1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_dinode.h"
31#include "xfs_inode.h"
32#include "xfs_inode_item.h"
33#include "xfs_error.h"
34#include "xfs_trace.h"
35
36
37kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
38
39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40{
41	return container_of(lip, struct xfs_inode_log_item, ili_item);
42}
43
44
45/*
46 * This returns the number of iovecs needed to log the given inode item.
47 *
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
51 */
52STATIC uint
53xfs_inode_item_size(
54	struct xfs_log_item	*lip)
55{
56	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57	struct xfs_inode	*ip = iip->ili_inode;
58	uint			nvecs = 2;
59
60	/*
61	 * Only log the data/extents/b-tree root if there is something
62	 * left to log.
63	 */
64	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65
66	switch (ip->i_d.di_format) {
67	case XFS_DINODE_FMT_EXTENTS:
68		iip->ili_format.ilf_fields &=
69			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70			  XFS_ILOG_DEV | XFS_ILOG_UUID);
71		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72		    (ip->i_d.di_nextents > 0) &&
73		    (ip->i_df.if_bytes > 0)) {
74			ASSERT(ip->i_df.if_u1.if_extents != NULL);
75			nvecs++;
76		} else {
77			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78		}
79		break;
80
81	case XFS_DINODE_FMT_BTREE:
82		ASSERT(ip->i_df.if_ext_max ==
83		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84		iip->ili_format.ilf_fields &=
85			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86			  XFS_ILOG_DEV | XFS_ILOG_UUID);
87		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88		    (ip->i_df.if_broot_bytes > 0)) {
89			ASSERT(ip->i_df.if_broot != NULL);
90			nvecs++;
91		} else {
92			ASSERT(!(iip->ili_format.ilf_fields &
93				 XFS_ILOG_DBROOT));
94#ifdef XFS_TRANS_DEBUG
95			if (iip->ili_root_size > 0) {
96				ASSERT(iip->ili_root_size ==
97				       ip->i_df.if_broot_bytes);
98				ASSERT(memcmp(iip->ili_orig_root,
99					    ip->i_df.if_broot,
100					    iip->ili_root_size) == 0);
101			} else {
102				ASSERT(ip->i_df.if_broot_bytes == 0);
103			}
104#endif
105			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
106		}
107		break;
108
109	case XFS_DINODE_FMT_LOCAL:
110		iip->ili_format.ilf_fields &=
111			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112			  XFS_ILOG_DEV | XFS_ILOG_UUID);
113		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114		    (ip->i_df.if_bytes > 0)) {
115			ASSERT(ip->i_df.if_u1.if_data != NULL);
116			ASSERT(ip->i_d.di_size > 0);
117			nvecs++;
118		} else {
119			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
120		}
121		break;
122
123	case XFS_DINODE_FMT_DEV:
124		iip->ili_format.ilf_fields &=
125			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
127		break;
128
129	case XFS_DINODE_FMT_UUID:
130		iip->ili_format.ilf_fields &=
131			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
133		break;
134
135	default:
136		ASSERT(0);
137		break;
138	}
139
140	/*
141	 * If there are no attributes associated with this file,
142	 * then there cannot be anything more to log.
143	 * Clear all attribute-related log flags.
144	 */
145	if (!XFS_IFORK_Q(ip)) {
146		iip->ili_format.ilf_fields &=
147			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148		return nvecs;
149	}
150
151	/*
152	 * Log any necessary attribute data.
153	 */
154	switch (ip->i_d.di_aformat) {
155	case XFS_DINODE_FMT_EXTENTS:
156		iip->ili_format.ilf_fields &=
157			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159		    (ip->i_d.di_anextents > 0) &&
160		    (ip->i_afp->if_bytes > 0)) {
161			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162			nvecs++;
163		} else {
164			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
165		}
166		break;
167
168	case XFS_DINODE_FMT_BTREE:
169		iip->ili_format.ilf_fields &=
170			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172		    (ip->i_afp->if_broot_bytes > 0)) {
173			ASSERT(ip->i_afp->if_broot != NULL);
174			nvecs++;
175		} else {
176			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
177		}
178		break;
179
180	case XFS_DINODE_FMT_LOCAL:
181		iip->ili_format.ilf_fields &=
182			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184		    (ip->i_afp->if_bytes > 0)) {
185			ASSERT(ip->i_afp->if_u1.if_data != NULL);
186			nvecs++;
187		} else {
188			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
189		}
190		break;
191
192	default:
193		ASSERT(0);
194		break;
195	}
196
197	return nvecs;
198}
199
200/*
201 * This is called to fill in the vector of log iovecs for the
202 * given inode log item.  It fills the first item with an inode
203 * log format structure, the second with the on-disk inode structure,
204 * and a possible third and/or fourth with the inode data/extents/b-tree
205 * root and inode attributes data/extents/b-tree root.
