1/*
2 * Copyright (C) 2007 Oracle.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/fsnotify.h>
25#include <linux/pagemap.h>
26#include <linux/highmem.h>
27#include <linux/time.h>
28#include <linux/init.h>
29#include <linux/string.h>
30#include <linux/backing-dev.h>
31#include <linux/mount.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/swap.h>
35#include <linux/writeback.h>
36#include <linux/statfs.h>
37#include <linux/compat.h>
38#include <linux/bit_spinlock.h>
39#include <linux/security.h>
40#include <linux/xattr.h>
41#include <linux/vmalloc.h>
42#include <linux/slab.h>
43#include "compat.h"
44#include "ctree.h"
45#include "disk-io.h"
46#include "transaction.h"
47#include "btrfs_inode.h"
48#include "ioctl.h"
49#include "print-tree.h"
50#include "volumes.h"
51#include "locking.h"
52
53/* Mask out flags that are inappropriate for the given type of inode. */
54static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
55{
56	if (S_ISDIR(mode))
57		return flags;
58	else if (S_ISREG(mode))
59		return flags & ~FS_DIRSYNC_FL;
60	else
61		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
62}
63
64/*
65 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
66 */
67static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
68{
69	unsigned int iflags = 0;
70
71	if (flags & BTRFS_INODE_SYNC)
72		iflags |= FS_SYNC_FL;
73	if (flags & BTRFS_INODE_IMMUTABLE)
74		iflags |= FS_IMMUTABLE_FL;
75	if (flags & BTRFS_INODE_APPEND)
76		iflags |= FS_APPEND_FL;
77	if (flags & BTRFS_INODE_NODUMP)
78		iflags |= FS_NODUMP_FL;
79	if (flags & BTRFS_INODE_NOATIME)
80		iflags |= FS_NOATIME_FL;
81	if (flags & BTRFS_INODE_DIRSYNC)
82		iflags |= FS_DIRSYNC_FL;
83
84	return iflags;
85}
86
87/*
88 * Update inode->i_flags based on the btrfs internal flags.
89 */
90void btrfs_update_iflags(struct inode *inode)
91{
92	struct btrfs_inode *ip = BTRFS_I(inode);
93
94	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
95
96	if (ip->flags & BTRFS_INODE_SYNC)
97		inode->i_flags |= S_SYNC;
98	if (ip->flags & BTRFS_INODE_IMMUTABLE)
99		inode->i_flags |= S_IMMUTABLE;
100	if (ip->flags & BTRFS_INODE_APPEND)
101		inode->i_flags |= S_APPEND;
102	if (ip->flags & BTRFS_INODE_NOATIME)
103		inode->i_flags |= S_NOATIME;
104	if (ip->flags & BTRFS_INODE_DIRSYNC)
105		inode->i_flags |= S_DIRSYNC;
106}
107
108/*
109 * Inherit flags from the parent inode.
110 *
111 * Unlike extN we don't have any flags we don't want to inherit currently.
112 */
113void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
114{
115	unsigned int flags;
116
117	if (!dir)
118		return;
119
120	flags = BTRFS_I(dir)->flags;
121
122	if (S_ISREG(inode->i_mode))
123		flags &= ~BTRFS_INODE_DIRSYNC;
124	else if (!S_ISDIR(inode->i_mode))
125		flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
126
127	BTRFS_I(inode)->flags = flags;
128	btrfs_update_iflags(inode);
129}
130
131static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
132{
133	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
134	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
135
136	if (copy_to_user(arg, &flags, sizeof(flags)))
137		return -EFAULT;
138	return 0;
139}
140
141static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
142{
143	struct inode *inode = file->f_path.dentry->d_inode;
144	struct btrfs_inode *ip = BTRFS_I(inode);
145	struct btrfs_root *root = ip->root;
146	struct btrfs_trans_handle *trans;
147	unsigned int flags, oldflags;
148	int ret;
149
150	if (copy_from_user(&flags, arg, sizeof(flags)))
151		return -EFAULT;
152
153	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
154		      FS_NOATIME_FL | FS_NODUMP_FL | \
155		      FS_SYNC_FL | FS_DIRSYNC_FL))
156		return -EOPNOTSUPP;
157
158	if (!is_owner_or_cap(inode))
159		return -EACCES;
160
161	mutex_lock(&inode->i_mutex);
162
163	flags = btrfs_mask_flags(inode->i_mode, flags);
164	oldflags = btrfs_flags_to_ioctl(ip->flags);
165	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
166		if (!capable(CAP_LINUX_IMMUTABLE)) {
167			ret = -EPERM;
168			goto out_unlock;
169		}
170	}
171
172	ret = mnt_want_write(file->f_path.mnt);
173	if (ret)
174		goto out_unlock;
175
176	if (flags & FS_SYNC_FL)
177		ip->flags |= BTRFS_INODE_SYNC;
178	else
179		ip->flags &= ~BTRFS_INODE_SYNC;
180	if (flags & FS_IMMUTABLE_FL)
181		ip->flags |= BTRFS_INODE_IMMUTABLE;
182	else
183		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
184	if (flags & FS_APPEND_FL)
185		ip->flags |= BTRFS_INODE_APPEND;
186	else
187		ip->flags &= ~BTRFS_INODE_APPEND;
188	if (flags & FS_NODUMP_FL)
189		ip->flags |= BTRFS_INODE_NODUMP;
190	else
191		ip->flags &= ~BTRFS_INODE_NODUMP;
192	if (flags & FS_NOATIME_FL)
193		ip->flags |= BTRFS_INODE_NOATIME;
194	else
195		ip->flags &= ~BTRFS_INODE_NOATIME;
196	if (flags & FS_DIRSYNC_FL)
197		ip->flags |= BTRFS_INODE_DIRSYNC;
198	else
199		ip->flags &= ~BTRFS_INODE_DIRSYNC;
200
201
202	trans = btrfs_join_transaction(root, 1);
203	BUG_ON(!trans);
204
205	ret = btrfs_update_inode(trans, root, inode);
206	BUG_ON(ret);
207
208	btrfs_update_iflags(inode);
209	inode->i_ctime = CURRENT_TIME;
210	btrfs_end_transaction(trans, root);
211
212	mnt_drop_write(file->f_path.mnt);
213 out_unlock:
214	mutex_unlock(&inode->i_mutex);
215	return 0;
216}
217
218static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
219{
220	struct inode *inode = file->f_path.dentry->d_inode;
221
222	return put_user(inode->i_generation, arg);
223}
224
