1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51#define CREATE_TRACE_POINTS
52#include <trace/events/vmscan.h>
53
54struct scan_control {
55	/* Incremented by the number of inactive pages that were scanned */
56	unsigned long nr_scanned;
57
58	/* Number of pages freed so far during a call to shrink_zones() */
59	unsigned long nr_reclaimed;
60
61	/* How many pages shrink_list() should reclaim */
62	unsigned long nr_to_reclaim;
63
64	unsigned long hibernation_mode;
65
66	/* This context's GFP mask */
67	gfp_t gfp_mask;
68
69	int may_writepage;
70
71	/* Can mapped pages be reclaimed? */
72	int may_unmap;
73
74	/* Can pages be swapped as part of reclaim? */
75	int may_swap;
76
77	int swappiness;
78
79	int order;
80
81	/*
82	 * Intend to reclaim enough contenious memory rather than to reclaim
83	 * enough amount memory. I.e, it's the mode for high order allocation.
84	 */
85	bool lumpy_reclaim_mode;
86
87	/* Which cgroup do we reclaim from */
88	struct mem_cgroup *mem_cgroup;
89
90	/*
91	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92	 * are scanned.
93	 */
94	nodemask_t	*nodemask;
95};
96
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field)			\
101	do {								\
102		if ((_page)->lru.prev != _base) {			\
103			struct page *prev;				\
104									\
105			prev = lru_to_page(&(_page->lru));		\
106			prefetch(&prev->_field);			\
107		}							\
108	} while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field)			\
115	do {								\
116		if ((_page)->lru.prev != _base) {			\
117			struct page *prev;				\
118									\
119			prev = lru_to_page(&(_page->lru));		\
120			prefetchw(&prev->_field);			\
121		}							\
122	} while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100.  Higher means more swappy.
129 */
130int vm_swappiness = 60;
131long vm_total_pages;	/* The total number of pages which the VM controls */
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138#else
139#define scanning_global_lru(sc)	(1)
140#endif
141
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143						  struct scan_control *sc)
144{
145	if (!scanning_global_lru(sc))
146		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148	return &zone->reclaim_stat;
149}
150
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152				struct scan_control *sc, enum lru_list lru)
153{
154	if (!scanning_global_lru(sc))
155		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157	return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
161/*
162 * Add a shrinker callback to be called from the vm
163 */
164void register_shrinker(struct shrinker *shrinker)
165{
166	shrinker->nr = 0;
167	down_write(&shrinker_rwsem);
168	list_add_tail(&shrinker->list, &shrinker_list);
169	up_write(&shrinker_rwsem);
170}
171EXPORT_SYMBOL(register_shrinker);
172
173/*
174 * Remove one
175 */
176void unregister_shrinker(struct shrinker *shrinker)
177{
178	down_write(&shrinker_rwsem);
179	list_del(&shrinker->list);
180	up_write(&shrinker_rwsem);
181}
182EXPORT_SYMBOL(unregister_shrinker);
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object.  With this in mind we age equal
190 * percentages of the lru and ageable caches.  This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt.  It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205			unsigned long lru_pages)
206{
207	struct shrinker *shrinker;
208	unsigned long ret = 0;
209
210	if (scanned == 0)
211		scanned = SWAP_CLUSTER_MAX;
212
213	if (!down_read_trylock(&shrinker_rwsem))
214		return 1;	/* Assume we'll be able to shrink next time */
215
216	list_for_each_entry(shrinker, &shrinker_list, list) {
217		unsigned long long delta;
218		unsigned long total_scan;
219		unsigned long max_pass;
220
221		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222		delta = (4 * scanned) / shrinker->seeks;
223		delta *= max_pass;
224		do_div(delta, lru_pages + 1);
225		shrinker->nr += delta;
226		if (shrinker->nr < 0) {
227			printk(KERN_ERR "shrink_slab: %pF negative objects to "
228			       "delete nr=%ld\n",
229			       shrinker->shrink, shrinker->nr);
230			shrinker->nr = max_pass;
231		}
232
233		/*
234		 * Avoid risking looping forever due to too large nr value:
235		 * never try to free more than twice the estimate number of
236		 * freeable entries.
237		 */
238		if (shrinker->nr > max_pass * 2)
239			shrinker->nr = max_pass * 2;
240
241		total_scan = shrinker->nr;
242		shrinker->nr = 0;
243
244		while (total_scan >= SHRINK_BATCH) {
245			long this_scan = SHRINK_BATCH;
246			int shrink_ret;
247			int nr_before;
248
249			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251								gfp_mask);
252			if (shrink_ret == -1)
253				break;
254			if (shrink_ret < nr_before)
255				ret += nr_before - shrink_ret;
256			count_vm_events(SLABS_SCANNED, this_scan);
257			total_scan -= this_scan;
258
259			cond_resched();
260		}
261
262		shrinker->nr += total_scan;
263	}
264	up_read(&shrinker_rwsem);
265	return ret;
266}
267
268static inline int is_page_cache_freeable(struct page *page)
269{
270	/*
271	 * A freeable page cache page is referenced only by the caller
272	 * that isolated the page, the page cache radix tree and
273	 * optional buffer heads at page->private.
274	 */
275	return page_count(page) - page_has_private(page) == 2;
276}
277
278static int may_write_to_queue(struct backing_dev_info *bdi)
279{
280	if (current->flags & PF_SWAPWRITE)
281		return 1;
282	if (!bdi_write_congested(bdi))
283		return 1;
284	if (bdi == current->backing_dev_info)
285		return 1;
286	return 0;
287}
288
289/*
290 * We detected a synchronous write error writing a page out.  Probably
291 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up.  But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301static void handle_write_error(struct address_space *mapping,
302				struct page *page, int error)
303{
304	lock_page_nosync(page);
305	if (page_mapping(page) == mapping)
306		mapping_set_error(mapping, error);
307	unlock_page(page);
308}
309
310/* Request for sync pageout. */
311enum pageout_io {
312	PAGEOUT_IO_ASYNC,
313	PAGEOUT_IO_SYNC,
314};
315
316/* possible outcome of pageout() */
317typedef enum {
318	/* failed to write page out, page is locked */
319	PAGE_KEEP,
320	/* move page to the active list, page is locked */
321	PAGE_ACTIVATE,
322	/* page has been sent to the disk successfully, page is unlocked */
323	PAGE_SUCCESS,
324	/* page is clean and locked */
325	PAGE_CLEAN,
326} pageout_t;
327
328/*
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
331 */
332static pageout_t pageout(struct page *page, struct address_space *mapping,
333						enum pageout_io sync_writeback)
334{
335	/*
336	 * If the page is dirty, only perform writeback if that write
337	 * will be non-blocking.  To prevent this allocation from being
338	 * stalled by pagecache activity.  But note that there may be
339	 * stalls if we need to run get_block().  We could test
340	 * PagePrivate for that.
341	 *
342	 * If this process is currently in __generic_file_aio_write() against
343	 * this page's queue, we can perform writeback even if that
344	 * will block.
345	 *
346	 * If the page is swapcache, write it back even if that would
347	 * block, for some throttling. This happens by accident, because
348	 * swap_backing_dev_info is bust: it doesn't reflect the
349	 * congestion state of the swapdevs.  Easy to fix, if needed.
350	 */
351	if (!is_page_cache_freeable(page))
352		return PAGE_KEEP;
353	if (!mapping) {
354		/*
355		 * Some data journaling orphaned pages can have
356		 * page->mapping == NULL while being dirty with clean buffers.
357		 */
358		if (page_has_private(page)) {
359			if (try_to_free_buffers(page)) {
360				ClearPageDirty(page);
361				printk("%s: orphaned page\n", __func__);
362				return PAGE_CLEAN;
363			}
364		}
365		return PAGE_KEEP;
366	}
367	if (mapping->a_ops->writepage == NULL)
368		return PAGE_ACTIVATE;
369	if (!may_write_to_queue(mapping->backing_dev_info))
370		return PAGE_KEEP;
371
372	if (clear_page_dirty_for_io(page)) {
373		int res;
374		struct writeback_control wbc = {
375			.sync_mode = WB_SYNC_NONE,
376			.nr_to_write = SWAP_CLUSTER_MAX,
377			.range_start = 0,
378			.range_end = LLONG_MAX,
379			.nonblocking = 1,
380			.for_reclaim = 1,
381		};
382
383		SetPageReclaim(page);
384		res = mapping->a_ops->writepage(page, &wbc);
385		if (res < 0)
386			handle_write_error(mapping, page, res);
387		if (res == AOP_WRITEPAGE_ACTIVATE) {
388			ClearPageReclaim(page);
389			return PAGE_ACTIVATE;
390		}
391
392		/*
393		 * Wait on writeback if requested to. This happens when
394		 * direct reclaiming a large contiguous area and the
395		 * first attempt to free a range of pages fails.
396		 */
397		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398			wait_on_page_writeback(page);
399
400		if (!PageWriteback(page)) {
401			/* synchronous write or broken a_ops? */
402			ClearPageReclaim(page);
403		}
404		trace_mm_vmscan_writepage(page,
405			trace_reclaim_flags(page, sync_writeback));
406		inc_zone_page_state(page, NR_VMSCAN_WRITE);
407		return PAGE_SUCCESS;
408	}
409
410	return PAGE_CLEAN;
411}
412
413/*
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
416 */
417static int __remove_mapping(struct address_space *mapping, struct page *page)
418{
419	BUG_ON(!PageLocked(page));
420	BUG_ON(mapping != page_mapping(page));
421
422	spin_lock_irq(&mapping->tree_lock);
423	/*
424	 * The non racy check for a busy page.
425	 *
426	 * Must be careful with the order of the tests. When someone has
427	 * a ref to the page, it may be possible that they dirty it then
428	 * drop the reference. So if PageDirty is tested before page_count
429	 * here, then the following race may occur:
430	 *
431	 * get_user_pages(&page);
432	 * [user mapping goes away]
433	 * write_to(page);
434	 *				!PageDirty(page)    [good]
435	 * SetPageDirty(page);
436	 * put_page(page);
437	 *				!page_count(page)   [good, discard it]
438	 *
439	 * [oops, our write_to data is lost]
440	 *
441	 * Reversing the order of the tests ensures such a situation cannot
442	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443	 * load is not satisfied before that of page->_count.
444	 *
445	 * Note that if SetPageDirty is always performed via set_page_dirty,
446	 * and thus under tree_lock, then this ordering is not required.
447	 */
448	if (!page_freeze_refs(page, 2))
449		goto cannot_free;
450	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451	if (unlikely(PageDirty(page))) {
452		page_unfreeze_refs(page, 2);
453		goto cannot_free;
454	}
455
456	if (PageSwapCache(page)) {
457		swp_entry_t swap = { .val = page_private(page) };
458		__delete_from_swap_cache(page);
459		spin_unlock_irq(&mapping->tree_lock);
460		swapcache_free(swap, page);
461	} else {
462		__remove_from_page_cache(page);
463		spin_unlock_irq(&mapping->tree_lock);
464		mem_cgroup_uncharge_cache_page(page);
465	}
466
467	return 1;
468
469cannot_free:
470	spin_unlock_irq(&mapping->tree_lock);
471	return 0;
472}
473
474/*
475 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
476 * someone else has a ref on the page, abort and return 0.  If it was
477 * successfully detached, return 1.  Assumes the caller has a single ref on
478 * this page.
