1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
31#include <linux/time.h>
32#include <linux/random.h>
33
34#define MLOG_MASK_PREFIX ML_JOURNAL
35#include <cluster/masklog.h>
36
37#include "ocfs2.h"
38
39#include "alloc.h"
40#include "blockcheck.h"
41#include "dir.h"
42#include "dlmglue.h"
43#include "extent_map.h"
44#include "heartbeat.h"
45#include "inode.h"
46#include "journal.h"
47#include "localalloc.h"
48#include "slot_map.h"
49#include "super.h"
50#include "sysfile.h"
51#include "uptodate.h"
52#include "quota.h"
53
54#include "buffer_head_io.h"
55
56DEFINE_SPINLOCK(trans_inc_lock);
57
58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60static int ocfs2_force_read_journal(struct inode *inode);
61static int ocfs2_recover_node(struct ocfs2_super *osb,
62			      int node_num, int slot_num);
63static int __ocfs2_recovery_thread(void *arg);
64static int ocfs2_commit_cache(struct ocfs2_super *osb);
65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67				      int dirty, int replayed);
68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69				 int slot_num);
70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71				 int slot);
72static int ocfs2_commit_thread(void *arg);
73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74					    int slot_num,
75					    struct ocfs2_dinode *la_dinode,
76					    struct ocfs2_dinode *tl_dinode,
77					    struct ocfs2_quota_recovery *qrec);
78
79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80{
81	return __ocfs2_wait_on_mount(osb, 0);
82}
83
84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85{
86	return __ocfs2_wait_on_mount(osb, 1);
87}
88
89/*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94enum ocfs2_replay_state {
95	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
96	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
97	REPLAY_DONE 		/* Replay was already queued */
98};
99
100struct ocfs2_replay_map {
101	unsigned int rm_slots;
102	enum ocfs2_replay_state rm_state;
103	unsigned char rm_replay_slots[0];
104};
105
106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107{
108	if (!osb->replay_map)
109		return;
110
111	/* If we've already queued the replay, we don't have any more to do */
112	if (osb->replay_map->rm_state == REPLAY_DONE)
113		return;
114
115	osb->replay_map->rm_state = state;
116}
117
118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119{
120	struct ocfs2_replay_map *replay_map;
121	int i, node_num;
122
123	/* If replay map is already set, we don't do it again */
124	if (osb->replay_map)
125		return 0;
126
127	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130	if (!replay_map) {
131		mlog_errno(-ENOMEM);
132		return -ENOMEM;
133	}
134
135	spin_lock(&osb->osb_lock);
136
137	replay_map->rm_slots = osb->max_slots;
138	replay_map->rm_state = REPLAY_UNNEEDED;
139
140	/* set rm_replay_slots for offline slot(s) */
141	for (i = 0; i < replay_map->rm_slots; i++) {
142		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143			replay_map->rm_replay_slots[i] = 1;
144	}
145
146	osb->replay_map = replay_map;
147	spin_unlock(&osb->osb_lock);
148	return 0;
149}
150
151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152{
153	struct ocfs2_replay_map *replay_map = osb->replay_map;
154	int i;
155
156	if (!replay_map)
157		return;
158
159	if (replay_map->rm_state != REPLAY_NEEDED)
160		return;
161
162	for (i = 0; i < replay_map->rm_slots; i++)
163		if (replay_map->rm_replay_slots[i])
164			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165							NULL, NULL);
166	replay_map->rm_state = REPLAY_DONE;
167}
168
169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170{
171	struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173	if (!osb->replay_map)
174		return;
175
176	kfree(replay_map);
177	osb->replay_map = NULL;
178}
179
180int ocfs2_recovery_init(struct ocfs2_super *osb)
181{
182	struct ocfs2_recovery_map *rm;
183
184	mutex_init(&osb->recovery_lock);
185	osb->disable_recovery = 0;
186	osb->recovery_thread_task = NULL;
187	init_waitqueue_head(&osb->recovery_event);
188
189	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190		     osb->max_slots * sizeof(unsigned int),
191		     GFP_KERNEL);
192	if (!rm) {
193		mlog_errno(-ENOMEM);
194		return -ENOMEM;
195	}
196
197	rm->rm_entries = (unsigned int *)((char *)rm +
198					  sizeof(struct ocfs2_recovery_map));
199	osb->recovery_map = rm;
200
201	return 0;
202}
203
204/* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208{
209	mb();
210	return osb->recovery_thread_task != NULL;
211}
212
213void ocfs2_recovery_exit(struct ocfs2_super *osb)
214{
215	struct ocfs2_recovery_map *rm;
216
217	/* disable any new recovery threads and wait for any currently
218	 * running ones to exit. Do this before setting the vol_state. */
219	mutex_lock(&osb->recovery_lock);
220	osb->disable_recovery = 1;
221	mutex_unlock(&osb->recovery_lock);
222	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224	/* At this point, we know that no more recovery threads can be
225	 * launched, so wait for any recovery completion work to
226	 * complete. */
227	flush_workqueue(ocfs2_wq);
228
229	/*
230	 * Now that recovery is shut down, and the osb is about to be
231	 * freed,  the osb_lock is not taken here.
232	 */
233	rm = osb->recovery_map;
234
235	kfree(rm);
236}
237
238static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
239				     unsigned int node_num)
240{
241	int i;
242	struct ocfs2_recovery_map *rm = osb->recovery_map;
243
244	assert_spin_locked(&osb->osb_lock);
245
246	for (i = 0; i < rm->rm_used; i++) {
247		if (rm->rm_entries[i] == node_num)
248			return 1;
249	}
250
251	return 0;
252}
253
254/* Behaves like test-and-set.  Returns the previous value */
255static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
256				  unsigned int node_num)
257{
258	struct ocfs2_recovery_map *rm = osb->recovery_map;
259
260	spin_lock(&osb->osb_lock);
261	if (__ocfs2_recovery_map_test(osb, node_num)) {
262		spin_unlock(&osb->osb_lock);
263		return 1;
264	}
265
266	BUG_ON(rm->rm_used >= osb->max_slots);
267
268	rm->rm_entries[rm->rm_used] = node_num;
269	rm->rm_used++;
270	spin_unlock(&osb->osb_lock);
271
272	return 0;
273}
274
275static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
276				     unsigned int node_num)
277{
278	int i;
279	struct ocfs2_recovery_map *rm = osb->recovery_map;
280
281	spin_lock(&osb->osb_lock);
282
283	for (i = 0; i < rm->rm_used; i++) {
284		if (rm->rm_entries[i] == node_num)
285			break;
286	}
287
288	if (i < rm->rm_used) {
289		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
290			(rm->rm_used - i - 1) * sizeof(unsigned int));
291		rm->rm_used--;
292	}
293
294	spin_unlock(&osb->osb_lock);
295}
296
297static int ocfs2_commit_cache(struct ocfs2_super *osb)
298{
299	int status = 0;
300	unsigned int flushed;
301	unsigned long old_id;
302	struct ocfs2_journal *journal = NULL;
303
304	mlog_entry_void();
305
306	journal = osb->journal;
307
308	/* Flush all pending commits and checkpoint the journal. */
309	down_write(&journal->j_trans_barrier);
310
311	if (atomic_read(&journal->j_num_trans) == 0) {
312		up_write(&journal->j_trans_barrier);
313		mlog(0, "No transactions for me to flush!\n");
314		goto finally;
315	}
316
317	jbd2_journal_lock_updates(journal->j_journal);
318	status = jbd2_journal_flush(journal->j_journal);
319	jbd2_journal_unlock_updates(journal->j_journal);
320	if (status < 0) {
321		up_write(&journal->j_trans_barrier);
322		mlog_errno(status);
323		goto finally;
324	}
325
326	old_id = ocfs2_inc_trans_id(journal);
327
328	flushed = atomic_read(&journal->j_num_trans);
329	atomic_set(&journal->j_num_trans, 0);
330	up_write(&journal->j_trans_barrier);
331
332	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
333	     journal->j_trans_id, flushed);
334
335	ocfs2_wake_downconvert_thread(osb);
336	wake_up(&journal->j_checkpointed);
337finally:
338	mlog_exit(status);
339	return status;
340}
341
342/* pass it NULL and it will allocate a new handle object for you.  If
343 * you pass it a handle however, it may still return error, in which
344 * case it has free'd the passed handle for you. */
345handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
346{
347	journal_t *journal = osb->journal->j_journal;
348	handle_t *handle;
349
350	BUG_ON(!osb || !osb->journal->j_journal);
351
352	if (ocfs2_is_hard_readonly(osb))
353		return ERR_PTR(-EROFS);
354
355	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
356	BUG_ON(max_buffs <= 0);
357
358	/* Nested transaction? Just return the handle... */
359	if (journal_current_handle())
360		return jbd2_journal_start(journal, max_buffs);
361
362	down_read(&osb->journal->j_trans_barrier);
363
364	handle = jbd2_journal_start(journal, max_buffs);
365	if (IS_ERR(handle)) {
366		up_read(&osb->journal->j_trans_barrier);
367
368		mlog_errno(PTR_ERR(handle));
369
370		if (is_journal_aborted(journal)) {
371			ocfs2_abort(osb->sb, "Detected aborted journal");
372			handle = ERR_PTR(-EROFS);
373		}
374	} else {
375		if (!ocfs2_mount_local(osb))
376			atomic_inc(&(osb->journal->j_num_trans));
377	}
378
379	return handle;
380}
381
382int ocfs2_commit_trans(struct ocfs2_super *osb,
383		       handle_t *handle)
384{
385	int ret, nested;
386	struct ocfs2_journal *journal = osb->journal;
387
388	BUG_ON(!handle);
389
390	nested = handle->h_ref > 1;
391	ret = jbd2_journal_stop(handle);
392	if (ret < 0)
393		mlog_errno(ret);
394
395	if (!nested)
396		up_read(&journal->j_trans_barrier);
397
398	return ret;
399}
400
401/*
402 * 'nblocks' is what you want to add to the current transaction.
