1/*
2 *  linux/kernel/timer.c
3 *
4 *  Kernel internal timers, basic process system calls
5 *
6 *  Copyright (C) 1991, 1992  Linus Torvalds
7 *
8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 *              serialize accesses to xtime/lost_ticks).
14 *                              Copyright (C) 1998  Andrea Arcangeli
15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/pid_namespace.h>
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
37#include <linux/delay.h>
38#include <linux/tick.h>
39#include <linux/kallsyms.h>
40#include <linux/perf_event.h>
41#include <linux/sched.h>
42#include <linux/slab.h>
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
57/*
58 * per-CPU timer vector definitions:
59 */
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
67struct tvec {
68	struct list_head vec[TVN_SIZE];
69};
70
71struct tvec_root {
72	struct list_head vec[TVR_SIZE];
73};
74
75struct tvec_base {
76	spinlock_t lock;
77	struct timer_list *running_timer;
78	unsigned long timer_jiffies;
79	unsigned long next_timer;
80	struct tvec_root tv1;
81	struct tvec tv2;
82	struct tvec tv3;
83	struct tvec tv4;
84	struct tvec tv5;
85} ____cacheline_aligned;
86
87struct tvec_base boot_tvec_bases;
88EXPORT_SYMBOL(boot_tvec_bases);
89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
90
91/*
92 * Note that all tvec_bases are 2 byte aligned and lower bit of
93 * base in timer_list is guaranteed to be zero. Use the LSB to
94 * indicate whether the timer is deferrable.
95 *
96 * A deferrable timer will work normally when the system is busy, but
97 * will not cause a CPU to come out of idle just to service it; instead,
98 * the timer will be serviced when the CPU eventually wakes up with a
99 * subsequent non-deferrable timer.
100 */
101#define TBASE_DEFERRABLE_FLAG		(0x1)
102
103/* Functions below help us manage 'deferrable' flag */
104static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
105{
106	return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
107}
108
109static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
110{
111	return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
112}
113
114static inline void timer_set_deferrable(struct timer_list *timer)
115{
116	timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
117				       TBASE_DEFERRABLE_FLAG));
118}
119
120static inline void
121timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
122{
123	timer->base = (struct tvec_base *)((unsigned long)(new_base) |
124				      tbase_get_deferrable(timer->base));
125}
126
127static unsigned long round_jiffies_common(unsigned long j, int cpu,
128		bool force_up)
129{
130	int rem;
131	unsigned long original = j;
132
133	/*
134	 * We don't want all cpus firing their timers at once hitting the
135	 * same lock or cachelines, so we skew each extra cpu with an extra
136	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
137	 * already did this.
138	 * The skew is done by adding 3*cpunr, then round, then subtract this
139	 * extra offset again.
140	 */
141	j += cpu * 3;
142
143	rem = j % HZ;
144
145	/*
146	 * If the target jiffie is just after a whole second (which can happen
147	 * due to delays of the timer irq, long irq off times etc etc) then
148	 * we should round down to the whole second, not up. Use 1/4th second
149	 * as cutoff for this rounding as an extreme upper bound for this.
150	 * But never round down if @force_up is set.
151	 */
152	if (rem < HZ/4 && !force_up) /* round down */
153		j = j - rem;
154	else /* round up */
155		j = j - rem + HZ;
156
157	/* now that we have rounded, subtract the extra skew again */
158	j -= cpu * 3;
159
160	if (j <= jiffies) /* rounding ate our timeout entirely; */
161		return original;
162	return j;
163}
164
165/**
166 * __round_jiffies - function to round jiffies to a full second
167 * @j: the time in (absolute) jiffies that should be rounded
168 * @cpu: the processor number on which the timeout will happen
169 *
170 * __round_jiffies() rounds an absolute time in the future (in jiffies)
171 * up or down to (approximately) full seconds. This is useful for timers
172 * for which the exact time they fire does not matter too much, as long as
173 * they fire approximately every X seconds.
174 *
175 * By rounding these timers to whole seconds, all such timers will fire
176 * at the same time, rather than at various times spread out. The goal
177 * of this is to have the CPU wake up less, which saves power.
178 *
179 * The exact rounding is skewed for each processor to avoid all
180 * processors firing at the exact same time, which could lead
181 * to lock contention or spurious cache line bouncing.
182 *
183 * The return value is the rounded version of the @j parameter.
184 */
185unsigned long __round_jiffies(unsigned long j, int cpu)
186{
187	return round_jiffies_common(j, cpu, false);
188}
189EXPORT_SYMBOL_GPL(__round_jiffies);
190
191/**
192 * __round_jiffies_relative - function to round jiffies to a full second
193 * @j: the time in (relative) jiffies that should be rounded
194 * @cpu: the processor number on which the timeout will happen
195 *
196 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
197 * up or down to (approximately) full seconds. This is useful for timers
198 * for which the exact time they fire does not matter too much, as long as
199 * they fire approximately every X seconds.
200 *
201 * By rounding these timers to whole seconds, all such timers will fire
202 * at the same time, rather than at various times spread out. The goal
203 * of this is to have the CPU wake up less, which saves power.
204 *
205 * The exact rounding is skewed for each processor to avoid all
206 * processors firing at the exact same time, which could lead
207 * to lock contention or spurious cache line bouncing.
208 *
209 * The return value is the rounded version of the @j parameter.
210 */
211unsigned long __round_jiffies_relative(unsigned long j, int cpu)
212{
213	unsigned long j0 = jiffies;
214
215	/* Use j0 because jiffies might change while we run */
216	return round_jiffies_common(j + j0, cpu, false) - j0;
217}
218EXPORT_SYMBOL_GPL(__round_jiffies_relative);
219
220/**
221 * round_jiffies - function to round jiffies to a full second
222 * @j: the time in (absolute) jiffies that should be rounded
223 *
224 * round_jiffies() rounds an absolute time in the future (in jiffies)
225 * up or down to (approximately) full seconds. This is useful for timers
226 * for which the exact time they fire does not matter too much, as long as
227 * they fire approximately every X seconds.
228 *
229 * By rounding these timers to whole seconds, all such timers will fire
230 * at the same time, rather than at various times spread out. The goal
231 * of this is to have the CPU wake up less, which saves power.
232 *
233 * The return value is the rounded version of the @j parameter.
234 */
235unsigned long round_jiffies(unsigned long j)
236{
237	return round_jiffies_common(j, raw_smp_processor_id(), false);
238}
239EXPORT_SYMBOL_GPL(round_jiffies);
240
241/**
242 * round_jiffies_relative - function to round jiffies to a full second
243 * @j: the time in (relative) jiffies that should be rounded
244 *
245 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
246 * up or down to (approximately) full seconds. This is useful for timers
247 * for which the exact time they fire does not matter too much, as long as
248 * they fire approximately every X seconds.
249 *
250 * By rounding these timers to whole seconds, all such timers will fire
251 * at the same time, rather than at various times spread out. The goal
252 * of this is to have the CPU wake up less, which saves power.
