		r[0].diff -= norm_offset;
136	else if (r[0].diff < -norm_offset)
137		r[0].diff += norm_offset;
138	for (i = 0; i < l - 1; i++)
139		if (r[i + 1].diff > r[i].diff + norm_offset)
140			r[i + 1].diff -= norm_offset;
141		else if (r[i + 1].diff <= r[i].diff)
142			r[i + 1].diff += norm_offset;
143}
144
145static void rate_control_pid_sample(struct rc_pid_info *pinfo,
146				    struct ieee80211_supported_band *sband,
147				    struct ieee80211_sta *sta,
148				    struct rc_pid_sta_info *spinfo)
149{
150	struct rc_pid_rateinfo *rinfo = pinfo->rinfo;
151	u32 pf;
152	s32 err_avg;
153	u32 err_prop;
154	u32 err_int;
155	u32 err_der;
156	int adj, i, j, tmp;
157	unsigned long period;
158
159	/* In case nothing happened during the previous control interval, turn
160	 * the sharpening factor on. */
161	period = msecs_to_jiffies(pinfo->sampling_period);
162	if (jiffies - spinfo->last_sample > 2 * period)
163		spinfo->sharp_cnt = pinfo->sharpen_duration;
164
165	spinfo->last_sample = jiffies;
166
167	/* This should never happen, but in case, we assume the old sample is
168	 * still a good measurement and copy it. */
169	if (unlikely(spinfo->tx_num_xmit == 0))
170		pf = spinfo->last_pf;
171	else
172		pf = spinfo->tx_num_failed * 100 / spinfo->tx_num_xmit;
173
174	spinfo->tx_num_xmit = 0;
175	spinfo->tx_num_failed = 0;
176
177	/* If we just switched rate, update the rate behaviour info. */
178	if (pinfo->oldrate != spinfo->txrate_idx) {
179
180		i = rinfo[pinfo->oldrate].rev_index;
181		j = rinfo[spinfo->txrate_idx].rev_index;
182
183		tmp = (pf - spinfo->last_pf);
184		tmp = RC_PID_DO_ARITH_RIGHT_SHIFT(tmp, RC_PID_ARITH_SHIFT);
185
186		rinfo[j].diff = rinfo[i].diff + tmp;
187		pinfo->oldrate = spinfo->txrate_idx;
188	}
189	rate_control_pid_normalize(pinfo, sband->n_bitrates);
190
191	/* Compute the proportional, integral and derivative errors. */
192	err_prop = (pinfo->target - pf) << RC_PID_ARITH_SHIFT;
193
194	err_avg = spinfo->err_avg_sc >> pinfo->smoothing_shift;
195	spinfo->err_avg_sc = spinfo->err_avg_sc - err_avg + err_prop;
196	err_int = spinfo->err_avg_sc >> pinfo->smoothing_shift;
197
198	err_der = (pf - spinfo->last_pf) *
199		  (1 + pinfo->sharpen_factor * spinfo->sharp_cnt);
200	spinfo->last_pf = pf;
201	if (spinfo->sharp_cnt)
202			spinfo->sharp_cnt--;
203
204#ifdef CONFIG_MAC80211_DEBUGFS
205	rate_control_pid_event_pf_sample(&spinfo->events, pf, err_prop, err_int,
206					 err_der);
207#endif
208
209	/* Compute the controller output. */
210	adj = (err_prop * pinfo->coeff_p + err_int * pinfo->coeff_i
211	      + err_der * pinfo->coeff_d);
212	adj = RC_PID_DO_ARITH_RIGHT_SHIFT(adj, 2 * RC_PID_ARITH_SHIFT);
213
214	/* Change rate. */
215	if (adj)
216		rate_control_pid_adjust_rate(sband, sta, spinfo, adj, rinfo);
217}
218
219static void rate_control_pid_tx_status(void *priv, struct ieee80211_supported_band *sband,
220				       struct ieee80211_sta *sta, void *priv_sta,
221				       struct sk_buff *skb)
222{
223	struct rc_pid_info *pinfo = priv;
224	struct rc_pid_sta_info *spinfo = priv_sta;
225	unsigned long period;
226	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
227
228	if (!spinfo)
229		return;
230
231	/* Ignore all frames that were sent with a different rate than the rate
232	 * we currently advise mac80211 to use. */
233	if (info->status.rates[0].idx != spinfo->txrate_idx)
234		return;
235
236	spinfo->tx_num_xmit++;
237
238#ifdef CONFIG_MAC80211_DEBUGFS
239	rate_control_pid_event_tx_status(&spinfo->events, info);
240#endif
241
242	/* We count frames that totally failed to be transmitted as two bad