403 *
404 * This might call jbd2_journal_restart() which will commit dirty buffers
405 * and then restart the transaction. Before calling
406 * ocfs2_extend_trans(), any changed blocks should have been
407 * dirtied. After calling it, all blocks which need to be changed must
408 * go through another set of journal_access/journal_dirty calls.
409 *
410 * WARNING: This will not release any semaphores or disk locks taken
411 * during the transaction, so make sure they were taken *before*
412 * start_trans or we'll have ordering deadlocks.
413 *
414 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
415 * good because transaction ids haven't yet been recorded on the
416 * cluster locks associated with this handle.
417 */
418int ocfs2_extend_trans(handle_t *handle, int nblocks)
419{
420	int status, old_nblocks;
421
422	BUG_ON(!handle);
423	BUG_ON(nblocks < 0);
424
425	if (!nblocks)
426		return 0;
427
428	old_nblocks = handle->h_buffer_credits;
429	mlog_entry_void();
430
431	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
432
433#ifdef CONFIG_OCFS2_DEBUG_FS
434	status = 1;
435#else
436	status = jbd2_journal_extend(handle, nblocks);
437	if (status < 0) {
438		mlog_errno(status);
439		goto bail;
440	}
441#endif
442
443	if (status > 0) {
444		mlog(0,
445		     "jbd2_journal_extend failed, trying "
446		     "jbd2_journal_restart\n");
447		status = jbd2_journal_restart(handle,
448					      old_nblocks + nblocks);
449		if (status < 0) {
450			mlog_errno(status);
451			goto bail;
452		}
453	}
454
455	status = 0;
456bail:
457
458	mlog_exit(status);
459	return status;
460}
461
462struct ocfs2_triggers {
463	struct jbd2_buffer_trigger_type	ot_triggers;
464	int				ot_offset;
465};
466
467static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
468{
469	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
470}
471
472static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
473				 struct buffer_head *bh,
474				 void *data, size_t size)
475{
476	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
477
478	/*
479	 * We aren't guaranteed to have the superblock here, so we
480	 * must unconditionally compute the ecc data.
481	 * __ocfs2_journal_access() will only set the triggers if
482	 * metaecc is enabled.
483	 */
484	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
485}
486
487/*
488 * Quota blocks have their own trigger because the struct ocfs2_block_check
489 * offset depends on the blocksize.
490 */
491static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
492				 struct buffer_head *bh,
493				 void *data, size_t size)
494{
495	struct ocfs2_disk_dqtrailer *dqt =
496		ocfs2_block_dqtrailer(size, data);
497
498	/*
499	 * We aren't guaranteed to have the superblock here, so we
500	 * must unconditionally compute the ecc data.
501	 * __ocfs2_journal_access() will only set the triggers if
502	 * metaecc is enabled.
503	 */
504	ocfs2_block_check_compute(data, size, &dqt->dq_check);
505}
506
507/*
508 * Directory blocks also have their own trigger because the
509 * struct ocfs2_block_check offset depends on the blocksize.
510 */
511static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
512				 struct buffer_head *bh,
513				 void *data, size_t size)
514{
515	struct ocfs2_dir_block_trailer *trailer =
516		ocfs2_dir_trailer_from_size(size, data);
517
518	/*
519	 * We aren't guaranteed to have the superblock here, so we
520	 * must unconditionally compute the ecc data.
521	 * __ocfs2_journal_access() will only set the triggers if
522	 * metaecc is enabled.
523	 */
524	ocfs2_block_check_compute(data, size, &trailer->db_check);
525}
526
527static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
528				struct buffer_head *bh)
529{
530	mlog(ML_ERROR,
531	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
532	     "bh->b_blocknr = %llu\n",
533	     (unsigned long)bh,
534	     (unsigned long long)bh->b_blocknr);
535
536	/* We aren't guaranteed to have the superblock here - but if we
537	 * don't, it'll just crash. */
538	ocfs2_error(bh->b_assoc_map->host->i_sb,
539		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
540}
541
542static struct ocfs2_triggers di_triggers = {
543	.ot_triggers = {
544		.t_frozen = ocfs2_frozen_trigger,
545		.t_abort = ocfs2_abort_trigger,
546	},
547	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
548};
549
550static struct ocfs2_triggers eb_triggers = {
551	.ot_triggers = {
552		.t_frozen = ocfs2_frozen_trigger,
553		.t_abort = ocfs2_abort_trigger,
554	},
555	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
556};
557
558static struct ocfs2_triggers rb_triggers = {
559	.ot_triggers = {
560		.t_frozen = ocfs2_frozen_trigger,
561		.t_abort = ocfs2_abort_trigger,
562	},
563	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
564};
565
566static struct ocfs2_triggers gd_triggers = {
567	.ot_triggers = {
568		.t_frozen = ocfs2_frozen_trigger,
569		.t_abort = ocfs2_abort_trigger,
570	},
571	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
572};
573
574static struct ocfs2_triggers db_triggers = {
575	.ot_triggers = {
576		.t_frozen = ocfs2_db_frozen_trigger,
577		.t_abort = ocfs2_abort_trigger,
578	},
579};
580
581static struct ocfs2_triggers xb_triggers = {
582	.ot_triggers = {
583		.t_frozen = ocfs2_frozen_trigger,
584		.t_abort = ocfs2_abort_trigger,
585	},
586	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
587};
588
589static struct ocfs2_triggers dq_triggers = {
590	.ot_triggers = {
591		.t_frozen = ocfs2_dq_frozen_trigger,
592		.t_abort = ocfs2_abort_trigger,
593	},
594};
595
596static struct ocfs2_triggers dr_triggers = {
597	.ot_triggers = {
598		.t_frozen = ocfs2_frozen_trigger,
599		.t_abort = ocfs2_abort_trigger,
600	},
601	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
602};
603
604static struct ocfs2_triggers dl_triggers = {
605	.ot_triggers = {
606		.t_frozen = ocfs2_frozen_trigger,
607		.t_abort = ocfs2_abort_trigger,
608	},
609	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
610};
611
612static int __ocfs2_journal_access(handle_t *handle,
613				  struct ocfs2_caching_info *ci,
614				  struct buffer_head *bh,
615				  struct ocfs2_triggers *triggers,
616				  int type)
617{
618	int status;
619	struct ocfs2_super *osb =
620		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
621
622	BUG_ON(!ci || !ci->ci_ops);
623	BUG_ON(!handle);
624	BUG_ON(!bh);
625
626	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
627		   (unsigned long long)bh->b_blocknr, type,
628		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
629		   "OCFS2_JOURNAL_ACCESS_CREATE" :
630		   "OCFS2_JOURNAL_ACCESS_WRITE",
631		   bh->b_size);
632
633	/* we can safely remove this assertion after testing. */
634	if (!buffer_uptodate(bh)) {
635		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
636		mlog(ML_ERROR, "b_blocknr=%llu\n",
637		     (unsigned long long)bh->b_blocknr);
638		BUG();
639	}
640
641	/* Set the current transaction information on the ci so
642	 * that the locking code knows whether it can drop it's locks
643	 * on this ci or not. We're protected from the commit
644	 * thread updating the current transaction id until
645	 * ocfs2_commit_trans() because ocfs2_start_trans() took
646	 * j_trans_barrier for us. */
647	ocfs2_set_ci_lock_trans(osb->journal, ci);
648
649	ocfs2_metadata_cache_io_lock(ci);
650	switch (type) {