479 */
480int remove_mapping(struct address_space *mapping, struct page *page)
481{
482	if (__remove_mapping(mapping, page)) {
483		/*
484		 * Unfreezing the refcount with 1 rather than 2 effectively
485		 * drops the pagecache ref for us without requiring another
486		 * atomic operation.
487		 */
488		page_unfreeze_refs(page, 1);
489		return 1;
490	}
491	return 0;
492}
493
494/**
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
497 *
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
500 *
501 * lru_lock must not be held, interrupts must be enabled.
502 */
503void putback_lru_page(struct page *page)
504{
505	int lru;
506	int active = !!TestClearPageActive(page);
507	int was_unevictable = PageUnevictable(page);
508
509	VM_BUG_ON(PageLRU(page));
510
511redo:
512	ClearPageUnevictable(page);
513
514	if (page_evictable(page, NULL)) {
515		/*
516		 * For evictable pages, we can use the cache.
517		 * In event of a race, worst case is we end up with an
518		 * unevictable page on [in]active list.
519		 * We know how to handle that.
520		 */
521		lru = active + page_lru_base_type(page);
522		lru_cache_add_lru(page, lru);
523	} else {
524		/*
525		 * Put unevictable pages directly on zone's unevictable
526		 * list.
527		 */
528		lru = LRU_UNEVICTABLE;
529		add_page_to_unevictable_list(page);
530		/*
531		 * When racing with an mlock clearing (page is
532		 * unlocked), make sure that if the other thread does
533		 * not observe our setting of PG_lru and fails
534		 * isolation, we see PG_mlocked cleared below and move
535		 * the page back to the evictable list.
536		 *
537		 * The other side is TestClearPageMlocked().
538		 */
539		smp_mb();
540	}
541
542	/*
543	 * page's status can change while we move it among lru. If an evictable
544	 * page is on unevictable list, it never be freed. To avoid that,
545	 * check after we added it to the list, again.
546	 */
547	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548		if (!isolate_lru_page(page)) {
549			put_page(page);
550			goto redo;
551		}
552		/* This means someone else dropped this page from LRU
553		 * So, it will be freed or putback to LRU again. There is
554		 * nothing to do here.
555		 */
556	}
557
558	if (was_unevictable && lru != LRU_UNEVICTABLE)
559		count_vm_event(UNEVICTABLE_PGRESCUED);
560	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561		count_vm_event(UNEVICTABLE_PGCULLED);
562
563	put_page(page);		/* drop ref from isolate */
564}
565
566enum page_references {
567	PAGEREF_RECLAIM,
568	PAGEREF_RECLAIM_CLEAN,
569	PAGEREF_KEEP,
570	PAGEREF_ACTIVATE,
571};
572
573static enum page_references page_check_references(struct page *page,
574						  struct scan_control *sc)
575{
576	int referenced_ptes, referenced_page;
577	unsigned long vm_flags;
578
579	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
580	referenced_page = TestClearPageReferenced(page);
581
582	/* Lumpy reclaim - ignore references */
583	if (sc->lumpy_reclaim_mode)
584		return PAGEREF_RECLAIM;
585
586	/*
587	 * Mlock lost the isolation race with us.  Let try_to_unmap()
588	 * move the page to the unevictable list.
589	 */
590	if (vm_flags & VM_LOCKED)
591		return PAGEREF_RECLAIM;
592
593	if (referenced_ptes) {
594		if (PageAnon(page))
595			return PAGEREF_ACTIVATE;
596		/*
597		 * All mapped pages start out with page table
598		 * references from the instantiating fault, so we need
599		 * to look twice if a mapped file page is used more
600		 * than once.
601		 *
602		 * Mark it and spare it for another trip around the
603		 * inactive list.  Another page table reference will
604		 * lead to its activation.
605		 *
606		 * Note: the mark is set for activated pages as well
607		 * so that recently deactivated but used pages are
608		 * quickly recovered.
609		 */
610		SetPageReferenced(page);
611
612		if (referenced_page)
613			return PAGEREF_ACTIVATE;
614
615		return PAGEREF_KEEP;
616	}
617
618	/* Reclaim if clean, defer dirty pages to writeback */
619	if (referenced_page)
620		return PAGEREF_RECLAIM_CLEAN;
621
622	return PAGEREF_RECLAIM;
623}
624
625static noinline_for_stack void free_page_list(struct list_head *free_pages)
626{
627	struct pagevec freed_pvec;
628	struct page *page, *tmp;
629
630	pagevec_init(&freed_pvec, 1);
631
632	list_for_each_entry_safe(page, tmp, free_pages, lru) {
633		list_del(&page->lru);
634		if (!pagevec_add(&freed_pvec, page)) {
635			__pagevec_free(&freed_pvec);
636			pagevec_reinit(&freed_pvec);
637		}
638	}
639
640	pagevec_free(&freed_pvec);
641}
642
643/*
644 * shrink_page_list() returns the number of reclaimed pages
645 */
646static unsigned long shrink_page_list(struct list_head *page_list,
647					struct scan_control *sc,
648					enum pageout_io sync_writeback)
649{
650	LIST_HEAD(ret_pages);
651	LIST_HEAD(free_pages);
652	int pgactivate = 0;
653	unsigned long nr_reclaimed = 0;
654
655	cond_resched();
656
657	while (!list_empty(page_list)) {
658		enum page_references references;
659		struct address_space *mapping;
660		struct page *page;
661		int may_enter_fs;
662
663		cond_resched();
664
665		page = lru_to_page(page_list);
666		list_del(&page->lru);
667
668		if (!trylock_page(page))
669			goto keep;
670
671		VM_BUG_ON(PageActive(page));
672
673		sc->nr_scanned++;
674
675		if (unlikely(!page_evictable(page, NULL)))
676			goto cull_mlocked;
677
678		if (!sc->may_unmap && page_mapped(page))
679			goto keep_locked;
680
681		/* Double the slab pressure for mapped and swapcache pages */
682		if (page_mapped(page) || PageSwapCache(page))
683			sc->nr_scanned++;
684
685		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
686			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
687
688		if (PageWriteback(page)) {
689			/*
690			 * Synchronous reclaim is performed in two passes,
691			 * first an asynchronous pass over the list to
692			 * start parallel writeback, and a second synchronous
693			 * pass to wait for the IO to complete.  Wait here
694			 * for any page for which writeback has already
695			 * started.
696			 */
697			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
698				wait_on_page_writeback(page);
699			else
700				goto keep_locked;
701		}
702
703		references = page_check_references(page, sc);
704		switch (references) {
705		case PAGEREF_ACTIVATE:
706			goto activate_locked;
707		case PAGEREF_KEEP:
708			goto keep_locked;
709		case PAGEREF_RECLAIM:
710		case PAGEREF_RECLAIM_CLEAN:
711			; /* try to reclaim the page below */
712		}
713
714		/*
715		 * Anonymous process memory has backing store?
716		 * Try to allocate it some swap space here.
717		 */
718		if (PageAnon(page) && !PageSwapCache(page)) {
719			if (!(sc->gfp_mask & __GFP_IO))
720				goto keep_locked;
721			if (!add_to_swap(page))
722				goto activate_locked;
723			may_enter_fs = 1;
724		}
725
726		mapping = page_mapping(page);
727
728		/*
729		 * The page is mapped into the page tables of one or more
730		 * processes. Try to unmap it here.
731		 */
732		if (page_mapped(page) && mapping) {
733			switch (try_to_unmap(page, TTU_UNMAP)) {
734			case SWAP_FAIL:
735				goto activate_locked;
736			case SWAP_AGAIN:
737				goto keep_locked;
738			case SWAP_MLOCK:
739				goto cull_mlocked;
740			case SWAP_SUCCESS:
741				; /* try to free the page below */
742			}
743		}
744
745		if (PageDirty(page)) {
746			if (references == PAGEREF_RECLAIM_CLEAN)
747				goto keep_locked;
748			if (!may_enter_fs)
749				goto keep_locked;
750			if (!sc->may_writepage)
751				goto keep_locked;
752
753			/* Page is dirty, try to write it out here */
754			switch (pageout(page, mapping, sync_writeback)) {
755			case PAGE_KEEP:
756				goto keep_locked;
757			case PAGE_ACTIVATE:
758				goto activate_locked;
759			case PAGE_SUCCESS:
760				if (PageWriteback(page) || PageDirty(page))
761					goto keep;
762				/*
763				 * A synchronous write - probably a ramdisk.  Go
764				 * ahead and try to reclaim the page.
765				 */
766				if (!trylock_page(page))
767					goto keep;
768				if (PageDirty(page) || PageWriteback(page))
769					goto keep_locked;
770				mapping = page_mapping(page);
771			case PAGE_CLEAN:
772				; /* try to free the page below */
773			}
774		}
775
776		/*
777		 * If the page has buffers, try to free the buffer mappings
778		 * associated with this page. If we succeed we try to free
779		 * the page as well.
780		 *
781		 * We do this even if the page is PageDirty().
782		 * try_to_release_page() does not perform I/O, but it is
783		 * possible for a page to have PageDirty set, but it is actually
784		 * clean (all its buffers are clean).  This happens if the
785		 * buffers were written out directly, with submit_bh(). ext3
786		 * will do this, as well as the blockdev mapping.
787		 * try_to_release_page() will discover that cleanness and will
788		 * drop the buffers and mark the page clean - it can be freed.
789		 *
790		 * Rarely, pages can have buffers and no ->mapping.  These are
791		 * the pages which were not successfully invalidated in
792		 * truncate_complete_page().  We try to drop those buffers here
793		 * and if that worked, and the page is no longer mapped into
794		 * process address space (page_count == 1) it can be freed.
795		 * Otherwise, leave the page on the LRU so it is swappable.
796		 */
797		if (page_has_private(page)) {
798			if (!try_to_release_page(page, sc->gfp_mask))
799				goto activate_locked;
800			if (!mapping && page_count(page) == 1) {
801				unlock_page(page);
802				if (put_page_testzero(page))
803					goto free_it;
804				else {
805					/*
806					 * rare race with speculative reference.
807					 * the speculative reference will free
808					 * this page shortly, so we may
809					 * increment nr_reclaimed here (and
810					 * leave it off the LRU).
811					 */
812					nr_reclaimed++;
813					continue;
814				}
815			}
816		}
817
818		if (!mapping || !__remove_mapping(mapping, page))
819			goto keep_locked;
820
821		/*
822		 * At this point, we have no other references and there is
823		 * no way to pick any more up (removed from LRU, removed
824		 * from pagecache). Can use non-atomic bitops now (and
825		 * we obviously don't have to worry about waking up a process
826		 * waiting on the page lock, because there are no references.