206 */
207STATIC void
208xfs_inode_item_format(
209	struct xfs_log_item	*lip,
210	struct xfs_log_iovec	*vecp)
211{
212	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
213	struct xfs_inode	*ip = iip->ili_inode;
214	uint			nvecs;
215	size_t			data_bytes;
216	xfs_bmbt_rec_t		*ext_buffer;
217	xfs_mount_t		*mp;
218
219	vecp->i_addr = &iip->ili_format;
220	vecp->i_len  = sizeof(xfs_inode_log_format_t);
221	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
222	vecp++;
223	nvecs	     = 1;
224
225	/*
226	 * Make sure the linux inode is dirty. We do this before
227	 * clearing i_update_core as the VFS will call back into
228	 * XFS here and set i_update_core, so we need to dirty the
229	 * inode first so that the ordering of i_update_core and
230	 * unlogged modifications still works as described below.
231	 */
232	xfs_mark_inode_dirty_sync(ip);
233
234	/*
235	 * Clear i_update_core if the timestamps (or any other
236	 * non-transactional modification) need flushing/logging
237	 * and we're about to log them with the rest of the core.
238	 *
239	 * This is the same logic as xfs_iflush() but this code can't
240	 * run at the same time as xfs_iflush because we're in commit
241	 * processing here and so we have the inode lock held in
242	 * exclusive mode.  Although it doesn't really matter
243	 * for the timestamps if both routines were to grab the
244	 * timestamps or not.  That would be ok.
245	 *
246	 * We clear i_update_core before copying out the data.
247	 * This is for coordination with our timestamp updates
248	 * that don't hold the inode lock. They will always
249	 * update the timestamps BEFORE setting i_update_core,
250	 * so if we clear i_update_core after they set it we
251	 * are guaranteed to see their updates to the timestamps
252	 * either here.  Likewise, if they set it after we clear it
253	 * here, we'll see it either on the next commit of this
254	 * inode or the next time the inode gets flushed via
255	 * xfs_iflush().  This depends on strongly ordered memory
256	 * semantics, but we have that.  We use the SYNCHRONIZE
257	 * macro to make sure that the compiler does not reorder
258	 * the i_update_core access below the data copy below.
259	 */
260	if (ip->i_update_core)  {
261		ip->i_update_core = 0;
262		SYNCHRONIZE();
263	}
264
265	/*
266	 * Make sure to get the latest timestamps from the Linux inode.
267	 */
268	xfs_synchronize_times(ip);
269
270	vecp->i_addr = &ip->i_d;
271	vecp->i_len  = sizeof(struct xfs_icdinode);
272	vecp->i_type = XLOG_REG_TYPE_ICORE;
273	vecp++;
274	nvecs++;
275	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
276
277	/*
278	 * If this is really an old format inode, then we need to
279	 * log it as such.  This means that we have to copy the link
280	 * count from the new field to the old.  We don't have to worry
281	 * about the new fields, because nothing trusts them as long as
282	 * the old inode version number is there.  If the superblock already
283	 * has a new version number, then we don't bother converting back.
284	 */
285	mp = ip->i_mount;
286	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
287	if (ip->i_d.di_version == 1) {
288		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
289			/*
290			 * Convert it back.
291			 */
292			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
293			ip->i_d.di_onlink = ip->i_d.di_nlink;
294		} else {
295			/*
296			 * The superblock version has already been bumped,
297			 * so just make the conversion to the new inode
298			 * format permanent.
