1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Authors: Artem Bityutskiy (���������������� ����������)
21 *          Adrian Hunter
22 *          Zoltan Sogor
23 */
24
25/*
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
33 *
34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35 * mutexes defined inside these objects. Since sometimes upper-level code
36 * has to lock the write-buffer (e.g. journal space reservation code), many
37 * functions related to write-buffers have "nolock" suffix which means that the
38 * caller has to lock the write-buffer before calling this function.
39 *
40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41 * aligned, UBIFS starts the next node from the aligned address, and the padded
42 * bytes may contain any rubbish. In other words, UBIFS does not put padding
43 * bytes in those small gaps. Common headers of nodes store real node lengths,
44 * not aligned lengths. Indexing nodes also store real lengths in branches.
45 *
46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47 * uses padding nodes or padding bytes, if the padding node does not fit.
48 *
49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50 * every time they are read from the flash media.
51 */
52
53#include <linux/crc32.h>
54#include <linux/slab.h>
55#include "ubifs.h"
56
57/**
58 * ubifs_ro_mode - switch UBIFS to read read-only mode.
59 * @c: UBIFS file-system description object
60 * @err: error code which is the reason of switching to R/O mode
61 */
62void ubifs_ro_mode(struct ubifs_info *c, int err)
63{
64	if (!c->ro_media) {
65		c->ro_media = 1;
66		c->no_chk_data_crc = 0;
67		c->vfs_sb->s_flags |= MS_RDONLY;
68		ubifs_warn("switched to read-only mode, error %d", err);
69		dbg_dump_stack();
70	}
71}
72
73/**
74 * ubifs_check_node - check node.
75 * @c: UBIFS file-system description object
76 * @buf: node to check
77 * @lnum: logical eraseblock number
78 * @offs: offset within the logical eraseblock
79 * @quiet: print no messages
80 * @must_chk_crc: indicates whether to always check the CRC
81 *
82 * This function checks node magic number and CRC checksum. This function also
83 * validates node length to prevent UBIFS from becoming crazy when an attacker
84 * feeds it a file-system image with incorrect nodes. For example, too large
85 * node length in the common header could cause UBIFS to read memory outside of
86 * allocated buffer when checking the CRC checksum.
87 *
88 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
89 * true, which is controlled by corresponding UBIFS mount option. However, if
90 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
91 * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
92 * ignored and CRC is checked.
93 *
94 * This function returns zero in case of success and %-EUCLEAN in case of bad
95 * CRC or magic.
96 */
97int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
98		     int offs, int quiet, int must_chk_crc)
99{
100	int err = -EINVAL, type, node_len;
101	uint32_t crc, node_crc, magic;
102	const struct ubifs_ch *ch = buf;
103
104	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
105	ubifs_assert(!(offs & 7) && offs < c->leb_size);
106
107	magic = le32_to_cpu(ch->magic);
108	if (magic != UBIFS_NODE_MAGIC) {
109		if (!quiet)
110			ubifs_err("bad magic %#08x, expected %#08x",
111				  magic, UBIFS_NODE_MAGIC);
112		err = -EUCLEAN;
113		goto out;
114	}
115
116	type = ch->node_type;
117	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
118		if (!quiet)
119			ubifs_err("bad node type %d", type);
120		goto out;
121	}
122
123	node_len = le32_to_cpu(ch->len);
124	if (node_len + offs > c->leb_size)
125		goto out_len;
126
127	if (c->ranges[type].max_len == 0) {
128		if (node_len != c->ranges[type].len)
129			goto out_len;
130	} else if (node_len < c->ranges[type].min_len ||
131		   node_len > c->ranges[type].max_len)
132		goto out_len;
133
134	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
135	     c->no_chk_data_crc)
136		return 0;
137
138	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
139	node_crc = le32_to_cpu(ch->crc);
140	if (crc != node_crc) {
141		if (!quiet)
142			ubifs_err("bad CRC: calculated %#08x, read %#08x",
143				  crc, node_crc);
144		err = -EUCLEAN;
145		goto out;
146	}
147
148	return 0;
149
150out_len:
151	if (!quiet)
152		ubifs_err("bad node length %d", node_len);
153out:
154	if (!quiet) {
155		ubifs_err("bad node at LEB %d:%d", lnum, offs);
156		dbg_dump_node(c, buf);
157		dbg_dump_stack();
158	}
159	return err;
160}
161
162/**
163 * ubifs_pad - pad flash space.
