1/**
2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2007 Anton Altaparmakov
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20 */
21
22#include <linux/buffer_head.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/mount.h>
26#include <linux/mutex.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/slab.h>
30#include <linux/log2.h>
31
32#include "aops.h"
33#include "attrib.h"
34#include "bitmap.h"
35#include "dir.h"
36#include "debug.h"
37#include "inode.h"
38#include "lcnalloc.h"
39#include "malloc.h"
40#include "mft.h"
41#include "time.h"
42#include "ntfs.h"
43
44/**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi:		vfs inode which to test
47 * @na:		ntfs attribute which is being tested with
48 *
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
51 *
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
54 *
55 * Return 1 if the attributes match and 0 if not.
56 *
57 * NOTE: This function runs with the inode_lock spin lock held so it is not
58 * allowed to sleep.
59 */
60int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61{
62	ntfs_inode *ni;
63
64	if (vi->i_ino != na->mft_no)
65		return 0;
66	ni = NTFS_I(vi);
67	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68	if (likely(!NInoAttr(ni))) {
69		/* If not looking for a normal inode this is a mismatch. */
70		if (unlikely(na->type != AT_UNUSED))
71			return 0;
72	} else {
73		/* A fake inode describing an attribute. */
74		if (ni->type != na->type)
75			return 0;
76		if (ni->name_len != na->name_len)
77			return 0;
78		if (na->name_len && memcmp(ni->name, na->name,
79				na->name_len * sizeof(ntfschar)))
80			return 0;
81	}
82	/* Match! */
83	return 1;
84}
85
86/**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi:		vfs inode to initialize
89 * @na:		ntfs attribute which to initialize @vi to
90 *
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
93 *
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
98 *
99 * Return 0 on success and -errno on error.
100 *
101 * NOTE: This function runs with the inode_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103 */
104static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105{
106	ntfs_inode *ni = NTFS_I(vi);
107
108	vi->i_ino = na->mft_no;
109
110	ni->type = na->type;
111	if (na->type == AT_INDEX_ALLOCATION)
112		NInoSetMstProtected(ni);
113
114	ni->name = na->name;
115	ni->name_len = na->name_len;
116
117	/* If initializing a normal inode, we are done. */
118	if (likely(na->type == AT_UNUSED)) {
119		BUG_ON(na->name);
120		BUG_ON(na->name_len);
121		return 0;
122	}
123
124	/* It is a fake inode. */
125	NInoSetAttr(ni);
126
127	/*
128	 * We have I30 global constant as an optimization as it is the name
129	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130	 * allocation but that is ok. And most attributes are unnamed anyway,
131	 * thus the fraction of named attributes with name != I30 is actually
132	 * absolutely tiny.
133	 */
134	if (na->name_len && na->name != I30) {
135		unsigned int i;
136
137		BUG_ON(!na->name);
138		i = na->name_len * sizeof(ntfschar);
139		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140		if (!ni->name)
141			return -ENOMEM;
142		memcpy(ni->name, na->name, i);
143		ni->name[na->name_len] = 0;
144	}
145	return 0;
146}
147
148typedef int (*set_t)(struct inode *, void *);
149static int ntfs_read_locked_inode(struct inode *vi);
150static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151static int ntfs_read_locked_index_inode(struct inode *base_vi,
152		struct inode *vi);
153
154/**
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb:		super block of mounted volume
157 * @mft_no:	mft record number / inode number to obtain
158 *
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
161 *
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
166 *
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
169 */
170struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171{
172	struct inode *vi;
173	int err;
174	ntfs_attr na;
175
176	na.mft_no = mft_no;
177	na.type = AT_UNUSED;
178	na.name = NULL;
179	na.name_len = 0;
180
181	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182			(set_t)ntfs_init_locked_inode, &na);
183	if (unlikely(!vi))
184		return ERR_PTR(-ENOMEM);
185
186	err = 0;
187
188	/* If this is a freshly allocated inode, need to read it now. */
189	if (vi->i_state & I_NEW) {
190		err = ntfs_read_locked_inode(vi);
191		unlock_new_inode(vi);
192	}
193	/*
194	 * There is no point in keeping bad inodes around if the failure was
195	 * due to ENOMEM. We want to be able to retry again later.
196	 */
197	if (unlikely(err == -ENOMEM)) {
198		iput(vi);
199		vi = ERR_PTR(err);
200	}
201	return vi;
202}
203
204/**
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi:	vfs base inode containing the attribute
207 * @type:	attribute type
208 * @name:	Unicode name of the attribute (NULL if unnamed)
209 * @name_len:	length of @name in Unicode characters (0 if unnamed)
210 *
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
214 *
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
219 *
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222 *
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
226 */
227struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228		ntfschar *name, u32 name_len)
229{
230	struct inode *vi;
231	int err;
232	ntfs_attr na;
233
234	/* Make sure no one calls ntfs_attr_iget() for indices. */
235	BUG_ON(type == AT_INDEX_ALLOCATION);
236
237	na.mft_no = base_vi->i_ino;
238	na.type = type;
239	na.name = name;
240	na.name_len = name_len;
241
242	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243			(set_t)ntfs_init_locked_inode, &na);
244	if (unlikely(!vi))
245		return ERR_PTR(-ENOMEM);
246
247	err = 0;
248
249	/* If this is a freshly allocated inode, need to read it now. */
250	if (vi->i_state & I_NEW) {
251		err = ntfs_read_locked_attr_inode(base_vi, vi);
252		unlock_new_inode(vi);
253	}
254	/*
255	 * There is no point in keeping bad attribute inodes around. This also
256	 * simplifies things in that we never need to check for bad attribute
257	 * inodes elsewhere.
258	 */
259	if (unlikely(err)) {
260		iput(vi);
261		vi = ERR_PTR(err);
262	}
263	return vi;
264}
265
266/**
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi:	vfs base inode containing the index related attributes
269 * @name:	Unicode name of the index
270 * @name_len:	length of @name in Unicode characters
271 *
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
275 *
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count.  Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
280 *
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
284 */
285struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286		u32 name_len)
287{
288	struct inode *vi;
289	int err;
290	ntfs_attr na;
291
292	na.mft_no = base_vi->i_ino;
293	na.type = AT_INDEX_ALLOCATION;
294	na.name = name;
295	na.name_len = name_len;
296
297	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298			(set_t)ntfs_init_locked_inode, &na);
299	if (unlikely(!vi))
300		return ERR_PTR(-ENOMEM);
301
302	err = 0;
303
304	/* If this is a freshly allocated inode, need to read it now. */
305	if (vi->i_state & I_NEW) {
306		err = ntfs_read_locked_index_inode(base_vi, vi);
307		unlock_new_inode(vi);
308	}
309	/*
310	 * There is no point in keeping bad index inodes around.  This also
311	 * simplifies things in that we never need to check for bad index
312	 * inodes elsewhere.
313	 */
314	if (unlikely(err)) {
315		iput(vi);
316		vi = ERR_PTR(err);
317	}
318	return vi;
319}
320
321struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322{
323	ntfs_inode *ni;
324
325	ntfs_debug("Entering.");
326	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327	if (likely(ni != NULL)) {
328		ni->state = 0;
329		return VFS_I(ni);
330	}
331	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332	return NULL;
333}
334
335void ntfs_destroy_big_inode(struct inode *inode)
336{
337	ntfs_inode *ni = NTFS_I(inode);
338
339	ntfs_debug("Entering.");
340	BUG_ON(ni->page);
341	if (!atomic_dec_and_test(&ni->count))
342		BUG();
343	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
344}
345
346static inline ntfs_inode *ntfs_alloc_extent_inode(void)
347{
348	ntfs_inode *ni;
349
350	ntfs_debug("Entering.");
351	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
352	if (likely(ni != NULL)) {
353		ni->state = 0;
354		return ni;
355	}
356	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
357	return NULL;
358}
359
360static void ntfs_destroy_extent_inode(ntfs_inode *ni)
361{
362	ntfs_debug("Entering.");
363	BUG_ON(ni->page);
364	if (!atomic_dec_and_test(&ni->count))
365		BUG();
366	kmem_cache_free(ntfs_inode_cache, ni);
367}
368
369/*
370 * The attribute runlist lock has separate locking rules from the
371 * normal runlist lock, so split the two lock-classes:
372 */
373static struct lock_class_key attr_list_rl_lock_class;
374
375/**
376 * __ntfs_init_inode - initialize ntfs specific part of an inode
377 * @sb:		super block of mounted volume
378 * @ni:		freshly allocated ntfs inode which to initialize
379 *
380 * Initialize an ntfs inode to defaults.
381 *
382 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
383 * untouched. Make sure to initialize them elsewhere.
384 *
385 * Return zero on success and -ENOMEM on error.
386 */
387void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
388{
389	ntfs_debug("Entering.");
390	rwlock_init(&ni->size_lock);
391	ni->initialized_size = ni->allocated_size = 0;
392	ni->seq_no = 0;
393	atomic_set(&ni->count, 1);
394	ni->vol = NTFS_SB(sb);
395	ntfs_init_runlist(&ni->runlist);
396	mutex_init(&ni->mrec_lock);
397	ni->page = NULL;
398	ni->page_ofs = 0;
399	ni->attr_list_size = 0;
400	ni->attr_list = NULL;
401	ntfs_init_runlist(&ni->attr_list_rl);
402	lockdep_set_class(&ni->attr_list_rl.lock,
403				&attr_list_rl_lock_class);
404	ni->itype.index.block_size = 0;
405	ni->itype.index.vcn_size = 0;
406	ni->itype.index.collation_rule = 0;
407	ni->itype.index.block_size_bits = 0;
408	ni->itype.index.vcn_size_bits = 0;
409	mutex_init(&ni->extent_lock);
410	ni->nr_extents = 0;
411	ni->ext.base_ntfs_ino = NULL;
412}
413
414/*
415 * Extent inodes get MFT-mapped in a nested way, while the base inode
416 * is still mapped. Teach this nesting to the lock validator by creating
417 * a separate class for nested inode's mrec_lock's:
418 */
419static struct lock_class_key extent_inode_mrec_lock_key;
420
421inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
422		unsigned long mft_no)
423{
424	ntfs_inode *ni = ntfs_alloc_extent_inode();
425
426	ntfs_debug("Entering.");
427	if (likely(ni != NULL)) {
428		__ntfs_init_inode(sb, ni);
429		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
430		ni->mft_no = mft_no;
431		ni->type = AT_UNUSED;
432		ni->name = NULL;
433		ni->name_len = 0;
434	}
435	return ni;
436}
437
438/**
439 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
440 * @ctx:	initialized attribute search context
441 *
442 * Search all file name attributes in the inode described by the attribute
443 * search context @ctx and check if any of the names are in the $Extend system
444 * directory.
445 *
446 * Return values:
447 *	   1: file is in $Extend directory
448 *	   0: file is not in $Extend directory
449 *    -errno: failed to determine if the file is in the $Extend directory
450 */
451static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
452{
453	int nr_links, err;
454
455	/* Restart search. */
456	ntfs_attr_reinit_search_ctx(ctx);
457
458	/* Get number of hard links. */
459	nr_links = le16_to_cpu(ctx->mrec->link_count);
460
461	/* Loop through all hard links. */
462	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
463			ctx))) {
464		FILE_NAME_ATTR *file_name_attr;
465		ATTR_RECORD *attr = ctx->attr;
466		u8 *p, *p2;
467
468		nr_links--;
469		/*
470		 * Maximum sanity checking as we are called on an inode that
471		 * we suspect might be corrupt.
472		 */
473		p = (u8*)attr + le32_to_cpu(attr->length);
474		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
475				le32_to_cpu(ctx->mrec->bytes_in_use)) {
476err_corrupt_attr:
477			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
478					"attribute. You should run chkdsk.");
479			return -EIO;
480		}
481		if (attr->non_resident) {
482			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
483					"name. You should run chkdsk.");
484			return -EIO;
485		}
486		if (attr->flags) {
487			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
488					"invalid flags. You should run "
489					"chkdsk.");
490			return -EIO;
491		}
492		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
493			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
494					"name. You should run chkdsk.");
495			return -EIO;
496		}
497		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
498				le16_to_cpu(attr->data.resident.value_offset));
499		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
500		if (p2 < (u8*)attr || p2 > p)
501			goto err_corrupt_attr;
502		/* This attribute is ok, but is it in the $Extend directory? */
503		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
504			return 1;	/* YES, it's an extended system file. */
505	}
506	if (unlikely(err != -ENOENT))
507		return err;
508	if (unlikely(nr_links)) {
509		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
510				"doesn't match number of name attributes. You "
511				"should run chkdsk.");
512		return -EIO;
513	}
514	return 0;	/* NO, it is not an extended system file. */
515}
516
517/**
518 * ntfs_read_locked_inode - read an inode from its device
519 * @vi:		inode to read
520 *
521 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
522 * described by @vi into memory from the device.