253 *
254 * The return value is the rounded version of the @j parameter.
255 */
256unsigned long round_jiffies_relative(unsigned long j)
257{
258	return __round_jiffies_relative(j, raw_smp_processor_id());
259}
260EXPORT_SYMBOL_GPL(round_jiffies_relative);
261
262/**
263 * __round_jiffies_up - function to round jiffies up to a full second
264 * @j: the time in (absolute) jiffies that should be rounded
265 * @cpu: the processor number on which the timeout will happen
266 *
267 * This is the same as __round_jiffies() except that it will never
268 * round down.  This is useful for timeouts for which the exact time
269 * of firing does not matter too much, as long as they don't fire too
270 * early.
271 */
272unsigned long __round_jiffies_up(unsigned long j, int cpu)
273{
274	return round_jiffies_common(j, cpu, true);
275}
276EXPORT_SYMBOL_GPL(__round_jiffies_up);
277
278/**
279 * __round_jiffies_up_relative - function to round jiffies up to a full second
280 * @j: the time in (relative) jiffies that should be rounded
281 * @cpu: the processor number on which the timeout will happen
282 *
283 * This is the same as __round_jiffies_relative() except that it will never
284 * round down.  This is useful for timeouts for which the exact time
285 * of firing does not matter too much, as long as they don't fire too
286 * early.
287 */
288unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
289{
290	unsigned long j0 = jiffies;
291
292	/* Use j0 because jiffies might change while we run */
293	return round_jiffies_common(j + j0, cpu, true) - j0;
294}
295EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
296
297/**
298 * round_jiffies_up - function to round jiffies up to a full second
299 * @j: the time in (absolute) jiffies that should be rounded
300 *
301 * This is the same as round_jiffies() except that it will never
302 * round down.  This is useful for timeouts for which the exact time
303 * of firing does not matter too much, as long as they don't fire too
304 * early.
305 */
306unsigned long round_jiffies_up(unsigned long j)
307{
308	return round_jiffies_common(j, raw_smp_processor_id(), true);
309}
310EXPORT_SYMBOL_GPL(round_jiffies_up);
311
312/**
313 * round_jiffies_up_relative - function to round jiffies up to a full second
314 * @j: the time in (relative) jiffies that should be rounded
315 *
316 * This is the same as round_jiffies_relative() except that it will never
317 * round down.  This is useful for timeouts for which the exact time
318 * of firing does not matter too much, as long as they don't fire too
319 * early.
320 */
321unsigned long round_jiffies_up_relative(unsigned long j)
322{
323	return __round_jiffies_up_relative(j, raw_smp_processor_id());
324}
325EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
326
327/**
328 * set_timer_slack - set the allowed slack for a timer
329 * @timer: the timer to be modified
330 * @slack_hz: the amount of time (in jiffies) allowed for rounding
331 *
332 * Set the amount of time, in jiffies, that a certain timer has
333 * in terms of slack. By setting this value, the timer subsystem
334 * will schedule the actual timer somewhere between
335 * the time mod_timer() asks for, and that time plus the slack.
336 *
337 * By setting the slack to -1, a percentage of the delay is used
338 * instead.
339 */
340void set_timer_slack(struct timer_list *timer, int slack_hz)
341{
342	timer->slack = slack_hz;
343}
344EXPORT_SYMBOL_GPL(set_timer_slack);
345
346
347static inline void set_running_timer(struct tvec_base *base,
348					struct timer_list *timer)
349{
350#ifdef CONFIG_SMP
351	base->running_timer = timer;
352#endif
353}
354
355static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
356{
357	unsigned long expires = timer->expires;
358	unsigned long idx = expires - base->timer_jiffies;
359	struct list_head *vec;
360
361	if (idx < TVR_SIZE) {
362		int i = expires & TVR_MASK;
363		vec = base->tv1.vec + i;
364	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
365		int i = (expires >> TVR_BITS) & TVN_MASK;
366		vec = base->tv2.vec + i;
367	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
368		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
369		vec = base->tv3.vec + i;
370	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
371		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
372		vec = base->tv4.vec + i;
373	} else if ((signed long) idx < 0) {
374		/*
375		 * Can happen if you add a timer with expires == jiffies,
376		 * or you set a timer to go off in the past
377		 */
378		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
379	} else {
380		int i;
381		/* If the timeout is larger than 0xffffffff on 64-bit
382		 * architectures then we use the maximum timeout:
383		 */
384		if (idx > 0xffffffffUL) {
385			idx = 0xffffffffUL;
386			expires = idx + base->timer_jiffies;
387		}
388		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
389		vec = base->tv5.vec + i;
390	}
391	/*
392	 * Timers are FIFO:
393	 */
394	list_add_tail(&timer->entry, vec);
395}
396
397#ifdef CONFIG_TIMER_STATS
398void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
399{
400	if (timer->start_site)
401		return;
402
403	timer->start_site = addr;
404	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
405	timer->start_pid = current->pid;
406}
407
408static void timer_stats_account_timer(struct timer_list *timer)
409{
410	unsigned int flag = 0;
411
412	if (likely(!timer->start_site))
413		return;
414	if (unlikely(tbase_get_deferrable(timer->base)))
415		flag |= TIMER_STATS_FLAG_DEFERRABLE;
416
417	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
418				 timer->function, timer->start_comm, flag);
419}
420
421#else
422static void timer_stats_account_timer(struct timer_list *timer) {}
423#endif
424
425#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
426
427static struct debug_obj_descr timer_debug_descr;
428
429/*
430 * fixup_init is called when:
431 * - an active object is initialized
432 */
433static int timer_fixup_init(void *addr, enum debug_obj_state state)
434{
435	struct timer_list *timer = addr;
436
437	switch (state) {
438	case ODEBUG_STATE_ACTIVE:
439		del_timer_sync(timer);
440		debug_object_init(timer, &timer_debug_descr);
441		return 1;
442	default:
443		return 0;
444	}
445}
446
447/*
448 * fixup_activate is called when:
449 * - an active object is activated
450 * - an unknown object is activated (might be a statically initialized object)
451 */
452static int timer_fixup_activate(void *addr, enum debug_obj_state state)
453{
454	struct timer_list *timer = addr;
455
456	switch (state) {
457
458	case ODEBUG_STATE_NOTAVAILABLE:
459		/*
460		 * This is not really a fixup. The timer was
461		 * statically initialized. We just make sure that it
462		 * is tracked in the object tracker.