299			 */
300			ip->i_d.di_version = 2;
301			ip->i_d.di_onlink = 0;
302			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
303		}
304	}
305
306	switch (ip->i_d.di_format) {
307	case XFS_DINODE_FMT_EXTENTS:
308		ASSERT(!(iip->ili_format.ilf_fields &
309			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
310			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
311		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
312			ASSERT(ip->i_df.if_bytes > 0);
313			ASSERT(ip->i_df.if_u1.if_extents != NULL);
314			ASSERT(ip->i_d.di_nextents > 0);
315			ASSERT(iip->ili_extents_buf == NULL);
316			ASSERT((ip->i_df.if_bytes /
317				(uint)sizeof(xfs_bmbt_rec_t)) > 0);
318#ifdef XFS_NATIVE_HOST
319                       if (ip->i_d.di_nextents == ip->i_df.if_bytes /
320                                               (uint)sizeof(xfs_bmbt_rec_t)) {
321				/*
322				 * There are no delayed allocation
323				 * extents, so just point to the
324				 * real extents array.
325				 */
326				vecp->i_addr = ip->i_df.if_u1.if_extents;
327				vecp->i_len = ip->i_df.if_bytes;
328				vecp->i_type = XLOG_REG_TYPE_IEXT;
329			} else
330#endif
331			{
332				/*
333				 * There are delayed allocation extents
334				 * in the inode, or we need to convert
335				 * the extents to on disk format.
336				 * Use xfs_iextents_copy()
337				 * to copy only the real extents into
338				 * a separate buffer.  We'll free the
339				 * buffer in the unlock routine.
340				 */
341				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
342					KM_SLEEP);
343				iip->ili_extents_buf = ext_buffer;
344				vecp->i_addr = ext_buffer;
345				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
346						XFS_DATA_FORK);
347				vecp->i_type = XLOG_REG_TYPE_IEXT;
348			}
349			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
350			iip->ili_format.ilf_dsize = vecp->i_len;
351			vecp++;
352			nvecs++;
353		}
354		break;
355
356	case XFS_DINODE_FMT_BTREE:
357		ASSERT(!(iip->ili_format.ilf_fields &
358			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
359			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
360		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
361			ASSERT(ip->i_df.if_broot_bytes > 0);
362			ASSERT(ip->i_df.if_broot != NULL);
363			vecp->i_addr = ip->i_df.if_broot;
364			vecp->i_len = ip->i_df.if_broot_bytes;
365			vecp->i_type = XLOG_REG_TYPE_IBROOT;
366			vecp++;
367			nvecs++;
368			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
369		}
370		break;
371
372	case XFS_DINODE_FMT_LOCAL:
373		ASSERT(!(iip->ili_format.ilf_fields &
374			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
375			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
376		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
377			ASSERT(ip->i_df.if_bytes > 0);
378			ASSERT(ip->i_df.if_u1.if_data != NULL);
379			ASSERT(ip->i_d.di_size > 0);
380
381			vecp->i_addr = ip->i_df.if_u1.if_data;
382			/*
383			 * Round i_bytes up to a word boundary.
384			 * The underlying memory is guaranteed to
385			 * to be there by xfs_idata_realloc().
386			 */
387			data_bytes = roundup(ip->i_df.if_bytes, 4);
388			ASSERT((ip->i_df.if_real_bytes == 0) ||
389			       (ip->i_df.if_real_bytes == data_bytes));
390			vecp->i_len = (int)data_bytes;
391			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
392			vecp++;
393			nvecs++;
394			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
395		}
396		break;
397
398	case XFS_DINODE_FMT_DEV:
399		ASSERT(!(iip->ili_format.ilf_fields &
400			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
401			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
402		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
403			iip->ili_format.ilf_u.ilfu_rdev =
404				ip->i_df.if_u2.if_rdev;
405		}
406		break;
407
408	case XFS_DINODE_FMT_UUID:
409		ASSERT(!(iip->ili_format.ilf_fields &
410			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
411			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
412		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
413			iip->ili_format.ilf_u.ilfu_uuid =
414				ip->i_df.if_u2.if_uuid;
415		}
416		break;
417
418	default:
419		ASSERT(0);
420		break;
421	}
422
423	/*
424	 * If there are no attributes associated with the file,
425	 * then we're done.
426	 * Assert that no attribute-related log flags are set.
427	 */
428	if (!XFS_IFORK_Q(ip)) {
429		ASSERT(nvecs == lip->li_desc->lid_size);
430		iip->ili_format.ilf_size = nvecs;
431		ASSERT(!(iip->ili_format.ilf_fields &
432			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
433		return;
434	}
435
436	switch (ip->i_d.di_aformat) {
437	case XFS_DINODE_FMT_EXTENTS:
438		ASSERT(!(iip->ili_format.ilf_fields &
439			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
440		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
441#ifdef DEBUG
442			int nrecs = ip->i_afp->if_bytes /
443				(uint)sizeof(xfs_bmbt_rec_t);
444			ASSERT(nrecs > 0);
445			ASSERT(nrecs == ip->i_d.di_anextents);
446			ASSERT(ip->i_afp->if_bytes > 0);
447			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
448			ASSERT(ip->i_d.di_anextents > 0);
449#endif
450#ifdef XFS_NATIVE_HOST
451			/*
452			 * There are not delayed allocation extents
453			 * for attributes, so just point at the array.