225static noinline int create_subvol(struct btrfs_root *root,
226				  struct dentry *dentry,
227				  char *name, int namelen)
228{
229	struct btrfs_trans_handle *trans;
230	struct btrfs_key key;
231	struct btrfs_root_item root_item;
232	struct btrfs_inode_item *inode_item;
233	struct extent_buffer *leaf;
234	struct btrfs_root *new_root;
235	struct inode *dir = dentry->d_parent->d_inode;
236	int ret;
237	int err;
238	u64 objectid;
239	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
240	u64 index = 0;
241
242	ret = btrfs_find_free_objectid(NULL, root->fs_info->tree_root,
243				       0, &objectid);
244	if (ret)
245		return ret;
246	/*
247	 * 1 - inode item
248	 * 2 - refs
249	 * 1 - root item
250	 * 2 - dir items
251	 */
252	trans = btrfs_start_transaction(root, 6);
253	if (IS_ERR(trans))
254		return PTR_ERR(trans);
255
256	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
257				      0, objectid, NULL, 0, 0, 0);
258	if (IS_ERR(leaf)) {
259		ret = PTR_ERR(leaf);
260		goto fail;
261	}
262
263	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
264	btrfs_set_header_bytenr(leaf, leaf->start);
265	btrfs_set_header_generation(leaf, trans->transid);
266	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
267	btrfs_set_header_owner(leaf, objectid);
268
269	write_extent_buffer(leaf, root->fs_info->fsid,
270			    (unsigned long)btrfs_header_fsid(leaf),
271			    BTRFS_FSID_SIZE);
272	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
273			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
274			    BTRFS_UUID_SIZE);
275	btrfs_mark_buffer_dirty(leaf);
276
277	inode_item = &root_item.inode;
278	memset(inode_item, 0, sizeof(*inode_item));
279	inode_item->generation = cpu_to_le64(1);
280	inode_item->size = cpu_to_le64(3);
281	inode_item->nlink = cpu_to_le32(1);
282	inode_item->nbytes = cpu_to_le64(root->leafsize);
283	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
284
285	btrfs_set_root_bytenr(&root_item, leaf->start);
286	btrfs_set_root_generation(&root_item, trans->transid);
287	btrfs_set_root_level(&root_item, 0);
288	btrfs_set_root_refs(&root_item, 1);
289	btrfs_set_root_used(&root_item, leaf->len);
290	btrfs_set_root_last_snapshot(&root_item, 0);
291
292	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
293	root_item.drop_level = 0;
294
295	btrfs_tree_unlock(leaf);
296	free_extent_buffer(leaf);
297	leaf = NULL;
298
299	btrfs_set_root_dirid(&root_item, new_dirid);
300
301	key.objectid = objectid;
302	key.offset = 0;
303	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
304	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
305				&root_item);
306	if (ret)
307		goto fail;
308
309	key.offset = (u64)-1;
310	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
311	BUG_ON(IS_ERR(new_root));
312
313	btrfs_record_root_in_trans(trans, new_root);
314
315	ret = btrfs_create_subvol_root(trans, new_root, new_dirid,
316				       BTRFS_I(dir)->block_group);
317	/*
318	 * insert the directory item
319	 */
320	ret = btrfs_set_inode_index(dir, &index);
321	BUG_ON(ret);
322
323	ret = btrfs_insert_dir_item(trans, root,
324				    name, namelen, dir->i_ino, &key,
325				    BTRFS_FT_DIR, index);
326	if (ret)
327		goto fail;
328
329	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
330	ret = btrfs_update_inode(trans, root, dir);
331	BUG_ON(ret);
332
333	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
334				 objectid, root->root_key.objectid,
335				 dir->i_ino, index, name, namelen);
336
337	BUG_ON(ret);
338
339	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
340fail:
341	err = btrfs_commit_transaction(trans, root);
342	if (err && !ret)
343		ret = err;
344	return ret;
345}
346
347static int create_snapshot(struct btrfs_root *root, struct dentry *dentry)
348{
349	struct inode *inode;
350	struct btrfs_pending_snapshot *pending_snapshot;
351	struct btrfs_trans_handle *trans;
352	int ret;
353
354	if (!root->ref_cows)
355		return -EINVAL;
356
357	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
358	if (!pending_snapshot)
359		return -ENOMEM;
360
361	btrfs_init_block_rsv(&pending_snapshot->block_rsv);
362	pending_snapshot->dentry = dentry;
363	pending_snapshot->root = root;
364
365	trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
366	if (IS_ERR(trans)) {
367		ret = PTR_ERR(trans);
368		goto fail;
369	}
370
371	ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
372	BUG_ON(ret);
373
374	list_add(&pending_snapshot->list,
375		 &trans->transaction->pending_snapshots);
376	ret = btrfs_commit_transaction(trans, root->fs_info->extent_root);
377	BUG_ON(ret);
378
379	ret = pending_snapshot->error;
380	if (ret)
381		goto fail;
382
383	btrfs_orphan_cleanup(pending_snapshot->snap);
384
385	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
386	if (IS_ERR(inode)) {
387		ret = PTR_ERR(inode);
388		goto fail;
389	}
390	BUG_ON(!inode);
391	d_instantiate(dentry, inode);
392	ret = 0;
393fail:
394	kfree(pending_snapshot);
395	return ret;
396}
397
398/* copy of may_create in fs/namei.c() */
399static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
400{
401	if (child->d_inode)
402		return -EEXIST;
403	if (IS_DEADDIR(dir))
404		return -ENOENT;
405	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
406}
407
408/*
409 * Create a new subvolume below @parent.  This is largely modeled after
410 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
411 * inside this filesystem so it's quite a bit simpler.