463		 */
464		if (timer->entry.next == NULL &&
465		    timer->entry.prev == TIMER_ENTRY_STATIC) {
466			debug_object_init(timer, &timer_debug_descr);
467			debug_object_activate(timer, &timer_debug_descr);
468			return 0;
469		} else {
470			WARN_ON_ONCE(1);
471		}
472		return 0;
473
474	case ODEBUG_STATE_ACTIVE:
475		WARN_ON(1);
476
477	default:
478		return 0;
479	}
480}
481
482/*
483 * fixup_free is called when:
484 * - an active object is freed
485 */
486static int timer_fixup_free(void *addr, enum debug_obj_state state)
487{
488	struct timer_list *timer = addr;
489
490	switch (state) {
491	case ODEBUG_STATE_ACTIVE:
492		del_timer_sync(timer);
493		debug_object_free(timer, &timer_debug_descr);
494		return 1;
495	default:
496		return 0;
497	}
498}
499
500static struct debug_obj_descr timer_debug_descr = {
501	.name		= "timer_list",
502	.fixup_init	= timer_fixup_init,
503	.fixup_activate	= timer_fixup_activate,
504	.fixup_free	= timer_fixup_free,
505};
506
507static inline void debug_timer_init(struct timer_list *timer)
508{
509	debug_object_init(timer, &timer_debug_descr);
510}
511
512static inline void debug_timer_activate(struct timer_list *timer)
513{
514	debug_object_activate(timer, &timer_debug_descr);
515}
516
517static inline void debug_timer_deactivate(struct timer_list *timer)
518{
519	debug_object_deactivate(timer, &timer_debug_descr);
520}
521
522static inline void debug_timer_free(struct timer_list *timer)
523{
524	debug_object_free(timer, &timer_debug_descr);
525}
526
527static void __init_timer(struct timer_list *timer,
528			 const char *name,
529			 struct lock_class_key *key);
530
531void init_timer_on_stack_key(struct timer_list *timer,
532			     const char *name,
533			     struct lock_class_key *key)
534{
535	debug_object_init_on_stack(timer, &timer_debug_descr);
536	__init_timer(timer, name, key);
537}
538EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
539
540void destroy_timer_on_stack(struct timer_list *timer)
541{
542	debug_object_free(timer, &timer_debug_descr);
543}
544EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
545
546#else
547static inline void debug_timer_init(struct timer_list *timer) { }
548static inline void debug_timer_activate(struct timer_list *timer) { }
549static inline void debug_timer_deactivate(struct timer_list *timer) { }
550#endif
551
552static inline void debug_init(struct timer_list *timer)
553{
554	debug_timer_init(timer);
555	trace_timer_init(timer);
556}
557
558static inline void
559debug_activate(struct timer_list *timer, unsigned long expires)
560{
561	debug_timer_activate(timer);
562	trace_timer_start(timer, expires);
563}
564
565static inline void debug_deactivate(struct timer_list *timer)
566{
567	debug_timer_deactivate(timer);
568	trace_timer_cancel(timer);
569}
570
571static void __init_timer(struct timer_list *timer,
572			 const char *name,
573			 struct lock_class_key *key)
574{
575	timer->entry.next = NULL;
576	timer->base = __raw_get_cpu_var(tvec_bases);
577	timer->slack = -1;
578#ifdef CONFIG_TIMER_STATS
579	timer->start_site = NULL;
580	timer->start_pid = -1;
581	memset(timer->start_comm, 0, TASK_COMM_LEN);
582#endif
583	lockdep_init_map(&timer->lockdep_map, name, key, 0);
584}
585
586void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
587					 const char *name,
588					 struct lock_class_key *key,
589					 void (*function)(unsigned long),
590					 unsigned long data)
591{
592	timer->function = function;
593	timer->data = data;
594	init_timer_on_stack_key(timer, name, key);
595	timer_set_deferrable(timer);
596}
597EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
598
599/**
600 * init_timer_key - initialize a timer
601 * @timer: the timer to be initialized
602 * @name: name of the timer
603 * @key: lockdep class key of the fake lock used for tracking timer
604 *       sync lock dependencies
605 *
606 * init_timer_key() must be done to a timer prior calling *any* of the
607 * other timer functions.
608 */
609void init_timer_key(struct timer_list *timer,
610		    const char *name,
611		    struct lock_class_key *key)
612{
613	debug_init(timer);
614	__init_timer(timer, name, key);
615}
616EXPORT_SYMBOL(init_timer_key);
617
618void init_timer_deferrable_key(struct timer_list *timer,
619			       const char *name,
620			       struct lock_class_key *key)
621{
622	init_timer_key(timer, name, key);
623	timer_set_deferrable(timer);
624}
625EXPORT_SYMBOL(init_timer_deferrable_key);
626
627static inline void detach_timer(struct timer_list *timer,
628				int clear_pending)
629{
630	struct list_head *entry = &timer->entry;
631
632	debug_deactivate(timer);
633
634	__list_del(entry->prev, entry->next);
635	if (clear_pending)
636		entry->next = NULL;
637	entry->prev = LIST_POISON2;
638}
639
640/*
641 * We are using hashed locking: holding per_cpu(tvec_bases).lock
642 * means that all timers which are tied to this base via timer->base are
643 * locked, and the base itself is locked too.
644 *
645 * So __run_timers/migrate_timers can safely modify all timers which could
646 * be found on ->tvX lists.
647 *
648 * When the timer's base is locked, and the timer removed from list, it is
649 * possible to set timer->base = NULL and drop the lock: the timer remains
650 * locked.
651 */
652static struct tvec_base *lock_timer_base(struct timer_list *timer,
653					unsigned long *flags)
654	__acquires(timer->base->lock)
655{
656	struct tvec_base *base;
657
658	for (;;) {
659		struct tvec_base *prelock_base = timer->base;
660		base = tbase_get_base(prelock_base);
661		if (likely(base != NULL)) {
662			spin_lock_irqsave(&base->lock, *flags);
663			if (likely(prelock_base == timer->base))
664				return base;
665			/* The timer has migrated to another CPU */
666			spin_unlock_irqrestore(&base->lock, *flags);
667		}
668		cpu_relax();
669	}
670}
671
672static inline int
673__mod_timer(struct timer_list *timer, unsigned long expires,
674						bool pending_only, int pinned)
675{
676	struct tvec_base *base, *new_base;
677	unsigned long flags;
678	int ret = 0 , cpu;
679
680	timer_stats_timer_set_start_info(timer);
681	BUG_ON(!timer->function);
682
683	base = lock_timer_base(timer, &flags);
684
685	if (timer_pending(timer)) {
686		detach_timer(timer, 0);
687		if (timer->expires == base->next_timer &&
688		    !tbase_get_deferrable(timer->base))
689			base->next_timer = base->timer_jiffies;
690		ret = 1;
691	} else {
692		if (pending_only)
693			goto out_unlock;
694	}
695
696	debug_activate(timer, expires);
697
698	cpu = smp_processor_id();
699
700#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
701	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
702		cpu = get_nohz_timer_target();
703#endif
704	new_base = per_cpu(tvec_bases, cpu);
705
706	if (base != new_base) {
707		/*
708		 * We are trying to schedule the timer on the local CPU.
709		 * However we can't change timer's base while it is running,
710		 * otherwise del_timer_sync() can't detect that the timer's
711		 * handler yet has not finished. This also guarantees that
712		 * the timer is serialized wrt itself.