454			 */
455			vecp->i_addr = ip->i_afp->if_u1.if_extents;
456			vecp->i_len = ip->i_afp->if_bytes;
457#else
458			ASSERT(iip->ili_aextents_buf == NULL);
459			/*
460			 * Need to endian flip before logging
461			 */
462			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
463				KM_SLEEP);
464			iip->ili_aextents_buf = ext_buffer;
465			vecp->i_addr = ext_buffer;
466			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
467					XFS_ATTR_FORK);
468#endif
469			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
470			iip->ili_format.ilf_asize = vecp->i_len;
471			vecp++;
472			nvecs++;
473		}
474		break;
475
476	case XFS_DINODE_FMT_BTREE:
477		ASSERT(!(iip->ili_format.ilf_fields &
478			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
479		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
480			ASSERT(ip->i_afp->if_broot_bytes > 0);
481			ASSERT(ip->i_afp->if_broot != NULL);
482			vecp->i_addr = ip->i_afp->if_broot;
483			vecp->i_len = ip->i_afp->if_broot_bytes;
484			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
485			vecp++;
486			nvecs++;
487			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
488		}
489		break;
490
491	case XFS_DINODE_FMT_LOCAL:
492		ASSERT(!(iip->ili_format.ilf_fields &
493			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
494		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
495			ASSERT(ip->i_afp->if_bytes > 0);
496			ASSERT(ip->i_afp->if_u1.if_data != NULL);
497
498			vecp->i_addr = ip->i_afp->if_u1.if_data;
499			/*
500			 * Round i_bytes up to a word boundary.
501			 * The underlying memory is guaranteed to
502			 * to be there by xfs_idata_realloc().
503			 */
504			data_bytes = roundup(ip->i_afp->if_bytes, 4);
505			ASSERT((ip->i_afp->if_real_bytes == 0) ||
506			       (ip->i_afp->if_real_bytes == data_bytes));
507			vecp->i_len = (int)data_bytes;
508			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
509			vecp++;
510			nvecs++;
511			iip->ili_format.ilf_asize = (unsigned)data_bytes;
512		}
513		break;
514
515	default:
516		ASSERT(0);
517		break;
518	}
519
520	ASSERT(nvecs == lip->li_desc->lid_size);
521	iip->ili_format.ilf_size = nvecs;
522}
523
524
525/*
526 * This is called to pin the inode associated with the inode log
527 * item in memory so it cannot be written out.
528 */
529STATIC void
530xfs_inode_item_pin(
531	struct xfs_log_item	*lip)
532{
533	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
534
535	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
536
537	trace_xfs_inode_pin(ip, _RET_IP_);
538	atomic_inc(&ip->i_pincount);
539}
540
541
542/*
543 * This is called to unpin the inode associated with the inode log
544 * item which was previously pinned with a call to xfs_inode_item_pin().
545 *
546 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
547 */
548STATIC void
549xfs_inode_item_unpin(
550	struct xfs_log_item	*lip,
551	int			remove)
552{
553	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
554
555	trace_xfs_inode_unpin(ip, _RET_IP_);
556	ASSERT(atomic_read(&ip->i_pincount) > 0);
557	if (atomic_dec_and_test(&ip->i_pincount))
558		wake_up(&ip->i_ipin_wait);
559}
560
561/*
562 * This is called to attempt to lock the inode associated with this
563 * inode log item, in preparation for the push routine which does the actual
564 * iflush.  Don't sleep on the inode lock or the flush lock.
565 *
566 * If the flush lock is already held, indicating that the inode has
567 * been or is in the process of being flushed, then (ideally) we'd like to
568 * see if the inode's buffer is still incore, and if so give it a nudge.
569 * We delay doing so until the pushbuf routine, though, to avoid holding
570 * the AIL lock across a call to the blackhole which is the buffer cache.
571 * Also we don't want to sleep in any device strategy routines, which can happen
572 * if we do the subsequent bawrite in here.