164 * @c: UBIFS file-system description object
165 * @buf: buffer to put padding to
166 * @pad: how many bytes to pad
167 *
168 * The flash media obliges us to write only in chunks of %c->min_io_size and
169 * when we have to write less data we add padding node to the write-buffer and
170 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
171 * media is being scanned. If the amount of wasted space is not enough to fit a
172 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
173 * pattern (%UBIFS_PADDING_BYTE).
174 *
175 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
176 * used.
177 */
178void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
179{
180	uint32_t crc;
181
182	ubifs_assert(pad >= 0 && !(pad & 7));
183
184	if (pad >= UBIFS_PAD_NODE_SZ) {
185		struct ubifs_ch *ch = buf;
186		struct ubifs_pad_node *pad_node = buf;
187
188		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
189		ch->node_type = UBIFS_PAD_NODE;
190		ch->group_type = UBIFS_NO_NODE_GROUP;
191		ch->padding[0] = ch->padding[1] = 0;
192		ch->sqnum = 0;
193		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
194		pad -= UBIFS_PAD_NODE_SZ;
195		pad_node->pad_len = cpu_to_le32(pad);
196		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
197		ch->crc = cpu_to_le32(crc);
198		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
199	} else if (pad > 0)
200		/* Too little space, padding node won't fit */
201		memset(buf, UBIFS_PADDING_BYTE, pad);
202}
203
204/**
205 * next_sqnum - get next sequence number.
206 * @c: UBIFS file-system description object
207 */
208static unsigned long long next_sqnum(struct ubifs_info *c)
209{
210	unsigned long long sqnum;
211
212	spin_lock(&c->cnt_lock);
213	sqnum = ++c->max_sqnum;
214	spin_unlock(&c->cnt_lock);
215
216	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
217		if (sqnum >= SQNUM_WATERMARK) {
218			ubifs_err("sequence number overflow %llu, end of life",
219				  sqnum);
220			ubifs_ro_mode(c, -EINVAL);
221		}
222		ubifs_warn("running out of sequence numbers, end of life soon");
223	}
224
225	return sqnum;
226}
227
228/**
229 * ubifs_prepare_node - prepare node to be written to flash.
230 * @c: UBIFS file-system description object
231 * @node: the node to pad
232 * @len: node length
233 * @pad: if the buffer has to be padded
234 *
235 * This function prepares node at @node to be written to the media - it
236 * calculates node CRC, fills the common header, and adds proper padding up to
237 * the next minimum I/O unit if @pad is not zero.
238 */
239void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
240{
241	uint32_t crc;
242	struct ubifs_ch *ch = node;
243	unsigned long long sqnum = next_sqnum(c);
244
245	ubifs_assert(len >= UBIFS_CH_SZ);
246
247	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
248	ch->len = cpu_to_le32(len);
249	ch->group_type = UBIFS_NO_NODE_GROUP;
250	ch->sqnum = cpu_to_le64(sqnum);
251	ch->padding[0] = ch->padding[1] = 0;
252	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
253	ch->crc = cpu_to_le32(crc);
254
255	if (pad) {
256		len = ALIGN(len, 8);
257		pad = ALIGN(len, c->min_io_size) - len;
258		ubifs_pad(c, node + len, pad);
259	}
260}
261
262/**
263 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
264 * @c: UBIFS file-system description object
265 * @node: the node to pad
266 * @len: node length
267 * @last: indicates the last node of the group
268 *
269 * This function prepares node at @node to be written to the media - it
270 * calculates node CRC and fills the common header.