412 */
413static noinline int btrfs_mksubvol(struct path *parent,
414				   char *name, int namelen,
415				   struct btrfs_root *snap_src)
416{
417	struct inode *dir  = parent->dentry->d_inode;
418	struct dentry *dentry;
419	int error;
420
421	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
422
423	dentry = lookup_one_len(name, parent->dentry, namelen);
424	error = PTR_ERR(dentry);
425	if (IS_ERR(dentry))
426		goto out_unlock;
427
428	error = -EEXIST;
429	if (dentry->d_inode)
430		goto out_dput;
431
432	error = mnt_want_write(parent->mnt);
433	if (error)
434		goto out_dput;
435
436	error = btrfs_may_create(dir, dentry);
437	if (error)
438		goto out_drop_write;
439
440	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
441
442	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
443		goto out_up_read;
444
445	if (snap_src) {
446		error = create_snapshot(snap_src, dentry);
447	} else {
448		error = create_subvol(BTRFS_I(dir)->root, dentry,
449				      name, namelen);
450	}
451	if (!error)
452		fsnotify_mkdir(dir, dentry);
453out_up_read:
454	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
455out_drop_write:
456	mnt_drop_write(parent->mnt);
457out_dput:
458	dput(dentry);
459out_unlock:
460	mutex_unlock(&dir->i_mutex);
461	return error;
462}
463
464static int should_defrag_range(struct inode *inode, u64 start, u64 len,
465			       int thresh, u64 *last_len, u64 *skip,
466			       u64 *defrag_end)
467{
468	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
469	struct extent_map *em = NULL;
470	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
471	int ret = 1;
472
473
474	if (thresh == 0)
475		thresh = 256 * 1024;
476
477	/*
478	 * make sure that once we start defragging and extent, we keep on
479	 * defragging it
480	 */
481	if (start < *defrag_end)
482		return 1;
483
484	*skip = 0;
485
486	/*
487	 * hopefully we have this extent in the tree already, try without
488	 * the full extent lock
489	 */
490	read_lock(&em_tree->lock);
491	em = lookup_extent_mapping(em_tree, start, len);
492	read_unlock(&em_tree->lock);
493
494	if (!em) {
495		/* get the big lock and read metadata off disk */
496		lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
497		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
498		unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
499
500		if (IS_ERR(em))
501			return 0;
502	}
503
504	/* this will cover holes, and inline extents */
505	if (em->block_start >= EXTENT_MAP_LAST_BYTE)
506		ret = 0;
507
508	/*
509	 * we hit a real extent, if it is big don't bother defragging it again
510	 */
511	if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
512		ret = 0;
513
514	/*
515	 * last_len ends up being a counter of how many bytes we've defragged.
516	 * every time we choose not to defrag an extent, we reset *last_len
517	 * so that the next tiny extent will force a defrag.
518	 *
519	 * The end result of this is that tiny extents before a single big
520	 * extent will force at least part of that big extent to be defragged.
521	 */
522	if (ret) {
523		*last_len += len;
524		*defrag_end = extent_map_end(em);
525	} else {
526		*last_len = 0;
527		*skip = extent_map_end(em);
528		*defrag_end = 0;
529	}
530
531	free_extent_map(em);
532	return ret;
533}
534
535static int btrfs_defrag_file(struct file *file,
536			     struct btrfs_ioctl_defrag_range_args *range)
537{
538	struct inode *inode = fdentry(file)->d_inode;
539	struct btrfs_root *root = BTRFS_I(inode)->root;
540	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
541	struct btrfs_ordered_extent *ordered;
542	struct page *page;
543	unsigned long last_index;
544	unsigned long ra_pages = root->fs_info->bdi.ra_pages;
545	unsigned long total_read = 0;
546	u64 page_start;
547	u64 page_end;
548	u64 last_len = 0;
549	u64 skip = 0;
550	u64 defrag_end = 0;
551	unsigned long i;
552	int ret;
553
554	if (inode->i_size == 0)
555		return 0;
556
557	if (range->start + range->len > range->start) {
558		last_index = min_t(u64, inode->i_size - 1,
559			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
560	} else {
561		last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
562	}
563
564	i = range->start >> PAGE_CACHE_SHIFT;
565	while (i <= last_index) {
566		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
567					PAGE_CACHE_SIZE,
568					range->extent_thresh,
569					&last_len, &skip,
570					&defrag_end)) {
571			unsigned long next;
572			/*
573			 * the should_defrag function tells us how much to skip
574			 * bump our counter by the suggested amount
575			 */
576			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
577			i = max(i + 1, next);
578			continue;
579		}
580
581		if (total_read % ra_pages == 0) {
582			btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
583				       min(last_index, i + ra_pages - 1));
584		}
585		total_read++;
586		mutex_lock(&inode->i_mutex);
587		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
588			BTRFS_I(inode)->force_compress = 1;
589
590		ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
591		if (ret)
592			goto err_unlock;
593again:
594		if (inode->i_size == 0 ||
595		    i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) {