243	 * frames, those that made it out but had some retries as one good and
244	 * one bad frame. */
245	if (!(info->flags & IEEE80211_TX_STAT_ACK)) {
246		spinfo->tx_num_failed += 2;
247		spinfo->tx_num_xmit++;
248	} else if (info->status.rates[0].count > 1) {
249		spinfo->tx_num_failed++;
250		spinfo->tx_num_xmit++;
251	}
252
253	/* Update PID controller state. */
254	period = msecs_to_jiffies(pinfo->sampling_period);
255	if (time_after(jiffies, spinfo->last_sample + period))
256		rate_control_pid_sample(pinfo, sband, sta, spinfo);
257}
258
259static void
260rate_control_pid_get_rate(void *priv, struct ieee80211_sta *sta,
261			  void *priv_sta,
262			  struct ieee80211_tx_rate_control *txrc)
263{
264	struct sk_buff *skb = txrc->skb;
265	struct ieee80211_supported_band *sband = txrc->sband;
266	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
267	struct rc_pid_sta_info *spinfo = priv_sta;
268	int rateidx;
269
270	if (txrc->rts)
271		info->control.rates[0].count =
272			txrc->hw->conf.long_frame_max_tx_count;
273	else
274		info->control.rates[0].count =
275			txrc->hw->conf.short_frame_max_tx_count;
276
277	/* Send management frames and NO_ACK data using lowest rate. */
278	if (rate_control_send_low(sta, priv_sta, txrc))
279		return;
280
281	rateidx = spinfo->txrate_idx;
282
283	if (rateidx >= sband->n_bitrates)
284		rateidx = sband->n_bitrates - 1;
285
286	info->control.rates[0].idx = rateidx;
287
288#ifdef CONFIG_MAC80211_DEBUGFS
289	rate_control_pid_event_tx_rate(&spinfo->events,
290		rateidx, sband->bitrates[rateidx].bitrate);
291#endif
292}
293
294static void
295rate_control_pid_rate_init(void *priv, struct ieee80211_supported_band *sband,
296			   struct ieee80211_sta *sta, void *priv_sta)
297{
298	struct rc_pid_sta_info *spinfo = priv_sta;
299	struct rc_pid_info *pinfo = priv;
300	struct rc_pid_rateinfo *rinfo = pinfo->rinfo;
301	int i, j, tmp;
302	bool s;
303
304
305	/* Sort the rates. This is optimized for the most common case (i.e.
306	 * almost-sorted CCK+OFDM rates). Kind of bubble-sort with reversed
307	 * mapping too. */
308	for (i = 0; i < sband->n_bitrates; i++) {
309		rinfo[i].index = i;
310		rinfo[i].rev_index = i;
311		if (RC_PID_FAST_START)
312			rinfo[i].diff = 0;
313		else
314			rinfo[i].diff = i * pinfo->norm_offset;
315	}
316	for (i = 1; i < sband->n_bitrates; i++) {
317		s = 0;
318		for (j = 0; j < sband->n_bitrates - i; j++)
319			if (unlikely(sband->bitrates[rinfo[j].index].bitrate >
320				     sband->bitrates[rinfo[j + 1].index].bitrate)) {
321				tmp = rinfo[j].index;
322				rinfo[j].index = rinfo[j + 1].index;
323				rinfo[j + 1].index = tmp;
324				rinfo[rinfo[j].index].rev_index = j;
325				rinfo[rinfo[j + 1].index].rev_index = j + 1;
326				s = 1;
327			}
328		if (!s)
329			break;
330	}
331
332	spinfo->txrate_idx = rate_lowest_index(sband, sta);
333}
334
335static void *rate_control_pid_alloc(struct ieee80211_hw *hw,
336				    struct dentry *debugfsdir)
337{
338	struct rc_pid_info *pinfo;
339	struct rc_pid_rateinfo *rinfo;
340	struct ieee80211_supported_band *sband;
341	int i, max_rates = 0;
342#ifdef CONFIG_MAC80211_DEBUGFS
343	struct rc_pid_debugfs_entries *de;
344#endif
345
346	pinfo = kmalloc(sizeof(*pinfo), GFP_ATOMIC);
347	if (!pinfo)
348		return NULL;
349
350	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
351		sband = hw->wiphy->bands[i];
352		if (sband && sband->n_bitrates > max_rates)
353			max_rates = sband->n_bitrates;
354	}
355
356	rinfo = kmalloc(sizeof(*rinfo) * max_rates, GFP_ATOMIC);
357	if (!rinfo) {
358		kfree(pinfo);
359		return NULL;
360	}
361
362	pinfo->target = RC_PID_TARGET_PF;