271 */
272void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
273{
274	uint32_t crc;
275	struct ubifs_ch *ch = node;
276	unsigned long long sqnum = next_sqnum(c);
277
278	ubifs_assert(len >= UBIFS_CH_SZ);
279
280	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
281	ch->len = cpu_to_le32(len);
282	if (last)
283		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
284	else
285		ch->group_type = UBIFS_IN_NODE_GROUP;
286	ch->sqnum = cpu_to_le64(sqnum);
287	ch->padding[0] = ch->padding[1] = 0;
288	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
289	ch->crc = cpu_to_le32(crc);
290}
291
292/**
293 * wbuf_timer_callback - write-buffer timer callback function.
294 * @data: timer data (write-buffer descriptor)
295 *
296 * This function is called when the write-buffer timer expires.
297 */
298static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
299{
300	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
301
302	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
303	wbuf->need_sync = 1;
304	wbuf->c->need_wbuf_sync = 1;
305	ubifs_wake_up_bgt(wbuf->c);
306	return HRTIMER_NORESTART;
307}
308
309/**
310 * new_wbuf_timer - start new write-buffer timer.
311 * @wbuf: write-buffer descriptor
312 */
313static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
314{
315	ubifs_assert(!hrtimer_active(&wbuf->timer));
316
317	if (wbuf->no_timer)
318		return;
319	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
320	       dbg_jhead(wbuf->jhead),
321	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
322	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
323		       USEC_PER_SEC));
324	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
325			       HRTIMER_MODE_REL);
326}
327
328/**
329 * cancel_wbuf_timer - cancel write-buffer timer.
330 * @wbuf: write-buffer descriptor
331 */
332static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
333{
334	if (wbuf->no_timer)
335		return;
336	wbuf->need_sync = 0;
337	hrtimer_cancel(&wbuf->timer);
338}
339
340/**
341 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
342 * @wbuf: write-buffer to synchronize
343 *
344 * This function synchronizes write-buffer @buf and returns zero in case of
345 * success or a negative error code in case of failure.
346 */
347int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
348{
349	struct ubifs_info *c = wbuf->c;
350	int err, dirt;
351
352	cancel_wbuf_timer_nolock(wbuf);
353	if (!wbuf->used || wbuf->lnum == -1)
354		/* Write-buffer is empty or not seeked */
355		return 0;
356
357	dbg_io("LEB %d:%d, %d bytes, jhead %s",
358	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
359	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
360	ubifs_assert(!(wbuf->avail & 7));
361	ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
362
363	if (c->ro_media)
364		return -EROFS;
365
366	ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
367	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
368			    c->min_io_size, wbuf->dtype);
369	if (err) {
370		ubifs_err("cannot write %d bytes to LEB %d:%d",
371			  c->min_io_size, wbuf->lnum, wbuf->offs);
372		dbg_dump_stack();
373		return err;
374	}
375
376	dirt = wbuf->avail;
377
378	spin_lock(&wbuf->lock);
379	wbuf->offs += c->min_io_size;
380	wbuf->avail = c->min_io_size;
381	wbuf->used = 0;
382	wbuf->next_ino = 0;
383	spin_unlock(&wbuf->lock);
384
385	if (wbuf->sync_callback)
386		err = wbuf->sync_callback(c, wbuf->lnum,
387					  c->leb_size - wbuf->offs, dirt);
388	return err;
389}
390
391/**
392 * ubifs_wbuf_seek_nolock - seek write-buffer.
393 * @wbuf: write-buffer
394 * @lnum: logical eraseblock number to seek to
395 * @offs: logical eraseblock offset to seek to
396 * @dtype: data type
397 *
398 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
399 * The write-buffer is synchronized if it is not empty. Returns zero in case of
400 * success and a negative error code in case of failure.