713		 */
714		if (likely(base->running_timer != timer)) {
715			/* See the comment in lock_timer_base() */
716			timer_set_base(timer, NULL);
717			spin_unlock(&base->lock);
718			base = new_base;
719			spin_lock(&base->lock);
720			timer_set_base(timer, base);
721		}
722	}
723
724	timer->expires = expires;
725	if (time_before(timer->expires, base->next_timer) &&
726	    !tbase_get_deferrable(timer->base))
727		base->next_timer = timer->expires;
728	internal_add_timer(base, timer);
729
730out_unlock:
731	spin_unlock_irqrestore(&base->lock, flags);
732
733	return ret;
734}
735
736/**
737 * mod_timer_pending - modify a pending timer's timeout
738 * @timer: the pending timer to be modified
739 * @expires: new timeout in jiffies
740 *
741 * mod_timer_pending() is the same for pending timers as mod_timer(),
742 * but will not re-activate and modify already deleted timers.
743 *
744 * It is useful for unserialized use of timers.
745 */
746int mod_timer_pending(struct timer_list *timer, unsigned long expires)
747{
748	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
749}
750EXPORT_SYMBOL(mod_timer_pending);
751
752/*
753 * Decide where to put the timer while taking the slack into account
754 *
755 * Algorithm:
756 *   1) calculate the maximum (absolute) time
757 *   2) calculate the highest bit where the expires and new max are different
758 *   3) use this bit to make a mask
759 *   4) use the bitmask to round down the maximum time, so that all last
760 *      bits are zeros
761 */
762static inline
763unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
764{
765	unsigned long expires_limit, mask;
766	int bit;
767
768	expires_limit = expires;
769
770	if (timer->slack >= 0) {
771		expires_limit = expires + timer->slack;
772	} else {
773		unsigned long now = jiffies;
774
775		/* No slack, if already expired else auto slack 0.4% */
776		if (time_after(expires, now))
777			expires_limit = expires + (expires - now)/256;
778	}
779	mask = expires ^ expires_limit;
780	if (mask == 0)
781		return expires;
782
783	bit = find_last_bit(&mask, BITS_PER_LONG);
784
785	mask = (1 << bit) - 1;
786
787	expires_limit = expires_limit & ~(mask);
788
789	return expires_limit;
790}
791
792/**
793 * mod_timer - modify a timer's timeout
794 * @timer: the timer to be modified
795 * @expires: new timeout in jiffies
796 *
797 * mod_timer() is a more efficient way to update the expire field of an
798 * active timer (if the timer is inactive it will be activated)
799 *
800 * mod_timer(timer, expires) is equivalent to:
801 *
802 *     del_timer(timer); timer->expires = expires; add_timer(timer);
803 *
804 * Note that if there are multiple unserialized concurrent users of the
805 * same timer, then mod_timer() is the only safe way to modify the timeout,
806 * since add_timer() cannot modify an already running timer.
807 *
808 * The function returns whether it has modified a pending timer or not.
809 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
810 * active timer returns 1.)
811 */
812int mod_timer(struct timer_list *timer, unsigned long expires)
813{
814	/*
815	 * This is a common optimization triggered by the
816	 * networking code - if the timer is re-modified
817	 * to be the same thing then just return:
818	 */
819	if (timer_pending(timer) && timer->expires == expires)
820		return 1;
821
822	expires = apply_slack(timer, expires);
823
824	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
825}
826EXPORT_SYMBOL(mod_timer);
827
828/**
829 * mod_timer_pinned - modify a timer's timeout
830 * @timer: the timer to be modified
831 * @expires: new timeout in jiffies
832 *
833 * mod_timer_pinned() is a way to update the expire field of an
834 * active timer (if the timer is inactive it will be activated)
835 * and not allow the timer to be migrated to a different CPU.
836 *
837 * mod_timer_pinned(timer, expires) is equivalent to:
838 *
839 *     del_timer(timer); timer->expires = expires; add_timer(timer);
840 */
841int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
842{
843	if (timer->expires == expires && timer_pending(timer))
844		return 1;
845
846	return __mod_timer(timer, expires, false, TIMER_PINNED);
847}
848EXPORT_SYMBOL(mod_timer_pinned);
849
850/**
851 * add_timer - start a timer
852 * @timer: the timer to be added
853 *
854 * The kernel will do a ->function(->data) callback from the
855 * timer interrupt at the ->expires point in the future. The
856 * current time is 'jiffies'.
857 *
858 * The timer's ->expires, ->function (and if the handler uses it, ->data)
859 * fields must be set prior calling this function.
860 *
861 * Timers with an ->expires field in the past will be executed in the next
862 * timer tick.
863 */
864void add_timer(struct timer_list *timer)
865{
866	BUG_ON(timer_pending(timer));
867	mod_timer(timer, timer->expires);
868}
869EXPORT_SYMBOL(add_timer);
870
871/**
872 * add_timer_on - start a timer on a particular CPU
873 * @timer: the timer to be added
874 * @cpu: the CPU to start it on
875 *
876 * This is not very scalable on SMP. Double adds are not possible.
877 */
878void add_timer_on(struct timer_list *timer, int cpu)
879{
880	struct tvec_base *base = per_cpu(tvec_bases, cpu);
881	unsigned long flags;
882
883	timer_stats_timer_set_start_info(timer);
884	BUG_ON(timer_pending(timer) || !timer->function);
885	spin_lock_irqsave(&base->lock, flags);
886	timer_set_base(timer, base);
887	debug_activate(timer, timer->expires);
888	if (time_before(timer->expires, base->next_timer) &&
889	    !tbase_get_deferrable(timer->base))
890		base->next_timer = timer->expires;
891	internal_add_timer(base, timer);
892	/*
893	 * Check whether the other CPU is idle and needs to be
894	 * triggered to reevaluate the timer wheel when nohz is
895	 * active. We are protected against the other CPU fiddling
896	 * with the timer by holding the timer base lock. This also
897	 * makes sure that a CPU on the way to idle can not evaluate
898	 * the timer wheel.
899	 */
900	wake_up_idle_cpu(cpu);
901	spin_unlock_irqrestore(&base->lock, flags);
902}
903EXPORT_SYMBOL_GPL(add_timer_on);
904
905/**
906 * del_timer - deactive a timer.
907 * @timer: the timer to be deactivated
908 *
909 * del_timer() deactivates a timer - this works on both active and inactive
910 * timers.
911 *
912 * The function returns whether it has deactivated a pending timer or not.
913 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
914 * active timer returns 1.)