573 */
574STATIC uint
575xfs_inode_item_trylock(
576	struct xfs_log_item	*lip)
577{
578	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
579	struct xfs_inode	*ip = iip->ili_inode;
580
581	if (xfs_ipincount(ip) > 0)
582		return XFS_ITEM_PINNED;
583
584	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
585		return XFS_ITEM_LOCKED;
586
587	if (!xfs_iflock_nowait(ip)) {
588		/*
589		 * inode has already been flushed to the backing buffer,
590		 * leave it locked in shared mode, pushbuf routine will
591		 * unlock it.
592		 */
593		return XFS_ITEM_PUSHBUF;
594	}
595
596	/* Stale items should force out the iclog */
597	if (ip->i_flags & XFS_ISTALE) {
598		xfs_ifunlock(ip);
599		/*
600		 * we hold the AIL lock - notify the unlock routine of this
601		 * so it doesn't try to get the lock again.
602		 */
603		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
604		return XFS_ITEM_PINNED;
605	}
606
607#ifdef DEBUG
608	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
609		ASSERT(iip->ili_format.ilf_fields != 0);
610		ASSERT(iip->ili_logged == 0);
611		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
612	}
613#endif
614	return XFS_ITEM_SUCCESS;
615}
616
617/*
618 * Unlock the inode associated with the inode log item.
619 * Clear the fields of the inode and inode log item that
620 * are specific to the current transaction.  If the
621 * hold flags is set, do not unlock the inode.
622 */
623STATIC void
624xfs_inode_item_unlock(
625	struct xfs_log_item	*lip)
626{
627	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628	struct xfs_inode	*ip = iip->ili_inode;
629	unsigned short		lock_flags;
630
631	ASSERT(iip->ili_inode->i_itemp != NULL);
632	ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
633
634	/*
635	 * Clear the transaction pointer in the inode.
636	 */
637	ip->i_transp = NULL;
638
639	/*
640	 * If the inode needed a separate buffer with which to log
641	 * its extents, then free it now.
642	 */
643	if (iip->ili_extents_buf != NULL) {
644		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
645		ASSERT(ip->i_d.di_nextents > 0);
646		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
647		ASSERT(ip->i_df.if_bytes > 0);
648		kmem_free(iip->ili_extents_buf);
649		iip->ili_extents_buf = NULL;
650	}
651	if (iip->ili_aextents_buf != NULL) {
652		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
653		ASSERT(ip->i_d.di_anextents > 0);
654		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
655		ASSERT(ip->i_afp->if_bytes > 0);
656		kmem_free(iip->ili_aextents_buf);
657		iip->ili_aextents_buf = NULL;
658	}
659
660	lock_flags = iip->ili_lock_flags;
661	iip->ili_lock_flags = 0;
662	if (lock_flags) {
663		xfs_iunlock(iip->ili_inode, lock_flags);
664		IRELE(iip->ili_inode);
665	}
666}
667
668/*
669 * This is called to find out where the oldest active copy of the
670 * inode log item in the on disk log resides now that the last log
671 * write of it completed at the given lsn.  Since we always re-log
672 * all dirty data in an inode, the latest copy in the on disk log
673 * is the only one that matters.  Therefore, simply return the
674 * given lsn.
675 */
676STATIC xfs_lsn_t
677xfs_inode_item_committed(
678	struct xfs_log_item	*lip,
679	xfs_lsn_t		lsn)
680{
681	return lsn;
682}
683
684/*
685 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
686 * failed to get the inode flush lock but did get the inode locked SHARED.
687 * Here we're trying to see if the inode buffer is incore, and if so whether it's
688 * marked delayed write. If that's the case, we'll promote it and that will
689 * allow the caller to write the buffer by triggering the xfsbufd to run.
690 */
691STATIC void
692xfs_inode_item_pushbuf(
693	struct xfs_log_item	*lip)
694{
695	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
696	struct xfs_inode	*ip = iip->ili_inode;
697	struct xfs_buf		*bp;
698
699	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
700
701	/*
702	 * If a flush is not in progress anymore, chances are that the
703	 * inode was taken off the AIL. So, just get out.