401 */
402int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
403			   int dtype)
404{
405	const struct ubifs_info *c = wbuf->c;
406
407	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
408	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
409	ubifs_assert(offs >= 0 && offs <= c->leb_size);
410	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
411	ubifs_assert(lnum != wbuf->lnum);
412
413	if (wbuf->used > 0) {
414		int err = ubifs_wbuf_sync_nolock(wbuf);
415
416		if (err)
417			return err;
418	}
419
420	spin_lock(&wbuf->lock);
421	wbuf->lnum = lnum;
422	wbuf->offs = offs;
423	wbuf->avail = c->min_io_size;
424	wbuf->used = 0;
425	spin_unlock(&wbuf->lock);
426	wbuf->dtype = dtype;
427
428	return 0;
429}
430
431/**
432 * ubifs_bg_wbufs_sync - synchronize write-buffers.
433 * @c: UBIFS file-system description object
434 *
435 * This function is called by background thread to synchronize write-buffers.
436 * Returns zero in case of success and a negative error code in case of
437 * failure.
438 */
439int ubifs_bg_wbufs_sync(struct ubifs_info *c)
440{
441	int err, i;
442
443	if (!c->need_wbuf_sync)
444		return 0;
445	c->need_wbuf_sync = 0;
446
447	if (c->ro_media) {
448		err = -EROFS;
449		goto out_timers;
450	}
451
452	dbg_io("synchronize");
453	for (i = 0; i < c->jhead_cnt; i++) {
454		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
455
456		cond_resched();
457
458		/*
459		 * If the mutex is locked then wbuf is being changed, so
460		 * synchronization is not necessary.
461		 */
462		if (mutex_is_locked(&wbuf->io_mutex))
463			continue;
464
465		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
466		if (!wbuf->need_sync) {
467			mutex_unlock(&wbuf->io_mutex);
468			continue;
469		}
470
471		err = ubifs_wbuf_sync_nolock(wbuf);
472		mutex_unlock(&wbuf->io_mutex);
473		if (err) {
474			ubifs_err("cannot sync write-buffer, error %d", err);
475			ubifs_ro_mode(c, err);
476			goto out_timers;
477		}
478	}
479
480	return 0;
481
482out_timers:
483	/* Cancel all timers to prevent repeated errors */
484	for (i = 0; i < c->jhead_cnt; i++) {
485		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
486
487		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
488		cancel_wbuf_timer_nolock(wbuf);
489		mutex_unlock(&wbuf->io_mutex);
490	}
491	return err;
492}
493
494/**
495 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
496 * @wbuf: write-buffer
497 * @buf: node to write
498 * @len: node length
499 *
500 * This function writes data to flash via write-buffer @wbuf. This means that
501 * the last piece of the node won't reach the flash media immediately if it
502 * does not take whole minimal I/O unit. Instead, the node will sit in RAM
503 * until the write-buffer is synchronized (e.g., by timer).
504 *
505 * This function returns zero in case of success and a negative error code in
506 * case of failure. If the node cannot be written because there is no more
507 * space in this logical eraseblock, %-ENOSPC is returned.
508 */
509int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
510{
511	struct ubifs_info *c = wbuf->c;
512	int err, written, n, aligned_len = ALIGN(len, 8), offs;
513
514	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
515	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
516	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
517	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
518	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
519	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
520	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
521	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
522
523	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
524		err = -ENOSPC;
525		goto out;
526	}
527
528	cancel_wbuf_timer_nolock(wbuf);
529
530	if (c->ro_media)
531		return -EROFS;
532
533	if (aligned_len <= wbuf->avail) {
534		/*
535		 * The node is not very large and fits entirely within
536		 * write-buffer.