651	case OCFS2_JOURNAL_ACCESS_CREATE:
652	case OCFS2_JOURNAL_ACCESS_WRITE:
653		status = jbd2_journal_get_write_access(handle, bh);
654		break;
655
656	case OCFS2_JOURNAL_ACCESS_UNDO:
657		status = jbd2_journal_get_undo_access(handle, bh);
658		break;
659
660	default:
661		status = -EINVAL;
662		mlog(ML_ERROR, "Unknown access type!\n");
663	}
664	if (!status && ocfs2_meta_ecc(osb) && triggers)
665		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
666	ocfs2_metadata_cache_io_unlock(ci);
667
668	if (status < 0)
669		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
670		     status, type);
671
672	mlog_exit(status);
673	return status;
674}
675
676int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
677			    struct buffer_head *bh, int type)
678{
679	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
680}
681
682int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
683			    struct buffer_head *bh, int type)
684{
685	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
686}
687
688int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
689			    struct buffer_head *bh, int type)
690{
691	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
692				      type);
693}
694
695int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
696			    struct buffer_head *bh, int type)
697{
698	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
699}
700
701int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
702			    struct buffer_head *bh, int type)
703{
704	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
705}
706
707int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
708			    struct buffer_head *bh, int type)
709{
710	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
711}
712
713int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
714			    struct buffer_head *bh, int type)
715{
716	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
717}
718
719int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
720			    struct buffer_head *bh, int type)
721{
722	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
723}
724
725int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
726			    struct buffer_head *bh, int type)
727{
728	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
729}
730
731int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
732			 struct buffer_head *bh, int type)
733{
734	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
735}
736
737void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
738{
739	int status;
740
741	mlog_entry("(bh->b_blocknr=%llu)\n",
742		   (unsigned long long)bh->b_blocknr);
743
744	status = jbd2_journal_dirty_metadata(handle, bh);
745	BUG_ON(status);
746
747	mlog_exit_void();
748}
749
750#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
751
752void ocfs2_set_journal_params(struct ocfs2_super *osb)
753{
754	journal_t *journal = osb->journal->j_journal;
755	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
756
757	if (osb->osb_commit_interval)
758		commit_interval = osb->osb_commit_interval;
759
760	write_lock(&journal->j_state_lock);
761	journal->j_commit_interval = commit_interval;
762	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
763		journal->j_flags |= JBD2_BARRIER;
764	else
765		journal->j_flags &= ~JBD2_BARRIER;
766	write_unlock(&journal->j_state_lock);
767}
768
769int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
770{
771	int status = -1;
772	struct inode *inode = NULL; /* the journal inode */
773	journal_t *j_journal = NULL;
774	struct ocfs2_dinode *di = NULL;
775	struct buffer_head *bh = NULL;
776	struct ocfs2_super *osb;
777	int inode_lock = 0;
778
779	mlog_entry_void();
780
781	BUG_ON(!journal);
782
783	osb = journal->j_osb;
784
785	/* already have the inode for our journal */
786	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
787					    osb->slot_num);
788	if (inode == NULL) {
789		status = -EACCES;
790		mlog_errno(status);
791		goto done;
792	}
793	if (is_bad_inode(inode)) {
794		mlog(ML_ERROR, "access error (bad inode)\n");
795		iput(inode);
796		inode = NULL;
797		status = -EACCES;
798		goto done;
799	}
800
801	SET_INODE_JOURNAL(inode);
802	OCFS2_I(inode)->ip_open_count++;
803
804	/* Skip recovery waits here - journal inode metadata never
805	 * changes in a live cluster so it can be considered an
806	 * exception to the rule. */
807	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
808	if (status < 0) {
809		if (status != -ERESTARTSYS)
810			mlog(ML_ERROR, "Could not get lock on journal!\n");
811		goto done;
812	}
813
814	inode_lock = 1;
815	di = (struct ocfs2_dinode *)bh->b_data;
816
817	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
818		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
819		     inode->i_size);
820		status = -EINVAL;
821		goto done;
822	}
823
824	mlog(0, "inode->i_size = %lld\n", inode->i_size);
825	mlog(0, "inode->i_blocks = %llu\n",
826			(unsigned long long)inode->i_blocks);
827	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
828
829	/* call the kernels journal init function now */
830	j_journal = jbd2_journal_init_inode(inode);
831	if (j_journal == NULL) {
832		mlog(ML_ERROR, "Linux journal layer error\n");
833		status = -EINVAL;
834		goto done;
835	}
836
837	mlog(0, "Returned from jbd2_journal_init_inode\n");
838	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
839
840	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
841		  OCFS2_JOURNAL_DIRTY_FL);
842
843	journal->j_journal = j_journal;
844	journal->j_inode = inode;
845	journal->j_bh = bh;
846
847	ocfs2_set_journal_params(osb);
848
849	journal->j_state = OCFS2_JOURNAL_LOADED;
850
851	status = 0;
852done:
853	if (status < 0) {
854		if (inode_lock)
855			ocfs2_inode_unlock(inode, 1);
856		brelse(bh);
857		if (inode) {
858			OCFS2_I(inode)->ip_open_count--;
859			iput(inode);
860		}
861	}
862
863	mlog_exit(status);
864	return status;
865}
866
867static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
868{
869	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
870}
871
872static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
873{
874	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
875}
876
877static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
878				      int dirty, int replayed)
879{
880	int status;
881	unsigned int flags;
882	struct ocfs2_journal *journal = osb->journal;
883	struct buffer_head *bh = journal->j_bh;
884	struct ocfs2_dinode *fe;
885
886	mlog_entry_void();
887
888	fe = (struct ocfs2_dinode *)bh->b_data;
889
890	/* The journal bh on the osb always comes from ocfs2_journal_init()
891	 * and was validated there inside ocfs2_inode_lock_full().  It's a
892	 * code bug if we mess it up. */
893	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
894
895	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
896	if (dirty)
897		flags |= OCFS2_JOURNAL_DIRTY_FL;
898	else
899		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
900	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
901
902	if (replayed)
903		ocfs2_bump_recovery_generation(fe);
904
905	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
906	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
907	if (status < 0)
908		mlog_errno(status);
909
910	mlog_exit(status);
911	return status;
912}
913
914/*
915 * If the journal has been kmalloc'd it needs to be freed after this
916 * call.