827		 */
828		__clear_page_locked(page);
829free_it:
830		nr_reclaimed++;
831
832		/*
833		 * Is there need to periodically free_page_list? It would
834		 * appear not as the counts should be low
835		 */
836		list_add(&page->lru, &free_pages);
837		continue;
838
839cull_mlocked:
840		if (PageSwapCache(page))
841			try_to_free_swap(page);
842		unlock_page(page);
843		putback_lru_page(page);
844		continue;
845
846activate_locked:
847		/* Not a candidate for swapping, so reclaim swap space. */
848		if (PageSwapCache(page) && vm_swap_full())
849			try_to_free_swap(page);
850		VM_BUG_ON(PageActive(page));
851		SetPageActive(page);
852		pgactivate++;
853keep_locked:
854		unlock_page(page);
855keep:
856		list_add(&page->lru, &ret_pages);
857		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
858	}
859
860	free_page_list(&free_pages);
861
862	list_splice(&ret_pages, page_list);
863	count_vm_events(PGACTIVATE, pgactivate);
864	return nr_reclaimed;
865}
866
867/*
868 * Attempt to remove the specified page from its LRU.  Only take this page
869 * if it is of the appropriate PageActive status.  Pages which are being
870 * freed elsewhere are also ignored.
871 *
872 * page:	page to consider
873 * mode:	one of the LRU isolation modes defined above
874 *
875 * returns 0 on success, -ve errno on failure.
876 */
877int __isolate_lru_page(struct page *page, int mode, int file)
878{
879	int ret = -EINVAL;
880
881	/* Only take pages on the LRU. */
882	if (!PageLRU(page))
883		return ret;
884
885	/*
886	 * When checking the active state, we need to be sure we are
887	 * dealing with comparible boolean values.  Take the logical not
888	 * of each.
889	 */
890	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
891		return ret;
892
893	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
894		return ret;
895
896	/*
897	 * When this function is being called for lumpy reclaim, we
898	 * initially look into all LRU pages, active, inactive and
899	 * unevictable; only give shrink_page_list evictable pages.
900	 */
901	if (PageUnevictable(page))
902		return ret;
903
904	ret = -EBUSY;
905
906	if (likely(get_page_unless_zero(page))) {
907		/*
908		 * Be careful not to clear PageLRU until after we're
909		 * sure the page is not being freed elsewhere -- the
910		 * page release code relies on it.
911		 */
912		ClearPageLRU(page);
913		ret = 0;
914	}
915
916	return ret;
917}
918
919/*
920 * zone->lru_lock is heavily contended.  Some of the functions that
921 * shrink the lists perform better by taking out a batch of pages
922 * and working on them outside the LRU lock.
923 *
924 * For pagecache intensive workloads, this function is the hottest
925 * spot in the kernel (apart from copy_*_user functions).
926 *
927 * Appropriate locks must be held before calling this function.
928 *
929 * @nr_to_scan:	The number of pages to look through on the list.
930 * @src:	The LRU list to pull pages off.
931 * @dst:	The temp list to put pages on to.
932 * @scanned:	The number of pages that were scanned.
933 * @order:	The caller's attempted allocation order
934 * @mode:	One of the LRU isolation modes
935 * @file:	True [1] if isolating file [!anon] pages
936 *
937 * returns how many pages were moved onto *@dst.
938 */
939static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
940		struct list_head *src, struct list_head *dst,
941		unsigned long *scanned, int order, int mode, int file)
942{
943	unsigned long nr_taken = 0;
944	unsigned long nr_lumpy_taken = 0;
945	unsigned long nr_lumpy_dirty = 0;
946	unsigned long nr_lumpy_failed = 0;
947	unsigned long scan;
948
949	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
950		struct page *page;
951		unsigned long pfn;
952		unsigned long end_pfn;
953		unsigned long page_pfn;
954		int zone_id;
955
956		page = lru_to_page(src);
957		prefetchw_prev_lru_page(page, src, flags);
958
959		VM_BUG_ON(!PageLRU(page));
960
961		switch (__isolate_lru_page(page, mode, file)) {
962		case 0:
963			list_move(&page->lru, dst);
964			mem_cgroup_del_lru(page);
965			nr_taken++;
966			break;
967
968		case -EBUSY:
969			/* else it is being freed elsewhere */
970			list_move(&page->lru, src);
971			mem_cgroup_rotate_lru_list(page, page_lru(page));
972			continue;
973
974		default:
975			BUG();
976		}
977
978		if (!order)
979			continue;
980
981		/*
982		 * Attempt to take all pages in the order aligned region
983		 * surrounding the tag page.  Only take those pages of
984		 * the same active state as that tag page.  We may safely
985		 * round the target page pfn down to the requested order
986		 * as the mem_map is guarenteed valid out to MAX_ORDER,
987		 * where that page is in a different zone we will detect
988		 * it from its zone id and abort this block scan.
989		 */
990		zone_id = page_zone_id(page);
991		page_pfn = page_to_pfn(page);
992		pfn = page_pfn & ~((1 << order) - 1);
993		end_pfn = pfn + (1 << order);
994		for (; pfn < end_pfn; pfn++) {
995			struct page *cursor_page;
996
997			/* The target page is in the block, ignore it. */
998			if (unlikely(pfn == page_pfn))
999				continue;
1000
1001			/* Avoid holes within the zone. */
1002			if (unlikely(!pfn_valid_within(pfn)))
1003				break;
1004
1005			cursor_page = pfn_to_page(pfn);
1006
1007			/* Check that we have not crossed a zone boundary. */
1008			if (unlikely(page_zone_id(cursor_page) != zone_id))
1009				continue;
1010
1011			/*
1012			 * If we don't have enough swap space, reclaiming of
1013			 * anon page which don't already have a swap slot is
1014			 * pointless.
1015			 */
1016			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1017					!PageSwapCache(cursor_page))
1018				continue;
1019
1020			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1021				list_move(&cursor_page->lru, dst);
1022				mem_cgroup_del_lru(cursor_page);
1023				nr_taken++;
1024				nr_lumpy_taken++;
1025				if (PageDirty(cursor_page))
1026					nr_lumpy_dirty++;
1027				scan++;
1028			} else {
1029				if (mode == ISOLATE_BOTH &&
1030						page_count(cursor_page))
1031					nr_lumpy_failed++;
1032			}
1033		}
1034	}
1035
1036	*scanned = scan;
1037
1038	trace_mm_vmscan_lru_isolate(order,
1039			nr_to_scan, scan,
1040			nr_taken,
1041			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1042			mode);
1043	return nr_taken;
1044}
1045
1046static unsigned long isolate_pages_global(unsigned long nr,
1047					struct list_head *dst,
1048					unsigned long *scanned, int order,
1049					int mode, struct zone *z,
1050					int active, int file)
1051{
1052	int lru = LRU_BASE;
1053	if (active)
1054		lru += LRU_ACTIVE;
1055	if (file)
1056		lru += LRU_FILE;
1057	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1058								mode, file);
1059}
1060
1061/*
1062 * clear_active_flags() is a helper for shrink_active_list(), clearing
1063 * any active bits from the pages in the list.
1064 */
1065static unsigned long clear_active_flags(struct list_head *page_list,
1066					unsigned int *count)
1067{
1068	int nr_active = 0;
1069	int lru;
1070	struct page *page;
1071
1072	list_for_each_entry(page, page_list, lru) {
1073		lru = page_lru_base_type(page);
1074		if (PageActive(page)) {
1075			lru += LRU_ACTIVE;
1076			ClearPageActive(page);
1077			nr_active++;
1078		}
1079		if (count)
1080			count[lru]++;
1081	}
1082
1083	return nr_active;
1084}
1085
1086/**
1087 * isolate_lru_page - tries to isolate a page from its LRU list
1088 * @page: page to isolate from its LRU list
1089 *
1090 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1091 * vmstat statistic corresponding to whatever LRU list the page was on.
1092 *
1093 * Returns 0 if the page was removed from an LRU list.
1094 * Returns -EBUSY if the page was not on an LRU list.
1095 *
1096 * The returned page will have PageLRU() cleared.  If it was found on
1097 * the active list, it will have PageActive set.  If it was found on
1098 * the unevictable list, it will have the PageUnevictable bit set. That flag
1099 * may need to be cleared by the caller before letting the page go.
1100 *
1101 * The vmstat statistic corresponding to the list on which the page was
1102 * found will be decremented.
1103 *
1104 * Restrictions:
1105 * (1) Must be called with an elevated refcount on the page. This is a
1106 *     fundamentnal difference from isolate_lru_pages (which is called
1107 *     without a stable reference).
1108 * (2) the lru_lock must not be held.
1109 * (3) interrupts must be enabled.
1110 */
1111int isolate_lru_page(struct page *page)
1112{
1113	int ret = -EBUSY;
1114
1115	if (PageLRU(page)) {
1116		struct zone *zone = page_zone(page);
1117
1118		spin_lock_irq(&zone->lru_lock);
1119		if (PageLRU(page) && get_page_unless_zero(page)) {
1120			int lru = page_lru(page);
1121			ret = 0;
1122			ClearPageLRU(page);
1123
1124			del_page_from_lru_list(zone, page, lru);
1125		}
1126		spin_unlock_irq(&zone->lru_lock);
1127	}
1128	return ret;
1129}
1130
1131/*
1132 * Are there way too many processes in the direct reclaim path already?
1133 */
1134static int too_many_isolated(struct zone *zone, int file,
1135		struct scan_control *sc)
1136{
1137	unsigned long inactive, isolated;
1138
1139	if (current_is_kswapd())
1140		return 0;
1141
1142	if (!scanning_global_lru(sc))
1143		return 0;
1144
1145	if (file) {
1146		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1147		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1148	} else {
1149		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1150		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1151	}
1152
1153	return isolated > inactive;
1154}
1155
1156/*
1157 * TODO: Try merging with migrations version of putback_lru_pages
1158 */
1159static noinline_for_stack void
1160putback_lru_pages(struct zone *zone, struct scan_control *sc,
1161				unsigned long nr_anon, unsigned long nr_file,
1162				struct list_head *page_list)
1163{
1164	struct page *page;
1165	struct pagevec pvec;
1166	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1167
1168	pagevec_init(&pvec, 1);
1169
1170	/*
1171	 * Put back any unfreeable pages.