537		 */
538		memcpy(wbuf->buf + wbuf->used, buf, len);
539
540		if (aligned_len == wbuf->avail) {
541			dbg_io("flush jhead %s wbuf to LEB %d:%d",
542			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
543			err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
544					    wbuf->offs, c->min_io_size,
545					    wbuf->dtype);
546			if (err)
547				goto out;
548
549			spin_lock(&wbuf->lock);
550			wbuf->offs += c->min_io_size;
551			wbuf->avail = c->min_io_size;
552			wbuf->used = 0;
553			wbuf->next_ino = 0;
554			spin_unlock(&wbuf->lock);
555		} else {
556			spin_lock(&wbuf->lock);
557			wbuf->avail -= aligned_len;
558			wbuf->used += aligned_len;
559			spin_unlock(&wbuf->lock);
560		}
561
562		goto exit;
563	}
564
565	/*
566	 * The node is large enough and does not fit entirely within current
567	 * minimal I/O unit. We have to fill and flush write-buffer and switch
568	 * to the next min. I/O unit.
569	 */
570	dbg_io("flush jhead %s wbuf to LEB %d:%d",
571	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
572	memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
573	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
574			    c->min_io_size, wbuf->dtype);
575	if (err)
576		goto out;
577
578	offs = wbuf->offs + c->min_io_size;
579	len -= wbuf->avail;
580	aligned_len -= wbuf->avail;
581	written = wbuf->avail;
582
583	/*
584	 * The remaining data may take more whole min. I/O units, so write the
585	 * remains multiple to min. I/O unit size directly to the flash media.
586	 * We align node length to 8-byte boundary because we anyway flash wbuf
587	 * if the remaining space is less than 8 bytes.
588	 */
589	n = aligned_len >> c->min_io_shift;
590	if (n) {
591		n <<= c->min_io_shift;
592		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
593		err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
594				    wbuf->dtype);
595		if (err)
596			goto out;
597		offs += n;
598		aligned_len -= n;
599		len -= n;
600		written += n;
601	}
602
603	spin_lock(&wbuf->lock);
604	if (aligned_len)
605		/*
606		 * And now we have what's left and what does not take whole
607		 * min. I/O unit, so write it to the write-buffer and we are
608		 * done.
609		 */
610		memcpy(wbuf->buf, buf + written, len);
611
612	wbuf->offs = offs;
613	wbuf->used = aligned_len;
614	wbuf->avail = c->min_io_size - aligned_len;
615	wbuf->next_ino = 0;
616	spin_unlock(&wbuf->lock);
617
618exit:
619	if (wbuf->sync_callback) {
620		int free = c->leb_size - wbuf->offs - wbuf->used;
621
622		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
623		if (err)
624			goto out;
625	}
626
627	if (wbuf->used)
628		new_wbuf_timer_nolock(wbuf);
629
630	return 0;
631
632out:
633	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
634		  len, wbuf->lnum, wbuf->offs, err);
635	dbg_dump_node(c, buf);
636	dbg_dump_stack();
637	dbg_dump_leb(c, wbuf->lnum);
638	return err;
639}
640
641/**
642 * ubifs_write_node - write node to the media.
643 * @c: UBIFS file-system description object
644 * @buf: the node to write
645 * @len: node length
646 * @lnum: logical eraseblock number
647 * @offs: offset within the logical eraseblock
648 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
649 *
650 * This function automatically fills node magic number, assigns sequence
651 * number, and calculates node CRC checksum. The length of the @buf buffer has
652 * to be aligned to the minimal I/O unit size. This function automatically
653 * appends padding node and padding bytes if needed. Returns zero in case of
654 * success and a negative error code in case of failure.
655 */
656int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
657		     int offs, int dtype)
658{
659	int err, buf_len = ALIGN(len, c->min_io_size);
660
661	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
662	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
663	       buf_len);
664	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
665	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
666
667	if (c->ro_media)
668		return -EROFS;
669
670	ubifs_prepare_node(c, buf, len, 1);
671	err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
672	if (err) {
673		ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
674			  buf_len, lnum, offs, err);
675		dbg_dump_node(c, buf);
676		dbg_dump_stack();
677	}
678
679	return err;
680}
681
682/**
683 * ubifs_read_node_wbuf - read node from the media or write-buffer.