363	pinfo->sampling_period = RC_PID_INTERVAL;
364	pinfo->coeff_p = RC_PID_COEFF_P;
365	pinfo->coeff_i = RC_PID_COEFF_I;
366	pinfo->coeff_d = RC_PID_COEFF_D;
367	pinfo->smoothing_shift = RC_PID_SMOOTHING_SHIFT;
368	pinfo->sharpen_factor = RC_PID_SHARPENING_FACTOR;
369	pinfo->sharpen_duration = RC_PID_SHARPENING_DURATION;
370	pinfo->norm_offset = RC_PID_NORM_OFFSET;
371	pinfo->rinfo = rinfo;
372	pinfo->oldrate = 0;
373
374#ifdef CONFIG_MAC80211_DEBUGFS
375	de = &pinfo->dentries;
376	de->target = debugfs_create_u32("target_pf", S_IRUSR | S_IWUSR,
377					debugfsdir, &pinfo->target);
378	de->sampling_period = debugfs_create_u32("sampling_period",
379						 S_IRUSR | S_IWUSR, debugfsdir,
380						 &pinfo->sampling_period);
381	de->coeff_p = debugfs_create_u32("coeff_p", S_IRUSR | S_IWUSR,
382					 debugfsdir, (u32 *)&pinfo->coeff_p);
383	de->coeff_i = debugfs_create_u32("coeff_i", S_IRUSR | S_IWUSR,
384					 debugfsdir, (u32 *)&pinfo->coeff_i);
385	de->coeff_d = debugfs_create_u32("coeff_d", S_IRUSR | S_IWUSR,
386					 debugfsdir, (u32 *)&pinfo->coeff_d);
387	de->smoothing_shift = debugfs_create_u32("smoothing_shift",
388						 S_IRUSR | S_IWUSR, debugfsdir,
389						 &pinfo->smoothing_shift);
390	de->sharpen_factor = debugfs_create_u32("sharpen_factor",
391					       S_IRUSR | S_IWUSR, debugfsdir,
392					       &pinfo->sharpen_factor);
393	de->sharpen_duration = debugfs_create_u32("sharpen_duration",
394						  S_IRUSR | S_IWUSR, debugfsdir,
395						  &pinfo->sharpen_duration);
396	de->norm_offset = debugfs_create_u32("norm_offset",
397					     S_IRUSR | S_IWUSR, debugfsdir,
398					     &pinfo->norm_offset);
399#endif
400
401	return pinfo;
402}
403
404static void rate_control_pid_free(void *priv)
405{
406	struct rc_pid_info *pinfo = priv;
407#ifdef CONFIG_MAC80211_DEBUGFS
408	struct rc_pid_debugfs_entries *de = &pinfo->dentries;
409
410	debugfs_remove(de->norm_offset);
411	debugfs_remove(de->sharpen_duration);
412	debugfs_remove(de->sharpen_factor);
413	debugfs_remove(de->smoothing_shift);
414	debugfs_remove(de->coeff_d);
415	debugfs_remove(de->coeff_i);
416	debugfs_remove(de->coeff_p);
417	debugfs_remove(de->sampling_period);
418	debugfs_remove(de->target);
419#endif
420
421	kfree(pinfo->rinfo);
422	kfree(pinfo);
423}
424
425static void *rate_control_pid_alloc_sta(void *priv, struct ieee80211_sta *sta,
426					gfp_t gfp)
427{
428	struct rc_pid_sta_info *spinfo;
429
430	spinfo = kzalloc(sizeof(*spinfo), gfp);
431	if (spinfo == NULL)
432		return NULL;
433
434	spinfo->last_sample = jiffies;
435
436#ifdef CONFIG_MAC80211_DEBUGFS
437	spin_lock_init(&spinfo->events.lock);
438	init_waitqueue_head(&spinfo->events.waitqueue);
439#endif
440
441	return spinfo;
442}
443
444static void rate_control_pid_free_sta(void *priv, struct ieee80211_sta *sta,
445				      void *priv_sta)
446{
447	kfree(priv_sta);
448}
449
450static struct rate_control_ops mac80211_rcpid = {
451	.name = "pid",
452	.tx_status = rate_control_pid_tx_status,
453	.get_rate = rate_control_pid_get_rate,
454	.rate_init = rate_control_pid_rate_init,
455	.alloc = rate_control_pid_alloc,
456	.free = rate_control_pid_free,
457	.alloc_sta = rate_control_pid_alloc_sta,
458	.free_sta = rate_control_pid_free_sta,
459#ifdef CONFIG_MAC80211_DEBUGFS
460	.add_sta_debugfs = rate_control_pid_add_sta_debugfs,
461	.remove_sta_debugfs = rate_control_pid_remove_sta_debugfs,
462#endif
463};
464
465int __init rc80211_pid_init(void)
466{
467	return ieee80211_rate_control_register(&mac80211_rcpid);
468}
469
470void rc80211_pid_exit(void)
471{
472	ieee80211_rate_control_unregister(&mac80211_rcpid);
473}
474