1172	 */
1173	spin_lock(&zone->lru_lock);
1174	while (!list_empty(page_list)) {
1175		int lru;
1176		page = lru_to_page(page_list);
1177		VM_BUG_ON(PageLRU(page));
1178		list_del(&page->lru);
1179		if (unlikely(!page_evictable(page, NULL))) {
1180			spin_unlock_irq(&zone->lru_lock);
1181			putback_lru_page(page);
1182			spin_lock_irq(&zone->lru_lock);
1183			continue;
1184		}
1185		SetPageLRU(page);
1186		lru = page_lru(page);
1187		add_page_to_lru_list(zone, page, lru);
1188		if (is_active_lru(lru)) {
1189			int file = is_file_lru(lru);
1190			reclaim_stat->recent_rotated[file]++;
1191		}
1192		if (!pagevec_add(&pvec, page)) {
1193			spin_unlock_irq(&zone->lru_lock);
1194			__pagevec_release(&pvec);
1195			spin_lock_irq(&zone->lru_lock);
1196		}
1197	}
1198	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1199	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1200
1201	spin_unlock_irq(&zone->lru_lock);
1202	pagevec_release(&pvec);
1203}
1204
1205static noinline_for_stack void update_isolated_counts(struct zone *zone,
1206					struct scan_control *sc,
1207					unsigned long *nr_anon,
1208					unsigned long *nr_file,
1209					struct list_head *isolated_list)
1210{
1211	unsigned long nr_active;
1212	unsigned int count[NR_LRU_LISTS] = { 0, };
1213	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1214
1215	nr_active = clear_active_flags(isolated_list, count);
1216	__count_vm_events(PGDEACTIVATE, nr_active);
1217
1218	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1219			      -count[LRU_ACTIVE_FILE]);
1220	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1221			      -count[LRU_INACTIVE_FILE]);
1222	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1223			      -count[LRU_ACTIVE_ANON]);
1224	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1225			      -count[LRU_INACTIVE_ANON]);
1226
1227	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1228	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1229	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1230	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1231
1232	reclaim_stat->recent_scanned[0] += *nr_anon;
1233	reclaim_stat->recent_scanned[1] += *nr_file;
1234}
1235
1236/*
1237 * Returns true if the caller should wait to clean dirty/writeback pages.
1238 *
1239 * If we are direct reclaiming for contiguous pages and we do not reclaim
1240 * everything in the list, try again and wait for writeback IO to complete.
1241 * This will stall high-order allocations noticeably. Only do that when really
1242 * need to free the pages under high memory pressure.
1243 */
1244static inline bool should_reclaim_stall(unsigned long nr_taken,
1245					unsigned long nr_freed,
1246					int priority,
1247					struct scan_control *sc)
1248{
1249	int lumpy_stall_priority;
1250
1251	/* kswapd should not stall on sync IO */
1252	if (current_is_kswapd())
1253		return false;
1254
1255	/* Only stall on lumpy reclaim */
1256	if (!sc->lumpy_reclaim_mode)
1257		return false;
1258
1259	/* If we have relaimed everything on the isolated list, no stall */
1260	if (nr_freed == nr_taken)
1261		return false;
1262
1263	/*
1264	 * For high-order allocations, there are two stall thresholds.
1265	 * High-cost allocations stall immediately where as lower
1266	 * order allocations such as stacks require the scanning
1267	 * priority to be much higher before stalling.
1268	 */
1269	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1270		lumpy_stall_priority = DEF_PRIORITY;
1271	else
1272		lumpy_stall_priority = DEF_PRIORITY / 3;
1273
1274	return priority <= lumpy_stall_priority;
1275}
1276
1277/*
1278 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1279 * of reclaimed pages
1280 */
1281static noinline_for_stack unsigned long
1282shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1283			struct scan_control *sc, int priority, int file)
1284{
1285	LIST_HEAD(page_list);
1286	unsigned long nr_scanned;
1287	unsigned long nr_reclaimed = 0;
1288	unsigned long nr_taken;
1289	unsigned long nr_active;
1290	unsigned long nr_anon;
1291	unsigned long nr_file;
1292
1293	while (unlikely(too_many_isolated(zone, file, sc))) {
1294		congestion_wait(BLK_RW_ASYNC, HZ/10);
1295
1296		/* We are about to die and free our memory. Return now. */
1297		if (fatal_signal_pending(current))
1298			return SWAP_CLUSTER_MAX;
1299	}
1300
1301
1302	lru_add_drain();
1303	spin_lock_irq(&zone->lru_lock);
1304
1305	if (scanning_global_lru(sc)) {
1306		nr_taken = isolate_pages_global(nr_to_scan,
1307			&page_list, &nr_scanned, sc->order,
1308			sc->lumpy_reclaim_mode ?
1309				ISOLATE_BOTH : ISOLATE_INACTIVE,
1310			zone, 0, file);
1311		zone->pages_scanned += nr_scanned;
1312		if (current_is_kswapd())
1313			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1314					       nr_scanned);
1315		else
1316			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1317					       nr_scanned);
1318	} else {
1319		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1320			&page_list, &nr_scanned, sc->order,
1321			sc->lumpy_reclaim_mode ?
1322				ISOLATE_BOTH : ISOLATE_INACTIVE,
1323			zone, sc->mem_cgroup,
1324			0, file);
1325		/*
1326		 * mem_cgroup_isolate_pages() keeps track of
1327		 * scanned pages on its own.
1328		 */
1329	}
1330
1331	if (nr_taken == 0) {
1332		spin_unlock_irq(&zone->lru_lock);
1333		return 0;
1334	}
1335
1336	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1337
1338	spin_unlock_irq(&zone->lru_lock);
1339
1340	nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1341
1342	/* Check if we should syncronously wait for writeback */
1343	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1344		congestion_wait(BLK_RW_ASYNC, HZ/10);
1345
1346		/*
1347		 * The attempt at page out may have made some
1348		 * of the pages active, mark them inactive again.
1349		 */
1350		nr_active = clear_active_flags(&page_list, NULL);
1351		count_vm_events(PGDEACTIVATE, nr_active);
1352
1353		nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1354	}
1355
1356	local_irq_disable();
1357	if (current_is_kswapd())
1358		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1359	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1360
1361	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1362	return nr_reclaimed;
1363}
1364
1365/*
1366 * This moves pages from the active list to the inactive list.
1367 *
1368 * We move them the other way if the page is referenced by one or more
1369 * processes, from rmap.
1370 *
1371 * If the pages are mostly unmapped, the processing is fast and it is
1372 * appropriate to hold zone->lru_lock across the whole operation.  But if
1373 * the pages are mapped, the processing is slow (page_referenced()) so we
1374 * should drop zone->lru_lock around each page.  It's impossible to balance
1375 * this, so instead we remove the pages from the LRU while processing them.
1376 * It is safe to rely on PG_active against the non-LRU pages in here because
1377 * nobody will play with that bit on a non-LRU page.
1378 *
1379 * The downside is that we have to touch page->_count against each page.
1380 * But we had to alter page->flags anyway.
1381 */
1382
1383static void move_active_pages_to_lru(struct zone *zone,
1384				     struct list_head *list,
1385				     enum lru_list lru)
1386{
1387	unsigned long pgmoved = 0;
1388	struct pagevec pvec;
1389	struct page *page;
1390
1391	pagevec_init(&pvec, 1);
1392
1393	while (!list_empty(list)) {
1394		page = lru_to_page(list);
1395
1396		VM_BUG_ON(PageLRU(page));
1397		SetPageLRU(page);
1398
1399		list_move(&page->lru, &zone->lru[lru].list);
1400		mem_cgroup_add_lru_list(page, lru);
1401		pgmoved++;
1402
1403		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1404			spin_unlock_irq(&zone->lru_lock);
1405			if (buffer_heads_over_limit)
1406				pagevec_strip(&pvec);
1407			__pagevec_release(&pvec);
1408			spin_lock_irq(&zone->lru_lock);
1409		}
1410	}
1411	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1412	if (!is_active_lru(lru))
1413		__count_vm_events(PGDEACTIVATE, pgmoved);
1414}
1415
1416static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1417			struct scan_control *sc, int priority, int file)
1418{
1419	unsigned long nr_taken;
1420	unsigned long pgscanned;
1421	unsigned long vm_flags;
1422	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1423	LIST_HEAD(l_active);
1424	LIST_HEAD(l_inactive);
1425	struct page *page;
1426	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1427	unsigned long nr_rotated = 0;
1428
1429	lru_add_drain();
1430	spin_lock_irq(&zone->lru_lock);
1431	if (scanning_global_lru(sc)) {
1432		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1433						&pgscanned, sc->order,
1434						ISOLATE_ACTIVE, zone,
1435						1, file);
1436		zone->pages_scanned += pgscanned;
1437	} else {
1438		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1439						&pgscanned, sc->order,
1440						ISOLATE_ACTIVE, zone,
1441						sc->mem_cgroup, 1, file);
1442		/*
1443		 * mem_cgroup_isolate_pages() keeps track of
1444		 * scanned pages on its own.
1445		 */
1446	}
1447
1448	reclaim_stat->recent_scanned[file] += nr_taken;
1449
1450	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1451	if (file)
1452		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1453	else
1454		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1455	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1456	spin_unlock_irq(&zone->lru_lock);
1457
1458	while (!list_empty(&l_hold)) {
1459		cond_resched();
1460		page = lru_to_page(&l_hold);
1461		list_del(&page->lru);
1462
1463		if (unlikely(!page_evictable(page, NULL))) {
1464			putback_lru_page(page);
1465			continue;
1466		}
1467
1468		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1469			nr_rotated++;
1470			/*
1471			 * Identify referenced, file-backed active pages and
1472			 * give them one more trip around the active list. So
1473			 * that executable code get better chances to stay in
1474			 * memory under moderate memory pressure.  Anon pages
1475			 * are not likely to be evicted by use-once streaming
1476			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1477			 * so we ignore them here.
1478			 */
1479			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1480				list_add(&page->lru, &l_active);
1481				continue;
1482			}
1483		}
1484
1485		ClearPageActive(page);	/* we are de-activating */
1486		list_add(&page->lru, &l_inactive);
1487	}
1488
1489	/*
1490	 * Move pages back to the lru list.
1491	 */
1492	spin_lock_irq(&zone->lru_lock);
1493	/*
1494	 * Count referenced pages from currently used mappings as rotated,
1495	 * even though only some of them are actually re-activated.  This
1496	 * helps balance scan pressure between file and anonymous pages in
1497	 * get_scan_ratio.
1498	 */
1499	reclaim_stat->recent_rotated[file] += nr_rotated;
1500
1501	move_active_pages_to_lru(zone, &l_active,
1502						LRU_ACTIVE + file * LRU_FILE);
1503	move_active_pages_to_lru(zone, &l_inactive,
1504						LRU_BASE   + file * LRU_FILE);
1505	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1506	spin_unlock_irq(&zone->lru_lock);
1507}
1508
1509static int inactive_anon_is_low_global(struct zone *zone)
1510{
1511	unsigned long active, inactive;
1512
1513	active = zone_page_state(zone, NR_ACTIVE_ANON);
1514	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1515
1516	if (inactive * zone->inactive_ratio < active)
1517		return 1;
1518
1519	return 0;
1520}
1521
1522/**
1523 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1524 * @zone: zone to check
1525 * @sc:   scan control of this context
1526 *
1527 * Returns true if the zone does not have enough inactive anon pages,
1528 * meaning some active anon pages need to be deactivated.
1529 */
1530static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1531{
1532	int low;
1533
1534	if (scanning_global_lru(sc))
1535		low = inactive_anon_is_low_global(zone);
1536	else
1537		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1538	return low;
1539}
1540
1541static int inactive_file_is_low_global(struct zone *zone)
1542{
1543	unsigned long active, inactive;
1544
1545	active = zone_page_state(zone, NR_ACTIVE_FILE);
1546	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1547
1548	return (active > inactive);
1549}
1550
1551/**
1552 * inactive_file_is_low - check if file pages need to be deactivated
1553 * @zone: zone to check
1554 * @sc:   scan control of this context
1555 *
1556 * When the system is doing streaming IO, memory pressure here
1557 * ensures that active file pages get deactivated, until more
1558 * than half of the file pages are on the inactive list.