684 * @wbuf: wbuf to check for un-written data
685 * @buf: buffer to read to
686 * @type: node type
687 * @len: node length
688 * @lnum: logical eraseblock number
689 * @offs: offset within the logical eraseblock
690 *
691 * This function reads a node of known type and length, checks it and stores
692 * in @buf. If the node partially or fully sits in the write-buffer, this
693 * function takes data from the buffer, otherwise it reads the flash media.
694 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
695 * error code in case of failure.
696 */
697int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
698			 int lnum, int offs)
699{
700	const struct ubifs_info *c = wbuf->c;
701	int err, rlen, overlap;
702	struct ubifs_ch *ch = buf;
703
704	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
705	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
706	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
707	ubifs_assert(!(offs & 7) && offs < c->leb_size);
708	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
709
710	spin_lock(&wbuf->lock);
711	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
712	if (!overlap) {
713		/* We may safely unlock the write-buffer and read the data */
714		spin_unlock(&wbuf->lock);
715		return ubifs_read_node(c, buf, type, len, lnum, offs);
716	}
717
718	/* Don't read under wbuf */
719	rlen = wbuf->offs - offs;
720	if (rlen < 0)
721		rlen = 0;
722
723	/* Copy the rest from the write-buffer */
724	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
725	spin_unlock(&wbuf->lock);
726
727	if (rlen > 0) {
728		/* Read everything that goes before write-buffer */
729		err = ubi_read(c->ubi, lnum, buf, offs, rlen);
730		if (err && err != -EBADMSG) {
731			ubifs_err("failed to read node %d from LEB %d:%d, "
732				  "error %d", type, lnum, offs, err);
733			dbg_dump_stack();
734			return err;
735		}
736	}
737
738	if (type != ch->node_type) {
739		ubifs_err("bad node type (%d but expected %d)",
740			  ch->node_type, type);
741		goto out;
742	}
743
744	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
745	if (err) {
746		ubifs_err("expected node type %d", type);
747		return err;
748	}
749
750	rlen = le32_to_cpu(ch->len);
751	if (rlen != len) {
752		ubifs_err("bad node length %d, expected %d", rlen, len);
753		goto out;
754	}
755
756	return 0;
757
758out:
759	ubifs_err("bad node at LEB %d:%d", lnum, offs);
760	dbg_dump_node(c, buf);
761	dbg_dump_stack();
762	return -EINVAL;
763}
764
765/**
766 * ubifs_read_node - read node.
767 * @c: UBIFS file-system description object
768 * @buf: buffer to read to
769 * @type: node type
770 * @len: node length (not aligned)
771 * @lnum: logical eraseblock number
772 * @offs: offset within the logical eraseblock
773 *
774 * This function reads a node of known type and and length, checks it and
775 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
776 * and a negative error code in case of failure.
777 */
778int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
779		    int lnum, int offs)
780{
781	int err, l;
782	struct ubifs_ch *ch = buf;
783
784	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
785	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
786	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
787	ubifs_assert(!(offs & 7) && offs < c->leb_size);
788	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
789
790	err = ubi_read(c->ubi, lnum, buf, offs, len);
791	if (err && err != -EBADMSG) {
792		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
793			  type, lnum, offs, err);
794		return err;
795	}
796
797	if (type != ch->node_type) {
798		ubifs_err("bad node type (%d but expected %d)",
799			  ch->node_type, type);
800		goto out;
801	}
802
803	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
804	if (err) {
805		ubifs_err("expected node type %d", type);
806		return err;
807	}
808
809	l = le32_to_cpu(ch->len);
810	if (l != len) {
811		ubifs_err("bad node length %d, expected %d", l, len);
812		goto out;
813	}
814
815	return 0;
816
817out:
818	ubifs_err("bad node at LEB %d:%d", lnum, offs);
819	dbg_dump_node(c, buf);
820	dbg_dump_stack();
821	return -EINVAL;
822}
823
824/**
825 * ubifs_wbuf_init - initialize write-buffer.