523 *
524 * The only fields in @vi that we need to/can look at when the function is
525 * called are i_sb, pointing to the mounted device's super block, and i_ino,
526 * the number of the inode to load.
527 *
528 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
529 * for reading and sets up the necessary @vi fields as well as initializing
530 * the ntfs inode.
531 *
532 * Q: What locks are held when the function is called?
533 * A: i_state has I_NEW set, hence the inode is locked, also
534 *    i_count is set to 1, so it is not going to go away
535 *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
536 *    is allowed to write to them. We should of course be honouring them but
537 *    we need to do that using the IS_* macros defined in include/linux/fs.h.
538 *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
539 *
540 * Return 0 on success and -errno on error.  In the error case, the inode will
541 * have had make_bad_inode() executed on it.
542 */
543static int ntfs_read_locked_inode(struct inode *vi)
544{
545	ntfs_volume *vol = NTFS_SB(vi->i_sb);
546	ntfs_inode *ni;
547	struct inode *bvi;
548	MFT_RECORD *m;
549	ATTR_RECORD *a;
550	STANDARD_INFORMATION *si;
551	ntfs_attr_search_ctx *ctx;
552	int err = 0;
553
554	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
555
556	/* Setup the generic vfs inode parts now. */
557
558	/*
559	 * This is for checking whether an inode has changed w.r.t. a file so
560	 * that the file can be updated if necessary (compare with f_version).
561	 */
562	vi->i_version = 1;
563
564	vi->i_uid = vol->uid;
565	vi->i_gid = vol->gid;
566	vi->i_mode = 0;
567
568	/*
569	 * Initialize the ntfs specific part of @vi special casing
570	 * FILE_MFT which we need to do at mount time.
571	 */
572	if (vi->i_ino != FILE_MFT)
573		ntfs_init_big_inode(vi);
574	ni = NTFS_I(vi);
575
576	m = map_mft_record(ni);
577	if (IS_ERR(m)) {
578		err = PTR_ERR(m);
579		goto err_out;
580	}
581	ctx = ntfs_attr_get_search_ctx(ni, m);
582	if (!ctx) {
583		err = -ENOMEM;
584		goto unm_err_out;
585	}
586
587	if (!(m->flags & MFT_RECORD_IN_USE)) {
588		ntfs_error(vi->i_sb, "Inode is not in use!");
589		goto unm_err_out;
590	}
591	if (m->base_mft_record) {
592		ntfs_error(vi->i_sb, "Inode is an extent inode!");
593		goto unm_err_out;
594	}
595
596	/* Transfer information from mft record into vfs and ntfs inodes. */
597	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
598
599	vi->i_nlink = le16_to_cpu(m->link_count);
600	/* Everyone gets all permissions. */
601	vi->i_mode |= S_IRWXUGO;
602	/* If read-only, noone gets write permissions. */
603	if (IS_RDONLY(vi))
604		vi->i_mode &= ~S_IWUGO;
605	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
606		vi->i_mode |= S_IFDIR;
607		/*
608		 * Apply the directory permissions mask set in the mount
609		 * options.
610		 */
611		vi->i_mode &= ~vol->dmask;
612		/* Things break without this kludge! */
613		if (vi->i_nlink > 1)
614			vi->i_nlink = 1;
615	} else {
616		vi->i_mode |= S_IFREG;
617		/* Apply the file permissions mask set in the mount options. */
618		vi->i_mode &= ~vol->fmask;
619	}
620	/*
621	 * Find the standard information attribute in the mft record. At this
622	 * stage we haven't setup the attribute list stuff yet, so this could
623	 * in fact fail if the standard information is in an extent record, but
624	 * I don't think this actually ever happens.
625	 */
626	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
627			ctx);
628	if (unlikely(err)) {
629		if (err == -ENOENT) {
630			/*
631			 * TODO: We should be performing a hot fix here (if the
632			 * recover mount option is set) by creating a new
633			 * attribute.
634			 */
635			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
636					"is missing.");
637		}
638		goto unm_err_out;
639	}
640	a = ctx->attr;
641	/* Get the standard information attribute value. */
642	si = (STANDARD_INFORMATION*)((u8*)a +
643			le16_to_cpu(a->data.resident.value_offset));
644
645	/* Transfer information from the standard information into vi. */
646	/*
647	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
648	 * but they are close enough, and in the end it doesn't really matter
649	 * that much...
650	 */
651	/*
652	 * mtime is the last change of the data within the file. Not changed
653	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
654	 */
655	vi->i_mtime = ntfs2utc(si->last_data_change_time);
656	/*
657	 * ctime is the last change of the metadata of the file. This obviously
658	 * always changes, when mtime is changed. ctime can be changed on its
659	 * own, mtime is then not changed, e.g. when a file is renamed.
660	 */
661	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
662	/*
663	 * Last access to the data within the file. Not changed during a rename
664	 * for example but changed whenever the file is written to.
665	 */
666	vi->i_atime = ntfs2utc(si->last_access_time);
667
668	/* Find the attribute list attribute if present. */
669	ntfs_attr_reinit_search_ctx(ctx);
670	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
671	if (err) {
672		if (unlikely(err != -ENOENT)) {
673			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
674					"attribute.");
675			goto unm_err_out;
676		}
677	} else /* if (!err) */ {
678		if (vi->i_ino == FILE_MFT)
679			goto skip_attr_list_load;
680		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
681		NInoSetAttrList(ni);
682		a = ctx->attr;
683		if (a->flags & ATTR_COMPRESSION_MASK) {
684			ntfs_error(vi->i_sb, "Attribute list attribute is "
685					"compressed.");
686			goto unm_err_out;
687		}
688		if (a->flags & ATTR_IS_ENCRYPTED ||
689				a->flags & ATTR_IS_SPARSE) {
690			if (a->non_resident) {
691				ntfs_error(vi->i_sb, "Non-resident attribute "
692						"list attribute is encrypted/"
693						"sparse.");
694				goto unm_err_out;
695			}
696			ntfs_warning(vi->i_sb, "Resident attribute list "
697					"attribute in inode 0x%lx is marked "
698					"encrypted/sparse which is not true.  "
699					"However, Windows allows this and "
700					"chkdsk does not detect or correct it "
701					"so we will just ignore the invalid "
702					"flags and pretend they are not set.",
703					vi->i_ino);
704		}
705		/* Now allocate memory for the attribute list. */
706		ni->attr_list_size = (u32)ntfs_attr_size(a);
707		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
708		if (!ni->attr_list) {
709			ntfs_error(vi->i_sb, "Not enough memory to allocate "
710					"buffer for attribute list.");
711			err = -ENOMEM;
712			goto unm_err_out;
713		}
714		if (a->non_resident) {
715			NInoSetAttrListNonResident(ni);
716			if (a->data.non_resident.lowest_vcn) {
717				ntfs_error(vi->i_sb, "Attribute list has non "
718						"zero lowest_vcn.");
719				goto unm_err_out;
720			}
721			/*
722			 * Setup the runlist. No need for locking as we have
723			 * exclusive access to the inode at this time.
724			 */
725			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
726					a, NULL);
727			if (IS_ERR(ni->attr_list_rl.rl)) {
728				err = PTR_ERR(ni->attr_list_rl.rl);
729				ni->attr_list_rl.rl = NULL;
730				ntfs_error(vi->i_sb, "Mapping pairs "
731						"decompression failed.");
732				goto unm_err_out;
733			}
734			/* Now load the attribute list. */
735			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
736					ni->attr_list, ni->attr_list_size,
737					sle64_to_cpu(a->data.non_resident.
738					initialized_size)))) {
739				ntfs_error(vi->i_sb, "Failed to load "
740						"attribute list attribute.");
741				goto unm_err_out;
742			}
743		} else /* if (!a->non_resident) */ {
744			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
745					+ le32_to_cpu(
746					a->data.resident.value_length) >
747					(u8*)ctx->mrec + vol->mft_record_size) {
748				ntfs_error(vi->i_sb, "Corrupt attribute list "
749						"in inode.");
750				goto unm_err_out;
751			}
752			/* Now copy the attribute list. */
753			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
754					a->data.resident.value_offset),
755					le32_to_cpu(
756					a->data.resident.value_length));
757		}
758	}
759skip_attr_list_load:
760	/*
761	 * If an attribute list is present we now have the attribute list value
762	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
763	 */
764	if (S_ISDIR(vi->i_mode)) {
765		loff_t bvi_size;
766		ntfs_inode *bni;
767		INDEX_ROOT *ir;
768		u8 *ir_end, *index_end;
769
770		/* It is a directory, find index root attribute. */
771		ntfs_attr_reinit_search_ctx(ctx);
772		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
773				0, NULL, 0, ctx);
774		if (unlikely(err)) {
775			if (err == -ENOENT) {
776				// index root attribute if recovery option is
777				// set.
778				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
779						"is missing.");
780			}
781			goto unm_err_out;
782		}
783		a = ctx->attr;
784		/* Set up the state. */
785		if (unlikely(a->non_resident)) {
786			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
787					"resident.");
788			goto unm_err_out;
789		}
790		/* Ensure the attribute name is placed before the value. */
791		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
792				le16_to_cpu(a->data.resident.value_offset)))) {
793			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
794					"placed after the attribute value.");
795			goto unm_err_out;
796		}
797		/*
798		 * Compressed/encrypted index root just means that the newly
799		 * created files in that directory should be created compressed/
800		 * encrypted. However index root cannot be both compressed and
801		 * encrypted.
802		 */
803		if (a->flags & ATTR_COMPRESSION_MASK)
804			NInoSetCompressed(ni);
805		if (a->flags & ATTR_IS_ENCRYPTED) {
806			if (a->flags & ATTR_COMPRESSION_MASK) {
807				ntfs_error(vi->i_sb, "Found encrypted and "
808						"compressed attribute.");
809				goto unm_err_out;
810			}
811			NInoSetEncrypted(ni);
812		}
813		if (a->flags & ATTR_IS_SPARSE)
814			NInoSetSparse(ni);
815		ir = (INDEX_ROOT*)((u8*)a +
816				le16_to_cpu(a->data.resident.value_offset));
817		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
818		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
819			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
820					"corrupt.");
821			goto unm_err_out;
822		}
823		index_end = (u8*)&ir->index +
824				le32_to_cpu(ir->index.index_length);
825		if (index_end > ir_end) {
826			ntfs_error(vi->i_sb, "Directory index is corrupt.");
827			goto unm_err_out;
828		}
829		if (ir->type != AT_FILE_NAME) {
830			ntfs_error(vi->i_sb, "Indexed attribute is not "
831					"$FILE_NAME.");
832			goto unm_err_out;
833		}
834		if (ir->collation_rule != COLLATION_FILE_NAME) {
835			ntfs_error(vi->i_sb, "Index collation rule is not "
836					"COLLATION_FILE_NAME.");
837			goto unm_err_out;
838		}
839		ni->itype.index.collation_rule = ir->collation_rule;
840		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
841		if (ni->itype.index.block_size &
842				(ni->itype.index.block_size - 1)) {
843			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
844					"power of two.",
845					ni->itype.index.block_size);
846			goto unm_err_out;
847		}
848		if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
849			ntfs_error(vi->i_sb, "Index block size (%u) > "
850					"PAGE_CACHE_SIZE (%ld) is not "
851					"supported.  Sorry.",
852					ni->itype.index.block_size,
853					PAGE_CACHE_SIZE);
854			err = -EOPNOTSUPP;
855			goto unm_err_out;
856		}
857		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
858			ntfs_error(vi->i_sb, "Index block size (%u) < "
859					"NTFS_BLOCK_SIZE (%i) is not "
860					"supported.  Sorry.",
861					ni->itype.index.block_size,
862					NTFS_BLOCK_SIZE);
863			err = -EOPNOTSUPP;
864			goto unm_err_out;
865		}
866		ni->itype.index.block_size_bits =
867				ffs(ni->itype.index.block_size) - 1;
868		/* Determine the size of a vcn in the directory index. */
869		if (vol->cluster_size <= ni->itype.index.block_size) {
870			ni->itype.index.vcn_size = vol->cluster_size;
871			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
872		} else {
873			ni->itype.index.vcn_size = vol->sector_size;
874			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
875		}
876
877		/* Setup the index allocation attribute, even if not present. */
878		NInoSetMstProtected(ni);
879		ni->type = AT_INDEX_ALLOCATION;
880		ni->name = I30;
881		ni->name_len = 4;
882
883		if (!(ir->index.flags & LARGE_INDEX)) {
884			/* No index allocation. */
885			vi->i_size = ni->initialized_size =
886					ni->allocated_size = 0;
887			/* We are done with the mft record, so we release it. */
888			ntfs_attr_put_search_ctx(ctx);
889			unmap_mft_record(ni);
890			m = NULL;
891			ctx = NULL;
892			goto skip_large_dir_stuff;
893		} /* LARGE_INDEX: Index allocation present. Setup state. */
894		NInoSetIndexAllocPresent(ni);
895		/* Find index allocation attribute. */
896		ntfs_attr_reinit_search_ctx(ctx);
897		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
898				CASE_SENSITIVE, 0, NULL, 0, ctx);
899		if (unlikely(err)) {
900			if (err == -ENOENT)
901				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
902						"attribute is not present but "
903						"$INDEX_ROOT indicated it is.");
904			else
905				ntfs_error(vi->i_sb, "Failed to lookup "
906						"$INDEX_ALLOCATION "
907						"attribute.");
908			goto unm_err_out;
909		}
910		a = ctx->attr;
911		if (!a->non_resident) {
912			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
913					"is resident.");
914			goto unm_err_out;
915		}
916		/*
917		 * Ensure the attribute name is placed before the mapping pairs
918		 * array.