596			ret = 0;
597			goto err_reservations;
598		}
599
600		page = grab_cache_page(inode->i_mapping, i);
601		if (!page) {
602			ret = -ENOMEM;
603			goto err_reservations;
604		}
605
606		if (!PageUptodate(page)) {
607			btrfs_readpage(NULL, page);
608			lock_page(page);
609			if (!PageUptodate(page)) {
610				unlock_page(page);
611				page_cache_release(page);
612				ret = -EIO;
613				goto err_reservations;
614			}
615		}
616
617		if (page->mapping != inode->i_mapping) {
618			unlock_page(page);
619			page_cache_release(page);
620			goto again;
621		}
622
623		wait_on_page_writeback(page);
624
625		if (PageDirty(page)) {
626			btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
627			goto loop_unlock;
628		}
629
630		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
631		page_end = page_start + PAGE_CACHE_SIZE - 1;
632		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
633
634		ordered = btrfs_lookup_ordered_extent(inode, page_start);
635		if (ordered) {
636			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
637			unlock_page(page);
638			page_cache_release(page);
639			btrfs_start_ordered_extent(inode, ordered, 1);
640			btrfs_put_ordered_extent(ordered);
641			goto again;
642		}
643		set_page_extent_mapped(page);
644
645		/*
646		 * this makes sure page_mkwrite is called on the
647		 * page if it is dirtied again later
648		 */
649		clear_page_dirty_for_io(page);
650		clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start,
651				  page_end, EXTENT_DIRTY | EXTENT_DELALLOC |
652				  EXTENT_DO_ACCOUNTING, GFP_NOFS);
653
654		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
655		ClearPageChecked(page);
656		set_page_dirty(page);
657		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
658
659loop_unlock:
660		unlock_page(page);
661		page_cache_release(page);
662		mutex_unlock(&inode->i_mutex);
663
664		balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
665		i++;
666	}
667
668	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
669		filemap_flush(inode->i_mapping);
670
671	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
672		/* the filemap_flush will queue IO into the worker threads, but
673		 * we have to make sure the IO is actually started and that
674		 * ordered extents get created before we return
675		 */
676		atomic_inc(&root->fs_info->async_submit_draining);
677		while (atomic_read(&root->fs_info->nr_async_submits) ||
678		      atomic_read(&root->fs_info->async_delalloc_pages)) {
679			wait_event(root->fs_info->async_submit_wait,
680			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
681			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
682		}
683		atomic_dec(&root->fs_info->async_submit_draining);
684
685		mutex_lock(&inode->i_mutex);
686		BTRFS_I(inode)->force_compress = 0;
687		mutex_unlock(&inode->i_mutex);
688	}
689
690	return 0;
691
692err_reservations:
693	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
694err_unlock:
695	mutex_unlock(&inode->i_mutex);
696	return ret;
697}
698
699static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
700					void __user *arg)
701{
702	u64 new_size;
703	u64 old_size;
704	u64 devid = 1;
705	struct btrfs_ioctl_vol_args *vol_args;
706	struct btrfs_trans_handle *trans;
707	struct btrfs_device *device = NULL;
708	char *sizestr;
709	char *devstr = NULL;
710	int ret = 0;
711	int namelen;
712	int mod = 0;
713
714	if (root->fs_info->sb->s_flags & MS_RDONLY)
715		return -EROFS;
716
717	if (!capable(CAP_SYS_ADMIN))
718		return -EPERM;
719
720	vol_args = memdup_user(arg, sizeof(*vol_args));
721	if (IS_ERR(vol_args))
722		return PTR_ERR(vol_args);
723
724	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
725	namelen = strlen(vol_args->name);
726
727	mutex_lock(&root->fs_info->volume_mutex);
728	sizestr = vol_args->name;
729	devstr = strchr(sizestr, ':');
730	if (devstr) {
731		char *end;
732		sizestr = devstr + 1;
733		*devstr = '\0';
734		devstr = vol_args->name;
735		devid = simple_strtoull(devstr, &end, 10);
736		printk(KERN_INFO "resizing devid %llu\n",
737		       (unsigned long long)devid);
738	}
739	device = btrfs_find_device(root, devid, NULL, NULL);
740	if (!device) {
741		printk(KERN_INFO "resizer unable to find device %llu\n",
742		       (unsigned long long)devid);
743		ret = -EINVAL;
744		goto out_unlock;
745	}
746	if (!strcmp(sizestr, "max"))
747		new_size = device->bdev->bd_inode->i_size;
748	else {
749		if (sizestr[0] == '-') {
750			mod = -1;
751			sizestr++;
752		} else if (sizestr[0] == '+') {
753			mod = 1;
754			sizestr++;
755		}
756		new_size = memparse(sizestr, NULL);
757		if (new_size == 0) {
758			ret = -EINVAL;
759			goto out_unlock;
760		}
761	}
762
763	old_size = device->total_bytes;
764
765	if (mod < 0) {
766		if (new_size > old_size) {
767			ret = -EINVAL;
768			goto out_unlock;
769		}
770		new_size = old_size - new_size;
771	} else if (mod > 0) {
772		new_size = old_size + new_size;
773	}
774
775	if (new_size < 256 * 1024 * 1024) {
776		ret = -EINVAL;
777		goto out_unlock;
778	}
779	if (new_size > device->bdev->bd_inode->i_size) {
780		ret = -EFBIG;
781		goto out_unlock;
782	}
783
784	do_div(new_size, root->sectorsize);
785	new_size *= root->sectorsize;