1559 *
1560 * Once we get to that situation, protect the system's working
1561 * set from being evicted by disabling active file page aging.
1562 *
1563 * This uses a different ratio than the anonymous pages, because
1564 * the page cache uses a use-once replacement algorithm.
1565 */
1566static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1567{
1568	int low;
1569
1570	if (scanning_global_lru(sc))
1571		low = inactive_file_is_low_global(zone);
1572	else
1573		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1574	return low;
1575}
1576
1577static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1578				int file)
1579{
1580	if (file)
1581		return inactive_file_is_low(zone, sc);
1582	else
1583		return inactive_anon_is_low(zone, sc);
1584}
1585
1586static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1587	struct zone *zone, struct scan_control *sc, int priority)
1588{
1589	int file = is_file_lru(lru);
1590
1591	if (is_active_lru(lru)) {
1592		if (inactive_list_is_low(zone, sc, file))
1593		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1594		return 0;
1595	}
1596
1597	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1598}
1599
1600/*
1601 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1602 * until we collected @swap_cluster_max pages to scan.
1603 */
1604static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1605				       unsigned long *nr_saved_scan)
1606{
1607	unsigned long nr;
1608
1609	*nr_saved_scan += nr_to_scan;
1610	nr = *nr_saved_scan;
1611
1612	if (nr >= SWAP_CLUSTER_MAX)
1613		*nr_saved_scan = 0;
1614	else
1615		nr = 0;
1616
1617	return nr;
1618}
1619
1620/*
1621 * Determine how aggressively the anon and file LRU lists should be
1622 * scanned.  The relative value of each set of LRU lists is determined
1623 * by looking at the fraction of the pages scanned we did rotate back
1624 * onto the active list instead of evict.
1625 *
1626 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1627 */
1628static void get_scan_count(struct zone *zone, struct scan_control *sc,
1629					unsigned long *nr, int priority)
1630{
1631	unsigned long anon, file, free;
1632	unsigned long anon_prio, file_prio;
1633	unsigned long ap, fp;
1634	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1635	u64 fraction[2], denominator;
1636	enum lru_list l;
1637	int noswap = 0;
1638
1639	/* If we have no swap space, do not bother scanning anon pages. */
1640	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1641		noswap = 1;
1642		fraction[0] = 0;
1643		fraction[1] = 1;
1644		denominator = 1;
1645		goto out;
1646	}
1647
1648	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1649		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1650	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1651		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1652
1653	if (scanning_global_lru(sc)) {
1654		free  = zone_page_state(zone, NR_FREE_PAGES);
1655		/* If we have very few page cache pages,
1656		   force-scan anon pages. */
1657		if (unlikely(file + free <= high_wmark_pages(zone))) {
1658			fraction[0] = 1;
1659			fraction[1] = 0;
1660			denominator = 1;
1661			goto out;
1662		}
1663	}
1664
1665	/*
1666	 * With swappiness at 100, anonymous and file have the same priority.
1667	 * This scanning priority is essentially the inverse of IO cost.
1668	 */
1669	anon_prio = sc->swappiness;
1670	file_prio = 200 - sc->swappiness;
1671
1672	/*
1673	 * OK, so we have swap space and a fair amount of page cache
1674	 * pages.  We use the recently rotated / recently scanned
1675	 * ratios to determine how valuable each cache is.
1676	 *
1677	 * Because workloads change over time (and to avoid overflow)
1678	 * we keep these statistics as a floating average, which ends
1679	 * up weighing recent references more than old ones.
1680	 *
1681	 * anon in [0], file in [1]
1682	 */
1683	spin_lock_irq(&zone->lru_lock);
1684	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1685		reclaim_stat->recent_scanned[0] /= 2;
1686		reclaim_stat->recent_rotated[0] /= 2;
1687	}
1688
1689	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1690		reclaim_stat->recent_scanned[1] /= 2;
1691		reclaim_stat->recent_rotated[1] /= 2;
1692	}
1693
1694	/*
1695	 * The amount of pressure on anon vs file pages is inversely
1696	 * proportional to the fraction of recently scanned pages on
1697	 * each list that were recently referenced and in active use.
1698	 */
1699	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1700	ap /= reclaim_stat->recent_rotated[0] + 1;
1701
1702	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1703	fp /= reclaim_stat->recent_rotated[1] + 1;
1704	spin_unlock_irq(&zone->lru_lock);
1705
1706	fraction[0] = ap;
1707	fraction[1] = fp;
1708	denominator = ap + fp + 1;
1709out:
1710	for_each_evictable_lru(l) {
1711		int file = is_file_lru(l);
1712		unsigned long scan;
1713
1714		scan = zone_nr_lru_pages(zone, sc, l);
1715		if (priority || noswap) {
1716			scan >>= priority;
1717			scan = div64_u64(scan * fraction[file], denominator);
1718		}
1719		nr[l] = nr_scan_try_batch(scan,
1720					  &reclaim_stat->nr_saved_scan[l]);
1721	}
1722}
1723
1724static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1725{
1726	/*
1727	 * If we need a large contiguous chunk of memory, or have
1728	 * trouble getting a small set of contiguous pages, we
1729	 * will reclaim both active and inactive pages.
1730	 */
1731	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1732		sc->lumpy_reclaim_mode = 1;
1733	else if (sc->order && priority < DEF_PRIORITY - 2)
1734		sc->lumpy_reclaim_mode = 1;
1735	else
1736		sc->lumpy_reclaim_mode = 0;
1737}
1738
1739/*
1740 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1741 */
1742static void shrink_zone(int priority, struct zone *zone,
1743				struct scan_control *sc)
1744{
1745	unsigned long nr[NR_LRU_LISTS];
1746	unsigned long nr_to_scan;
1747	enum lru_list l;
1748	unsigned long nr_reclaimed = sc->nr_reclaimed;
1749	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1750
1751	get_scan_count(zone, sc, nr, priority);
1752
1753	set_lumpy_reclaim_mode(priority, sc);
1754
1755	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1756					nr[LRU_INACTIVE_FILE]) {
1757		for_each_evictable_lru(l) {
1758			if (nr[l]) {
1759				nr_to_scan = min_t(unsigned long,
1760						   nr[l], SWAP_CLUSTER_MAX);
1761				nr[l] -= nr_to_scan;
1762
1763				nr_reclaimed += shrink_list(l, nr_to_scan,
1764							    zone, sc, priority);
1765			}
1766		}
1767		/*
1768		 * On large memory systems, scan >> priority can become
1769		 * really large. This is fine for the starting priority;
1770		 * we want to put equal scanning pressure on each zone.
1771		 * However, if the VM has a harder time of freeing pages,
1772		 * with multiple processes reclaiming pages, the total
1773		 * freeing target can get unreasonably large.
1774		 */
1775		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1776			break;
1777	}
1778
1779	sc->nr_reclaimed = nr_reclaimed;
1780
1781	/*
1782	 * Even if we did not try to evict anon pages at all, we want to
1783	 * rebalance the anon lru active/inactive ratio.
1784	 */
1785	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1786		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1787
1788	throttle_vm_writeout(sc->gfp_mask);
1789}
1790
1791/*
1792 * This is the direct reclaim path, for page-allocating processes.  We only
1793 * try to reclaim pages from zones which will satisfy the caller's allocation
1794 * request.
1795 *
1796 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1797 * Because:
1798 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1799 *    allocation or
1800 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1801 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1802 *    zone defense algorithm.
1803 *
1804 * If a zone is deemed to be full of pinned pages then just give it a light
1805 * scan then give up on it.
1806 */
1807static void shrink_zones(int priority, struct zonelist *zonelist,
1808					struct scan_control *sc)
1809{
1810	struct zoneref *z;
1811	struct zone *zone;
1812
1813	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1814					gfp_zone(sc->gfp_mask), sc->nodemask) {
1815		if (!populated_zone(zone))
1816			continue;
1817		/*
1818		 * Take care memory controller reclaiming has small influence
1819		 * to global LRU.
1820		 */
1821		if (scanning_global_lru(sc)) {
1822			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1823				continue;
1824			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1825				continue;	/* Let kswapd poll it */
1826		}
1827
1828		shrink_zone(priority, zone, sc);
1829	}
1830}
1831
1832static bool zone_reclaimable(struct zone *zone)
1833{
1834	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1835}
1836
1837/*
1838 * As hibernation is going on, kswapd is freezed so that it can't mark
1839 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1840 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1841 */
1842static bool all_unreclaimable(struct zonelist *zonelist,
1843		struct scan_control *sc)
1844{
1845	struct zoneref *z;
1846	struct zone *zone;
1847	bool all_unreclaimable = true;
1848
1849	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1850			gfp_zone(sc->gfp_mask), sc->nodemask) {
1851		if (!populated_zone(zone))
1852			continue;
1853		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1854			continue;
1855		if (zone_reclaimable(zone)) {
1856			all_unreclaimable = false;
1857			break;
1858		}
1859	}
1860
1861	return all_unreclaimable;
1862}
1863
1864/*
1865 * This is the main entry point to direct page reclaim.
1866 *
1867 * If a full scan of the inactive list fails to free enough memory then we
1868 * are "out of memory" and something needs to be killed.
1869 *
1870 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1871 * high - the zone may be full of dirty or under-writeback pages, which this
1872 * caller can't do much about.  We kick the writeback threads and take explicit
1873 * naps in the hope that some of these pages can be written.  But if the
1874 * allocating task holds filesystem locks which prevent writeout this might not
1875 * work, and the allocation attempt will fail.
1876 *
1877 * returns:	0, if no pages reclaimed
1878 * 		else, the number of pages reclaimed
1879 */
1880static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1881					struct scan_control *sc)
1882{
1883	int priority;
1884	unsigned long total_scanned = 0;
1885	struct reclaim_state *reclaim_state = current->reclaim_state;
1886	struct zoneref *z;
1887	struct zone *zone;
1888	unsigned long writeback_threshold;
1889
1890	get_mems_allowed();
1891	delayacct_freepages_start();
1892
1893	if (scanning_global_lru(sc))
1894		count_vm_event(ALLOCSTALL);
1895
1896	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1897		sc->nr_scanned = 0;
1898		if (!priority)
1899			disable_swap_token();
1900		shrink_zones(priority, zonelist, sc);
1901		/*
1902		 * Don't shrink slabs when reclaiming memory from
1903		 * over limit cgroups
1904		 */
1905		if (scanning_global_lru(sc)) {
1906			unsigned long lru_pages = 0;
1907			for_each_zone_zonelist(zone, z, zonelist,
1908					gfp_zone(sc->gfp_mask)) {
1909				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1910					continue;
1911
1912				lru_pages += zone_reclaimable_pages(zone);
1913			}
1914
1915			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1916			if (reclaim_state) {
1917				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1918				reclaim_state->reclaimed_slab = 0;
1919			}
1920		}
1921		total_scanned += sc->nr_scanned;
1922		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1923			goto out;
1924
1925		/*
1926		 * Try to write back as many pages as we just scanned.  This
1927		 * tends to cause slow streaming writers to write data to the
1928		 * disk smoothly, at the dirtying rate, which is nice.   But
1929		 * that's undesirable in laptop mode, where we *want* lumpy
1930		 * writeout.  So in laptop mode, write out the whole world.