919		 */
920		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
921				le16_to_cpu(
922				a->data.non_resident.mapping_pairs_offset)))) {
923			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
924					"is placed after the mapping pairs "
925					"array.");
926			goto unm_err_out;
927		}
928		if (a->flags & ATTR_IS_ENCRYPTED) {
929			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
930					"is encrypted.");
931			goto unm_err_out;
932		}
933		if (a->flags & ATTR_IS_SPARSE) {
934			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
935					"is sparse.");
936			goto unm_err_out;
937		}
938		if (a->flags & ATTR_COMPRESSION_MASK) {
939			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
940					"is compressed.");
941			goto unm_err_out;
942		}
943		if (a->data.non_resident.lowest_vcn) {
944			ntfs_error(vi->i_sb, "First extent of "
945					"$INDEX_ALLOCATION attribute has non "
946					"zero lowest_vcn.");
947			goto unm_err_out;
948		}
949		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
950		ni->initialized_size = sle64_to_cpu(
951				a->data.non_resident.initialized_size);
952		ni->allocated_size = sle64_to_cpu(
953				a->data.non_resident.allocated_size);
954		/*
955		 * We are done with the mft record, so we release it. Otherwise
956		 * we would deadlock in ntfs_attr_iget().
957		 */
958		ntfs_attr_put_search_ctx(ctx);
959		unmap_mft_record(ni);
960		m = NULL;
961		ctx = NULL;
962		/* Get the index bitmap attribute inode. */
963		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
964		if (IS_ERR(bvi)) {
965			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
966			err = PTR_ERR(bvi);
967			goto unm_err_out;
968		}
969		bni = NTFS_I(bvi);
970		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
971				NInoSparse(bni)) {
972			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
973					"and/or encrypted and/or sparse.");
974			goto iput_unm_err_out;
975		}
976		/* Consistency check bitmap size vs. index allocation size. */
977		bvi_size = i_size_read(bvi);
978		if ((bvi_size << 3) < (vi->i_size >>
979				ni->itype.index.block_size_bits)) {
980			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
981					"for index allocation (0x%llx).",
982					bvi_size << 3, vi->i_size);
983			goto iput_unm_err_out;
984		}
985		/* No longer need the bitmap attribute inode. */
986		iput(bvi);
987skip_large_dir_stuff:
988		/* Setup the operations for this inode. */
989		vi->i_op = &ntfs_dir_inode_ops;
990		vi->i_fop = &ntfs_dir_ops;
991	} else {
992		/* It is a file. */
993		ntfs_attr_reinit_search_ctx(ctx);
994
995		/* Setup the data attribute, even if not present. */
996		ni->type = AT_DATA;
997		ni->name = NULL;
998		ni->name_len = 0;
999
1000		/* Find first extent of the unnamed data attribute. */
1001		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1002		if (unlikely(err)) {
1003			vi->i_size = ni->initialized_size =
1004					ni->allocated_size = 0;
1005			if (err != -ENOENT) {
1006				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1007						"attribute.");
1008				goto unm_err_out;
1009			}
1010			/*
1011			 * FILE_Secure does not have an unnamed $DATA
1012			 * attribute, so we special case it here.
1013			 */
1014			if (vi->i_ino == FILE_Secure)
1015				goto no_data_attr_special_case;
1016			/*
1017			 * Most if not all the system files in the $Extend
1018			 * system directory do not have unnamed data
1019			 * attributes so we need to check if the parent
1020			 * directory of the file is FILE_Extend and if it is
1021			 * ignore this error. To do this we need to get the
1022			 * name of this inode from the mft record as the name
1023			 * contains the back reference to the parent directory.
1024			 */
1025			if (ntfs_is_extended_system_file(ctx) > 0)
1026				goto no_data_attr_special_case;
1027			// attribute if recovery option is set.
1028			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1029			goto unm_err_out;
1030		}
1031		a = ctx->attr;
1032		/* Setup the state. */
1033		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1034			if (a->flags & ATTR_COMPRESSION_MASK) {
1035				NInoSetCompressed(ni);
1036				if (vol->cluster_size > 4096) {
1037					ntfs_error(vi->i_sb, "Found "
1038							"compressed data but "
1039							"compression is "
1040							"disabled due to "
1041							"cluster size (%i) > "
1042							"4kiB.",
1043							vol->cluster_size);
1044					goto unm_err_out;
1045				}
1046				if ((a->flags & ATTR_COMPRESSION_MASK)
1047						!= ATTR_IS_COMPRESSED) {
1048					ntfs_error(vi->i_sb, "Found unknown "
1049							"compression method "
1050							"or corrupt file.");
1051					goto unm_err_out;
1052				}
1053			}
1054			if (a->flags & ATTR_IS_SPARSE)
1055				NInoSetSparse(ni);
1056		}
1057		if (a->flags & ATTR_IS_ENCRYPTED) {
1058			if (NInoCompressed(ni)) {
1059				ntfs_error(vi->i_sb, "Found encrypted and "
1060						"compressed data.");
1061				goto unm_err_out;
1062			}
1063			NInoSetEncrypted(ni);
1064		}
1065		if (a->non_resident) {
1066			NInoSetNonResident(ni);
1067			if (NInoCompressed(ni) || NInoSparse(ni)) {
1068				if (NInoCompressed(ni) && a->data.non_resident.
1069						compression_unit != 4) {
1070					ntfs_error(vi->i_sb, "Found "
1071							"non-standard "
1072							"compression unit (%u "
1073							"instead of 4).  "
1074							"Cannot handle this.",
1075							a->data.non_resident.
1076							compression_unit);
1077					err = -EOPNOTSUPP;
1078					goto unm_err_out;
1079				}
1080				if (a->data.non_resident.compression_unit) {
1081					ni->itype.compressed.block_size = 1U <<
1082							(a->data.non_resident.
1083							compression_unit +
1084							vol->cluster_size_bits);
1085					ni->itype.compressed.block_size_bits =
1086							ffs(ni->itype.
1087							compressed.
1088							block_size) - 1;
1089					ni->itype.compressed.block_clusters =
1090							1U << a->data.
1091							non_resident.
1092							compression_unit;
1093				} else {
1094					ni->itype.compressed.block_size = 0;
1095					ni->itype.compressed.block_size_bits =
1096							0;
1097					ni->itype.compressed.block_clusters =
1098							0;
1099				}
1100				ni->itype.compressed.size = sle64_to_cpu(
1101						a->data.non_resident.
1102						compressed_size);
1103			}
1104			if (a->data.non_resident.lowest_vcn) {
1105				ntfs_error(vi->i_sb, "First extent of $DATA "
1106						"attribute has non zero "
1107						"lowest_vcn.");
1108				goto unm_err_out;
1109			}
1110			vi->i_size = sle64_to_cpu(
1111					a->data.non_resident.data_size);
1112			ni->initialized_size = sle64_to_cpu(
1113					a->data.non_resident.initialized_size);
1114			ni->allocated_size = sle64_to_cpu(
1115					a->data.non_resident.allocated_size);
1116		} else { /* Resident attribute. */
1117			vi->i_size = ni->initialized_size = le32_to_cpu(
1118					a->data.resident.value_length);
1119			ni->allocated_size = le32_to_cpu(a->length) -
1120					le16_to_cpu(
1121					a->data.resident.value_offset);
1122			if (vi->i_size > ni->allocated_size) {
1123				ntfs_error(vi->i_sb, "Resident data attribute "
1124						"is corrupt (size exceeds "
1125						"allocation).");
1126				goto unm_err_out;
1127			}
1128		}
1129no_data_attr_special_case:
1130		/* We are done with the mft record, so we release it. */
1131		ntfs_attr_put_search_ctx(ctx);
1132		unmap_mft_record(ni);
1133		m = NULL;
1134		ctx = NULL;
1135		/* Setup the operations for this inode. */
1136		vi->i_op = &ntfs_file_inode_ops;
1137		vi->i_fop = &ntfs_file_ops;
1138	}
1139	if (NInoMstProtected(ni))
1140		vi->i_mapping->a_ops = &ntfs_mst_aops;
1141	else
1142		vi->i_mapping->a_ops = &ntfs_aops;
1143	/*
1144	 * The number of 512-byte blocks used on disk (for stat). This is in so
1145	 * far inaccurate as it doesn't account for any named streams or other
1146	 * special non-resident attributes, but that is how Windows works, too,
1147	 * so we are at least consistent with Windows, if not entirely
1148	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1149	 * significant slowdown as it would involve iterating over all
1150	 * attributes in the mft record and adding the allocated/compressed
1151	 * sizes of all non-resident attributes present to give us the Linux
1152	 * correct size that should go into i_blocks (after division by 512).
1153	 */
1154	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1155		vi->i_blocks = ni->itype.compressed.size >> 9;
1156	else
1157		vi->i_blocks = ni->allocated_size >> 9;
1158	ntfs_debug("Done.");
1159	return 0;
1160iput_unm_err_out:
1161	iput(bvi);
1162unm_err_out:
1163	if (!err)
1164		err = -EIO;
1165	if (ctx)
1166		ntfs_attr_put_search_ctx(ctx);
1167	if (m)
1168		unmap_mft_record(ni);
1169err_out:
1170	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1171			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1172	make_bad_inode(vi);
1173	if (err != -EOPNOTSUPP && err != -ENOMEM)
1174		NVolSetErrors(vol);
1175	return err;
1176}
1177
1178/**
1179 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1180 * @base_vi:	base inode
1181 * @vi:		attribute inode to read
1182 *
1183 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1184 * attribute inode described by @vi into memory from the base mft record
1185 * described by @base_ni.
1186 *
1187 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1188 * reading and looks up the attribute described by @vi before setting up the
1189 * necessary fields in @vi as well as initializing the ntfs inode.
1190 *
1191 * Q: What locks are held when the function is called?
1192 * A: i_state has I_NEW set, hence the inode is locked, also
1193 *    i_count is set to 1, so it is not going to go away
1194 *
1195 * Return 0 on success and -errno on error.  In the error case, the inode will
1196 * have had make_bad_inode() executed on it.
1197 *
1198 * Note this cannot be called for AT_INDEX_ALLOCATION.
1199 */
1200static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1201{
1202	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1203	ntfs_inode *ni, *base_ni;
1204	MFT_RECORD *m;
1205	ATTR_RECORD *a;
1206	ntfs_attr_search_ctx *ctx;
1207	int err = 0;
1208
1209	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1210
1211	ntfs_init_big_inode(vi);
1212
1213	ni	= NTFS_I(vi);
1214	base_ni = NTFS_I(base_vi);
1215
1216	/* Just mirror the values from the base inode. */
1217	vi->i_version	= base_vi->i_version;
1218	vi->i_uid	= base_vi->i_uid;
1219	vi->i_gid	= base_vi->i_gid;
1220	vi->i_nlink	= base_vi->i_nlink;
1221	vi->i_mtime	= base_vi->i_mtime;
1222	vi->i_ctime	= base_vi->i_ctime;
1223	vi->i_atime	= base_vi->i_atime;
1224	vi->i_generation = ni->seq_no = base_ni->seq_no;
1225
1226	/* Set inode type to zero but preserve permissions. */
1227	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1228
1229	m = map_mft_record(base_ni);
1230	if (IS_ERR(m)) {
1231		err = PTR_ERR(m);
1232		goto err_out;
1233	}
1234	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1235	if (!ctx) {
1236		err = -ENOMEM;
1237		goto unm_err_out;
1238	}
1239	/* Find the attribute. */
1240	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1241			CASE_SENSITIVE, 0, NULL, 0, ctx);
1242	if (unlikely(err))
1243		goto unm_err_out;
1244	a = ctx->attr;
1245	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1246		if (a->flags & ATTR_COMPRESSION_MASK) {
1247			NInoSetCompressed(ni);
1248			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1249					ni->name_len)) {
1250				ntfs_error(vi->i_sb, "Found compressed "
1251						"non-data or named data "
1252						"attribute.  Please report "
1253						"you saw this message to "
1254						"linux-ntfs-dev@lists."