917 */
918void ocfs2_journal_shutdown(struct ocfs2_super *osb)
919{
920	struct ocfs2_journal *journal = NULL;
921	int status = 0;
922	struct inode *inode = NULL;
923	int num_running_trans = 0;
924
925	mlog_entry_void();
926
927	BUG_ON(!osb);
928
929	journal = osb->journal;
930	if (!journal)
931		goto done;
932
933	inode = journal->j_inode;
934
935	if (journal->j_state != OCFS2_JOURNAL_LOADED)
936		goto done;
937
938	/* need to inc inode use count - jbd2_journal_destroy will iput. */
939	if (!igrab(inode))
940		BUG();
941
942	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
943	if (num_running_trans > 0)
944		mlog(0, "Shutting down journal: must wait on %d "
945		     "running transactions!\n",
946		     num_running_trans);
947
948	/* Do a commit_cache here. It will flush our journal, *and*
949	 * release any locks that are still held.
950	 * set the SHUTDOWN flag and release the trans lock.
951	 * the commit thread will take the trans lock for us below. */
952	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
953
954	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
955	 * drop the trans_lock (which we want to hold until we
956	 * completely destroy the journal. */
957	if (osb->commit_task) {
958		/* Wait for the commit thread */
959		mlog(0, "Waiting for ocfs2commit to exit....\n");
960		kthread_stop(osb->commit_task);
961		osb->commit_task = NULL;
962	}
963
964	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
965
966	if (ocfs2_mount_local(osb)) {
967		jbd2_journal_lock_updates(journal->j_journal);
968		status = jbd2_journal_flush(journal->j_journal);
969		jbd2_journal_unlock_updates(journal->j_journal);
970		if (status < 0)
971			mlog_errno(status);
972	}
973
974	if (status == 0) {
975		/*
976		 * Do not toggle if flush was unsuccessful otherwise
977		 * will leave dirty metadata in a "clean" journal
978		 */
979		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
980		if (status < 0)
981			mlog_errno(status);
982	}
983
984	/* Shutdown the kernel journal system */
985	jbd2_journal_destroy(journal->j_journal);
986	journal->j_journal = NULL;
987
988	OCFS2_I(inode)->ip_open_count--;
989
990	/* unlock our journal */
991	ocfs2_inode_unlock(inode, 1);
992
993	brelse(journal->j_bh);
994	journal->j_bh = NULL;
995
996	journal->j_state = OCFS2_JOURNAL_FREE;
997
998//	up_write(&journal->j_trans_barrier);
999done:
1000	if (inode)
1001		iput(inode);
1002	mlog_exit_void();
1003}
1004
1005static void ocfs2_clear_journal_error(struct super_block *sb,
1006				      journal_t *journal,
1007				      int slot)
1008{
1009	int olderr;
1010
1011	olderr = jbd2_journal_errno(journal);
1012	if (olderr) {
1013		mlog(ML_ERROR, "File system error %d recorded in "
1014		     "journal %u.\n", olderr, slot);
1015		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1016		     sb->s_id);
1017
1018		jbd2_journal_ack_err(journal);
1019		jbd2_journal_clear_err(journal);
1020	}
1021}
1022
1023int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1024{
1025	int status = 0;
1026	struct ocfs2_super *osb;
1027
1028	mlog_entry_void();
1029
1030	BUG_ON(!journal);
1031
1032	osb = journal->j_osb;
1033
1034	status = jbd2_journal_load(journal->j_journal);
1035	if (status < 0) {
1036		mlog(ML_ERROR, "Failed to load journal!\n");
1037		goto done;
1038	}
1039
1040	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1041
1042	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1043	if (status < 0) {
1044		mlog_errno(status);
1045		goto done;
1046	}
1047
1048	/* Launch the commit thread */
1049	if (!local) {
1050		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1051					       "ocfs2cmt");
1052		if (IS_ERR(osb->commit_task)) {
1053			status = PTR_ERR(osb->commit_task);
1054			osb->commit_task = NULL;
1055			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1056			     "error=%d", status);
1057			goto done;
1058		}
1059	} else
1060		osb->commit_task = NULL;
1061
1062done:
1063	mlog_exit(status);
1064	return status;
1065}
1066
1067
1068/* 'full' flag tells us whether we clear out all blocks or if we just
1069 * mark the journal clean */
1070int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1071{
1072	int status;
1073
1074	mlog_entry_void();
1075
1076	BUG_ON(!journal);
1077
1078	status = jbd2_journal_wipe(journal->j_journal, full);
1079	if (status < 0) {
1080		mlog_errno(status);
1081		goto bail;
1082	}
1083
1084	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1085	if (status < 0)
1086		mlog_errno(status);
1087
1088bail:
1089	mlog_exit(status);
1090	return status;
1091}
1092
1093static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1094{
1095	int empty;
1096	struct ocfs2_recovery_map *rm = osb->recovery_map;
1097
1098	spin_lock(&osb->osb_lock);
1099	empty = (rm->rm_used == 0);
1100	spin_unlock(&osb->osb_lock);
1101
1102	return empty;
1103}
1104
1105void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1106{
1107	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1108}
1109
1110/*
1111 * JBD Might read a cached version of another nodes journal file. We
1112 * don't want this as this file changes often and we get no
1113 * notification on those changes. The only way to be sure that we've
1114 * got the most up to date version of those blocks then is to force
1115 * read them off disk. Just searching through the buffer cache won't
1116 * work as there may be pages backing this file which are still marked
1117 * up to date. We know things can't change on this file underneath us
1118 * as we have the lock by now :)
1119 */
1120static int ocfs2_force_read_journal(struct inode *inode)
1121{
1122	int status = 0;
1123	int i;
1124	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1125#define CONCURRENT_JOURNAL_FILL 32ULL
1126	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1127
1128	mlog_entry_void();
1129
1130	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1131
1132	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1133	v_blkno = 0;
1134	while (v_blkno < num_blocks) {
1135		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1136						     &p_blkno, &p_blocks, NULL);
1137		if (status < 0) {
1138			mlog_errno(status);
1139			goto bail;
1140		}
1141
1142		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1143			p_blocks = CONCURRENT_JOURNAL_FILL;
1144
1145		/* We are reading journal data which should not
1146		 * be put in the uptodate cache */
1147		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1148						p_blkno, p_blocks, bhs);
1149		if (status < 0) {
1150			mlog_errno(status);
1151			goto bail;
1152		}
1153
1154		for(i = 0; i < p_blocks; i++) {
1155			brelse(bhs[i]);
1156			bhs[i] = NULL;
1157		}
1158
1159		v_blkno += p_blocks;
1160	}
1161
1162bail:
1163	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1164		brelse(bhs[i]);
1165	mlog_exit(status);
1166	return status;
1167}
1168
1169struct ocfs2_la_recovery_item {
1170	struct list_head	lri_list;
1171	int			lri_slot;
1172	struct ocfs2_dinode	*lri_la_dinode;
1173	struct ocfs2_dinode	*lri_tl_dinode;
1174	struct ocfs2_quota_recovery *lri_qrec;
1175};
1176
1177/* Does the second half of the recovery process. By this point, the
1178 * node is marked clean and can actually be considered recovered,
1179 * hence it's no longer in the recovery map, but there's still some
1180 * cleanup we can do which shouldn't happen within the recovery thread
1181 * as locking in that context becomes very difficult if we are to take
1182 * recovering nodes into account.
1183 *
1184 * NOTE: This function can and will sleep on recovery of other nodes
1185 * during cluster locking, just like any other ocfs2 process.