915 */
916int del_timer(struct timer_list *timer)
917{
918	struct tvec_base *base;
919	unsigned long flags;
920	int ret = 0;
921
922	timer_stats_timer_clear_start_info(timer);
923	if (timer_pending(timer)) {
924		base = lock_timer_base(timer, &flags);
925		if (timer_pending(timer)) {
926			detach_timer(timer, 1);
927			if (timer->expires == base->next_timer &&
928			    !tbase_get_deferrable(timer->base))
929				base->next_timer = base->timer_jiffies;
930			ret = 1;
931		}
932		spin_unlock_irqrestore(&base->lock, flags);
933	}
934
935	return ret;
936}
937EXPORT_SYMBOL(del_timer);
938
939#ifdef CONFIG_SMP
940/**
941 * try_to_del_timer_sync - Try to deactivate a timer
942 * @timer: timer do del
943 *
944 * This function tries to deactivate a timer. Upon successful (ret >= 0)
945 * exit the timer is not queued and the handler is not running on any CPU.
946 *
947 * It must not be called from interrupt contexts.
948 */
949int try_to_del_timer_sync(struct timer_list *timer)
950{
951	struct tvec_base *base;
952	unsigned long flags;
953	int ret = -1;
954
955	base = lock_timer_base(timer, &flags);
956
957	if (base->running_timer == timer)
958		goto out;
959
960	timer_stats_timer_clear_start_info(timer);
961	ret = 0;
962	if (timer_pending(timer)) {
963		detach_timer(timer, 1);
964		if (timer->expires == base->next_timer &&
965		    !tbase_get_deferrable(timer->base))
966			base->next_timer = base->timer_jiffies;
967		ret = 1;
968	}
969out:
970	spin_unlock_irqrestore(&base->lock, flags);
971
972	return ret;
973}
974EXPORT_SYMBOL(try_to_del_timer_sync);
975
976/**
977 * del_timer_sync - deactivate a timer and wait for the handler to finish.
978 * @timer: the timer to be deactivated
979 *
980 * This function only differs from del_timer() on SMP: besides deactivating
981 * the timer it also makes sure the handler has finished executing on other
982 * CPUs.
983 *
984 * Synchronization rules: Callers must prevent restarting of the timer,
985 * otherwise this function is meaningless. It must not be called from
986 * interrupt contexts. The caller must not hold locks which would prevent
987 * completion of the timer's handler. The timer's handler must not call
988 * add_timer_on(). Upon exit the timer is not queued and the handler is
989 * not running on any CPU.
990 *
991 * The function returns whether it has deactivated a pending timer or not.
992 */
993int del_timer_sync(struct timer_list *timer)
994{
995#ifdef CONFIG_LOCKDEP
996	unsigned long flags;
997
998	local_irq_save(flags);
999	lock_map_acquire(&timer->lockdep_map);
1000	lock_map_release(&timer->lockdep_map);
1001	local_irq_restore(flags);
1002#endif
1003
1004	for (;;) {
1005		int ret = try_to_del_timer_sync(timer);
1006		if (ret >= 0)
1007			return ret;
1008		cpu_relax();
1009	}
1010}
1011EXPORT_SYMBOL(del_timer_sync);
1012#endif
1013
1014static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1015{
1016	/* cascade all the timers from tv up one level */
1017	struct timer_list *timer, *tmp;
1018	struct list_head tv_list;
1019
1020	list_replace_init(tv->vec + index, &tv_list);
1021
1022	/*
1023	 * We are removing _all_ timers from the list, so we
1024	 * don't have to detach them individually.
1025	 */
1026	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1027		BUG_ON(tbase_get_base(timer->base) != base);
1028		internal_add_timer(base, timer);
1029	}
1030
1031	return index;
1032}
1033
1034static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1035			  unsigned long data)
1036{
1037	int preempt_count = preempt_count();
1038
1039#ifdef CONFIG_LOCKDEP
1040	/*
1041	 * It is permissible to free the timer from inside the
1042	 * function that is called from it, this we need to take into
1043	 * account for lockdep too. To avoid bogus "held lock freed"
1044	 * warnings as well as problems when looking into
1045	 * timer->lockdep_map, make a copy and use that here.
1046	 */
1047	struct lockdep_map lockdep_map = timer->lockdep_map;
1048#endif
1049	/*
1050	 * Couple the lock chain with the lock chain at
1051	 * del_timer_sync() by acquiring the lock_map around the fn()
1052	 * call here and in del_timer_sync().
1053	 */
1054	lock_map_acquire(&lockdep_map);
1055
1056	trace_timer_expire_entry(timer);
1057	fn(data);
1058	trace_timer_expire_exit(timer);
1059
1060	lock_map_release(&lockdep_map);
1061
1062	if (preempt_count != preempt_count()) {
1063		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1064			  fn, preempt_count, preempt_count());
1065		/*
1066		 * Restore the preempt count. That gives us a decent
1067		 * chance to survive and extract information. If the
1068		 * callback kept a lock held, bad luck, but not worse
1069		 * than the BUG() we had.
1070		 */
1071		preempt_count() = preempt_count;
1072	}
1073}
1074
1075#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1076
1077/**
1078 * __run_timers - run all expired timers (if any) on this CPU.
1079 * @base: the timer vector to be processed.
1080 *
1081 * This function cascades all vectors and executes all expired timer
1082 * vectors.
1083 */
1084static inline void __run_timers(struct tvec_base *base)
1085{
1086	struct timer_list *timer;
1087
1088	spin_lock_irq(&base->lock);
1089	while (time_after_eq(jiffies, base->timer_jiffies)) {
1090		struct list_head work_list;
1091		struct list_head *head = &work_list;
1092		int index = base->timer_jiffies & TVR_MASK;
1093
1094		/*
1095		 * Cascade timers:
1096		 */
1097		if (!index &&
1098			(!cascade(base, &base->tv2, INDEX(0))) &&
1099				(!cascade(base, &base->tv3, INDEX(1))) &&
1100					!cascade(base, &base->tv4, INDEX(2)))
1101			cascade(base, &base->tv5, INDEX(3));
1102		++base->timer_jiffies;
1103		list_replace_init(base->tv1.vec + index, &work_list);
1104		while (!list_empty(head)) {
1105			void (*fn)(unsigned long);
1106			unsigned long data;
1107
1108			timer = list_first_entry(head, struct timer_list,entry);
1109			fn = timer->function;
1110			data = timer->data;
1111
1112			timer_stats_account_timer(timer);
1113
1114			set_running_timer(base, timer);
1115			detach_timer(timer, 1);
1116
1117			spin_unlock_irq(&base->lock);
1118			call_timer_fn(timer, fn, data);
1119			spin_lock_irq(&base->lock);
1120		}
1121	}
1122	set_running_timer(base, NULL);
1123	spin_unlock_irq(&base->lock);
1124}
1125
1126#ifdef CONFIG_NO_HZ
1127/*
1128 * Find out when the next timer event is due to happen. This
1129 * is used on S/390 to stop all activity when a CPU is idle.
1130 * This function needs to be called with interrupts disabled.