1255						"sourceforge.net");
1256				goto unm_err_out;
1257			}
1258			if (vol->cluster_size > 4096) {
1259				ntfs_error(vi->i_sb, "Found compressed "
1260						"attribute but compression is "
1261						"disabled due to cluster size "
1262						"(%i) > 4kiB.",
1263						vol->cluster_size);
1264				goto unm_err_out;
1265			}
1266			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1267					ATTR_IS_COMPRESSED) {
1268				ntfs_error(vi->i_sb, "Found unknown "
1269						"compression method.");
1270				goto unm_err_out;
1271			}
1272		}
1273		/*
1274		 * The compressed/sparse flag set in an index root just means
1275		 * to compress all files.
1276		 */
1277		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1278			ntfs_error(vi->i_sb, "Found mst protected attribute "
1279					"but the attribute is %s.  Please "
1280					"report you saw this message to "
1281					"linux-ntfs-dev@lists.sourceforge.net",
1282					NInoCompressed(ni) ? "compressed" :
1283					"sparse");
1284			goto unm_err_out;
1285		}
1286		if (a->flags & ATTR_IS_SPARSE)
1287			NInoSetSparse(ni);
1288	}
1289	if (a->flags & ATTR_IS_ENCRYPTED) {
1290		if (NInoCompressed(ni)) {
1291			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1292					"data.");
1293			goto unm_err_out;
1294		}
1295		/*
1296		 * The encryption flag set in an index root just means to
1297		 * encrypt all files.
1298		 */
1299		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1300			ntfs_error(vi->i_sb, "Found mst protected attribute "
1301					"but the attribute is encrypted.  "
1302					"Please report you saw this message "
1303					"to linux-ntfs-dev@lists.sourceforge."
1304					"net");
1305			goto unm_err_out;
1306		}
1307		if (ni->type != AT_DATA) {
1308			ntfs_error(vi->i_sb, "Found encrypted non-data "
1309					"attribute.");
1310			goto unm_err_out;
1311		}
1312		NInoSetEncrypted(ni);
1313	}
1314	if (!a->non_resident) {
1315		/* Ensure the attribute name is placed before the value. */
1316		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1317				le16_to_cpu(a->data.resident.value_offset)))) {
1318			ntfs_error(vol->sb, "Attribute name is placed after "
1319					"the attribute value.");
1320			goto unm_err_out;
1321		}
1322		if (NInoMstProtected(ni)) {
1323			ntfs_error(vi->i_sb, "Found mst protected attribute "
1324					"but the attribute is resident.  "
1325					"Please report you saw this message to "
1326					"linux-ntfs-dev@lists.sourceforge.net");
1327			goto unm_err_out;
1328		}
1329		vi->i_size = ni->initialized_size = le32_to_cpu(
1330				a->data.resident.value_length);
1331		ni->allocated_size = le32_to_cpu(a->length) -
1332				le16_to_cpu(a->data.resident.value_offset);
1333		if (vi->i_size > ni->allocated_size) {
1334			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1335					"(size exceeds allocation).");
1336			goto unm_err_out;
1337		}
1338	} else {
1339		NInoSetNonResident(ni);
1340		/*
1341		 * Ensure the attribute name is placed before the mapping pairs
1342		 * array.
1343		 */
1344		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1345				le16_to_cpu(
1346				a->data.non_resident.mapping_pairs_offset)))) {
1347			ntfs_error(vol->sb, "Attribute name is placed after "
1348					"the mapping pairs array.");
1349			goto unm_err_out;
1350		}
1351		if (NInoCompressed(ni) || NInoSparse(ni)) {
1352			if (NInoCompressed(ni) && a->data.non_resident.
1353					compression_unit != 4) {
1354				ntfs_error(vi->i_sb, "Found non-standard "
1355						"compression unit (%u instead "
1356						"of 4).  Cannot handle this.",
1357						a->data.non_resident.
1358						compression_unit);
1359				err = -EOPNOTSUPP;
1360				goto unm_err_out;
1361			}
1362			if (a->data.non_resident.compression_unit) {
1363				ni->itype.compressed.block_size = 1U <<
1364						(a->data.non_resident.
1365						compression_unit +
1366						vol->cluster_size_bits);
1367				ni->itype.compressed.block_size_bits =
1368						ffs(ni->itype.compressed.
1369						block_size) - 1;
1370				ni->itype.compressed.block_clusters = 1U <<
1371						a->data.non_resident.
1372						compression_unit;
1373			} else {
1374				ni->itype.compressed.block_size = 0;
1375				ni->itype.compressed.block_size_bits = 0;
1376				ni->itype.compressed.block_clusters = 0;
1377			}
1378			ni->itype.compressed.size = sle64_to_cpu(
1379					a->data.non_resident.compressed_size);
1380		}
1381		if (a->data.non_resident.lowest_vcn) {
1382			ntfs_error(vi->i_sb, "First extent of attribute has "
1383					"non-zero lowest_vcn.");
1384			goto unm_err_out;
1385		}
1386		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1387		ni->initialized_size = sle64_to_cpu(
1388				a->data.non_resident.initialized_size);
1389		ni->allocated_size = sle64_to_cpu(
1390				a->data.non_resident.allocated_size);
1391	}
1392	if (NInoMstProtected(ni))
1393		vi->i_mapping->a_ops = &ntfs_mst_aops;
1394	else
1395		vi->i_mapping->a_ops = &ntfs_aops;
1396	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1397		vi->i_blocks = ni->itype.compressed.size >> 9;
1398	else
1399		vi->i_blocks = ni->allocated_size >> 9;
1400	/*
1401	 * Make sure the base inode does not go away and attach it to the
1402	 * attribute inode.
1403	 */
1404	igrab(base_vi);
1405	ni->ext.base_ntfs_ino = base_ni;
1406	ni->nr_extents = -1;
1407
1408	ntfs_attr_put_search_ctx(ctx);
1409	unmap_mft_record(base_ni);
1410
1411	ntfs_debug("Done.");
1412	return 0;
1413
1414unm_err_out:
1415	if (!err)
1416		err = -EIO;
1417	if (ctx)
1418		ntfs_attr_put_search_ctx(ctx);
1419	unmap_mft_record(base_ni);
1420err_out:
1421	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1422			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1423			"Marking corrupt inode and base inode 0x%lx as bad.  "
1424			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1425			base_vi->i_ino);
1426	make_bad_inode(vi);
1427	if (err != -ENOMEM)
1428		NVolSetErrors(vol);
1429	return err;
1430}
1431
1432/**
1433 * ntfs_read_locked_index_inode - read an index inode from its base inode
1434 * @base_vi:	base inode
1435 * @vi:		index inode to read
1436 *
1437 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1438 * index inode described by @vi into memory from the base mft record described
1439 * by @base_ni.
1440 *
1441 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1442 * reading and looks up the attributes relating to the index described by @vi
1443 * before setting up the necessary fields in @vi as well as initializing the
1444 * ntfs inode.
1445 *
1446 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1447 * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1448 * are setup like directory inodes since directories are a special case of
1449 * indices ao they need to be treated in much the same way.  Most importantly,
1450 * for small indices the index allocation attribute might not actually exist.
1451 * However, the index root attribute always exists but this does not need to
1452 * have an inode associated with it and this is why we define a new inode type
1453 * index.  Also, like for directories, we need to have an attribute inode for
1454 * the bitmap attribute corresponding to the index allocation attribute and we
1455 * can store this in the appropriate field of the inode, just like we do for
1456 * normal directory inodes.
1457 *
1458 * Q: What locks are held when the function is called?
1459 * A: i_state has I_NEW set, hence the inode is locked, also
1460 *    i_count is set to 1, so it is not going to go away
1461 *
1462 * Return 0 on success and -errno on error.  In the error case, the inode will
1463 * have had make_bad_inode() executed on it.
1464 */
1465static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1466{
1467	loff_t bvi_size;
1468	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1469	ntfs_inode *ni, *base_ni, *bni;
1470	struct inode *bvi;
1471	MFT_RECORD *m;
1472	ATTR_RECORD *a;
1473	ntfs_attr_search_ctx *ctx;
1474	INDEX_ROOT *ir;
1475	u8 *ir_end, *index_end;
1476	int err = 0;
1477
1478	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1479	ntfs_init_big_inode(vi);
1480	ni	= NTFS_I(vi);
1481	base_ni = NTFS_I(base_vi);
1482	/* Just mirror the values from the base inode. */
1483	vi->i_version	= base_vi->i_version;
1484	vi->i_uid	= base_vi->i_uid;
1485	vi->i_gid	= base_vi->i_gid;
1486	vi->i_nlink	= base_vi->i_nlink;
1487	vi->i_mtime	= base_vi->i_mtime;
1488	vi->i_ctime	= base_vi->i_ctime;
1489	vi->i_atime	= base_vi->i_atime;
1490	vi->i_generation = ni->seq_no = base_ni->seq_no;
1491	/* Set inode type to zero but preserve permissions. */
1492	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1493	/* Map the mft record for the base inode. */
1494	m = map_mft_record(base_ni);
1495	if (IS_ERR(m)) {
1496		err = PTR_ERR(m);
1497		goto err_out;
1498	}
1499	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1500	if (!ctx) {
1501		err = -ENOMEM;
1502		goto unm_err_out;
1503	}
1504	/* Find the index root attribute. */
1505	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1506			CASE_SENSITIVE, 0, NULL, 0, ctx);
1507	if (unlikely(err)) {
1508		if (err == -ENOENT)
1509			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1510					"missing.");
1511		goto unm_err_out;
1512	}
1513	a = ctx->attr;
1514	/* Set up the state. */
1515	if (unlikely(a->non_resident)) {
1516		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1517		goto unm_err_out;
1518	}
1519	/* Ensure the attribute name is placed before the value. */
1520	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1521			le16_to_cpu(a->data.resident.value_offset)))) {
1522		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1523				"after the attribute value.");
1524		goto unm_err_out;
1525	}
1526	/*
1527	 * Compressed/encrypted/sparse index root is not allowed, except for
1528	 * directories of course but those are not dealt with here.
1529	 */
1530	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1531			ATTR_IS_SPARSE)) {
1532		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1533				"root attribute.");
1534		goto unm_err_out;
1535	}
1536	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1537	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1538	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1539		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1540		goto unm_err_out;
1541	}
1542	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1543	if (index_end > ir_end) {
1544		ntfs_error(vi->i_sb, "Index is corrupt.");
1545		goto unm_err_out;
1546	}
1547	if (ir->type) {
1548		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1549				le32_to_cpu(ir->type));
1550		goto unm_err_out;
1551	}
1552	ni->itype.index.collation_rule = ir->collation_rule;
1553	ntfs_debug("Index collation rule is 0x%x.",
1554			le32_to_cpu(ir->collation_rule));
1555	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1556	if (!is_power_of_2(ni->itype.index.block_size)) {
1557		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1558				"two.", ni->itype.index.block_size);
1559		goto unm_err_out;
1560	}
1561	if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1562		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1563				"(%ld) is not supported.  Sorry.",
1564				ni->itype.index.block_size, PAGE_CACHE_SIZE);
1565		err = -EOPNOTSUPP;
1566		goto unm_err_out;
1567	}
1568	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1569		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1570				"(%i) is not supported.  Sorry.",
1571				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1572		err = -EOPNOTSUPP;
1573		goto unm_err_out;
1574	}
1575	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1576	/* Determine the size of a vcn in the index. */
1577	if (vol->cluster_size <= ni->itype.index.block_size) {
1578		ni->itype.index.vcn_size = vol->cluster_size;
1579		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1580	} else {
1581		ni->itype.index.vcn_size = vol->sector_size;
1582		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1583	}
1584	/* Check for presence of index allocation attribute. */
1585	if (!(ir->index.flags & LARGE_INDEX)) {
1586		/* No index allocation. */
1587		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1588		/* We are done with the mft record, so we release it. */
1589		ntfs_attr_put_search_ctx(ctx);
1590		unmap_mft_record(base_ni);
1591		m = NULL;
1592		ctx = NULL;
1593		goto skip_large_index_stuff;
1594	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1595	NInoSetIndexAllocPresent(ni);
1596	/* Find index allocation attribute. */
1597	ntfs_attr_reinit_search_ctx(ctx);
1598	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1599			CASE_SENSITIVE, 0, NULL, 0, ctx);
1600	if (unlikely(err)) {
1601		if (err == -ENOENT)
1602			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1603					"not present but $INDEX_ROOT "
1604					"indicated it is.");
1605		else
1606			ntfs_error(vi->i_sb, "Failed to lookup "
1607					"$INDEX_ALLOCATION attribute.");
1608		goto unm_err_out;
1609	}
1610	a = ctx->attr;
1611	if (!a->non_resident) {
1612		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1613				"resident.");
1614		goto unm_err_out;
1615	}
1616	/*
1617	 * Ensure the attribute name is placed before the mapping pairs array.