1186 */
1187void ocfs2_complete_recovery(struct work_struct *work)
1188{
1189	int ret;
1190	struct ocfs2_journal *journal =
1191		container_of(work, struct ocfs2_journal, j_recovery_work);
1192	struct ocfs2_super *osb = journal->j_osb;
1193	struct ocfs2_dinode *la_dinode, *tl_dinode;
1194	struct ocfs2_la_recovery_item *item, *n;
1195	struct ocfs2_quota_recovery *qrec;
1196	LIST_HEAD(tmp_la_list);
1197
1198	mlog_entry_void();
1199
1200	mlog(0, "completing recovery from keventd\n");
1201
1202	spin_lock(&journal->j_lock);
1203	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1204	spin_unlock(&journal->j_lock);
1205
1206	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1207		list_del_init(&item->lri_list);
1208
1209		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1210
1211		ocfs2_wait_on_quotas(osb);
1212
1213		la_dinode = item->lri_la_dinode;
1214		if (la_dinode) {
1215			mlog(0, "Clean up local alloc %llu\n",
1216			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1217
1218			ret = ocfs2_complete_local_alloc_recovery(osb,
1219								  la_dinode);
1220			if (ret < 0)
1221				mlog_errno(ret);
1222
1223			kfree(la_dinode);
1224		}
1225
1226		tl_dinode = item->lri_tl_dinode;
1227		if (tl_dinode) {
1228			mlog(0, "Clean up truncate log %llu\n",
1229			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1230
1231			ret = ocfs2_complete_truncate_log_recovery(osb,
1232								   tl_dinode);
1233			if (ret < 0)
1234				mlog_errno(ret);
1235
1236			kfree(tl_dinode);
1237		}
1238
1239		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1240		if (ret < 0)
1241			mlog_errno(ret);
1242
1243		qrec = item->lri_qrec;
1244		if (qrec) {
1245			mlog(0, "Recovering quota files");
1246			ret = ocfs2_finish_quota_recovery(osb, qrec,
1247							  item->lri_slot);
1248			if (ret < 0)
1249				mlog_errno(ret);
1250			/* Recovery info is already freed now */
1251		}
1252
1253		kfree(item);
1254	}
1255
1256	mlog(0, "Recovery completion\n");
1257	mlog_exit_void();
1258}
1259
1260/* NOTE: This function always eats your references to la_dinode and
1261 * tl_dinode, either manually on error, or by passing them to
1262 * ocfs2_complete_recovery */
1263static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1264					    int slot_num,
1265					    struct ocfs2_dinode *la_dinode,
1266					    struct ocfs2_dinode *tl_dinode,
1267					    struct ocfs2_quota_recovery *qrec)
1268{
1269	struct ocfs2_la_recovery_item *item;
1270
1271	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1272	if (!item) {
1273		/* Though we wish to avoid it, we are in fact safe in
1274		 * skipping local alloc cleanup as fsck.ocfs2 is more
1275		 * than capable of reclaiming unused space. */
1276		if (la_dinode)
1277			kfree(la_dinode);
1278
1279		if (tl_dinode)
1280			kfree(tl_dinode);
1281
1282		if (qrec)
1283			ocfs2_free_quota_recovery(qrec);
1284
1285		mlog_errno(-ENOMEM);
1286		return;
1287	}
1288
1289	INIT_LIST_HEAD(&item->lri_list);
1290	item->lri_la_dinode = la_dinode;
1291	item->lri_slot = slot_num;
1292	item->lri_tl_dinode = tl_dinode;
1293	item->lri_qrec = qrec;
1294
1295	spin_lock(&journal->j_lock);
1296	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1297	queue_work(ocfs2_wq, &journal->j_recovery_work);
1298	spin_unlock(&journal->j_lock);
1299}
1300
1301/* Called by the mount code to queue recovery the last part of
1302 * recovery for it's own and offline slot(s). */
1303void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1304{
1305	struct ocfs2_journal *journal = osb->journal;
1306
1307	/* No need to queue up our truncate_log as regular cleanup will catch
1308	 * that */
1309	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1310					osb->local_alloc_copy, NULL, NULL);
1311	ocfs2_schedule_truncate_log_flush(osb, 0);
1312
1313	osb->local_alloc_copy = NULL;
1314	osb->dirty = 0;
1315
1316	/* queue to recover orphan slots for all offline slots */
1317	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1318	ocfs2_queue_replay_slots(osb);
1319	ocfs2_free_replay_slots(osb);
1320}
1321
1322void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1323{
1324	if (osb->quota_rec) {
1325		ocfs2_queue_recovery_completion(osb->journal,
1326						osb->slot_num,
1327						NULL,
1328						NULL,
1329						osb->quota_rec);
1330		osb->quota_rec = NULL;
1331	}
1332}
1333
1334static int __ocfs2_recovery_thread(void *arg)
1335{
1336	int status, node_num, slot_num;
1337	struct ocfs2_super *osb = arg;
1338	struct ocfs2_recovery_map *rm = osb->recovery_map;
1339	int *rm_quota = NULL;
1340	int rm_quota_used = 0, i;
1341	struct ocfs2_quota_recovery *qrec;
1342
1343	mlog_entry_void();
1344
1345	status = ocfs2_wait_on_mount(osb);
1346	if (status < 0) {
1347		goto bail;
1348	}
1349
1350	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1351	if (!rm_quota) {
1352		status = -ENOMEM;
1353		goto bail;
1354	}
1355restart:
1356	status = ocfs2_super_lock(osb, 1);
1357	if (status < 0) {
1358		mlog_errno(status);
1359		goto bail;
1360	}
1361
1362	status = ocfs2_compute_replay_slots(osb);
1363	if (status < 0)
1364		mlog_errno(status);
1365
1366	/* queue recovery for our own slot */
1367	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1368					NULL, NULL);
1369
1370	spin_lock(&osb->osb_lock);
1371	while (rm->rm_used) {
1372		/* It's always safe to remove entry zero, as we won't
1373		 * clear it until ocfs2_recover_node() has succeeded. */
1374		node_num = rm->rm_entries[0];
1375		spin_unlock(&osb->osb_lock);
1376		mlog(0, "checking node %d\n", node_num);
1377		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1378		if (slot_num == -ENOENT) {
1379			status = 0;
1380			mlog(0, "no slot for this node, so no recovery"
1381			     "required.\n");
1382			goto skip_recovery;
1383		}
1384		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1385
1386		/* It is a bit subtle with quota recovery. We cannot do it
1387		 * immediately because we have to obtain cluster locks from
1388		 * quota files and we also don't want to just skip it because
1389		 * then quota usage would be out of sync until some node takes
1390		 * the slot. So we remember which nodes need quota recovery
1391		 * and when everything else is done, we recover quotas. */
1392		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1393		if (i == rm_quota_used)
1394			rm_quota[rm_quota_used++] = slot_num;
1395
1396		status = ocfs2_recover_node(osb, node_num, slot_num);
1397skip_recovery:
1398		if (!status) {
1399			ocfs2_recovery_map_clear(osb, node_num);
1400		} else {
1401			mlog(ML_ERROR,
1402			     "Error %d recovering node %d on device (%u,%u)!\n",
1403			     status, node_num,
1404			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1405			mlog(ML_ERROR, "Volume requires unmount.\n");
1406		}
1407
1408		spin_lock(&osb->osb_lock);
1409	}
1410	spin_unlock(&osb->osb_lock);
1411	mlog(0, "All nodes recovered\n");
1412
1413	/* Refresh all journal recovery generations from disk */
1414	status = ocfs2_check_journals_nolocks(osb);
1415	status = (status == -EROFS) ? 0 : status;
1416	if (status < 0)
1417		mlog_errno(status);
1418
1419	/* Now it is right time to recover quotas... We have to do this under
1420	 * superblock lock so that noone can start using the slot (and crash)
1421	 * before we recover it */
1422	for (i = 0; i < rm_quota_used; i++) {
1423		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1424		if (IS_ERR(qrec)) {
1425			status = PTR_ERR(qrec);
1426			mlog_errno(status);
1427			continue;
1428		}