1131 */
1132static unsigned long __next_timer_interrupt(struct tvec_base *base)
1133{
1134	unsigned long timer_jiffies = base->timer_jiffies;
1135	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1136	int index, slot, array, found = 0;
1137	struct timer_list *nte;
1138	struct tvec *varray[4];
1139
1140	/* Look for timer events in tv1. */
1141	index = slot = timer_jiffies & TVR_MASK;
1142	do {
1143		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1144			if (tbase_get_deferrable(nte->base))
1145				continue;
1146
1147			found = 1;
1148			expires = nte->expires;
1149			/* Look at the cascade bucket(s)? */
1150			if (!index || slot < index)
1151				goto cascade;
1152			return expires;
1153		}
1154		slot = (slot + 1) & TVR_MASK;
1155	} while (slot != index);
1156
1157cascade:
1158	/* Calculate the next cascade event */
1159	if (index)
1160		timer_jiffies += TVR_SIZE - index;
1161	timer_jiffies >>= TVR_BITS;
1162
1163	/* Check tv2-tv5. */
1164	varray[0] = &base->tv2;
1165	varray[1] = &base->tv3;
1166	varray[2] = &base->tv4;
1167	varray[3] = &base->tv5;
1168
1169	for (array = 0; array < 4; array++) {
1170		struct tvec *varp = varray[array];
1171
1172		index = slot = timer_jiffies & TVN_MASK;
1173		do {
1174			list_for_each_entry(nte, varp->vec + slot, entry) {
1175				if (tbase_get_deferrable(nte->base))
1176					continue;
1177
1178				found = 1;
1179				if (time_before(nte->expires, expires))
1180					expires = nte->expires;
1181			}
1182			/*
1183			 * Do we still search for the first timer or are
1184			 * we looking up the cascade buckets ?
1185			 */
1186			if (found) {
1187				/* Look at the cascade bucket(s)? */
1188				if (!index || slot < index)
1189					break;
1190				return expires;
1191			}
1192			slot = (slot + 1) & TVN_MASK;
1193		} while (slot != index);
1194
1195		if (index)
1196			timer_jiffies += TVN_SIZE - index;
1197		timer_jiffies >>= TVN_BITS;
1198	}
1199	return expires;
1200}
1201
1202/*
1203 * Check, if the next hrtimer event is before the next timer wheel
1204 * event:
1205 */
1206static unsigned long cmp_next_hrtimer_event(unsigned long now,
1207					    unsigned long expires)
1208{
1209	ktime_t hr_delta = hrtimer_get_next_event();
1210	struct timespec tsdelta;
1211	unsigned long delta;
1212
1213	if (hr_delta.tv64 == KTIME_MAX)
1214		return expires;
1215
1216	/*
1217	 * Expired timer available, let it expire in the next tick
1218	 */
1219	if (hr_delta.tv64 <= 0)
1220		return now + 1;
1221
1222	tsdelta = ktime_to_timespec(hr_delta);
1223	delta = timespec_to_jiffies(&tsdelta);
1224
1225	/*
1226	 * Limit the delta to the max value, which is checked in
1227	 * tick_nohz_stop_sched_tick():
1228	 */
1229	if (delta > NEXT_TIMER_MAX_DELTA)
1230		delta = NEXT_TIMER_MAX_DELTA;
1231
1232	/*
1233	 * Take rounding errors in to account and make sure, that it
1234	 * expires in the next tick. Otherwise we go into an endless
1235	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1236	 * the timer softirq
1237	 */
1238	if (delta < 1)
1239		delta = 1;
1240	now += delta;
1241	if (time_before(now, expires))
1242		return now;
1243	return expires;
1244}
1245
1246/**
1247 * get_next_timer_interrupt - return the jiffy of the next pending timer
1248 * @now: current time (in jiffies)
1249 */
1250unsigned long get_next_timer_interrupt(unsigned long now)
1251{
1252	struct tvec_base *base = __get_cpu_var(tvec_bases);
1253	unsigned long expires;
1254
1255	/*
1256	 * Pretend that there is no timer pending if the cpu is offline.
1257	 * Possible pending timers will be migrated later to an active cpu.
1258	 */
1259	if (cpu_is_offline(smp_processor_id()))
1260		return now + NEXT_TIMER_MAX_DELTA;
1261	spin_lock(&base->lock);
1262	if (time_before_eq(base->next_timer, base->timer_jiffies))
1263		base->next_timer = __next_timer_interrupt(base);
1264	expires = base->next_timer;
1265	spin_unlock(&base->lock);
1266
1267	if (time_before_eq(expires, now))
1268		return now;
1269
1270	return cmp_next_hrtimer_event(now, expires);
1271}
1272#endif
1273
1274/*
1275 * Called from the timer interrupt handler to charge one tick to the current
1276 * process.  user_tick is 1 if the tick is user time, 0 for system.
1277 */
1278void update_process_times(int user_tick)
1279{
1280	struct task_struct *p = current;
1281	int cpu = smp_processor_id();
1282
1283	/* Note: this timer irq context must be accounted for as well. */
1284	account_process_tick(p, user_tick);
1285	run_local_timers();
1286	rcu_check_callbacks(cpu, user_tick);
1287	printk_tick();
1288	perf_event_do_pending();
1289	scheduler_tick();
1290	run_posix_cpu_timers(p);
1291}
1292
1293/*
1294 * This function runs timers and the timer-tq in bottom half context.
1295 */
1296static void run_timer_softirq(struct softirq_action *h)
1297{
1298	struct tvec_base *base = __get_cpu_var(tvec_bases);
1299
1300	hrtimer_run_pending();
1301
1302	if (time_after_eq(jiffies, base->timer_jiffies))
1303		__run_timers(base);
1304}
1305
1306/*
1307 * Called by the local, per-CPU timer interrupt on SMP.
1308 */
1309void run_local_timers(void)
1310{
1311	hrtimer_run_queues();
1312	raise_softirq(TIMER_SOFTIRQ);
1313}
1314
1315/*
1316 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1317 * without sampling the sequence number in xtime_lock.
1318 * jiffies is defined in the linker script...
1319 */
1320
1321void do_timer(unsigned long ticks)
1322{
1323	jiffies_64 += ticks;
1324	update_wall_time();
1325	calc_global_load(ticks);
1326}
1327
1328#ifdef __ARCH_WANT_SYS_ALARM
1329
1330/*
1331 * For backwards compatibility?  This can be done in libc so Alpha
1332 * and all newer ports shouldn't need it.
1333 */
1334SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1335{
1336	return alarm_setitimer(seconds);
1337}
1338
1339#endif
1340
1341#ifndef __alpha__
1342
1343/*
1344 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
1345 * should be moved into arch/i386 instead?
1346 */
1347
1348/**
1349 * sys_getpid - return the thread group id of the current process
1350 *
1351 * Note, despite the name, this returns the tgid not the pid.  The tgid and
1352 * the pid are identical unless CLONE_THREAD was specified on clone() in
1353 * which case the tgid is the same in all threads of the same group.
1354 *
1355 * This is SMP safe as current->tgid does not change.