1618	 */
1619	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1620			le16_to_cpu(
1621			a->data.non_resident.mapping_pairs_offset)))) {
1622		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1623				"placed after the mapping pairs array.");
1624		goto unm_err_out;
1625	}
1626	if (a->flags & ATTR_IS_ENCRYPTED) {
1627		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1628				"encrypted.");
1629		goto unm_err_out;
1630	}
1631	if (a->flags & ATTR_IS_SPARSE) {
1632		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1633		goto unm_err_out;
1634	}
1635	if (a->flags & ATTR_COMPRESSION_MASK) {
1636		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1637				"compressed.");
1638		goto unm_err_out;
1639	}
1640	if (a->data.non_resident.lowest_vcn) {
1641		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1642				"attribute has non zero lowest_vcn.");
1643		goto unm_err_out;
1644	}
1645	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1646	ni->initialized_size = sle64_to_cpu(
1647			a->data.non_resident.initialized_size);
1648	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1649	/*
1650	 * We are done with the mft record, so we release it.  Otherwise
1651	 * we would deadlock in ntfs_attr_iget().
1652	 */
1653	ntfs_attr_put_search_ctx(ctx);
1654	unmap_mft_record(base_ni);
1655	m = NULL;
1656	ctx = NULL;
1657	/* Get the index bitmap attribute inode. */
1658	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1659	if (IS_ERR(bvi)) {
1660		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1661		err = PTR_ERR(bvi);
1662		goto unm_err_out;
1663	}
1664	bni = NTFS_I(bvi);
1665	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1666			NInoSparse(bni)) {
1667		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1668				"encrypted and/or sparse.");
1669		goto iput_unm_err_out;
1670	}
1671	/* Consistency check bitmap size vs. index allocation size. */
1672	bvi_size = i_size_read(bvi);
1673	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1674		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1675				"index allocation (0x%llx).", bvi_size << 3,
1676				vi->i_size);
1677		goto iput_unm_err_out;
1678	}
1679	iput(bvi);
1680skip_large_index_stuff:
1681	/* Setup the operations for this index inode. */
1682	vi->i_op = NULL;
1683	vi->i_fop = NULL;
1684	vi->i_mapping->a_ops = &ntfs_mst_aops;
1685	vi->i_blocks = ni->allocated_size >> 9;
1686	/*
1687	 * Make sure the base inode doesn't go away and attach it to the
1688	 * index inode.
1689	 */
1690	igrab(base_vi);
1691	ni->ext.base_ntfs_ino = base_ni;
1692	ni->nr_extents = -1;
1693
1694	ntfs_debug("Done.");
1695	return 0;
1696iput_unm_err_out:
1697	iput(bvi);
1698unm_err_out:
1699	if (!err)
1700		err = -EIO;
1701	if (ctx)
1702		ntfs_attr_put_search_ctx(ctx);
1703	if (m)
1704		unmap_mft_record(base_ni);
1705err_out:
1706	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1707			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1708			ni->name_len);
1709	make_bad_inode(vi);
1710	if (err != -EOPNOTSUPP && err != -ENOMEM)
1711		NVolSetErrors(vol);
1712	return err;
1713}
1714
1715/*
1716 * The MFT inode has special locking, so teach the lock validator
1717 * about this by splitting off the locking rules of the MFT from
1718 * the locking rules of other inodes. The MFT inode can never be
1719 * accessed from the VFS side (or even internally), only by the
1720 * map_mft functions.
1721 */
1722static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1723
1724/**
1725 * ntfs_read_inode_mount - special read_inode for mount time use only
1726 * @vi:		inode to read
1727 *
1728 * Read inode FILE_MFT at mount time, only called with super_block lock
1729 * held from within the read_super() code path.
1730 *
1731 * This function exists because when it is called the page cache for $MFT/$DATA
1732 * is not initialized and hence we cannot get at the contents of mft records
1733 * by calling map_mft_record*().
1734 *
1735 * Further it needs to cope with the circular references problem, i.e. cannot
1736 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1737 * we do not know where the other extent mft records are yet and again, because
1738 * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1739 * attribute list is actually present in $MFT inode.
1740 *
1741 * We solve these problems by starting with the $DATA attribute before anything
1742 * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1743 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1744 * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1745 * sufficient information for the next step to complete.
1746 *
1747 * This should work but there are two possible pit falls (see inline comments
1748 * below), but only time will tell if they are real pits or just smoke...
1749 */
1750int ntfs_read_inode_mount(struct inode *vi)
1751{
1752	VCN next_vcn, last_vcn, highest_vcn;
1753	s64 block;
1754	struct super_block *sb = vi->i_sb;
1755	ntfs_volume *vol = NTFS_SB(sb);
1756	struct buffer_head *bh;
1757	ntfs_inode *ni;
1758	MFT_RECORD *m = NULL;
1759	ATTR_RECORD *a;
1760	ntfs_attr_search_ctx *ctx;
1761	unsigned int i, nr_blocks;
1762	int err;
1763
1764	ntfs_debug("Entering.");
1765
1766	/* Initialize the ntfs specific part of @vi. */
1767	ntfs_init_big_inode(vi);
1768
1769	ni = NTFS_I(vi);
1770
1771	/* Setup the data attribute. It is special as it is mst protected. */
1772	NInoSetNonResident(ni);
1773	NInoSetMstProtected(ni);
1774	NInoSetSparseDisabled(ni);
1775	ni->type = AT_DATA;
1776	ni->name = NULL;
1777	ni->name_len = 0;
1778	/*
1779	 * This sets up our little cheat allowing us to reuse the async read io
1780	 * completion handler for directories.
1781	 */
1782	ni->itype.index.block_size = vol->mft_record_size;
1783	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1784
1785	/* Very important! Needed to be able to call map_mft_record*(). */
1786	vol->mft_ino = vi;
1787
1788	/* Allocate enough memory to read the first mft record. */
1789	if (vol->mft_record_size > 64 * 1024) {
1790		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1791				vol->mft_record_size);
1792		goto err_out;
1793	}
1794	i = vol->mft_record_size;
1795	if (i < sb->s_blocksize)
1796		i = sb->s_blocksize;
1797	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1798	if (!m) {
1799		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1800		goto err_out;
1801	}
1802
1803	/* Determine the first block of the $MFT/$DATA attribute. */
1804	block = vol->mft_lcn << vol->cluster_size_bits >>
1805			sb->s_blocksize_bits;
1806	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1807	if (!nr_blocks)
1808		nr_blocks = 1;
1809
1810	/* Load $MFT/$DATA's first mft record. */
1811	for (i = 0; i < nr_blocks; i++) {
1812		bh = sb_bread(sb, block++);
1813		if (!bh) {
1814			ntfs_error(sb, "Device read failed.");
1815			goto err_out;
1816		}
1817		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1818				sb->s_blocksize);
1819		brelse(bh);
1820	}
1821
1822	/* Apply the mst fixups. */
1823	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1824		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1825		goto err_out;
1826	}
1827
1828	/* Need this to sanity check attribute list references to $MFT. */
1829	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1830
1831	/* Provides readpage() and sync_page() for map_mft_record(). */
1832	vi->i_mapping->a_ops = &ntfs_mst_aops;
1833
1834	ctx = ntfs_attr_get_search_ctx(ni, m);
1835	if (!ctx) {
1836		err = -ENOMEM;
1837		goto err_out;
1838	}
1839
1840	/* Find the attribute list attribute if present. */
1841	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1842	if (err) {
1843		if (unlikely(err != -ENOENT)) {
1844			ntfs_error(sb, "Failed to lookup attribute list "
1845					"attribute. You should run chkdsk.");
1846			goto put_err_out;
1847		}
1848	} else /* if (!err) */ {
1849		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1850		u8 *al_end;
1851		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1852				"You should run chkdsk.";
1853
1854		ntfs_debug("Attribute list attribute found in $MFT.");
1855		NInoSetAttrList(ni);
1856		a = ctx->attr;
1857		if (a->flags & ATTR_COMPRESSION_MASK) {
1858			ntfs_error(sb, "Attribute list attribute is "
1859					"compressed.%s", es);
1860			goto put_err_out;
1861		}
1862		if (a->flags & ATTR_IS_ENCRYPTED ||
1863				a->flags & ATTR_IS_SPARSE) {
1864			if (a->non_resident) {
1865				ntfs_error(sb, "Non-resident attribute list "
1866						"attribute is encrypted/"
1867						"sparse.%s", es);
1868				goto put_err_out;
1869			}
1870			ntfs_warning(sb, "Resident attribute list attribute "
1871					"in $MFT system file is marked "
1872					"encrypted/sparse which is not true.  "
1873					"However, Windows allows this and "
1874					"chkdsk does not detect or correct it "
1875					"so we will just ignore the invalid "
1876					"flags and pretend they are not set.");
1877		}
1878		/* Now allocate memory for the attribute list. */
1879		ni->attr_list_size = (u32)ntfs_attr_size(a);
1880		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1881		if (!ni->attr_list) {
1882			ntfs_error(sb, "Not enough memory to allocate buffer "
1883					"for attribute list.");
1884			goto put_err_out;
1885		}
1886		if (a->non_resident) {
1887			NInoSetAttrListNonResident(ni);
1888			if (a->data.non_resident.lowest_vcn) {
1889				ntfs_error(sb, "Attribute list has non zero "
1890						"lowest_vcn. $MFT is corrupt. "
1891						"You should run chkdsk.");
1892				goto put_err_out;
1893			}
1894			/* Setup the runlist. */
1895			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1896					a, NULL);
1897			if (IS_ERR(ni->attr_list_rl.rl)) {
1898				err = PTR_ERR(ni->attr_list_rl.rl);
1899				ni->attr_list_rl.rl = NULL;
1900				ntfs_error(sb, "Mapping pairs decompression "
1901						"failed with error code %i.",
1902						-err);
1903				goto put_err_out;
1904			}
1905			/* Now load the attribute list. */
1906			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1907					ni->attr_list, ni->attr_list_size,
1908					sle64_to_cpu(a->data.
1909					non_resident.initialized_size)))) {
1910				ntfs_error(sb, "Failed to load attribute list "
1911						"attribute with error code %i.",
1912						-err);
1913				goto put_err_out;
1914			}
1915		} else /* if (!ctx.attr->non_resident) */ {
1916			if ((u8*)a + le16_to_cpu(
1917					a->data.resident.value_offset) +
1918					le32_to_cpu(
1919					a->data.resident.value_length) >
1920					(u8*)ctx->mrec + vol->mft_record_size) {
1921				ntfs_error(sb, "Corrupt attribute list "
1922						"attribute.");
1923				goto put_err_out;
1924			}
1925			/* Now copy the attribute list. */
1926			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1927					a->data.resident.value_offset),
1928					le32_to_cpu(
1929					a->data.resident.value_length));
1930		}
1931		/* The attribute list is now setup in memory. */
1932		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1933		al_end = (u8*)al_entry + ni->attr_list_size;
1934		for (;; al_entry = next_al_entry) {
1935			/* Out of bounds check. */
1936			if ((u8*)al_entry < ni->attr_list ||
1937					(u8*)al_entry > al_end)
1938				goto em_put_err_out;
1939			/* Catch the end of the attribute list. */
1940			if ((u8*)al_entry == al_end)
1941				goto em_put_err_out;
1942			if (!al_entry->length)
1943				goto em_put_err_out;
1944			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1945					le16_to_cpu(al_entry->length) > al_end)
1946				goto em_put_err_out;
1947			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1948					le16_to_cpu(al_entry->length));
1949			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1950				goto em_put_err_out;
1951			if (AT_DATA != al_entry->type)
1952				continue;
1953			/* We want an unnamed attribute. */
1954			if (al_entry->name_length)
1955				goto em_put_err_out;
1956			/* Want the first entry, i.e. lowest_vcn == 0. */
1957			if (al_entry->lowest_vcn)
1958				goto em_put_err_out;
1959			/* First entry has to be in the base mft record. */
1960			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1961				/* MFT references do not match, logic fails. */
1962				ntfs_error(sb, "BUG: The first $DATA extent "
1963						"of $MFT is not in the base "
1964						"mft record. Please report "
1965						"you saw this message to "
1966						"linux-ntfs-dev@lists."
1967						"sourceforge.net");
1968				goto put_err_out;
1969			} else {
1970				/* Sequence numbers must match. */
1971				if (MSEQNO_LE(al_entry->mft_reference) !=
1972						ni->seq_no)
1973					goto em_put_err_out;
1974				/* Got it. All is ok. We can stop now. */
1975				break;
1976			}
1977		}
1978	}
1979
1980	ntfs_attr_reinit_search_ctx(ctx);
1981
1982	/* Now load all attribute extents. */
1983	a = NULL;
1984	next_vcn = last_vcn = highest_vcn = 0;
1985	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1986			ctx))) {
1987		runlist_element *nrl;
1988
1989		/* Cache the current attribute. */
1990		a = ctx->attr;
1991		/* $MFT must be non-resident. */
1992		if (!a->non_resident) {
1993			ntfs_error(sb, "$MFT must be non-resident but a "
1994					"resident extent was found. $MFT is "
1995					"corrupt. Run chkdsk.");
1996			goto put_err_out;
1997		}
1998		/* $MFT must be uncompressed and unencrypted. */
1999		if (a->flags & ATTR_COMPRESSION_MASK ||
2000				a->flags & ATTR_IS_ENCRYPTED ||
2001				a->flags & ATTR_IS_SPARSE) {
2002			ntfs_error(sb, "$MFT must be uncompressed, "
2003					"non-sparse, and unencrypted but a "
2004					"compressed/sparse/encrypted extent "
2005					"was found. $MFT is corrupt. Run "
2006					"chkdsk.");
2007			goto put_err_out;
2008		}
2009		/*
2010		 * Decompress the mapping pairs array of this extent and merge
2011		 * the result into the existing runlist. No need for locking
2012		 * as we have exclusive access to the inode at this time and we
2013		 * are a mount in progress task, too.