1931		 */
1932		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1933		if (total_scanned > writeback_threshold) {
1934			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1935			sc->may_writepage = 1;
1936		}
1937
1938		/* Take a nap, wait for some writeback to complete */
1939		if (!sc->hibernation_mode && sc->nr_scanned &&
1940		    priority < DEF_PRIORITY - 2)
1941			congestion_wait(BLK_RW_ASYNC, HZ/10);
1942	}
1943
1944out:
1945	/*
1946	 * Now that we've scanned all the zones at this priority level, note
1947	 * that level within the zone so that the next thread which performs
1948	 * scanning of this zone will immediately start out at this priority
1949	 * level.  This affects only the decision whether or not to bring
1950	 * mapped pages onto the inactive list.
1951	 */
1952	if (priority < 0)
1953		priority = 0;
1954
1955	delayacct_freepages_end();
1956	put_mems_allowed();
1957
1958	if (sc->nr_reclaimed)
1959		return sc->nr_reclaimed;
1960
1961	/* top priority shrink_zones still had more to do? don't OOM, then */
1962	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
1963		return 1;
1964
1965	return 0;
1966}
1967
1968unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1969				gfp_t gfp_mask, nodemask_t *nodemask)
1970{
1971	unsigned long nr_reclaimed;
1972	struct scan_control sc = {
1973		.gfp_mask = gfp_mask,
1974		.may_writepage = !laptop_mode,
1975		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1976		.may_unmap = 1,
1977		.may_swap = 1,
1978		.swappiness = vm_swappiness,
1979		.order = order,
1980		.mem_cgroup = NULL,
1981		.nodemask = nodemask,
1982	};
1983
1984	trace_mm_vmscan_direct_reclaim_begin(order,
1985				sc.may_writepage,
1986				gfp_mask);
1987
1988	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1989
1990	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1991
1992	return nr_reclaimed;
1993}
1994
1995#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1996
1997unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1998						gfp_t gfp_mask, bool noswap,
1999						unsigned int swappiness,
2000						struct zone *zone)
2001{
2002	struct scan_control sc = {
2003		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2004		.may_writepage = !laptop_mode,
2005		.may_unmap = 1,
2006		.may_swap = !noswap,
2007		.swappiness = swappiness,
2008		.order = 0,
2009		.mem_cgroup = mem,
2010	};
2011	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2012			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2013
2014	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2015						      sc.may_writepage,
2016						      sc.gfp_mask);
2017
2018	/*
2019	 * NOTE: Although we can get the priority field, using it
2020	 * here is not a good idea, since it limits the pages we can scan.
2021	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2022	 * will pick up pages from other mem cgroup's as well. We hack
2023	 * the priority and make it zero.
2024	 */
2025	shrink_zone(0, zone, &sc);
2026
2027	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2028
2029	return sc.nr_reclaimed;
2030}
2031
2032unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2033					   gfp_t gfp_mask,
2034					   bool noswap,
2035					   unsigned int swappiness)
2036{
2037	struct zonelist *zonelist;
2038	unsigned long nr_reclaimed;
2039	struct scan_control sc = {
2040		.may_writepage = !laptop_mode,
2041		.may_unmap = 1,
2042		.may_swap = !noswap,
2043		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2044		.swappiness = swappiness,
2045		.order = 0,
2046		.mem_cgroup = mem_cont,
2047		.nodemask = NULL, /* we don't care the placement */
2048	};
2049
2050	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2051			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2052	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2053
2054	trace_mm_vmscan_memcg_reclaim_begin(0,
2055					    sc.may_writepage,
2056					    sc.gfp_mask);
2057
2058	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2059
2060	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2061
2062	return nr_reclaimed;
2063}
2064#endif
2065
2066/* is kswapd sleeping prematurely? */
2067static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2068{
2069	int i;
2070
2071	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2072	if (remaining)
2073		return 1;
2074
2075	/* If after HZ/10, a zone is below the high mark, it's premature */
2076	for (i = 0; i < pgdat->nr_zones; i++) {
2077		struct zone *zone = pgdat->node_zones + i;
2078
2079		if (!populated_zone(zone))
2080			continue;
2081
2082		if (zone->all_unreclaimable)
2083			continue;
2084
2085		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2086								0, 0))
2087			return 1;
2088	}
2089
2090	return 0;
2091}
2092
2093/*
2094 * For kswapd, balance_pgdat() will work across all this node's zones until
2095 * they are all at high_wmark_pages(zone).
2096 *
2097 * Returns the number of pages which were actually freed.
2098 *
2099 * There is special handling here for zones which are full of pinned pages.
2100 * This can happen if the pages are all mlocked, or if they are all used by
2101 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2102 * What we do is to detect the case where all pages in the zone have been
2103 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2104 * dead and from now on, only perform a short scan.  Basically we're polling
2105 * the zone for when the problem goes away.
2106 *
2107 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2108 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2109 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2110 * lower zones regardless of the number of free pages in the lower zones. This
2111 * interoperates with the page allocator fallback scheme to ensure that aging
2112 * of pages is balanced across the zones.
2113 */
2114static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2115{
2116	int all_zones_ok;
2117	int priority;
2118	int i;
2119	unsigned long total_scanned;
2120	struct reclaim_state *reclaim_state = current->reclaim_state;
2121	struct scan_control sc = {
2122		.gfp_mask = GFP_KERNEL,
2123		.may_unmap = 1,
2124		.may_swap = 1,
2125		/*
2126		 * kswapd doesn't want to be bailed out while reclaim. because
2127		 * we want to put equal scanning pressure on each zone.
2128		 */
2129		.nr_to_reclaim = ULONG_MAX,
2130		.swappiness = vm_swappiness,
2131		.order = order,
2132		.mem_cgroup = NULL,
2133	};
2134loop_again:
2135	total_scanned = 0;
2136	sc.nr_reclaimed = 0;
2137	sc.may_writepage = !laptop_mode;
2138	count_vm_event(PAGEOUTRUN);
2139
2140	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2141		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2142		unsigned long lru_pages = 0;
2143		int has_under_min_watermark_zone = 0;
2144
2145		/* The swap token gets in the way of swapout... */
2146		if (!priority)
2147			disable_swap_token();
2148
2149		all_zones_ok = 1;
2150
2151		/*
2152		 * Scan in the highmem->dma direction for the highest
2153		 * zone which needs scanning
2154		 */
2155		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2156			struct zone *zone = pgdat->node_zones + i;
2157
2158			if (!populated_zone(zone))
2159				continue;
2160
2161			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2162				continue;
2163
2164			/*
2165			 * Do some background aging of the anon list, to give
2166			 * pages a chance to be referenced before reclaiming.
2167			 */
2168			if (inactive_anon_is_low(zone, &sc))
2169				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2170							&sc, priority, 0);
2171
2172			if (!zone_watermark_ok_safe(zone, order,
2173					high_wmark_pages(zone), 0, 0)) {
2174				end_zone = i;
2175				break;
2176			}
2177		}
2178		if (i < 0)
2179			goto out;
2180
2181		for (i = 0; i <= end_zone; i++) {
2182			struct zone *zone = pgdat->node_zones + i;
2183
2184			lru_pages += zone_reclaimable_pages(zone);
2185		}
2186
2187		/*
2188		 * Now scan the zone in the dma->highmem direction, stopping
2189		 * at the last zone which needs scanning.
2190		 *
2191		 * We do this because the page allocator works in the opposite
2192		 * direction.  This prevents the page allocator from allocating
2193		 * pages behind kswapd's direction of progress, which would
2194		 * cause too much scanning of the lower zones.
2195		 */
2196		for (i = 0; i <= end_zone; i++) {
2197			struct zone *zone = pgdat->node_zones + i;
2198			int nr_slab;
2199
2200			if (!populated_zone(zone))
2201				continue;
2202
2203			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2204				continue;
2205
2206			sc.nr_scanned = 0;
2207
2208			/*
2209			 * Call soft limit reclaim before calling shrink_zone.
2210			 * For now we ignore the return value
2211			 */
2212			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2213
2214			/*
2215			 * We put equal pressure on every zone, unless one
2216			 * zone has way too many pages free already.
2217			 */
2218			if (!zone_watermark_ok_safe(zone, order,
2219					8*high_wmark_pages(zone), end_zone, 0))
2220				shrink_zone(priority, zone, &sc);
2221			reclaim_state->reclaimed_slab = 0;
2222			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2223						lru_pages);
2224			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2225			total_scanned += sc.nr_scanned;
2226			if (zone->all_unreclaimable)
2227				continue;
2228			if (nr_slab == 0 && !zone_reclaimable(zone))
2229				zone->all_unreclaimable = 1;
2230			/*
2231			 * If we've done a decent amount of scanning and
2232			 * the reclaim ratio is low, start doing writepage
2233			 * even in laptop mode
2234			 */
2235			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2236			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2237				sc.may_writepage = 1;
2238
2239			if (!zone_watermark_ok_safe(zone, order,
2240					high_wmark_pages(zone), end_zone, 0)) {
2241				all_zones_ok = 0;
2242				/*
2243				 * We are still under min water mark.  This
2244				 * means that we have a GFP_ATOMIC allocation
2245				 * failure risk. Hurry up!
2246				 */
2247				if (!zone_watermark_ok_safe(zone, order,
2248					    min_wmark_pages(zone), end_zone, 0))
2249					has_under_min_watermark_zone = 1;
2250			}
2251
2252		}
2253		if (all_zones_ok)
2254			break;		/* kswapd: all done */
2255		/*
2256		 * OK, kswapd is getting into trouble.  Take a nap, then take
2257		 * another pass across the zones.
2258		 */
2259		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2260			if (has_under_min_watermark_zone)
2261				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2262			else
2263				congestion_wait(BLK_RW_ASYNC, HZ/10);
2264		}
2265
2266		/*
2267		 * We do this so kswapd doesn't build up large priorities for
2268		 * example when it is freeing in parallel with allocators. It
2269		 * matches the direct reclaim path behaviour in terms of impact
2270		 * on zone->*_priority.
2271		 */
2272		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2273			break;
2274	}
2275out:
2276	if (!all_zones_ok) {
2277		cond_resched();
2278
2279		try_to_freeze();
2280
2281		/*
2282		 * Fragmentation may mean that the system cannot be
2283		 * rebalanced for high-order allocations in all zones.
2284		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2285		 * it means the zones have been fully scanned and are still
2286		 * not balanced. For high-order allocations, there is
2287		 * little point trying all over again as kswapd may
2288		 * infinite loop.