1356 */
1357SYSCALL_DEFINE0(getpid)
1358{
1359	return task_tgid_vnr(current);
1360}
1361
1362/*
1363 * Accessing ->real_parent is not SMP-safe, it could
1364 * change from under us. However, we can use a stale
1365 * value of ->real_parent under rcu_read_lock(), see
1366 * release_task()->call_rcu(delayed_put_task_struct).
1367 */
1368SYSCALL_DEFINE0(getppid)
1369{
1370	int pid;
1371
1372	rcu_read_lock();
1373	pid = task_tgid_vnr(current->real_parent);
1374	rcu_read_unlock();
1375
1376	return pid;
1377}
1378
1379SYSCALL_DEFINE0(getuid)
1380{
1381	/* Only we change this so SMP safe */
1382	return current_uid();
1383}
1384
1385SYSCALL_DEFINE0(geteuid)
1386{
1387	/* Only we change this so SMP safe */
1388	return current_euid();
1389}
1390
1391SYSCALL_DEFINE0(getgid)
1392{
1393	/* Only we change this so SMP safe */
1394	return current_gid();
1395}
1396
1397SYSCALL_DEFINE0(getegid)
1398{
1399	/* Only we change this so SMP safe */
1400	return  current_egid();
1401}
1402
1403#endif
1404
1405static void process_timeout(unsigned long __data)
1406{
1407	wake_up_process((struct task_struct *)__data);
1408}
1409
1410/**
1411 * schedule_timeout - sleep until timeout
1412 * @timeout: timeout value in jiffies
1413 *
1414 * Make the current task sleep until @timeout jiffies have
1415 * elapsed. The routine will return immediately unless
1416 * the current task state has been set (see set_current_state()).
1417 *
1418 * You can set the task state as follows -
1419 *
1420 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1421 * pass before the routine returns. The routine will return 0
1422 *
1423 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1424 * delivered to the current task. In this case the remaining time
1425 * in jiffies will be returned, or 0 if the timer expired in time
1426 *
1427 * The current task state is guaranteed to be TASK_RUNNING when this
1428 * routine returns.
1429 *
1430 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1431 * the CPU away without a bound on the timeout. In this case the return
1432 * value will be %MAX_SCHEDULE_TIMEOUT.
1433 *
1434 * In all cases the return value is guaranteed to be non-negative.
1435 */
1436signed long __sched schedule_timeout(signed long timeout)
1437{
1438	struct timer_list timer;
1439	unsigned long expire;
1440
1441	switch (timeout)
1442	{
1443	case MAX_SCHEDULE_TIMEOUT:
1444		/*
1445		 * These two special cases are useful to be comfortable
1446		 * in the caller. Nothing more. We could take
1447		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1448		 * but I' d like to return a valid offset (>=0) to allow
1449		 * the caller to do everything it want with the retval.
1450		 */
1451		schedule();
1452		goto out;
1453	default:
1454		/*
1455		 * Another bit of PARANOID. Note that the retval will be
1456		 * 0 since no piece of kernel is supposed to do a check
1457		 * for a negative retval of schedule_timeout() (since it
1458		 * should never happens anyway). You just have the printk()
1459		 * that will tell you if something is gone wrong and where.
1460		 */
1461		if (timeout < 0) {
1462			printk(KERN_ERR "schedule_timeout: wrong timeout "
1463				"value %lx\n", timeout);
1464			dump_stack();
1465			current->state = TASK_RUNNING;
1466			goto out;
1467		}
1468	}
1469
1470	expire = timeout + jiffies;
1471
1472	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1473	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1474	schedule();
1475	del_singleshot_timer_sync(&timer);
1476
1477	/* Remove the timer from the object tracker */
1478	destroy_timer_on_stack(&timer);
1479
1480	timeout = expire - jiffies;
1481
1482 out:
1483	return timeout < 0 ? 0 : timeout;
1484}
1485EXPORT_SYMBOL(schedule_timeout);
1486
1487/*
1488 * We can use __set_current_state() here because schedule_timeout() calls
1489 * schedule() unconditionally.
1490 */
1491signed long __sched schedule_timeout_interruptible(signed long timeout)
1492{
1493	__set_current_state(TASK_INTERRUPTIBLE);
1494	return schedule_timeout(timeout);
1495}
1496EXPORT_SYMBOL(schedule_timeout_interruptible);
1497
1498signed long __sched schedule_timeout_killable(signed long timeout)
1499{
1500	__set_current_state(TASK_KILLABLE);
1501	return schedule_timeout(timeout);
1502}
1503EXPORT_SYMBOL(schedule_timeout_killable);
1504
1505signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1506{
1507	__set_current_state(TASK_UNINTERRUPTIBLE);
1508	return schedule_timeout(timeout);
1509}
1510EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1511
1512/* Thread ID - the internal kernel "pid" */
1513SYSCALL_DEFINE0(gettid)
1514{
1515	return task_pid_vnr(current);
1516}
1517
1518/**
1519 * do_sysinfo - fill in sysinfo struct
1520 * @info: pointer to buffer to fill
1521 */
1522int do_sysinfo(struct sysinfo *info)
1523{
1524	unsigned long mem_total, sav_total;
1525	unsigned int mem_unit, bitcount;
1526	struct timespec tp;
1527
1528	memset(info, 0, sizeof(struct sysinfo));
1529
1530	ktime_get_ts(&tp);
1531	monotonic_to_bootbased(&tp);
1532	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1533
1534	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1535
1536	info->procs = nr_threads;
1537
1538	si_meminfo(info);
1539	si_swapinfo(info);
1540
1541	/*
1542	 * If the sum of all the available memory (i.e. ram + swap)
1543	 * is less than can be stored in a 32 bit unsigned long then
1544	 * we can be binary compatible with 2.2.x kernels.  If not,
1545	 * well, in that case 2.2.x was broken anyways...
1546	 *
1547	 *  -Erik Andersen <andersee@debian.org>
1548	 */
1549
1550	mem_total = info->totalram + info->totalswap;
1551	if (mem_total < info->totalram || mem_total < info->totalswap)
1552		goto out;
1553	bitcount = 0;
1554	mem_unit = info->mem_unit;
1555	while (mem_unit > 1) {
1556		bitcount++;
1557		mem_unit >>= 1;
1558		sav_total = mem_total;
1559		mem_total <<= 1;
1560		if (mem_total < sav_total)
1561			goto out;
1562	}
1563
1564	/*
1565	 * If mem_total did not overflow, multiply all memory values by
1566	 * info->mem_unit and set it to 1.  This leaves things compatible
1567	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1568	 * kernels...