1429		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1430						NULL, NULL, qrec);
1431	}
1432
1433	ocfs2_super_unlock(osb, 1);
1434
1435	/* queue recovery for offline slots */
1436	ocfs2_queue_replay_slots(osb);
1437
1438bail:
1439	mutex_lock(&osb->recovery_lock);
1440	if (!status && !ocfs2_recovery_completed(osb)) {
1441		mutex_unlock(&osb->recovery_lock);
1442		goto restart;
1443	}
1444
1445	ocfs2_free_replay_slots(osb);
1446	osb->recovery_thread_task = NULL;
1447	mb(); /* sync with ocfs2_recovery_thread_running */
1448	wake_up(&osb->recovery_event);
1449
1450	mutex_unlock(&osb->recovery_lock);
1451
1452	if (rm_quota)
1453		kfree(rm_quota);
1454
1455	mlog_exit(status);
1456	/* no one is callint kthread_stop() for us so the kthread() api
1457	 * requires that we call do_exit().  And it isn't exported, but
1458	 * complete_and_exit() seems to be a minimal wrapper around it. */
1459	complete_and_exit(NULL, status);
1460	return status;
1461}
1462
1463void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1464{
1465	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1466		   node_num, osb->node_num);
1467
1468	mutex_lock(&osb->recovery_lock);
1469	if (osb->disable_recovery)
1470		goto out;
1471
1472	/* People waiting on recovery will wait on
1473	 * the recovery map to empty. */
1474	if (ocfs2_recovery_map_set(osb, node_num))
1475		mlog(0, "node %d already in recovery map.\n", node_num);
1476
1477	mlog(0, "starting recovery thread...\n");
1478
1479	if (osb->recovery_thread_task)
1480		goto out;
1481
1482	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1483						 "ocfs2rec");
1484	if (IS_ERR(osb->recovery_thread_task)) {
1485		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1486		osb->recovery_thread_task = NULL;
1487	}
1488
1489out:
1490	mutex_unlock(&osb->recovery_lock);
1491	wake_up(&osb->recovery_event);
1492
1493	mlog_exit_void();
1494}
1495
1496static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1497				    int slot_num,
1498				    struct buffer_head **bh,
1499				    struct inode **ret_inode)
1500{
1501	int status = -EACCES;
1502	struct inode *inode = NULL;
1503
1504	BUG_ON(slot_num >= osb->max_slots);
1505
1506	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1507					    slot_num);
1508	if (!inode || is_bad_inode(inode)) {
1509		mlog_errno(status);
1510		goto bail;
1511	}
1512	SET_INODE_JOURNAL(inode);
1513
1514	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1515	if (status < 0) {
1516		mlog_errno(status);
1517		goto bail;
1518	}
1519
1520	status = 0;
1521
1522bail:
1523	if (inode) {
1524		if (status || !ret_inode)
1525			iput(inode);
1526		else
1527			*ret_inode = inode;
1528	}
1529	return status;
1530}
1531
1532/* Does the actual journal replay and marks the journal inode as
1533 * clean. Will only replay if the journal inode is marked dirty. */
1534static int ocfs2_replay_journal(struct ocfs2_super *osb,
1535				int node_num,
1536				int slot_num)
1537{
1538	int status;
1539	int got_lock = 0;
1540	unsigned int flags;
1541	struct inode *inode = NULL;
1542	struct ocfs2_dinode *fe;
1543	journal_t *journal = NULL;
1544	struct buffer_head *bh = NULL;
1545	u32 slot_reco_gen;
1546
1547	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1548	if (status) {
1549		mlog_errno(status);
1550		goto done;
1551	}
1552
1553	fe = (struct ocfs2_dinode *)bh->b_data;
1554	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1555	brelse(bh);
1556	bh = NULL;
1557
1558	/*
1559	 * As the fs recovery is asynchronous, there is a small chance that
1560	 * another node mounted (and recovered) the slot before the recovery
1561	 * thread could get the lock. To handle that, we dirty read the journal
1562	 * inode for that slot to get the recovery generation. If it is
1563	 * different than what we expected, the slot has been recovered.
1564	 * If not, it needs recovery.
1565	 */
1566	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1567		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1568		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1569		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1570		status = -EBUSY;
1571		goto done;
1572	}
1573
1574	/* Continue with recovery as the journal has not yet been recovered */
1575
1576	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1577	if (status < 0) {
1578		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1579		if (status != -ERESTARTSYS)
1580			mlog(ML_ERROR, "Could not lock journal!\n");
1581		goto done;
1582	}
1583	got_lock = 1;
1584
1585	fe = (struct ocfs2_dinode *) bh->b_data;
1586
1587	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1588	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1589
1590	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1591		mlog(0, "No recovery required for node %d\n", node_num);
1592		/* Refresh recovery generation for the slot */
1593		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1594		goto done;
1595	}
1596
1597	/* we need to run complete recovery for offline orphan slots */
1598	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1599
1600	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1601	     node_num, slot_num,
1602	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1603
1604	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1605
1606	status = ocfs2_force_read_journal(inode);
1607	if (status < 0) {
1608		mlog_errno(status);
1609		goto done;
1610	}
1611
1612	mlog(0, "calling journal_init_inode\n");
1613	journal = jbd2_journal_init_inode(inode);
1614	if (journal == NULL) {
1615		mlog(ML_ERROR, "Linux journal layer error\n");
1616		status = -EIO;
1617		goto done;
1618	}
1619
1620	status = jbd2_journal_load(journal);
1621	if (status < 0) {
1622		mlog_errno(status);
1623		if (!igrab(inode))
1624			BUG();
1625		jbd2_journal_destroy(journal);
1626		goto done;
1627	}
1628
1629	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1630
1631	/* wipe the journal */
1632	mlog(0, "flushing the journal.\n");
1633	jbd2_journal_lock_updates(journal);
1634	status = jbd2_journal_flush(journal);
1635	jbd2_journal_unlock_updates(journal);
1636	if (status < 0)
1637		mlog_errno(status);
1638
1639	/* This will mark the node clean */
1640	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1641	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1642	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1643
1644	/* Increment recovery generation to indicate successful recovery */
1645	ocfs2_bump_recovery_generation(fe);
1646	osb->slot_recovery_generations[slot_num] =
1647					ocfs2_get_recovery_generation(fe);
1648
1649	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1650	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1651	if (status < 0)
1652		mlog_errno(status);
1653
1654	if (!igrab(inode))
1655		BUG();
1656
1657	jbd2_journal_destroy(journal);
1658
1659done:
1660	/* drop the lock on this nodes journal */
1661	if (got_lock)
1662		ocfs2_inode_unlock(inode, 1);
1663
1664	if (inode)
1665		iput(inode);
1666
1667	brelse(bh);
1668
1669	mlog_exit(status);
1670	return status;
1671}
1672
1673/*
1674 * Do the most important parts of node recovery:
1675 *  - Replay it's journal
1676 *  - Stamp a clean local allocator file
1677 *  - Stamp a clean truncate log
1678 *  - Mark the node clean
1679 *
1680 * If this function completes without error, a node in OCFS2 can be
1681 * said to have been safely recovered. As a result, failure during the
1682 * second part of a nodes recovery process (local alloc recovery) is
1683 * far less concerning.