826 * @c: UBIFS file-system description object
827 * @wbuf: write-buffer to initialize
828 *
829 * This function initializes write-buffer. Returns zero in case of success
830 * %-ENOMEM in case of failure.
831 */
832int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
833{
834	size_t size;
835
836	wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
837	if (!wbuf->buf)
838		return -ENOMEM;
839
840	size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
841	wbuf->inodes = kmalloc(size, GFP_KERNEL);
842	if (!wbuf->inodes) {
843		kfree(wbuf->buf);
844		wbuf->buf = NULL;
845		return -ENOMEM;
846	}
847
848	wbuf->used = 0;
849	wbuf->lnum = wbuf->offs = -1;
850	wbuf->avail = c->min_io_size;
851	wbuf->dtype = UBI_UNKNOWN;
852	wbuf->sync_callback = NULL;
853	mutex_init(&wbuf->io_mutex);
854	spin_lock_init(&wbuf->lock);
855	wbuf->c = c;
856	wbuf->next_ino = 0;
857
858	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
859	wbuf->timer.function = wbuf_timer_callback_nolock;
860	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
861	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
862	wbuf->delta *= 1000000000ULL;
863	ubifs_assert(wbuf->delta <= ULONG_MAX);
864	return 0;
865}
866
867/**
868 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
869 * @wbuf: the write-buffer where to add
870 * @inum: the inode number
871 *
872 * This function adds an inode number to the inode array of the write-buffer.
873 */
874void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
875{
876	if (!wbuf->buf)
877		/* NOR flash or something similar */
878		return;
879
880	spin_lock(&wbuf->lock);
881	if (wbuf->used)
882		wbuf->inodes[wbuf->next_ino++] = inum;
883	spin_unlock(&wbuf->lock);
884}
885
886/**
887 * wbuf_has_ino - returns if the wbuf contains data from the inode.
888 * @wbuf: the write-buffer
889 * @inum: the inode number
890 *
891 * This function returns with %1 if the write-buffer contains some data from the
892 * given inode otherwise it returns with %0.
893 */
894static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
895{
896	int i, ret = 0;
897
898	spin_lock(&wbuf->lock);
899	for (i = 0; i < wbuf->next_ino; i++)
900		if (inum == wbuf->inodes[i]) {
901			ret = 1;
902			break;
903		}
904	spin_unlock(&wbuf->lock);
905
906	return ret;
907}
908
909/**
910 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
911 * @c: UBIFS file-system description object
912 * @inode: inode to synchronize
913 *
914 * This function synchronizes write-buffers which contain nodes belonging to
915 * @inode. Returns zero in case of success and a negative error code in case of
916 * failure.
917 */
918int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
919{
920	int i, err = 0;
921
922	for (i = 0; i < c->jhead_cnt; i++) {
923		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
924
925		if (i == GCHD)
926			/*
927			 * GC head is special, do not look at it. Even if the
928			 * head contains something related to this inode, it is
929			 * a _copy_ of corresponding on-flash node which sits
930			 * somewhere else.
931			 */
932			continue;
933
934		if (!wbuf_has_ino(wbuf, inode->i_ino))
935			continue;
936
937		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
938		if (wbuf_has_ino(wbuf, inode->i_ino))
939			err = ubifs_wbuf_sync_nolock(wbuf);
940		mutex_unlock(&wbuf->io_mutex);
941
942		if (err) {
943			ubifs_ro_mode(c, err);
944			return err;
945		}
946	}
947	return 0;
948}
949