2014		 */
2015		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2016		if (IS_ERR(nrl)) {
2017			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2018					"failed with error code %ld.  $MFT is "
2019					"corrupt.", PTR_ERR(nrl));
2020			goto put_err_out;
2021		}
2022		ni->runlist.rl = nrl;
2023
2024		/* Are we in the first extent? */
2025		if (!next_vcn) {
2026			if (a->data.non_resident.lowest_vcn) {
2027				ntfs_error(sb, "First extent of $DATA "
2028						"attribute has non zero "
2029						"lowest_vcn. $MFT is corrupt. "
2030						"You should run chkdsk.");
2031				goto put_err_out;
2032			}
2033			/* Get the last vcn in the $DATA attribute. */
2034			last_vcn = sle64_to_cpu(
2035					a->data.non_resident.allocated_size)
2036					>> vol->cluster_size_bits;
2037			/* Fill in the inode size. */
2038			vi->i_size = sle64_to_cpu(
2039					a->data.non_resident.data_size);
2040			ni->initialized_size = sle64_to_cpu(
2041					a->data.non_resident.initialized_size);
2042			ni->allocated_size = sle64_to_cpu(
2043					a->data.non_resident.allocated_size);
2044			/*
2045			 * Verify the number of mft records does not exceed
2046			 * 2^32 - 1.
2047			 */
2048			if ((vi->i_size >> vol->mft_record_size_bits) >=
2049					(1ULL << 32)) {
2050				ntfs_error(sb, "$MFT is too big! Aborting.");
2051				goto put_err_out;
2052			}
2053			/*
2054			 * We have got the first extent of the runlist for
2055			 * $MFT which means it is now relatively safe to call
2056			 * the normal ntfs_read_inode() function.
2057			 * Complete reading the inode, this will actually
2058			 * re-read the mft record for $MFT, this time entering
2059			 * it into the page cache with which we complete the
2060			 * kick start of the volume. It should be safe to do
2061			 * this now as the first extent of $MFT/$DATA is
2062			 * already known and we would hope that we don't need
2063			 * further extents in order to find the other
2064			 * attributes belonging to $MFT. Only time will tell if
2065			 * this is really the case. If not we will have to play
2066			 * magic at this point, possibly duplicating a lot of
2067			 * ntfs_read_inode() at this point. We will need to
2068			 * ensure we do enough of its work to be able to call
2069			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2070			 * hope this never happens...
2071			 */
2072			ntfs_read_locked_inode(vi);
2073			if (is_bad_inode(vi)) {
2074				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2075						"failed. BUG or corrupt $MFT. "
2076						"Run chkdsk and if no errors "
2077						"are found, please report you "
2078						"saw this message to "
2079						"linux-ntfs-dev@lists."
2080						"sourceforge.net");
2081				ntfs_attr_put_search_ctx(ctx);
2082				/* Revert to the safe super operations. */
2083				ntfs_free(m);
2084				return -1;
2085			}
2086			/*
2087			 * Re-initialize some specifics about $MFT's inode as
2088			 * ntfs_read_inode() will have set up the default ones.
2089			 */
2090			/* Set uid and gid to root. */
2091			vi->i_uid = vi->i_gid = 0;
2092			/* Regular file. No access for anyone. */
2093			vi->i_mode = S_IFREG;
2094			/* No VFS initiated operations allowed for $MFT. */
2095			vi->i_op = &ntfs_empty_inode_ops;
2096			vi->i_fop = &ntfs_empty_file_ops;
2097		}
2098
2099		/* Get the lowest vcn for the next extent. */
2100		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2101		next_vcn = highest_vcn + 1;
2102
2103		/* Only one extent or error, which we catch below. */
2104		if (next_vcn <= 0)
2105			break;
2106
2107		/* Avoid endless loops due to corruption. */
2108		if (next_vcn < sle64_to_cpu(
2109				a->data.non_resident.lowest_vcn)) {
2110			ntfs_error(sb, "$MFT has corrupt attribute list "
2111					"attribute. Run chkdsk.");
2112			goto put_err_out;
2113		}
2114	}
2115	if (err != -ENOENT) {
2116		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2117				"$MFT is corrupt. Run chkdsk.");
2118		goto put_err_out;
2119	}
2120	if (!a) {
2121		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2122				"corrupt. Run chkdsk.");
2123		goto put_err_out;
2124	}
2125	if (highest_vcn && highest_vcn != last_vcn - 1) {
2126		ntfs_error(sb, "Failed to load the complete runlist for "
2127				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2128				"Run chkdsk.");
2129		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2130				(unsigned long long)highest_vcn,
2131				(unsigned long long)last_vcn - 1);
2132		goto put_err_out;
2133	}
2134	ntfs_attr_put_search_ctx(ctx);
2135	ntfs_debug("Done.");
2136	ntfs_free(m);
2137
2138	/*
2139	 * Split the locking rules of the MFT inode from the
2140	 * locking rules of other inodes:
2141	 */
2142	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2143	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2144
2145	return 0;
2146
2147em_put_err_out:
2148	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2149			"attribute list. $MFT is corrupt. Run chkdsk.");
2150put_err_out:
2151	ntfs_attr_put_search_ctx(ctx);
2152err_out:
2153	ntfs_error(sb, "Failed. Marking inode as bad.");
2154	make_bad_inode(vi);
2155	ntfs_free(m);
2156	return -1;
2157}
2158
2159static void __ntfs_clear_inode(ntfs_inode *ni)
2160{
2161	/* Free all alocated memory. */
2162	down_write(&ni->runlist.lock);
2163	if (ni->runlist.rl) {
2164		ntfs_free(ni->runlist.rl);
2165		ni->runlist.rl = NULL;
2166	}
2167	up_write(&ni->runlist.lock);
2168
2169	if (ni->attr_list) {
2170		ntfs_free(ni->attr_list);
2171		ni->attr_list = NULL;
2172	}
2173
2174	down_write(&ni->attr_list_rl.lock);
2175	if (ni->attr_list_rl.rl) {
2176		ntfs_free(ni->attr_list_rl.rl);
2177		ni->attr_list_rl.rl = NULL;
2178	}
2179	up_write(&ni->attr_list_rl.lock);
2180
2181	if (ni->name_len && ni->name != I30) {
2182		/* Catch bugs... */
2183		BUG_ON(!ni->name);
2184		kfree(ni->name);
2185	}
2186}
2187
2188void ntfs_clear_extent_inode(ntfs_inode *ni)
2189{
2190	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2191
2192	BUG_ON(NInoAttr(ni));
2193	BUG_ON(ni->nr_extents != -1);
2194
2195#ifdef NTFS_RW
2196	if (NInoDirty(ni)) {
2197		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2198			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2199					"Losing data!  This is a BUG!!!");
2200	}
2201#endif /* NTFS_RW */
2202
2203	__ntfs_clear_inode(ni);
2204
2205	/* Bye, bye... */
2206	ntfs_destroy_extent_inode(ni);
2207}
2208
2209/**
2210 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2211 * @vi:		vfs inode pending annihilation
2212 *
2213 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2214 * is called, which deallocates all memory belonging to the NTFS specific part
2215 * of the inode and returns.
2216 *
2217 * If the MFT record is dirty, we commit it before doing anything else.
2218 */
2219void ntfs_evict_big_inode(struct inode *vi)
2220{
2221	ntfs_inode *ni = NTFS_I(vi);
2222
2223	truncate_inode_pages(&vi->i_data, 0);
2224	end_writeback(vi);
2225
2226#ifdef NTFS_RW
2227	if (NInoDirty(ni)) {
2228		bool was_bad = (is_bad_inode(vi));
2229
2230		/* Committing the inode also commits all extent inodes. */
2231		ntfs_commit_inode(vi);
2232
2233		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2234			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2235					"0x%lx.  Losing data!", vi->i_ino);
2236		}
2237	}
2238#endif /* NTFS_RW */
2239
2240	/* No need to lock at this stage as no one else has a reference. */
2241	if (ni->nr_extents > 0) {
2242		int i;
2243
2244		for (i = 0; i < ni->nr_extents; i++)
2245			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2246		kfree(ni->ext.extent_ntfs_inos);
2247	}
2248
2249	__ntfs_clear_inode(ni);
2250
2251	if (NInoAttr(ni)) {
2252		/* Release the base inode if we are holding it. */
2253		if (ni->nr_extents == -1) {
2254			iput(VFS_I(ni->ext.base_ntfs_ino));
2255			ni->nr_extents = 0;
2256			ni->ext.base_ntfs_ino = NULL;
2257		}
2258	}
2259	return;
2260}
2261
2262/**
2263 * ntfs_show_options - show mount options in /proc/mounts
2264 * @sf:		seq_file in which to write our mount options
2265 * @mnt:	vfs mount whose mount options to display
2266 *
2267 * Called by the VFS once for each mounted ntfs volume when someone reads
2268 * /proc/mounts in order to display the NTFS specific mount options of each
2269 * mount. The mount options of the vfs mount @mnt are written to the seq file
2270 * @sf and success is returned.
2271 */
2272int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2273{
2274	ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2275	int i;
2276
2277	seq_printf(sf, ",uid=%i", vol->uid);
2278	seq_printf(sf, ",gid=%i", vol->gid);
2279	if (vol->fmask == vol->dmask)
2280		seq_printf(sf, ",umask=0%o", vol->fmask);
2281	else {
2282		seq_printf(sf, ",fmask=0%o", vol->fmask);
2283		seq_printf(sf, ",dmask=0%o", vol->dmask);
2284	}
2285	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2286	if (NVolCaseSensitive(vol))
2287		seq_printf(sf, ",case_sensitive");
2288	if (NVolShowSystemFiles(vol))
2289		seq_printf(sf, ",show_sys_files");
2290	if (!NVolSparseEnabled(vol))
2291		seq_printf(sf, ",disable_sparse");
2292	for (i = 0; on_errors_arr[i].val; i++) {
2293		if (on_errors_arr[i].val & vol->on_errors)
2294			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2295	}
2296	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2297	return 0;
2298}
2299
2300#ifdef NTFS_RW
2301
2302static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2303		"chkdsk.";
2304
2305/**
2306 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2307 * @vi:		inode for which the i_size was changed
2308 *
2309 * We only support i_size changes for normal files at present, i.e. not
2310 * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2311 * below.
2312 *
2313 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2314 * that the change is allowed.
2315 *
2316 * This implies for us that @vi is a file inode rather than a directory, index,
2317 * or attribute inode as well as that @vi is a base inode.
2318 *
2319 * Returns 0 on success or -errno on error.
2320 *
2321 * Called with ->i_mutex held.  In all but one case ->i_alloc_sem is held for
2322 * writing.  The only case in the kernel where ->i_alloc_sem is not held is
2323 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2324 * with the current i_size as the offset.  The analogous place in NTFS is in
2325 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2326 * without holding ->i_alloc_sem.
2327 */
2328int ntfs_truncate(struct inode *vi)
2329{
2330	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2331	VCN highest_vcn;
2332	unsigned long flags;
2333	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2334	ntfs_volume *vol = ni->vol;
2335	ntfs_attr_search_ctx *ctx;
2336	MFT_RECORD *m;
2337	ATTR_RECORD *a;
2338	const char *te = "  Leaving file length out of sync with i_size.";
2339	int err, mp_size, size_change, alloc_change;
2340	u32 attr_len;
2341
2342	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2343	BUG_ON(NInoAttr(ni));
2344	BUG_ON(S_ISDIR(vi->i_mode));
2345	BUG_ON(NInoMstProtected(ni));
2346	BUG_ON(ni->nr_extents < 0);
2347retry_truncate:
2348	/*
2349	 * Lock the runlist for writing and map the mft record to ensure it is
2350	 * safe to mess with the attribute runlist and sizes.