1684 */
1685static int ocfs2_recover_node(struct ocfs2_super *osb,
1686			      int node_num, int slot_num)
1687{
1688	int status = 0;
1689	struct ocfs2_dinode *la_copy = NULL;
1690	struct ocfs2_dinode *tl_copy = NULL;
1691
1692	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1693		   node_num, slot_num, osb->node_num);
1694
1695	/* Should not ever be called to recover ourselves -- in that
1696	 * case we should've called ocfs2_journal_load instead. */
1697	BUG_ON(osb->node_num == node_num);
1698
1699	status = ocfs2_replay_journal(osb, node_num, slot_num);
1700	if (status < 0) {
1701		if (status == -EBUSY) {
1702			mlog(0, "Skipping recovery for slot %u (node %u) "
1703			     "as another node has recovered it\n", slot_num,
1704			     node_num);
1705			status = 0;
1706			goto done;
1707		}
1708		mlog_errno(status);
1709		goto done;
1710	}
1711
1712	/* Stamp a clean local alloc file AFTER recovering the journal... */
1713	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1714	if (status < 0) {
1715		mlog_errno(status);
1716		goto done;
1717	}
1718
1719	/* An error from begin_truncate_log_recovery is not
1720	 * serious enough to warrant halting the rest of
1721	 * recovery. */
1722	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1723	if (status < 0)
1724		mlog_errno(status);
1725
1726	/* Likewise, this would be a strange but ultimately not so
1727	 * harmful place to get an error... */
1728	status = ocfs2_clear_slot(osb, slot_num);
1729	if (status < 0)
1730		mlog_errno(status);
1731
1732	/* This will kfree the memory pointed to by la_copy and tl_copy */
1733	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1734					tl_copy, NULL);
1735
1736	status = 0;
1737done:
1738
1739	mlog_exit(status);
1740	return status;
1741}
1742
1743/* Test node liveness by trylocking his journal. If we get the lock,
1744 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1745 * still alive (we couldn't get the lock) and < 0 on error. */
1746static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1747				 int slot_num)
1748{
1749	int status, flags;
1750	struct inode *inode = NULL;
1751
1752	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1753					    slot_num);
1754	if (inode == NULL) {
1755		mlog(ML_ERROR, "access error\n");
1756		status = -EACCES;
1757		goto bail;
1758	}
1759	if (is_bad_inode(inode)) {
1760		mlog(ML_ERROR, "access error (bad inode)\n");
1761		iput(inode);
1762		inode = NULL;
1763		status = -EACCES;
1764		goto bail;
1765	}
1766	SET_INODE_JOURNAL(inode);
1767
1768	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1769	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1770	if (status < 0) {
1771		if (status != -EAGAIN)
1772			mlog_errno(status);
1773		goto bail;
1774	}
1775
1776	ocfs2_inode_unlock(inode, 1);
1777bail:
1778	if (inode)
1779		iput(inode);
1780
1781	return status;
1782}
1783
1784/* Call this underneath ocfs2_super_lock. It also assumes that the
1785 * slot info struct has been updated from disk. */
1786int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1787{
1788	unsigned int node_num;
1789	int status, i;
1790	u32 gen;
1791	struct buffer_head *bh = NULL;
1792	struct ocfs2_dinode *di;
1793
1794	/* This is called with the super block cluster lock, so we
1795	 * know that the slot map can't change underneath us. */
1796
1797	for (i = 0; i < osb->max_slots; i++) {
1798		/* Read journal inode to get the recovery generation */
1799		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1800		if (status) {
1801			mlog_errno(status);
1802			goto bail;
1803		}
1804		di = (struct ocfs2_dinode *)bh->b_data;
1805		gen = ocfs2_get_recovery_generation(di);
1806		brelse(bh);
1807		bh = NULL;
1808
1809		spin_lock(&osb->osb_lock);
1810		osb->slot_recovery_generations[i] = gen;
1811
1812		mlog(0, "Slot %u recovery generation is %u\n", i,
1813		     osb->slot_recovery_generations[i]);
1814
1815		if (i == osb->slot_num) {
1816			spin_unlock(&osb->osb_lock);
1817			continue;
1818		}
1819
1820		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1821		if (status == -ENOENT) {
1822			spin_unlock(&osb->osb_lock);
1823			continue;
1824		}
1825
1826		if (__ocfs2_recovery_map_test(osb, node_num)) {
1827			spin_unlock(&osb->osb_lock);
1828			continue;
1829		}
1830		spin_unlock(&osb->osb_lock);
1831
1832		/* Ok, we have a slot occupied by another node which
1833		 * is not in the recovery map. We trylock his journal
1834		 * file here to test if he's alive. */
1835		status = ocfs2_trylock_journal(osb, i);
1836		if (!status) {
1837			/* Since we're called from mount, we know that
1838			 * the recovery thread can't race us on
1839			 * setting / checking the recovery bits. */
1840			ocfs2_recovery_thread(osb, node_num);
1841		} else if ((status < 0) && (status != -EAGAIN)) {
1842			mlog_errno(status);
1843			goto bail;
1844		}
1845	}
1846
1847	status = 0;
1848bail:
1849	mlog_exit(status);
1850	return status;
1851}
1852
1853/*
1854 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1855 * randomness to the timeout to minimize multple nodes firing the timer at the
1856 * same time.
1857 */
1858static inline unsigned long ocfs2_orphan_scan_timeout(void)
1859{
1860	unsigned long time;
1861
1862	get_random_bytes(&time, sizeof(time));
1863	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1864	return msecs_to_jiffies(time);
1865}
1866
1867/*
1868 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1869 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1870 * is done to catch any orphans that are left over in orphan directories.
1871 *
1872 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1873 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1874 * stored in LVB. If the sequence number has changed, it means some other
1875 * node has done the scan.  This node skips the scan and tracks the
1876 * sequence number.  If the sequence number didn't change, it means a scan
1877 * hasn't happened.  The node queues a scan and increments the
1878 * sequence number in the LVB.
1879 */
1880void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1881{
1882	struct ocfs2_orphan_scan *os;
1883	int status, i;
1884	u32 seqno = 0;
1885
1886	os = &osb->osb_orphan_scan;
1887
1888	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1889		goto out;
1890
1891	status = ocfs2_orphan_scan_lock(osb, &seqno);
1892	if (status < 0) {
1893		if (status != -EAGAIN)
1894			mlog_errno(status);
1895		goto out;
1896	}
1897
1898	/* Do no queue the tasks if the volume is being umounted */
1899	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1900		goto unlock;
1901
1902	if (os->os_seqno != seqno) {
1903		os->os_seqno = seqno;
1904		goto unlock;
1905	}
1906
1907	for (i = 0; i < osb->max_slots; i++)
1908		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1909						NULL);
1910	/*
1911	 * We queued a recovery on orphan slots, increment the sequence
1912	 * number and update LVB so other node will skip the scan for a while
1913	 */
1914	seqno++;
1915	os->os_count++;
1916	os->os_scantime = CURRENT_TIME;
1917unlock:
1918	ocfs2_orphan_scan_unlock(osb, seqno);
1919out:
1920	return;
1921}
1922
1923/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1924void ocfs2_orphan_scan_work(struct work_struct *work)
1925{
1926	struct ocfs2_orphan_scan *os;
1927	struct ocfs2_super *osb;
1928
1929	os = container_of(work, struct ocfs2_orphan_scan,
1930			  os_orphan_scan_work.work);
1931	osb = os->os_osb;
1932
1933	mutex_lock(&os->os_lock);
1934	ocfs2_queue_orphan_scan(osb);
1935	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1936		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1937				      ocfs2_orphan_scan_timeout());
1938	mutex_unlock(&os->os_lock);
1939}
1940
1941void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1942{
1943	struct ocfs2_orphan_scan *os;
1944
1945	os = &osb->osb_orphan_scan;
1946	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1947		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1948		mutex_lock(&os->os_lock);
1949		cancel_delayed_work(&os->os_orphan_scan_work);
1950		mutex_unlock(&os->os_lock);
1951	}
1952}
1953
1954void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1955{
1956	struct ocfs2_orphan_scan *os;
1957
1958	os = &osb->osb_orphan_scan;
1959	os->os_osb = osb;
1960	os->os_count = 0;
1961	os->os_seqno = 0;
1962	mutex_init(&os->os_lock);
1963	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1964}
1965
1966void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1967{
1968	struct ocfs2_orphan_scan *os;
1969
1970	os = &osb->osb_orphan_scan;
1971	os->os_scantime = CURRENT_TIME;