2289		 *
2290		 * Instead, recheck all watermarks at order-0 as they
2291		 * are the most important. If watermarks are ok, kswapd will go
2292		 * back to sleep. High-order users can still perform direct
2293		 * reclaim if they wish.
2294		 */
2295		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2296			order = sc.order = 0;
2297
2298		goto loop_again;
2299	}
2300
2301	return sc.nr_reclaimed;
2302}
2303
2304/*
2305 * The background pageout daemon, started as a kernel thread
2306 * from the init process.
2307 *
2308 * This basically trickles out pages so that we have _some_
2309 * free memory available even if there is no other activity
2310 * that frees anything up. This is needed for things like routing
2311 * etc, where we otherwise might have all activity going on in
2312 * asynchronous contexts that cannot page things out.
2313 *
2314 * If there are applications that are active memory-allocators
2315 * (most normal use), this basically shouldn't matter.
2316 */
2317static int kswapd(void *p)
2318{
2319	unsigned long order;
2320	pg_data_t *pgdat = (pg_data_t*)p;
2321	struct task_struct *tsk = current;
2322	DEFINE_WAIT(wait);
2323	struct reclaim_state reclaim_state = {
2324		.reclaimed_slab = 0,
2325	};
2326	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2327
2328	lockdep_set_current_reclaim_state(GFP_KERNEL);
2329
2330	if (!cpumask_empty(cpumask))
2331		set_cpus_allowed_ptr(tsk, cpumask);
2332	current->reclaim_state = &reclaim_state;
2333
2334	/*
2335	 * Tell the memory management that we're a "memory allocator",
2336	 * and that if we need more memory we should get access to it
2337	 * regardless (see "__alloc_pages()"). "kswapd" should
2338	 * never get caught in the normal page freeing logic.
2339	 *
2340	 * (Kswapd normally doesn't need memory anyway, but sometimes
2341	 * you need a small amount of memory in order to be able to
2342	 * page out something else, and this flag essentially protects
2343	 * us from recursively trying to free more memory as we're
2344	 * trying to free the first piece of memory in the first place).
2345	 */
2346	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2347	set_freezable();
2348
2349	order = 0;
2350	for ( ; ; ) {
2351		unsigned long new_order;
2352		int ret;
2353
2354		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2355		new_order = pgdat->kswapd_max_order;
2356		pgdat->kswapd_max_order = 0;
2357		if (order < new_order) {
2358			/*
2359			 * Don't sleep if someone wants a larger 'order'
2360			 * allocation
2361			 */
2362			order = new_order;
2363		} else {
2364			if (!freezing(current) && !kthread_should_stop()) {
2365				long remaining = 0;
2366
2367				/* Try to sleep for a short interval */
2368				if (!sleeping_prematurely(pgdat, order, remaining)) {
2369					remaining = schedule_timeout(HZ/10);
2370					finish_wait(&pgdat->kswapd_wait, &wait);
2371					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2372				}
2373
2374				/*
2375				 * After a short sleep, check if it was a
2376				 * premature sleep. If not, then go fully
2377				 * to sleep until explicitly woken up
2378				 */
2379				if (!sleeping_prematurely(pgdat, order, remaining)) {
2380					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2381					restore_pgdat_percpu_threshold(pgdat);
2382					schedule();
2383					reduce_pgdat_percpu_threshold(pgdat);
2384				} else {
2385					if (remaining)
2386						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2387					else
2388						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2389				}
2390			}
2391
2392			order = pgdat->kswapd_max_order;
2393		}
2394		finish_wait(&pgdat->kswapd_wait, &wait);
2395
2396		ret = try_to_freeze();
2397		if (kthread_should_stop())
2398			break;
2399
2400		/*
2401		 * We can speed up thawing tasks if we don't call balance_pgdat
2402		 * after returning from the refrigerator
2403		 */
2404		if (!ret) {
2405			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2406			balance_pgdat(pgdat, order);
2407		}
2408	}
2409	return 0;
2410}
2411
2412/*
2413 * A zone is low on free memory, so wake its kswapd task to service it.
2414 */
2415void wakeup_kswapd(struct zone *zone, int order)
2416{
2417	pg_data_t *pgdat;
2418
2419	if (!populated_zone(zone))
2420		return;
2421
2422	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2423		return;
2424	pgdat = zone->zone_pgdat;
2425	if (pgdat->kswapd_max_order < order)
2426		pgdat->kswapd_max_order = order;
2427	if (!waitqueue_active(&pgdat->kswapd_wait))
2428		return;
2429	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2430		return;
2431
2432	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2433	wake_up_interruptible(&pgdat->kswapd_wait);
2434}
2435
2436/*
2437 * The reclaimable count would be mostly accurate.
2438 * The less reclaimable pages may be
2439 * - mlocked pages, which will be moved to unevictable list when encountered
2440 * - mapped pages, which may require several travels to be reclaimed
2441 * - dirty pages, which is not "instantly" reclaimable
2442 */
2443unsigned long global_reclaimable_pages(void)
2444{
2445	int nr;
2446
2447	nr = global_page_state(NR_ACTIVE_FILE) +
2448	     global_page_state(NR_INACTIVE_FILE);
2449
2450	if (nr_swap_pages > 0)
2451		nr += global_page_state(NR_ACTIVE_ANON) +
2452		      global_page_state(NR_INACTIVE_ANON);
2453
2454	return nr;
2455}
2456
2457unsigned long zone_reclaimable_pages(struct zone *zone)
2458{
2459	int nr;
2460
2461	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2462	     zone_page_state(zone, NR_INACTIVE_FILE);
2463
2464	if (nr_swap_pages > 0)
2465		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2466		      zone_page_state(zone, NR_INACTIVE_ANON);
2467
2468	return nr;
2469}
2470
2471#ifdef CONFIG_HIBERNATION
2472/*
2473 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2474 * freed pages.
2475 *
2476 * Rather than trying to age LRUs the aim is to preserve the overall
2477 * LRU order by reclaiming preferentially
2478 * inactive > active > active referenced > active mapped
2479 */
2480unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2481{
2482	struct reclaim_state reclaim_state;
2483	struct scan_control sc = {
2484		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2485		.may_swap = 1,
2486		.may_unmap = 1,
2487		.may_writepage = 1,
2488		.nr_to_reclaim = nr_to_reclaim,
2489		.hibernation_mode = 1,
2490		.swappiness = vm_swappiness,
2491		.order = 0,
2492	};
2493	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2494	struct task_struct *p = current;
2495	unsigned long nr_reclaimed;
2496
2497	p->flags |= PF_MEMALLOC;
2498	lockdep_set_current_reclaim_state(sc.gfp_mask);
2499	reclaim_state.reclaimed_slab = 0;
2500	p->reclaim_state = &reclaim_state;
2501
2502	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2503
2504	p->reclaim_state = NULL;
2505	lockdep_clear_current_reclaim_state();
2506	p->flags &= ~PF_MEMALLOC;
2507
2508	return nr_reclaimed;
2509}
2510#endif /* CONFIG_HIBERNATION */
2511
2512/* It's optimal to keep kswapds on the same CPUs as their memory, but
2513   not required for correctness.  So if the last cpu in a node goes
2514   away, we get changed to run anywhere: as the first one comes back,
2515   restore their cpu bindings. */
2516static int __devinit cpu_callback(struct notifier_block *nfb,
2517				  unsigned long action, void *hcpu)
2518{
2519	int nid;
2520
2521	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2522		for_each_node_state(nid, N_HIGH_MEMORY) {
2523			pg_data_t *pgdat = NODE_DATA(nid);
2524			const struct cpumask *mask;
2525
2526			mask = cpumask_of_node(pgdat->node_id);
2527
2528			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2529				/* One of our CPUs online: restore mask */
2530				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2531		}
2532	}
2533	return NOTIFY_OK;
2534}
2535
2536/*
2537 * This kswapd start function will be called by init and node-hot-add.
2538 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2539 */
2540int kswapd_run(int nid)
2541{
2542	pg_data_t *pgdat = NODE_DATA(nid);
2543	int ret = 0;
2544
2545	if (pgdat->kswapd)
2546		return 0;
2547
2548	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2549	if (IS_ERR(pgdat->kswapd)) {
2550		/* failure at boot is fatal */
2551		BUG_ON(system_state == SYSTEM_BOOTING);
2552		printk("Failed to start kswapd on node %d\n",nid);
2553		ret = -1;
2554	}
2555	return ret;
2556}
2557
2558/*
2559 * Called by memory hotplug when all memory in a node is offlined.
2560 */
2561void kswapd_stop(int nid)
2562{
2563	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2564
2565	if (kswapd)
2566		kthread_stop(kswapd);
2567}
2568
2569static int __init kswapd_init(void)
2570{
2571	int nid;
2572
2573	swap_setup();
2574	for_each_node_state(nid, N_HIGH_MEMORY)
2575 		kswapd_run(nid);
2576	hotcpu_notifier(cpu_callback, 0);
2577	return 0;
2578}
2579
2580module_init(kswapd_init)
2581
2582#ifdef CONFIG_NUMA
2583/*
2584 * Zone reclaim mode
2585 *
2586 * If non-zero call zone_reclaim when the number of free pages falls below
2587 * the watermarks.
2588 */
2589int zone_reclaim_mode __read_mostly;
2590
2591#define RECLAIM_OFF 0
2592#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2593#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2594#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2595
2596/*
2597 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2598 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2599 * a zone.
2600 */
2601#define ZONE_RECLAIM_PRIORITY 4
2602
2603/*
2604 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2605 * occur.
2606 */
2607int sysctl_min_unmapped_ratio = 1;
2608
2609/*
2610 * If the number of slab pages in a zone grows beyond this percentage then
2611 * slab reclaim needs to occur.
2612 */
2613int sysctl_min_slab_ratio = 5;
2614
2615static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2616{
2617	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2618	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2619		zone_page_state(zone, NR_ACTIVE_FILE);
2620
2621	/*
2622	 * It's possible for there to be more file mapped pages than
2623	 * accounted for by the pages on the file LRU lists because
2624	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2625	 */
2626	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2627}
2628
2629/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2630static long zone_pagecache_reclaimable(struct zone *zone)
2631{
2632	long nr_pagecache_reclaimable;
2633	long delta = 0;
2634
2635	/*
2636	 * If RECLAIM_SWAP is set, then all file pages are considered
2637	 * potentially reclaimable. Otherwise, we have to worry about
2638	 * pages like swapcache and zone_unmapped_file_pages() provides
2639	 * a better estimate
2640	 */
2641	if (zone_reclaim_mode & RECLAIM_SWAP)
2642		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2643	else
2644		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2645
2646	/* If we can't clean pages, remove dirty pages from consideration */
2647	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2648		delta += zone_page_state(zone, NR_FILE_DIRTY);
2649
2650	/* Watch for any possible underflows due to delta */
2651	if (unlikely(delta > nr_pagecache_reclaimable))
2652		delta = nr_pagecache_reclaimable;
2653
2654	return nr_pagecache_reclaimable - delta;
2655}
2656
2657/*
2658 * Try to free up some pages from this zone through reclaim.