2351	 */
2352	down_write(&ni->runlist.lock);
2353	if (!NInoAttr(ni))
2354		base_ni = ni;
2355	else
2356		base_ni = ni->ext.base_ntfs_ino;
2357	m = map_mft_record(base_ni);
2358	if (IS_ERR(m)) {
2359		err = PTR_ERR(m);
2360		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2361				"(error code %d).%s", vi->i_ino, err, te);
2362		ctx = NULL;
2363		m = NULL;
2364		goto old_bad_out;
2365	}
2366	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2367	if (unlikely(!ctx)) {
2368		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2369				"inode 0x%lx (not enough memory).%s",
2370				vi->i_ino, te);
2371		err = -ENOMEM;
2372		goto old_bad_out;
2373	}
2374	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2375			CASE_SENSITIVE, 0, NULL, 0, ctx);
2376	if (unlikely(err)) {
2377		if (err == -ENOENT) {
2378			ntfs_error(vi->i_sb, "Open attribute is missing from "
2379					"mft record.  Inode 0x%lx is corrupt.  "
2380					"Run chkdsk.%s", vi->i_ino, te);
2381			err = -EIO;
2382		} else
2383			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2384					"inode 0x%lx (error code %d).%s",
2385					vi->i_ino, err, te);
2386		goto old_bad_out;
2387	}
2388	m = ctx->mrec;
2389	a = ctx->attr;
2390	/*
2391	 * The i_size of the vfs inode is the new size for the attribute value.
2392	 */
2393	new_size = i_size_read(vi);
2394	/* The current size of the attribute value is the old size. */
2395	old_size = ntfs_attr_size(a);
2396	/* Calculate the new allocated size. */
2397	if (NInoNonResident(ni))
2398		new_alloc_size = (new_size + vol->cluster_size - 1) &
2399				~(s64)vol->cluster_size_mask;
2400	else
2401		new_alloc_size = (new_size + 7) & ~7;
2402	/* The current allocated size is the old allocated size. */
2403	read_lock_irqsave(&ni->size_lock, flags);
2404	old_alloc_size = ni->allocated_size;
2405	read_unlock_irqrestore(&ni->size_lock, flags);
2406	/*
2407	 * The change in the file size.  This will be 0 if no change, >0 if the
2408	 * size is growing, and <0 if the size is shrinking.
2409	 */
2410	size_change = -1;
2411	if (new_size - old_size >= 0) {
2412		size_change = 1;
2413		if (new_size == old_size)
2414			size_change = 0;
2415	}
2416	/* As above for the allocated size. */
2417	alloc_change = -1;
2418	if (new_alloc_size - old_alloc_size >= 0) {
2419		alloc_change = 1;
2420		if (new_alloc_size == old_alloc_size)
2421			alloc_change = 0;
2422	}
2423	/*
2424	 * If neither the size nor the allocation are being changed there is
2425	 * nothing to do.
2426	 */
2427	if (!size_change && !alloc_change)
2428		goto unm_done;
2429	/* If the size is changing, check if new size is allowed in $AttrDef. */
2430	if (size_change) {
2431		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2432		if (unlikely(err)) {
2433			if (err == -ERANGE) {
2434				ntfs_error(vol->sb, "Truncate would cause the "
2435						"inode 0x%lx to %simum size "
2436						"for its attribute type "
2437						"(0x%x).  Aborting truncate.",
2438						vi->i_ino,
2439						new_size > old_size ? "exceed "
2440						"the max" : "go under the min",
2441						le32_to_cpu(ni->type));
2442				err = -EFBIG;
2443			} else {
2444				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2445						"attribute type 0x%x.  "
2446						"Aborting truncate.",
2447						vi->i_ino,
2448						le32_to_cpu(ni->type));
2449				err = -EIO;
2450			}
2451			/* Reset the vfs inode size to the old size. */
2452			i_size_write(vi, old_size);
2453			goto err_out;
2454		}
2455	}
2456	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2457		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2458				"supported yet for %s files, ignoring.",
2459				NInoCompressed(ni) ? "compressed" :
2460				"encrypted");
2461		err = -EOPNOTSUPP;
2462		goto bad_out;
2463	}
2464	if (a->non_resident)
2465		goto do_non_resident_truncate;
2466	BUG_ON(NInoNonResident(ni));
2467	/* Resize the attribute record to best fit the new attribute size. */
2468	if (new_size < vol->mft_record_size &&
2469			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2470		/* The resize succeeded! */
2471		flush_dcache_mft_record_page(ctx->ntfs_ino);
2472		mark_mft_record_dirty(ctx->ntfs_ino);
2473		write_lock_irqsave(&ni->size_lock, flags);
2474		/* Update the sizes in the ntfs inode and all is done. */
2475		ni->allocated_size = le32_to_cpu(a->length) -
2476				le16_to_cpu(a->data.resident.value_offset);
2477		/*
2478		 * Note ntfs_resident_attr_value_resize() has already done any
2479		 * necessary data clearing in the attribute record.  When the
2480		 * file is being shrunk vmtruncate() will already have cleared
2481		 * the top part of the last partial page, i.e. since this is
2482		 * the resident case this is the page with index 0.  However,
2483		 * when the file is being expanded, the page cache page data
2484		 * between the old data_size, i.e. old_size, and the new_size
2485		 * has not been zeroed.  Fortunately, we do not need to zero it
2486		 * either since on one hand it will either already be zero due
2487		 * to both readpage and writepage clearing partial page data
2488		 * beyond i_size in which case there is nothing to do or in the
2489		 * case of the file being mmap()ped at the same time, POSIX
2490		 * specifies that the behaviour is unspecified thus we do not
2491		 * have to do anything.  This means that in our implementation
2492		 * in the rare case that the file is mmap()ped and a write
2493		 * occured into the mmap()ped region just beyond the file size
2494		 * and writepage has not yet been called to write out the page
2495		 * (which would clear the area beyond the file size) and we now
2496		 * extend the file size to incorporate this dirty region
2497		 * outside the file size, a write of the page would result in
2498		 * this data being written to disk instead of being cleared.
2499		 * Given both POSIX and the Linux mmap(2) man page specify that
2500		 * this corner case is undefined, we choose to leave it like
2501		 * that as this is much simpler for us as we cannot lock the
2502		 * relevant page now since we are holding too many ntfs locks
2503		 * which would result in a lock reversal deadlock.
2504		 */
2505		ni->initialized_size = new_size;
2506		write_unlock_irqrestore(&ni->size_lock, flags);
2507		goto unm_done;
2508	}
2509	/* If the above resize failed, this must be an attribute extension. */
2510	BUG_ON(size_change < 0);
2511	/*
2512	 * We have to drop all the locks so we can call
2513	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2514	 * locking the first page cache page and only if that fails dropping
2515	 * the locks, locking the page, and redoing all the locking and
2516	 * lookups.  While this would be a huge optimisation, it is not worth
2517	 * it as this is definitely a slow code path as it only ever can happen
2518	 * once for any given file.
2519	 */
2520	ntfs_attr_put_search_ctx(ctx);
2521	unmap_mft_record(base_ni);
2522	up_write(&ni->runlist.lock);
2523	/*
2524	 * Not enough space in the mft record, try to make the attribute
2525	 * non-resident and if successful restart the truncation process.
2526	 */
2527	err = ntfs_attr_make_non_resident(ni, old_size);
2528	if (likely(!err))
2529		goto retry_truncate;
2530	/*
2531	 * Could not make non-resident.  If this is due to this not being
2532	 * permitted for this attribute type or there not being enough space,
2533	 * try to make other attributes non-resident.  Otherwise fail.
2534	 */
2535	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2536		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2537				"type 0x%x, because the conversion from "
2538				"resident to non-resident attribute failed "
2539				"with error code %i.", vi->i_ino,
2540				(unsigned)le32_to_cpu(ni->type), err);
2541		if (err != -ENOMEM)
2542			err = -EIO;
2543		goto conv_err_out;
2544	}
2545	/* TODO: Not implemented from here, abort. */
2546	if (err == -ENOSPC)
2547		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2548				"disk for the non-resident attribute value.  "
2549				"This case is not implemented yet.");
2550	else /* if (err == -EPERM) */
2551		ntfs_error(vol->sb, "This attribute type may not be "
2552				"non-resident.  This case is not implemented "
2553				"yet.");
2554	err = -EOPNOTSUPP;
2555	goto conv_err_out;
2556do_non_resident_truncate:
2557	BUG_ON(!NInoNonResident(ni));
2558	if (alloc_change < 0) {
2559		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2560		if (highest_vcn > 0 &&
2561				old_alloc_size >> vol->cluster_size_bits >
2562				highest_vcn + 1) {
2563			/*
2564			 * This attribute has multiple extents.  Not yet
2565			 * supported.
2566			 */
2567			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2568					"attribute type 0x%x, because the "
2569					"attribute is highly fragmented (it "
2570					"consists of multiple extents) and "
2571					"this case is not implemented yet.",
2572					vi->i_ino,
2573					(unsigned)le32_to_cpu(ni->type));
2574			err = -EOPNOTSUPP;
2575			goto bad_out;
2576		}
2577	}
2578	/*
2579	 * If the size is shrinking, need to reduce the initialized_size and
2580	 * the data_size before reducing the allocation.
2581	 */
2582	if (size_change < 0) {
2583		/*
2584		 * Make the valid size smaller (i_size is already up-to-date).
2585		 */
2586		write_lock_irqsave(&ni->size_lock, flags);
2587		if (new_size < ni->initialized_size) {
2588			ni->initialized_size = new_size;
2589			a->data.non_resident.initialized_size =
2590					cpu_to_sle64(new_size);
2591		}
2592		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2593		write_unlock_irqrestore(&ni->size_lock, flags);
2594		flush_dcache_mft_record_page(ctx->ntfs_ino);
2595		mark_mft_record_dirty(ctx->ntfs_ino);
2596		/* If the allocated size is not changing, we are done. */
2597		if (!alloc_change)
2598			goto unm_done;
2599		/*
2600		 * If the size is shrinking it makes no sense for the
2601		 * allocation to be growing.
2602		 */
2603		BUG_ON(alloc_change > 0);
2604	} else /* if (size_change >= 0) */ {
2605		/*
2606		 * The file size is growing or staying the same but the
2607		 * allocation can be shrinking, growing or staying the same.
2608		 */
2609		if (alloc_change > 0) {
2610			/*
2611			 * We need to extend the allocation and possibly update
2612			 * the data size.  If we are updating the data size,
2613			 * since we are not touching the initialized_size we do
2614			 * not need to worry about the actual data on disk.
2615			 * And as far as the page cache is concerned, there
2616			 * will be no pages beyond the old data size and any
2617			 * partial region in the last page between the old and
2618			 * new data size (or the end of the page if the new
2619			 * data size is outside the page) does not need to be
2620			 * modified as explained above for the resident
2621			 * attribute truncate case.  To do this, we simply drop
2622			 * the locks we hold and leave all the work to our
2623			 * friendly helper ntfs_attr_extend_allocation().
2624			 */
2625			ntfs_attr_put_search_ctx(ctx);
2626			unmap_mft_record(base_ni);
2627			up_write(&ni->runlist.lock);
2628			err = ntfs_attr_extend_allocation(ni, new_size,
2629					size_change > 0 ? new_size : -1, -1);
2630			/*
2631			 * ntfs_attr_extend_allocation() will have done error
2632			 * output already.
2633			 */
2634			goto done;
2635		}
2636		if (!alloc_change)
2637			goto alloc_done;
2638	}
2639	/* alloc_change < 0 */
2640	/* Free the clusters. */
2641	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2642			vol->cluster_size_bits, -1, ctx);
2643	m = ctx->mrec;
2644	a = ctx->attr;
2645	if (unlikely(nr_freed < 0)) {
2646		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2647				"%lli).  Unmount and run chkdsk to recover "
2648				"the lost cluster(s).", (long long)nr_freed);
2649		NVolSetErrors(vol);
2650		nr_freed = 0;
2651	}
2652	/* Truncate the runlist. */
2653	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2654			new_alloc_size >> vol->cluster_size_bits);
2655	/*
2656	 * If the runlist truncation failed and/or the search context is no
2657	 * longer valid, we cannot resize the attribute record or build the
2658	 * mapping pairs array thus we mark the inode bad so that no access to
2659	 * the freed clusters can happen.
2660	 */
2661	if (unlikely(err || IS_ERR(m))) {
2662		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2663				IS_ERR(m) ?
2664				"restore attribute search context" :
2665				"truncate attribute runlist",
2666				IS_ERR(m) ? PTR_ERR(m) : err, es);
2667		err = -EIO;
2668		goto bad_out;
2669	}
2670	/* Get the size for the shrunk mapping pairs array for the runlist. */
2671	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2672	if (unlikely(mp_size <= 0)) {
2673		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2674				"attribute type 0x%x, because determining the "
2675				"size for the mapping pairs failed with error "
2676				"code %i.%s", vi->i_ino,
2677				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2678		err = -EIO;
2679		goto bad_out;
2680	}
2681	/*
2682	 * Shrink the attribute record for the new mapping pairs array.  Note,
2683	 * this cannot fail since we are making the attribute smaller thus by
2684	 * definition there is enough space to do so.
2685	 */
2686	attr_len = le32_to_cpu(a->length);
2687	err = ntfs_attr_record_resize(m, a, mp_size +
2688			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2689	BUG_ON(err);
2690	/*
2691	 * Generate the mapping pairs array directly into the attribute record.