704	 */
705	if (completion_done(&ip->i_flush) ||
706	    !(lip->li_flags & XFS_LI_IN_AIL)) {
707		xfs_iunlock(ip, XFS_ILOCK_SHARED);
708		return;
709	}
710
711	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
712			iip->ili_format.ilf_len, XBF_TRYLOCK);
713
714	xfs_iunlock(ip, XFS_ILOCK_SHARED);
715	if (!bp)
716		return;
717	if (XFS_BUF_ISDELAYWRITE(bp))
718		xfs_buf_delwri_promote(bp);
719	xfs_buf_relse(bp);
720}
721
722/*
723 * This is called to asynchronously write the inode associated with this
724 * inode log item out to disk. The inode will already have been locked by
725 * a successful call to xfs_inode_item_trylock().
726 */
727STATIC void
728xfs_inode_item_push(
729	struct xfs_log_item	*lip)
730{
731	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
732	struct xfs_inode	*ip = iip->ili_inode;
733
734	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
735	ASSERT(!completion_done(&ip->i_flush));
736
737	/*
738	 * Since we were able to lock the inode's flush lock and
739	 * we found it on the AIL, the inode must be dirty.  This
740	 * is because the inode is removed from the AIL while still
741	 * holding the flush lock in xfs_iflush_done().  Thus, if
742	 * we found it in the AIL and were able to obtain the flush
743	 * lock without sleeping, then there must not have been
744	 * anyone in the process of flushing the inode.
745	 */
746	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
747	       iip->ili_format.ilf_fields != 0);
748
749	/*
750	 * Push the inode to it's backing buffer. This will not remove the
751	 * inode from the AIL - a further push will be required to trigger a
752	 * buffer push. However, this allows all the dirty inodes to be pushed
753	 * to the buffer before it is pushed to disk. THe buffer IO completion
754	 * will pull th einode from the AIL, mark it clean and unlock the flush
755	 * lock.
756	 */
757	(void) xfs_iflush(ip, 0);
758	xfs_iunlock(ip, XFS_ILOCK_SHARED);
759}
760
761STATIC void
762xfs_inode_item_committing(
763	struct xfs_log_item	*lip,
764	xfs_lsn_t		lsn)
765{
766	INODE_ITEM(lip)->ili_last_lsn = lsn;
767}
768
769/*
770 * This is the ops vector shared by all buf log items.
771 */
772static struct xfs_item_ops xfs_inode_item_ops = {
773	.iop_size	= xfs_inode_item_size,
774	.iop_format	= xfs_inode_item_format,
775	.iop_pin	= xfs_inode_item_pin,
776	.iop_unpin	= xfs_inode_item_unpin,
777	.iop_trylock	= xfs_inode_item_trylock,
778	.iop_unlock	= xfs_inode_item_unlock,
779	.iop_committed	= xfs_inode_item_committed,
780	.iop_push	= xfs_inode_item_push,
781	.iop_pushbuf	= xfs_inode_item_pushbuf,
782	.iop_committing = xfs_inode_item_committing
783};
784
785
786/*
787 * Initialize the inode log item for a newly allocated (in-core) inode.
788 */
789void
790xfs_inode_item_init(
791	struct xfs_inode	*ip,
792	struct xfs_mount	*mp)
793{
794	struct xfs_inode_log_item *iip;
795
796	ASSERT(ip->i_itemp == NULL);
797	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
798
799	iip->ili_inode = ip;
800	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
801						&xfs_inode_item_ops);
802	iip->ili_format.ilf_type = XFS_LI_INODE;
803	iip->ili_format.ilf_ino = ip->i_ino;
804	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
805	iip->ili_format.ilf_len = ip->i_imap.im_len;
806	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
807}
808
809/*
810 * Free the inode log item and any memory hanging off of it.
811 */
812void
813xfs_inode_item_destroy(
814	xfs_inode_t	*ip)
815{
816#ifdef XFS_TRANS_DEBUG
817	if (ip->i_itemp->ili_root_size != 0) {
818		kmem_free(ip->i_itemp->ili_orig_root);
819	}
820#endif
821	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
822}
823
824
825/*
826 * This is the inode flushing I/O completion routine.  It is called
827 * from interrupt level when the buffer containing the inode is
828 * flushed to disk.  It is responsible for removing the inode item
829 * from the AIL if it has not been re-logged, and unlocking the inode's
830 * flush lock.