786
787	printk(KERN_INFO "new size for %s is %llu\n",
788		device->name, (unsigned long long)new_size);
789
790	if (new_size > old_size) {
791		trans = btrfs_start_transaction(root, 0);
792		ret = btrfs_grow_device(trans, device, new_size);
793		btrfs_commit_transaction(trans, root);
794	} else {
795		ret = btrfs_shrink_device(device, new_size);
796	}
797
798out_unlock:
799	mutex_unlock(&root->fs_info->volume_mutex);
800	kfree(vol_args);
801	return ret;
802}
803
804static noinline int btrfs_ioctl_snap_create(struct file *file,
805					    void __user *arg, int subvol)
806{
807	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
808	struct btrfs_ioctl_vol_args *vol_args;
809	struct file *src_file;
810	int namelen;
811	int ret = 0;
812
813	if (root->fs_info->sb->s_flags & MS_RDONLY)
814		return -EROFS;
815
816	vol_args = memdup_user(arg, sizeof(*vol_args));
817	if (IS_ERR(vol_args))
818		return PTR_ERR(vol_args);
819
820	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
821	namelen = strlen(vol_args->name);
822	if (strchr(vol_args->name, '/')) {
823		ret = -EINVAL;
824		goto out;
825	}
826
827	if (subvol) {
828		ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
829				     NULL);
830	} else {
831		struct inode *src_inode;
832		src_file = fget(vol_args->fd);
833		if (!src_file) {
834			ret = -EINVAL;
835			goto out;
836		}
837
838		src_inode = src_file->f_path.dentry->d_inode;
839		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
840			printk(KERN_INFO "btrfs: Snapshot src from "
841			       "another FS\n");
842			ret = -EINVAL;
843			fput(src_file);
844			goto out;
845		}
846		ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
847				     BTRFS_I(src_inode)->root);
848		fput(src_file);
849	}
850out:
851	kfree(vol_args);
852	return ret;
853}
854
855/*
856 * helper to check if the subvolume references other subvolumes
857 */
858static noinline int may_destroy_subvol(struct btrfs_root *root)
859{
860	struct btrfs_path *path;
861	struct btrfs_key key;
862	int ret;
863
864	path = btrfs_alloc_path();
865	if (!path)
866		return -ENOMEM;
867
868	key.objectid = root->root_key.objectid;
869	key.type = BTRFS_ROOT_REF_KEY;
870	key.offset = (u64)-1;
871
872	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
873				&key, path, 0, 0);
874	if (ret < 0)
875		goto out;
876	BUG_ON(ret == 0);
877
878	ret = 0;
879	if (path->slots[0] > 0) {
880		path->slots[0]--;
881		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
882		if (key.objectid == root->root_key.objectid &&
883		    key.type == BTRFS_ROOT_REF_KEY)
884			ret = -ENOTEMPTY;
885	}
886out:
887	btrfs_free_path(path);
888	return ret;
889}
890
891static noinline int key_in_sk(struct btrfs_key *key,
892			      struct btrfs_ioctl_search_key *sk)
893{
894	struct btrfs_key test;
895	int ret;
896
897	test.objectid = sk->min_objectid;
898	test.type = sk->min_type;
899	test.offset = sk->min_offset;
900
901	ret = btrfs_comp_cpu_keys(key, &test);
902	if (ret < 0)
903		return 0;
904
905	test.objectid = sk->max_objectid;
906	test.type = sk->max_type;
907	test.offset = sk->max_offset;
908
909	ret = btrfs_comp_cpu_keys(key, &test);
910	if (ret > 0)
911		return 0;
912	return 1;
913}
914
915static noinline int copy_to_sk(struct btrfs_root *root,
916			       struct btrfs_path *path,
917			       struct btrfs_key *key,
918			       struct btrfs_ioctl_search_key *sk,
919			       char *buf,
920			       unsigned long *sk_offset,
921			       int *num_found)
922{
923	u64 found_transid;
924	struct extent_buffer *leaf;
925	struct btrfs_ioctl_search_header sh;
926	unsigned long item_off;
927	unsigned long item_len;
928	int nritems;
929	int i;
930	int slot;
931	int found = 0;
932	int ret = 0;
933
934	leaf = path->nodes[0];
935	slot = path->slots[0];
936	nritems = btrfs_header_nritems(leaf);
937
938	if (btrfs_header_generation(leaf) > sk->max_transid) {
939		i = nritems;
940		goto advance_key;
941	}
942	found_transid = btrfs_header_generation(leaf);
943
944	for (i = slot; i < nritems; i++) {
945		item_off = btrfs_item_ptr_offset(leaf, i);
946		item_len = btrfs_item_size_nr(leaf, i);
947
948		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
949			item_len = 0;
950
951		if (sizeof(sh) + item_len + *sk_offset >
952		    BTRFS_SEARCH_ARGS_BUFSIZE) {
953			ret = 1;
954			goto overflow;
955		}
956
957		btrfs_item_key_to_cpu(leaf, key, i);
958		if (!key_in_sk(key, sk))
959			continue;
960
961		sh.objectid = key->objectid;
962		sh.offset = key->offset;
963		sh.type = key->type;
964		sh.len = item_len;
965		sh.transid = found_transid;
966
967		/* copy search result header */
968		memcpy(buf + *sk_offset, &sh, sizeof(sh));
969		*sk_offset += sizeof(sh);
970
971		if (item_len) {
972			char *p = buf + *sk_offset;
973			/* copy the item */
974			read_extent_buffer(leaf, p,
975					   item_off, item_len);
976			*sk_offset += item_len;
977		}
978		found++;
979
980		if (*num_found >= sk->nr_items)
981			break;
982	}
983advance_key:
984	ret = 0;
985	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
986		key->offset++;
987	else if (key->type < (u8)-1 && key->type < sk->max_type) {
988		key->offset = 0;
989		key->type++;
990	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