1569	 */
1570
1571	info->mem_unit = 1;
1572	info->totalram <<= bitcount;
1573	info->freeram <<= bitcount;
1574	info->sharedram <<= bitcount;
1575	info->bufferram <<= bitcount;
1576	info->totalswap <<= bitcount;
1577	info->freeswap <<= bitcount;
1578	info->totalhigh <<= bitcount;
1579	info->freehigh <<= bitcount;
1580
1581out:
1582	return 0;
1583}
1584
1585SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1586{
1587	struct sysinfo val;
1588
1589	do_sysinfo(&val);
1590
1591	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1592		return -EFAULT;
1593
1594	return 0;
1595}
1596
1597static int __cpuinit init_timers_cpu(int cpu)
1598{
1599	int j;
1600	struct tvec_base *base;
1601	static char __cpuinitdata tvec_base_done[NR_CPUS];
1602
1603	if (!tvec_base_done[cpu]) {
1604		static char boot_done;
1605
1606		if (boot_done) {
1607			/*
1608			 * The APs use this path later in boot
1609			 */
1610			base = kmalloc_node(sizeof(*base),
1611						GFP_KERNEL | __GFP_ZERO,
1612						cpu_to_node(cpu));
1613			if (!base)
1614				return -ENOMEM;
1615
1616			/* Make sure that tvec_base is 2 byte aligned */
1617			if (tbase_get_deferrable(base)) {
1618				WARN_ON(1);
1619				kfree(base);
1620				return -ENOMEM;
1621			}
1622			per_cpu(tvec_bases, cpu) = base;
1623		} else {
1624			/*
1625			 * This is for the boot CPU - we use compile-time
1626			 * static initialisation because per-cpu memory isn't
1627			 * ready yet and because the memory allocators are not
1628			 * initialised either.
1629			 */
1630			boot_done = 1;
1631			base = &boot_tvec_bases;
1632		}
1633		tvec_base_done[cpu] = 1;
1634	} else {
1635		base = per_cpu(tvec_bases, cpu);
1636	}
1637
1638	spin_lock_init(&base->lock);
1639
1640	for (j = 0; j < TVN_SIZE; j++) {
1641		INIT_LIST_HEAD(base->tv5.vec + j);
1642		INIT_LIST_HEAD(base->tv4.vec + j);
1643		INIT_LIST_HEAD(base->tv3.vec + j);
1644		INIT_LIST_HEAD(base->tv2.vec + j);
1645	}
1646	for (j = 0; j < TVR_SIZE; j++)
1647		INIT_LIST_HEAD(base->tv1.vec + j);
1648
1649	base->timer_jiffies = jiffies;
1650	base->next_timer = base->timer_jiffies;
1651	return 0;
1652}
1653
1654#ifdef CONFIG_HOTPLUG_CPU
1655static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1656{
1657	struct timer_list *timer;
1658
1659	while (!list_empty(head)) {
1660		timer = list_first_entry(head, struct timer_list, entry);
1661		detach_timer(timer, 0);
1662		timer_set_base(timer, new_base);
1663		if (time_before(timer->expires, new_base->next_timer) &&
1664		    !tbase_get_deferrable(timer->base))
1665			new_base->next_timer = timer->expires;
1666		internal_add_timer(new_base, timer);
1667	}
1668}
1669
1670static void __cpuinit migrate_timers(int cpu)
1671{
1672	struct tvec_base *old_base;
1673	struct tvec_base *new_base;
1674	int i;
1675
1676	BUG_ON(cpu_online(cpu));
1677	old_base = per_cpu(tvec_bases, cpu);
1678	new_base = get_cpu_var(tvec_bases);
1679	/*
1680	 * The caller is globally serialized and nobody else
1681	 * takes two locks at once, deadlock is not possible.
1682	 */
1683	spin_lock_irq(&new_base->lock);
1684	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1685
1686	BUG_ON(old_base->running_timer);
1687
1688	for (i = 0; i < TVR_SIZE; i++)
1689		migrate_timer_list(new_base, old_base->tv1.vec + i);
1690	for (i = 0; i < TVN_SIZE; i++) {
1691		migrate_timer_list(new_base, old_base->tv2.vec + i);
1692		migrate_timer_list(new_base, old_base->tv3.vec + i);
1693		migrate_timer_list(new_base, old_base->tv4.vec + i);
1694		migrate_timer_list(new_base, old_base->tv5.vec + i);
1695	}
1696
1697	spin_unlock(&old_base->lock);
1698	spin_unlock_irq(&new_base->lock);
1699	put_cpu_var(tvec_bases);
1700}
1701#endif /* CONFIG_HOTPLUG_CPU */
1702
1703static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1704				unsigned long action, void *hcpu)
1705{
1706	long cpu = (long)hcpu;
1707	int err;
1708
1709	switch(action) {
1710	case CPU_UP_PREPARE:
1711	case CPU_UP_PREPARE_FROZEN:
1712		err = init_timers_cpu(cpu);
1713		if (err < 0)
1714			return notifier_from_errno(err);
1715		break;
1716#ifdef CONFIG_HOTPLUG_CPU
1717	case CPU_DEAD:
1718	case CPU_DEAD_FROZEN:
1719		migrate_timers(cpu);
1720		break;
1721#endif
1722	default:
1723		break;
1724	}
1725	return NOTIFY_OK;
1726}
1727
1728static struct notifier_block __cpuinitdata timers_nb = {
1729	.notifier_call	= timer_cpu_notify,
1730};
1731
1732
1733void __init init_timers(void)
1734{
1735	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1736				(void *)(long)smp_processor_id());
1737
1738	init_timer_stats();
1739
1740	BUG_ON(err != NOTIFY_OK);
1741	register_cpu_notifier(&timers_nb);
1742	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1743}
1744
1745/**
1746 * msleep - sleep safely even with waitqueue interruptions
1747 * @msecs: Time in milliseconds to sleep for
1748 */
1749void msleep(unsigned int msecs)
1750{
1751	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1752
1753	while (timeout)
1754		timeout = schedule_timeout_uninterruptible(timeout);
1755}
1756
1757EXPORT_SYMBOL(msleep);
1758
1759/**
1760 * msleep_interruptible - sleep waiting for signals
1761 * @msecs: Time in milliseconds to sleep for
1762 */
1763unsigned long msleep_interruptible(unsigned int msecs)
1764{
1765	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1766
1767	while (timeout && !signal_pending(current))
1768		timeout = schedule_timeout_interruptible(timeout);
1769	return jiffies_to_msecs(timeout);
1770}
1771
1772EXPORT_SYMBOL(msleep_interruptible);
1773
1774static int __sched do_usleep_range(unsigned long min, unsigned long max)
1775{
1776	ktime_t kmin;
1777	unsigned long delta;
1778
1779	kmin = ktime_set(0, min * NSEC_PER_USEC);
1780	delta = (max - min) * NSEC_PER_USEC;
1781	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1782}
1783
1784/**
1785 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1786 * @min: Minimum time in usecs to sleep
1787 * @max: Maximum time in usecs to sleep
1788 */
1789void usleep_range(unsigned long min, unsigned long max)
1790{
1791	__set_current_state(TASK_UNINTERRUPTIBLE);
1792	do_usleep_range(min, max);
1793}
1794EXPORT_SYMBOL(usleep_range);
1795