2659 */
2660static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2661{
2662	/* Minimum pages needed in order to stay on node */
2663	const unsigned long nr_pages = 1 << order;
2664	struct task_struct *p = current;
2665	struct reclaim_state reclaim_state;
2666	int priority;
2667	struct scan_control sc = {
2668		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2669		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2670		.may_swap = 1,
2671		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2672				       SWAP_CLUSTER_MAX),
2673		.gfp_mask = gfp_mask,
2674		.swappiness = vm_swappiness,
2675		.order = order,
2676	};
2677	unsigned long nr_slab_pages0, nr_slab_pages1;
2678
2679	cond_resched();
2680	/*
2681	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2682	 * and we also need to be able to write out pages for RECLAIM_WRITE
2683	 * and RECLAIM_SWAP.
2684	 */
2685	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2686	lockdep_set_current_reclaim_state(gfp_mask);
2687	reclaim_state.reclaimed_slab = 0;
2688	p->reclaim_state = &reclaim_state;
2689
2690	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2691		/*
2692		 * Free memory by calling shrink zone with increasing
2693		 * priorities until we have enough memory freed.
2694		 */
2695		priority = ZONE_RECLAIM_PRIORITY;
2696		do {
2697			shrink_zone(priority, zone, &sc);
2698			priority--;
2699		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2700	}
2701
2702	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2703	if (nr_slab_pages0 > zone->min_slab_pages) {
2704		/*
2705		 * shrink_slab() does not currently allow us to determine how
2706		 * many pages were freed in this zone. So we take the current
2707		 * number of slab pages and shake the slab until it is reduced
2708		 * by the same nr_pages that we used for reclaiming unmapped
2709		 * pages.
2710		 *
2711		 * Note that shrink_slab will free memory on all zones and may
2712		 * take a long time.
2713		 */
2714		for (;;) {
2715			unsigned long lru_pages = zone_reclaimable_pages(zone);
2716
2717			/* No reclaimable slab or very low memory pressure */
2718			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2719				break;
2720
2721			/* Freed enough memory */
2722			nr_slab_pages1 = zone_page_state(zone,
2723							NR_SLAB_RECLAIMABLE);
2724			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2725				break;
2726		}
2727
2728		/*
2729		 * Update nr_reclaimed by the number of slab pages we
2730		 * reclaimed from this zone.
2731		 */
2732		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2733		if (nr_slab_pages1 < nr_slab_pages0)
2734			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2735	}
2736
2737	p->reclaim_state = NULL;
2738	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2739	lockdep_clear_current_reclaim_state();
2740	return sc.nr_reclaimed >= nr_pages;
2741}
2742
2743int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2744{
2745	int node_id;
2746	int ret;
2747
2748	/*
2749	 * Zone reclaim reclaims unmapped file backed pages and
2750	 * slab pages if we are over the defined limits.
2751	 *
2752	 * A small portion of unmapped file backed pages is needed for
2753	 * file I/O otherwise pages read by file I/O will be immediately
2754	 * thrown out if the zone is overallocated. So we do not reclaim
2755	 * if less than a specified percentage of the zone is used by
2756	 * unmapped file backed pages.
2757	 */
2758	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2759	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2760		return ZONE_RECLAIM_FULL;
2761
2762	if (zone->all_unreclaimable)
2763		return ZONE_RECLAIM_FULL;
2764
2765	/*
2766	 * Do not scan if the allocation should not be delayed.
2767	 */
2768	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2769		return ZONE_RECLAIM_NOSCAN;
2770
2771	/*
2772	 * Only run zone reclaim on the local zone or on zones that do not
2773	 * have associated processors. This will favor the local processor
2774	 * over remote processors and spread off node memory allocations
2775	 * as wide as possible.
2776	 */
2777	node_id = zone_to_nid(zone);
2778	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2779		return ZONE_RECLAIM_NOSCAN;
2780
2781	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2782		return ZONE_RECLAIM_NOSCAN;
2783
2784	ret = __zone_reclaim(zone, gfp_mask, order);
2785	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2786
2787	if (!ret)
2788		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2789
2790	return ret;
2791}
2792#endif
2793
2794/*
2795 * page_evictable - test whether a page is evictable
2796 * @page: the page to test
2797 * @vma: the VMA in which the page is or will be mapped, may be NULL
2798 *
2799 * Test whether page is evictable--i.e., should be placed on active/inactive
2800 * lists vs unevictable list.  The vma argument is !NULL when called from the
2801 * fault path to determine how to instantate a new page.
2802 *
2803 * Reasons page might not be evictable:
2804 * (1) page's mapping marked unevictable
2805 * (2) page is part of an mlocked VMA
2806 *
2807 */
2808int page_evictable(struct page *page, struct vm_area_struct *vma)
2809{
2810
2811	if (mapping_unevictable(page_mapping(page)))
2812		return 0;
2813
2814	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2815		return 0;
2816
2817	return 1;
2818}
2819
2820/**
2821 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2822 * @page: page to check evictability and move to appropriate lru list
2823 * @zone: zone page is in
2824 *
2825 * Checks a page for evictability and moves the page to the appropriate
2826 * zone lru list.
2827 *
2828 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2829 * have PageUnevictable set.
2830 */
2831static void check_move_unevictable_page(struct page *page, struct zone *zone)
2832{
2833	VM_BUG_ON(PageActive(page));
2834
2835retry:
2836	ClearPageUnevictable(page);
2837	if (page_evictable(page, NULL)) {
2838		enum lru_list l = page_lru_base_type(page);
2839
2840		__dec_zone_state(zone, NR_UNEVICTABLE);
2841		list_move(&page->lru, &zone->lru[l].list);
2842		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2843		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2844		__count_vm_event(UNEVICTABLE_PGRESCUED);
2845	} else {
2846		/*
2847		 * rotate unevictable list
2848		 */
2849		SetPageUnevictable(page);
2850		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2851		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2852		if (page_evictable(page, NULL))
2853			goto retry;
2854	}
2855}
2856
2857/**
2858 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2859 * @mapping: struct address_space to scan for evictable pages
2860 *
2861 * Scan all pages in mapping.  Check unevictable pages for
2862 * evictability and move them to the appropriate zone lru list.
2863 */
2864void scan_mapping_unevictable_pages(struct address_space *mapping)
2865{
2866	pgoff_t next = 0;
2867	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2868			 PAGE_CACHE_SHIFT;
2869	struct zone *zone;
2870	struct pagevec pvec;
2871
2872	if (mapping->nrpages == 0)
2873		return;
2874
2875	pagevec_init(&pvec, 0);
2876	while (next < end &&
2877		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2878		int i;
2879		int pg_scanned = 0;
2880
2881		zone = NULL;
2882
2883		for (i = 0; i < pagevec_count(&pvec); i++) {
2884			struct page *page = pvec.pages[i];
2885			pgoff_t page_index = page->index;
2886			struct zone *pagezone = page_zone(page);
2887
2888			pg_scanned++;
2889			if (page_index > next)
2890				next = page_index;
2891			next++;
2892
2893			if (pagezone != zone) {
2894				if (zone)
2895					spin_unlock_irq(&zone->lru_lock);
2896				zone = pagezone;
2897				spin_lock_irq(&zone->lru_lock);
2898			}
2899
2900			if (PageLRU(page) && PageUnevictable(page))
2901				check_move_unevictable_page(page, zone);
2902		}
2903		if (zone)
2904			spin_unlock_irq(&zone->lru_lock);
2905		pagevec_release(&pvec);
2906
2907		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2908	}
2909
2910}
2911
2912/**
2913 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2914 * @zone - zone of which to scan the unevictable list
2915 *
2916 * Scan @zone's unevictable LRU lists to check for pages that have become
2917 * evictable.  Move those that have to @zone's inactive list where they
2918 * become candidates for reclaim, unless shrink_inactive_zone() decides
2919 * to reactivate them.  Pages that are still unevictable are rotated
2920 * back onto @zone's unevictable list.
2921 */
2922#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2923static void scan_zone_unevictable_pages(struct zone *zone)
2924{
2925	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2926	unsigned long scan;
2927	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2928
2929	while (nr_to_scan > 0) {
2930		unsigned long batch_size = min(nr_to_scan,
2931						SCAN_UNEVICTABLE_BATCH_SIZE);
2932
2933		spin_lock_irq(&zone->lru_lock);
2934		for (scan = 0;  scan < batch_size; scan++) {
2935			struct page *page = lru_to_page(l_unevictable);
2936
2937			if (!trylock_page(page))
2938				continue;
2939
2940			prefetchw_prev_lru_page(page, l_unevictable, flags);
2941
2942			if (likely(PageLRU(page) && PageUnevictable(page)))
2943				check_move_unevictable_page(page, zone);
2944
2945			unlock_page(page);
2946		}
2947		spin_unlock_irq(&zone->lru_lock);
2948
2949		nr_to_scan -= batch_size;
2950	}
2951}
2952
2953
2954/**
2955 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2956 *
2957 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2958 * pages that have become evictable.  Move those back to the zones'
2959 * inactive list where they become candidates for reclaim.
2960 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2961 * and we add swap to the system.  As such, it runs in the context of a task
2962 * that has possibly/probably made some previously unevictable pages
2963 * evictable.
2964 */
2965static void scan_all_zones_unevictable_pages(void)
2966{
2967	struct zone *zone;
2968
2969	for_each_zone(zone) {
2970		scan_zone_unevictable_pages(zone);
2971	}
2972}
2973
2974/*
2975 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2976 * all nodes' unevictable lists for evictable pages
2977 */
2978unsigned long scan_unevictable_pages;
2979
2980int scan_unevictable_handler(struct ctl_table *table, int write,
2981			   void __user *buffer,
2982			   size_t *length, loff_t *ppos)
2983{
2984	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2985
2986	if (write && *(unsigned long *)table->data)
2987		scan_all_zones_unevictable_pages();
2988
2989	scan_unevictable_pages = 0;
2990	return 0;
2991}
2992
2993/*
2994 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2995 * a specified node's per zone unevictable lists for evictable pages.
2996 */
2997
2998static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2999					  struct sysdev_attribute *attr,
3000					  char *buf)
3001{
3002	return sprintf(buf, "0\n");	/* always zero; should fit... */
3003}
3004
3005static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3006					   struct sysdev_attribute *attr,
3007					const char *buf, size_t count)
3008{
3009	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3010	struct zone *zone;
3011	unsigned long res;
3012	unsigned long req = strict_strtoul(buf, 10, &res);
3013
3014	if (!req)
3015		return 1;	/* zero is no-op */
3016
3017	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3018		if (!populated_zone(zone))
3019			continue;
3020		scan_zone_unevictable_pages(zone);
3021	}
3022	return 1;
3023}
3024
3025
3026static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3027			read_scan_unevictable_node,
3028			write_scan_unevictable_node);
3029
3030int scan_unevictable_register_node(struct node *node)
3031{
3032	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3033}
3034
3035void scan_unevictable_unregister_node(struct node *node)
3036{
3037	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3038}
3039