991		key->offset = 0;
992		key->type = 0;
993		key->objectid++;
994	} else
995		ret = 1;
996overflow:
997	*num_found += found;
998	return ret;
999}
1000
1001static noinline int search_ioctl(struct inode *inode,
1002				 struct btrfs_ioctl_search_args *args)
1003{
1004	struct btrfs_root *root;
1005	struct btrfs_key key;
1006	struct btrfs_key max_key;
1007	struct btrfs_path *path;
1008	struct btrfs_ioctl_search_key *sk = &args->key;
1009	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1010	int ret;
1011	int num_found = 0;
1012	unsigned long sk_offset = 0;
1013
1014	path = btrfs_alloc_path();
1015	if (!path)
1016		return -ENOMEM;
1017
1018	if (sk->tree_id == 0) {
1019		/* search the root of the inode that was passed */
1020		root = BTRFS_I(inode)->root;
1021	} else {
1022		key.objectid = sk->tree_id;
1023		key.type = BTRFS_ROOT_ITEM_KEY;
1024		key.offset = (u64)-1;
1025		root = btrfs_read_fs_root_no_name(info, &key);
1026		if (IS_ERR(root)) {
1027			printk(KERN_ERR "could not find root %llu\n",
1028			       sk->tree_id);
1029			btrfs_free_path(path);
1030			return -ENOENT;
1031		}
1032	}
1033
1034	key.objectid = sk->min_objectid;
1035	key.type = sk->min_type;
1036	key.offset = sk->min_offset;
1037
1038	max_key.objectid = sk->max_objectid;
1039	max_key.type = sk->max_type;
1040	max_key.offset = sk->max_offset;
1041
1042	path->keep_locks = 1;
1043
1044	while(1) {
1045		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1046					   sk->min_transid);
1047		if (ret != 0) {
1048			if (ret > 0)
1049				ret = 0;
1050			goto err;
1051		}
1052		ret = copy_to_sk(root, path, &key, sk, args->buf,
1053				 &sk_offset, &num_found);
1054		btrfs_release_path(root, path);
1055		if (ret || num_found >= sk->nr_items)
1056			break;
1057
1058	}
1059	ret = 0;
1060err:
1061	sk->nr_items = num_found;
1062	btrfs_free_path(path);
1063	return ret;
1064}
1065
1066static noinline int btrfs_ioctl_tree_search(struct file *file,
1067					   void __user *argp)
1068{
1069	 struct btrfs_ioctl_search_args *args;
1070	 struct inode *inode;
1071	 int ret;
1072
1073	if (!capable(CAP_SYS_ADMIN))
1074		return -EPERM;
1075
1076	args = kmalloc(sizeof(*args), GFP_KERNEL);
1077	if (!args)
1078		return -ENOMEM;
1079
1080	if (copy_from_user(args, argp, sizeof(*args))) {
1081		kfree(args);
1082		return -EFAULT;
1083	}
1084	inode = fdentry(file)->d_inode;
1085	ret = search_ioctl(inode, args);
1086	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1087		ret = -EFAULT;
1088	kfree(args);
1089	return ret;
1090}
1091
1092/*
1093 * Search INODE_REFs to identify path name of 'dirid' directory
1094 * in a 'tree_id' tree. and sets path name to 'name'.
1095 */
1096static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1097				u64 tree_id, u64 dirid, char *name)
1098{
1099	struct btrfs_root *root;
1100	struct btrfs_key key;
1101	char *ptr;
1102	int ret = -1;
1103	int slot;
1104	int len;
1105	int total_len = 0;
1106	struct btrfs_inode_ref *iref;
1107	struct extent_buffer *l;
1108	struct btrfs_path *path;
1109
1110	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1111		name[0]='\0';
1112		return 0;
1113	}
1114
1115	path = btrfs_alloc_path();
1116	if (!path)
1117		return -ENOMEM;
1118
1119	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1120
1121	key.objectid = tree_id;
1122	key.type = BTRFS_ROOT_ITEM_KEY;
1123	key.offset = (u64)-1;
1124	root = btrfs_read_fs_root_no_name(info, &key);
1125	if (IS_ERR(root)) {
1126		printk(KERN_ERR "could not find root %llu\n", tree_id);
1127		ret = -ENOENT;
1128		goto out;
1129	}
1130
1131	key.objectid = dirid;
1132	key.type = BTRFS_INODE_REF_KEY;
1133	key.offset = (u64)-1;
1134
1135	while(1) {
1136		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1137		if (ret < 0)
1138			goto out;
1139
1140		l = path->nodes[0];
1141		slot = path->slots[0];
1142		if (ret > 0 && slot > 0)
1143			slot--;
1144		btrfs_item_key_to_cpu(l, &key, slot);
1145
1146		if (ret > 0 && (key.objectid != dirid ||
1147				key.type != BTRFS_INODE_REF_KEY)) {
1148			ret = -ENOENT;
1149			goto out;
1150		}
1151
1152		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1153		len = btrfs_inode_ref_name_len(l, iref);
1154		ptr -= len + 1;
1155		total_len += len + 1;
1156		if (ptr < name)
1157			goto out;
1158
1159		*(ptr + len) = '/';
1160		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1161
1162		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1163			break;
1164
1165		btrfs_release_path(root, path);
1166		key.objectid = key.offset;
1167		key.offset = (u64)-1;
1168		dirid = key.objectid;
1169
1170	}
1171	if (ptr < name)
1172		goto out;
1173	memcpy(name, ptr, total_len);
1174	name[total_len]='\0';
1175	ret = 0;
1176out:
1177	btrfs_free_path(path);
1178	return ret;
1179}
1180
1181static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1182					   void __user *argp)
1183{
1184	 struct btrfs_ioctl_ino_lookup_args *args;
1185	 struct inode *inode;
1186	 int ret;
1187
1188	if (!capable(CAP_SYS_ADMIN))
1189		return -EPERM;
1190
1191	args = kmalloc(sizeof(*args), GFP_KERNEL);
1192	if (!args)
1193		return -ENOMEM;
1194
1195	if (copy_from_user(args, argp, sizeof(*args))) {
1196		kfree(args);