831 */
832void
833xfs_iflush_done(
834	struct xfs_buf		*bp,
835	struct xfs_log_item	*lip)
836{
837	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
838	xfs_inode_t		*ip = iip->ili_inode;
839	struct xfs_ail		*ailp = lip->li_ailp;
840
841	/*
842	 * We only want to pull the item from the AIL if it is
843	 * actually there and its location in the log has not
844	 * changed since we started the flush.  Thus, we only bother
845	 * if the ili_logged flag is set and the inode's lsn has not
846	 * changed.  First we check the lsn outside
847	 * the lock since it's cheaper, and then we recheck while
848	 * holding the lock before removing the inode from the AIL.
849	 */
850	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) {
851		spin_lock(&ailp->xa_lock);
852		if (lip->li_lsn == iip->ili_flush_lsn) {
853			/* xfs_trans_ail_delete() drops the AIL lock. */
854			xfs_trans_ail_delete(ailp, lip);
855		} else {
856			spin_unlock(&ailp->xa_lock);
857		}
858	}
859
860	iip->ili_logged = 0;
861
862	/*
863	 * Clear the ili_last_fields bits now that we know that the
864	 * data corresponding to them is safely on disk.
865	 */
866	iip->ili_last_fields = 0;
867
868	/*
869	 * Release the inode's flush lock since we're done with it.
870	 */
871	xfs_ifunlock(ip);
872}
873
874/*
875 * This is the inode flushing abort routine.  It is called
876 * from xfs_iflush when the filesystem is shutting down to clean
877 * up the inode state.
878 * It is responsible for removing the inode item
879 * from the AIL if it has not been re-logged, and unlocking the inode's
880 * flush lock.
881 */
882void
883xfs_iflush_abort(
884	xfs_inode_t		*ip)
885{
886	xfs_inode_log_item_t	*iip = ip->i_itemp;
887
888	iip = ip->i_itemp;
889	if (iip) {
890		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
891		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
892			spin_lock(&ailp->xa_lock);
893			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
894				/* xfs_trans_ail_delete() drops the AIL lock. */
895				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
896			} else
897				spin_unlock(&ailp->xa_lock);
898		}
899		iip->ili_logged = 0;
900		/*
901		 * Clear the ili_last_fields bits now that we know that the
902		 * data corresponding to them is safely on disk.
903		 */
904		iip->ili_last_fields = 0;
905		/*
906		 * Clear the inode logging fields so no more flushes are
907		 * attempted.
908		 */
909		iip->ili_format.ilf_fields = 0;
910	}
911	/*
912	 * Release the inode's flush lock since we're done with it.
913	 */
914	xfs_ifunlock(ip);
915}
916
917void
918xfs_istale_done(
919	struct xfs_buf		*bp,
920	struct xfs_log_item	*lip)
921{
922	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
923}
924
925/*
926 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
927 * (which can have different field alignments) to the native version
928 */
929int
930xfs_inode_item_format_convert(
931	xfs_log_iovec_t		*buf,
932	xfs_inode_log_format_t	*in_f)
933{
934	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
935		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
936
937		in_f->ilf_type = in_f32->ilf_type;
938		in_f->ilf_size = in_f32->ilf_size;
939		in_f->ilf_fields = in_f32->ilf_fields;
940		in_f->ilf_asize = in_f32->ilf_asize;
941		in_f->ilf_dsize = in_f32->ilf_dsize;
942		in_f->ilf_ino = in_f32->ilf_ino;
943		/* copy biggest field of ilf_u */
944		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
945		       in_f32->ilf_u.ilfu_uuid.__u_bits,
946		       sizeof(uuid_t));
947		in_f->ilf_blkno = in_f32->ilf_blkno;
948		in_f->ilf_len = in_f32->ilf_len;
949		in_f->ilf_boffset = in_f32->ilf_boffset;
950		return 0;
951	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
952		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
953
954		in_f->ilf_type = in_f64->ilf_type;
955		in_f->ilf_size = in_f64->ilf_size;
956		in_f->ilf_fields = in_f64->ilf_fields;
957		in_f->ilf_asize = in_f64->ilf_asize;
958		in_f->ilf_dsize = in_f64->ilf_dsize;
959		in_f->ilf_ino = in_f64->ilf_ino;
960		/* copy biggest field of ilf_u */
961		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
962		       in_f64->ilf_u.ilfu_uuid.__u_bits,
963		       sizeof(uuid_t));
964		in_f->ilf_blkno = in_f64->ilf_blkno;
965		in_f->ilf_len = in_f64->ilf_len;
966		in_f->ilf_boffset = in_f64->ilf_boffset;
967		return 0;
968	}
969	return EFSCORRUPTED;
970}
971