1972	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1973		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1974	else {
1975		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1976		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1977				   ocfs2_orphan_scan_timeout());
1978	}
1979}
1980
1981struct ocfs2_orphan_filldir_priv {
1982	struct inode		*head;
1983	struct ocfs2_super	*osb;
1984};
1985
1986static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1987				loff_t pos, u64 ino, unsigned type)
1988{
1989	struct ocfs2_orphan_filldir_priv *p = priv;
1990	struct inode *iter;
1991
1992	if (name_len == 1 && !strncmp(".", name, 1))
1993		return 0;
1994	if (name_len == 2 && !strncmp("..", name, 2))
1995		return 0;
1996
1997	/* Skip bad inodes so that recovery can continue */
1998	iter = ocfs2_iget(p->osb, ino,
1999			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2000	if (IS_ERR(iter))
2001		return 0;
2002
2003	mlog(0, "queue orphan %llu\n",
2004	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
2005	/* No locking is required for the next_orphan queue as there
2006	 * is only ever a single process doing orphan recovery. */
2007	OCFS2_I(iter)->ip_next_orphan = p->head;
2008	p->head = iter;
2009
2010	return 0;
2011}
2012
2013static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2014			       int slot,
2015			       struct inode **head)
2016{
2017	int status;
2018	struct inode *orphan_dir_inode = NULL;
2019	struct ocfs2_orphan_filldir_priv priv;
2020	loff_t pos = 0;
2021
2022	priv.osb = osb;
2023	priv.head = *head;
2024
2025	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2026						       ORPHAN_DIR_SYSTEM_INODE,
2027						       slot);
2028	if  (!orphan_dir_inode) {
2029		status = -ENOENT;
2030		mlog_errno(status);
2031		return status;
2032	}
2033
2034	mutex_lock(&orphan_dir_inode->i_mutex);
2035	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2036	if (status < 0) {
2037		mlog_errno(status);
2038		goto out;
2039	}
2040
2041	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2042				   ocfs2_orphan_filldir);
2043	if (status) {
2044		mlog_errno(status);
2045		goto out_cluster;
2046	}
2047
2048	*head = priv.head;
2049
2050out_cluster:
2051	ocfs2_inode_unlock(orphan_dir_inode, 0);
2052out:
2053	mutex_unlock(&orphan_dir_inode->i_mutex);
2054	iput(orphan_dir_inode);
2055	return status;
2056}
2057
2058static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2059					      int slot)
2060{
2061	int ret;
2062
2063	spin_lock(&osb->osb_lock);
2064	ret = !osb->osb_orphan_wipes[slot];
2065	spin_unlock(&osb->osb_lock);
2066	return ret;
2067}
2068
2069static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2070					     int slot)
2071{
2072	spin_lock(&osb->osb_lock);
2073	/* Mark ourselves such that new processes in delete_inode()
2074	 * know to quit early. */
2075	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2076	while (osb->osb_orphan_wipes[slot]) {
2077		/* If any processes are already in the middle of an
2078		 * orphan wipe on this dir, then we need to wait for
2079		 * them. */
2080		spin_unlock(&osb->osb_lock);
2081		wait_event_interruptible(osb->osb_wipe_event,
2082					 ocfs2_orphan_recovery_can_continue(osb, slot));
2083		spin_lock(&osb->osb_lock);
2084	}
2085	spin_unlock(&osb->osb_lock);
2086}
2087
2088static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2089					      int slot)
2090{
2091	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2092}
2093
2094/*
2095 * Orphan recovery. Each mounted node has it's own orphan dir which we
2096 * must run during recovery. Our strategy here is to build a list of
2097 * the inodes in the orphan dir and iget/iput them. The VFS does
2098 * (most) of the rest of the work.
2099 *
2100 * Orphan recovery can happen at any time, not just mount so we have a
2101 * couple of extra considerations.
2102 *
2103 * - We grab as many inodes as we can under the orphan dir lock -
2104 *   doing iget() outside the orphan dir risks getting a reference on
2105 *   an invalid inode.
2106 * - We must be sure not to deadlock with other processes on the
2107 *   system wanting to run delete_inode(). This can happen when they go
2108 *   to lock the orphan dir and the orphan recovery process attempts to
2109 *   iget() inside the orphan dir lock. This can be avoided by
2110 *   advertising our state to ocfs2_delete_inode().
2111 */
2112static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2113				 int slot)
2114{
2115	int ret = 0;
2116	struct inode *inode = NULL;
2117	struct inode *iter;
2118	struct ocfs2_inode_info *oi;
2119
2120	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2121
2122	ocfs2_mark_recovering_orphan_dir(osb, slot);
2123	ret = ocfs2_queue_orphans(osb, slot, &inode);
2124	ocfs2_clear_recovering_orphan_dir(osb, slot);
2125
2126	/* Error here should be noted, but we want to continue with as
2127	 * many queued inodes as we've got. */
2128	if (ret)
2129		mlog_errno(ret);
2130
2131	while (inode) {
2132		oi = OCFS2_I(inode);
2133		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2134
2135		iter = oi->ip_next_orphan;
2136
2137		spin_lock(&oi->ip_lock);
2138		/* The remote delete code may have set these on the
2139		 * assumption that the other node would wipe them
2140		 * successfully.  If they are still in the node's
2141		 * orphan dir, we need to reset that state. */
2142		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2143
2144		/* Set the proper information to get us going into
2145		 * ocfs2_delete_inode. */
2146		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2147		spin_unlock(&oi->ip_lock);
2148
2149		iput(inode);
2150
2151		inode = iter;
2152	}
2153
2154	return ret;
2155}
2156
2157static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2158{
2159	/* This check is good because ocfs2 will wait on our recovery
2160	 * thread before changing it to something other than MOUNTED
2161	 * or DISABLED. */
2162	wait_event(osb->osb_mount_event,
2163		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2164		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2165		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2166
2167	/* If there's an error on mount, then we may never get to the
2168	 * MOUNTED flag, but this is set right before
2169	 * dismount_volume() so we can trust it. */
2170	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2171		mlog(0, "mount error, exiting!\n");
2172		return -EBUSY;
2173	}
2174
2175	return 0;
2176}
2177
2178static int ocfs2_commit_thread(void *arg)
2179{
2180	int status;
2181	struct ocfs2_super *osb = arg;
2182	struct ocfs2_journal *journal = osb->journal;
2183
2184	/* we can trust j_num_trans here because _should_stop() is only set in
2185	 * shutdown and nobody other than ourselves should be able to start
2186	 * transactions.  committing on shutdown might take a few iterations
2187	 * as final transactions put deleted inodes on the list */
2188	while (!(kthread_should_stop() &&
2189		 atomic_read(&journal->j_num_trans) == 0)) {
2190
2191		wait_event_interruptible(osb->checkpoint_event,
2192					 atomic_read(&journal->j_num_trans)
2193					 || kthread_should_stop());
2194
2195		status = ocfs2_commit_cache(osb);
2196		if (status < 0)
2197			mlog_errno(status);
2198
2199		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2200			mlog(ML_KTHREAD,
2201			     "commit_thread: %u transactions pending on "
2202			     "shutdown\n",
2203			     atomic_read(&journal->j_num_trans));
2204		}
2205	}
2206
2207	return 0;
2208}
2209
2210/* Reads all the journal inodes without taking any cluster locks. Used
2211 * for hard readonly access to determine whether any journal requires
2212 * recovery. Also used to refresh the recovery generation numbers after
2213 * a journal has been recovered by another node.
2214 */
2215int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2216{
2217	int ret = 0;
2218	unsigned int slot;
2219	struct buffer_head *di_bh = NULL;
2220	struct ocfs2_dinode *di;
2221	int journal_dirty = 0;
2222
2223	for(slot = 0; slot < osb->max_slots; slot++) {
2224		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2225		if (ret) {
2226			mlog_errno(ret);
2227			goto out;
2228		}
2229
2230		di = (struct ocfs2_dinode *) di_bh->b_data;
2231
2232		osb->slot_recovery_generations[slot] =
2233					ocfs2_get_recovery_generation(di);
2234
2235		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2236		    OCFS2_JOURNAL_DIRTY_FL)
2237			journal_dirty = 1;
2238
2239		brelse(di_bh);
2240		di_bh = NULL;
2241	}
2242
2243out:
2244	if (journal_dirty)
2245		ret = -EROFS;
2246	return ret;
2247}
2248