1197		return -EFAULT;
1198	}
1199	inode = fdentry(file)->d_inode;
1200
1201	if (args->treeid == 0)
1202		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1203
1204	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1205					args->treeid, args->objectid,
1206					args->name);
1207
1208	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1209		ret = -EFAULT;
1210
1211	kfree(args);
1212	return ret;
1213}
1214
1215static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1216					     void __user *arg)
1217{
1218	struct dentry *parent = fdentry(file);
1219	struct dentry *dentry;
1220	struct inode *dir = parent->d_inode;
1221	struct inode *inode;
1222	struct btrfs_root *root = BTRFS_I(dir)->root;
1223	struct btrfs_root *dest = NULL;
1224	struct btrfs_ioctl_vol_args *vol_args;
1225	struct btrfs_trans_handle *trans;
1226	int namelen;
1227	int ret;
1228	int err = 0;
1229
1230	if (!capable(CAP_SYS_ADMIN))
1231		return -EPERM;
1232
1233	vol_args = memdup_user(arg, sizeof(*vol_args));
1234	if (IS_ERR(vol_args))
1235		return PTR_ERR(vol_args);
1236
1237	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1238	namelen = strlen(vol_args->name);
1239	if (strchr(vol_args->name, '/') ||
1240	    strncmp(vol_args->name, "..", namelen) == 0) {
1241		err = -EINVAL;
1242		goto out;
1243	}
1244
1245	err = mnt_want_write(file->f_path.mnt);
1246	if (err)
1247		goto out;
1248
1249	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1250	dentry = lookup_one_len(vol_args->name, parent, namelen);
1251	if (IS_ERR(dentry)) {
1252		err = PTR_ERR(dentry);
1253		goto out_unlock_dir;
1254	}
1255
1256	if (!dentry->d_inode) {
1257		err = -ENOENT;
1258		goto out_dput;
1259	}
1260
1261	inode = dentry->d_inode;
1262	if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
1263		err = -EINVAL;
1264		goto out_dput;
1265	}
1266
1267	dest = BTRFS_I(inode)->root;
1268
1269	mutex_lock(&inode->i_mutex);
1270	err = d_invalidate(dentry);
1271	if (err)
1272		goto out_unlock;
1273
1274	down_write(&root->fs_info->subvol_sem);
1275
1276	err = may_destroy_subvol(dest);
1277	if (err)
1278		goto out_up_write;
1279
1280	trans = btrfs_start_transaction(root, 0);
1281	if (IS_ERR(trans)) {
1282		err = PTR_ERR(trans);
1283		goto out_up_write;
1284	}
1285	trans->block_rsv = &root->fs_info->global_block_rsv;
1286
1287	ret = btrfs_unlink_subvol(trans, root, dir,
1288				dest->root_key.objectid,
1289				dentry->d_name.name,
1290				dentry->d_name.len);
1291	BUG_ON(ret);
1292
1293	btrfs_record_root_in_trans(trans, dest);
1294
1295	memset(&dest->root_item.drop_progress, 0,
1296		sizeof(dest->root_item.drop_progress));
1297	dest->root_item.drop_level = 0;
1298	btrfs_set_root_refs(&dest->root_item, 0);
1299
1300	if (!xchg(&dest->orphan_item_inserted, 1)) {
1301		ret = btrfs_insert_orphan_item(trans,
1302					root->fs_info->tree_root,
1303					dest->root_key.objectid);
1304		BUG_ON(ret);
1305	}
1306
1307	ret = btrfs_commit_transaction(trans, root);
1308	BUG_ON(ret);
1309	inode->i_flags |= S_DEAD;
1310out_up_write:
1311	up_write(&root->fs_info->subvol_sem);
1312out_unlock:
1313	mutex_unlock(&inode->i_mutex);
1314	if (!err) {
1315		shrink_dcache_sb(root->fs_info->sb);
1316		btrfs_invalidate_inodes(dest);
1317		d_delete(dentry);
1318	}
1319out_dput:
1320	dput(dentry);
1321out_unlock_dir:
1322	mutex_unlock(&dir->i_mutex);
1323	mnt_drop_write(file->f_path.mnt);
1324out:
1325	kfree(vol_args);
1326	return err;
1327}
1328
1329static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1330{
1331	struct inode *inode = fdentry(file)->d_inode;
1332	struct btrfs_root *root = BTRFS_I(inode)->root;
1333	struct btrfs_ioctl_defrag_range_args *range;
1334	int ret;
1335
1336	ret = mnt_want_write(file->f_path.mnt);
1337	if (ret)
1338		return ret;
1339
1340	switch (inode->i_mode & S_IFMT) {
1341	case S_IFDIR:
1342		if (!capable(CAP_SYS_ADMIN)) {
1343			ret = -EPERM;
1344			goto out;
1345		}
1346		ret = btrfs_defrag_root(root, 0);
1347		if (ret)
1348			goto out;
1349		ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1350		break;
1351	case S_IFREG:
1352		if (!(file->f_mode & FMODE_WRITE)) {
1353			ret = -EINVAL;
1354			goto out;
1355		}
1356
1357		range = kzalloc(sizeof(*range), GFP_KERNEL);
1358		if (!range) {
1359			ret = -ENOMEM;
1360			goto out;
1361		}
1362
1363		if (argp) {
1364			if (copy_from_user(range, argp,
1365					   sizeof(*range))) {
1366				ret = -EFAULT;
1367				kfree(range);
1368				goto out;
1369			}
1370			/* compression requires us to start the IO */
1371			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1372				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1373				range->extent_thresh = (u32)-1;
1374			}
1375		} else {
1376			/* the rest are all set to zero by kzalloc */
1377			range->len = (u64)-1;
1378		}
1379		ret = btrfs_defrag_file(file, range);
1380		kfree(range);
1381		break;
1382	default:
1383		ret = -EINVAL;
1384	}
1385out:
1386	mnt_drop_write(file->f_path.mnt);
1387	return ret;
1388}
1389
1390static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
1391{
1392	struct btrfs_ioctl_vol_args *vol_args;
1393	int ret;
1394
1395	if (!capable(CAP_SYS_ADMIN))
1396		return -EPERM;
1397
1398	vol_args = memdup_user(arg, sizeof(*vol_args));