2692	 */
2693	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2694			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2695			mp_size, ni->runlist.rl, 0, -1, NULL);
2696	if (unlikely(err)) {
2697		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2698				"attribute type 0x%x, because building the "
2699				"mapping pairs failed with error code %i.%s",
2700				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2701				err, es);
2702		err = -EIO;
2703		goto bad_out;
2704	}
2705	/* Update the allocated/compressed size as well as the highest vcn. */
2706	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2707			vol->cluster_size_bits) - 1);
2708	write_lock_irqsave(&ni->size_lock, flags);
2709	ni->allocated_size = new_alloc_size;
2710	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2711	if (NInoSparse(ni) || NInoCompressed(ni)) {
2712		if (nr_freed) {
2713			ni->itype.compressed.size -= nr_freed <<
2714					vol->cluster_size_bits;
2715			BUG_ON(ni->itype.compressed.size < 0);
2716			a->data.non_resident.compressed_size = cpu_to_sle64(
2717					ni->itype.compressed.size);
2718			vi->i_blocks = ni->itype.compressed.size >> 9;
2719		}
2720	} else
2721		vi->i_blocks = new_alloc_size >> 9;
2722	write_unlock_irqrestore(&ni->size_lock, flags);
2723	/*
2724	 * We have shrunk the allocation.  If this is a shrinking truncate we
2725	 * have already dealt with the initialized_size and the data_size above
2726	 * and we are done.  If the truncate is only changing the allocation
2727	 * and not the data_size, we are also done.  If this is an extending
2728	 * truncate, need to extend the data_size now which is ensured by the
2729	 * fact that @size_change is positive.
2730	 */
2731alloc_done:
2732	/*
2733	 * If the size is growing, need to update it now.  If it is shrinking,
2734	 * we have already updated it above (before the allocation change).
2735	 */
2736	if (size_change > 0)
2737		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2738	/* Ensure the modified mft record is written out. */
2739	flush_dcache_mft_record_page(ctx->ntfs_ino);
2740	mark_mft_record_dirty(ctx->ntfs_ino);
2741unm_done:
2742	ntfs_attr_put_search_ctx(ctx);
2743	unmap_mft_record(base_ni);
2744	up_write(&ni->runlist.lock);
2745done:
2746	/* Update the mtime and ctime on the base inode. */
2747	/* normally ->truncate shouldn't update ctime or mtime,
2748	 * but ntfs did before so it got a copy & paste version
2749	 * of file_update_time.  one day someone should fix this
2750	 * for real.
2751	 */
2752	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2753		struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2754		int sync_it = 0;
2755
2756		if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2757		    !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2758			sync_it = 1;
2759		VFS_I(base_ni)->i_mtime = now;
2760		VFS_I(base_ni)->i_ctime = now;
2761
2762		if (sync_it)
2763			mark_inode_dirty_sync(VFS_I(base_ni));
2764	}
2765
2766	if (likely(!err)) {
2767		NInoClearTruncateFailed(ni);
2768		ntfs_debug("Done.");
2769	}
2770	return err;
2771old_bad_out:
2772	old_size = -1;
2773bad_out:
2774	if (err != -ENOMEM && err != -EOPNOTSUPP)
2775		NVolSetErrors(vol);
2776	if (err != -EOPNOTSUPP)
2777		NInoSetTruncateFailed(ni);
2778	else if (old_size >= 0)
2779		i_size_write(vi, old_size);
2780err_out:
2781	if (ctx)
2782		ntfs_attr_put_search_ctx(ctx);
2783	if (m)
2784		unmap_mft_record(base_ni);
2785	up_write(&ni->runlist.lock);
2786out:
2787	ntfs_debug("Failed.  Returning error code %i.", err);
2788	return err;
2789conv_err_out:
2790	if (err != -ENOMEM && err != -EOPNOTSUPP)
2791		NVolSetErrors(vol);
2792	if (err != -EOPNOTSUPP)
2793		NInoSetTruncateFailed(ni);
2794	else
2795		i_size_write(vi, old_size);
2796	goto out;
2797}
2798
2799/**
2800 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2801 * @vi:		inode for which the i_size was changed
2802 *
2803 * Wrapper for ntfs_truncate() that has no return value.
2804 *
2805 * See ntfs_truncate() description above for details.
2806 */
2807void ntfs_truncate_vfs(struct inode *vi) {
2808	ntfs_truncate(vi);
2809}
2810
2811/**
2812 * ntfs_setattr - called from notify_change() when an attribute is being changed
2813 * @dentry:	dentry whose attributes to change
2814 * @attr:	structure describing the attributes and the changes
2815 *
2816 * We have to trap VFS attempts to truncate the file described by @dentry as
2817 * soon as possible, because we do not implement changes in i_size yet.  So we
2818 * abort all i_size changes here.
2819 *
2820 * We also abort all changes of user, group, and mode as we do not implement
2821 * the NTFS ACLs yet.
2822 *
2823 * Called with ->i_mutex held.  For the ATTR_SIZE (i.e. ->truncate) case, also
2824 * called with ->i_alloc_sem held for writing.
2825 */
2826int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2827{
2828	struct inode *vi = dentry->d_inode;
2829	int err;
2830	unsigned int ia_valid = attr->ia_valid;
2831
2832	err = inode_change_ok(vi, attr);
2833	if (err)
2834		goto out;
2835	/* We do not support NTFS ACLs yet. */
2836	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2837		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2838				"supported yet, ignoring.");
2839		err = -EOPNOTSUPP;
2840		goto out;
2841	}
2842	if (ia_valid & ATTR_SIZE) {
2843		if (attr->ia_size != i_size_read(vi)) {
2844			ntfs_inode *ni = NTFS_I(vi);
2845			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2846				ntfs_warning(vi->i_sb, "Changes in inode size "
2847						"are not supported yet for "
2848						"%s files, ignoring.",
2849						NInoCompressed(ni) ?
2850						"compressed" : "encrypted");
2851				err = -EOPNOTSUPP;
2852			} else
2853				err = vmtruncate(vi, attr->ia_size);
2854			if (err || ia_valid == ATTR_SIZE)
2855				goto out;
2856		} else {
2857			/*
2858			 * We skipped the truncate but must still update
2859			 * timestamps.
2860			 */
2861			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2862		}
2863	}
2864	if (ia_valid & ATTR_ATIME)
2865		vi->i_atime = timespec_trunc(attr->ia_atime,
2866				vi->i_sb->s_time_gran);
2867	if (ia_valid & ATTR_MTIME)
2868		vi->i_mtime = timespec_trunc(attr->ia_mtime,
2869				vi->i_sb->s_time_gran);
2870	if (ia_valid & ATTR_CTIME)
2871		vi->i_ctime = timespec_trunc(attr->ia_ctime,
2872				vi->i_sb->s_time_gran);
2873	mark_inode_dirty(vi);
2874out:
2875	return err;
2876}
2877
2878/**
2879 * ntfs_write_inode - write out a dirty inode
2880 * @vi:		inode to write out
2881 * @sync:	if true, write out synchronously
2882 *
2883 * Write out a dirty inode to disk including any extent inodes if present.
2884 *
2885 * If @sync is true, commit the inode to disk and wait for io completion.  This
2886 * is done using write_mft_record().
2887 *
2888 * If @sync is false, just schedule the write to happen but do not wait for i/o
2889 * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2890 * marking the page (and in this case mft record) dirty but we do not implement
2891 * this yet as write_mft_record() largely ignores the @sync parameter and
2892 * always performs synchronous writes.
2893 *
2894 * Return 0 on success and -errno on error.
2895 */
2896int __ntfs_write_inode(struct inode *vi, int sync)
2897{
2898	sle64 nt;
2899	ntfs_inode *ni = NTFS_I(vi);
2900	ntfs_attr_search_ctx *ctx;
2901	MFT_RECORD *m;
2902	STANDARD_INFORMATION *si;
2903	int err = 0;
2904	bool modified = false;
2905
2906	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2907			vi->i_ino);
2908	/*
2909	 * Dirty attribute inodes are written via their real inodes so just
2910	 * clean them here.  Access time updates are taken care off when the
2911	 * real inode is written.
2912	 */
2913	if (NInoAttr(ni)) {
2914		NInoClearDirty(ni);
2915		ntfs_debug("Done.");
2916		return 0;
2917	}
2918	/* Map, pin, and lock the mft record belonging to the inode. */
2919	m = map_mft_record(ni);
2920	if (IS_ERR(m)) {
2921		err = PTR_ERR(m);
2922		goto err_out;
2923	}
2924	/* Update the access times in the standard information attribute. */
2925	ctx = ntfs_attr_get_search_ctx(ni, m);
2926	if (unlikely(!ctx)) {
2927		err = -ENOMEM;
2928		goto unm_err_out;
2929	}
2930	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2931			CASE_SENSITIVE, 0, NULL, 0, ctx);
2932	if (unlikely(err)) {
2933		ntfs_attr_put_search_ctx(ctx);
2934		goto unm_err_out;
2935	}
2936	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2937			le16_to_cpu(ctx->attr->data.resident.value_offset));
2938	/* Update the access times if they have changed. */
2939	nt = utc2ntfs(vi->i_mtime);
2940	if (si->last_data_change_time != nt) {
2941		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2942				"new = 0x%llx", vi->i_ino, (long long)
2943				sle64_to_cpu(si->last_data_change_time),
2944				(long long)sle64_to_cpu(nt));
2945		si->last_data_change_time = nt;
2946		modified = true;
2947	}
2948	nt = utc2ntfs(vi->i_ctime);
2949	if (si->last_mft_change_time != nt) {
2950		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2951				"new = 0x%llx", vi->i_ino, (long long)
2952				sle64_to_cpu(si->last_mft_change_time),
2953				(long long)sle64_to_cpu(nt));
2954		si->last_mft_change_time = nt;
2955		modified = true;
2956	}
2957	nt = utc2ntfs(vi->i_atime);
2958	if (si->last_access_time != nt) {
2959		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
2960				"new = 0x%llx", vi->i_ino,
2961				(long long)sle64_to_cpu(si->last_access_time),
2962				(long long)sle64_to_cpu(nt));
2963		si->last_access_time = nt;
2964		modified = true;
2965	}
2966	/*
2967	 * If we just modified the standard information attribute we need to
2968	 * mark the mft record it is in dirty.  We do this manually so that
2969	 * mark_inode_dirty() is not called which would redirty the inode and
2970	 * hence result in an infinite loop of trying to write the inode.
2971	 * There is no need to mark the base inode nor the base mft record
2972	 * dirty, since we are going to write this mft record below in any case
2973	 * and the base mft record may actually not have been modified so it
2974	 * might not need to be written out.
2975	 * NOTE: It is not a problem when the inode for $MFT itself is being
2976	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
2977	 * on the $MFT inode and hence ntfs_write_inode() will not be
2978	 * re-invoked because of it which in turn is ok since the dirtied mft
2979	 * record will be cleaned and written out to disk below, i.e. before
2980	 * this function returns.
2981	 */
2982	if (modified) {
2983		flush_dcache_mft_record_page(ctx->ntfs_ino);
2984		if (!NInoTestSetDirty(ctx->ntfs_ino))
2985			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
2986					ctx->ntfs_ino->page_ofs);
2987	}
2988	ntfs_attr_put_search_ctx(ctx);
2989	/* Now the access times are updated, write the base mft record. */
2990	if (NInoDirty(ni))
2991		err = write_mft_record(ni, m, sync);
2992	/* Write all attached extent mft records. */
2993	mutex_lock(&ni->extent_lock);
2994	if (ni->nr_extents > 0) {
2995		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
2996		int i;
2997
2998		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
2999		for (i = 0; i < ni->nr_extents; i++) {
3000			ntfs_inode *tni = extent_nis[i];
3001
3002			if (NInoDirty(tni)) {
3003				MFT_RECORD *tm = map_mft_record(tni);
3004				int ret;
3005
3006				if (IS_ERR(tm)) {
3007					if (!err || err == -ENOMEM)
3008						err = PTR_ERR(tm);
3009					continue;
3010				}
3011				ret = write_mft_record(tni, tm, sync);
3012				unmap_mft_record(tni);
3013				if (unlikely(ret)) {
3014					if (!err || err == -ENOMEM)
3015						err = ret;
3016				}
3017			}
3018		}
3019	}
3020	mutex_unlock(&ni->extent_lock);
3021	unmap_mft_record(ni);
3022	if (unlikely(err))
3023		goto err_out;
3024	ntfs_debug("Done.");
3025	return 0;
3026unm_err_out:
3027	unmap_mft_record(ni);
3028err_out:
3029	if (err == -ENOMEM) {
3030		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3031				"Marking the inode dirty again, so the VFS "
3032				"retries later.");
3033		mark_inode_dirty(vi);
3034	} else {
3035		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3036		NVolSetErrors(ni->vol);
3037	}
3038	return err;
3039}
3040
3041#endif /* NTFS_RW */
3042