1399	if (IS_ERR(vol_args))
1400		return PTR_ERR(vol_args);
1401
1402	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1403	ret = btrfs_init_new_device(root, vol_args->name);
1404
1405	kfree(vol_args);
1406	return ret;
1407}
1408
1409static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
1410{
1411	struct btrfs_ioctl_vol_args *vol_args;
1412	int ret;
1413
1414	if (!capable(CAP_SYS_ADMIN))
1415		return -EPERM;
1416
1417	if (root->fs_info->sb->s_flags & MS_RDONLY)
1418		return -EROFS;
1419
1420	vol_args = memdup_user(arg, sizeof(*vol_args));
1421	if (IS_ERR(vol_args))
1422		return PTR_ERR(vol_args);
1423
1424	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1425	ret = btrfs_rm_device(root, vol_args->name);
1426
1427	kfree(vol_args);
1428	return ret;
1429}
1430
1431static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
1432				       u64 off, u64 olen, u64 destoff)
1433{
1434	struct inode *inode = fdentry(file)->d_inode;
1435	struct btrfs_root *root = BTRFS_I(inode)->root;
1436	struct file *src_file;
1437	struct inode *src;
1438	struct btrfs_trans_handle *trans;
1439	struct btrfs_path *path;
1440	struct extent_buffer *leaf;
1441	char *buf;
1442	struct btrfs_key key;
1443	u32 nritems;
1444	int slot;
1445	int ret;
1446	u64 len = olen;
1447	u64 bs = root->fs_info->sb->s_blocksize;
1448	u64 hint_byte;
1449
1450	/*
1451	 * TODO:
1452	 * - split compressed inline extents.  annoying: we need to
1453	 *   decompress into destination's address_space (the file offset
1454	 *   may change, so source mapping won't do), then recompress (or
1455	 *   otherwise reinsert) a subrange.
1456	 * - allow ranges within the same file to be cloned (provided
1457	 *   they don't overlap)?
1458	 */
1459
1460	/* the destination must be opened for writing */
1461	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
1462		return -EINVAL;
1463
1464	ret = mnt_want_write(file->f_path.mnt);
1465	if (ret)
1466		return ret;
1467
1468	src_file = fget(srcfd);
1469	if (!src_file) {
1470		ret = -EBADF;
1471		goto out_drop_write;
1472	}
1473
1474	src = src_file->f_dentry->d_inode;
1475
1476	ret = -EINVAL;
1477	if (src == inode)
1478		goto out_fput;
1479
1480	/* the src must be open for reading */
1481	if (!(src_file->f_mode & FMODE_READ))
1482		goto out_fput;
1483
1484	ret = -EISDIR;
1485	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
1486		goto out_fput;
1487
1488	ret = -EXDEV;
1489	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
1490		goto out_fput;
1491
1492	ret = -ENOMEM;
1493	buf = vmalloc(btrfs_level_size(root, 0));
1494	if (!buf)
1495		goto out_fput;
1496
1497	path = btrfs_alloc_path();
1498	if (!path) {
1499		vfree(buf);
1500		goto out_fput;
1501	}
1502	path->reada = 2;
1503
1504	if (inode < src) {
1505		mutex_lock(&inode->i_mutex);
1506		mutex_lock(&src->i_mutex);
1507	} else {
1508		mutex_lock(&src->i_mutex);
1509		mutex_lock(&inode->i_mutex);
1510	}
1511
1512	/* determine range to clone */
1513	ret = -EINVAL;
1514	if (off + len > src->i_size || off + len < off)
1515		goto out_unlock;
1516	if (len == 0)
1517		olen = len = src->i_size - off;
1518	/* if we extend to eof, continue to block boundary */
1519	if (off + len == src->i_size)
1520		len = ((src->i_size + bs-1) & ~(bs-1))
1521			- off;
1522
1523	/* verify the end result is block aligned */
1524	if ((off & (bs-1)) ||
1525	    ((off + len) & (bs-1)))
1526		goto out_unlock;
1527
1528	/* do any pending delalloc/csum calc on src, one way or
1529	   another, and lock file content */
1530	while (1) {
1531		struct btrfs_ordered_extent *ordered;
1532		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1533		ordered = btrfs_lookup_first_ordered_extent(inode, off+len);
1534		if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
1535			break;
1536		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1537		if (ordered)
1538			btrfs_put_ordered_extent(ordered);
1539		btrfs_wait_ordered_range(src, off, off+len);
1540	}
1541
1542	/* clone data */
1543	key.objectid = src->i_ino;
1544	key.type = BTRFS_EXTENT_DATA_KEY;
1545	key.offset = 0;
1546
1547	while (1) {
1548		/*
1549		 * note the key will change type as we walk through the
1550		 * tree.
1551		 */
1552		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553		if (ret < 0)
1554			goto out;
1555
1556		nritems = btrfs_header_nritems(path->nodes[0]);
1557		if (path->slots[0] >= nritems) {
1558			ret = btrfs_next_leaf(root, path);
1559			if (ret < 0)
1560				goto out;
1561			if (ret > 0)
1562				break;
1563			nritems = btrfs_header_nritems(path->nodes[0]);
1564		}
1565		leaf = path->nodes[0];
1566		slot = path->slots[0];
1567
1568		btrfs_item_key_to_cpu(leaf, &key, slot);
1569		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
1570		    key.objectid != src->i_ino)
1571			break;
1572
1573		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
1574			struct btrfs_file_extent_item *extent;
1575			int type;
1576			u32 size;
1577			struct btrfs_key new_key;
1578			u64 disko = 0, diskl = 0;
1579			u64 datao = 0, datal = 0;
1580			u8 comp;
1581			u64 endoff;
1582
1583			size = btrfs_item_size_nr(leaf, slot);
1584			read_extent_buffer(leaf, buf,
1585					   btrfs_item_ptr_offset(leaf, slot),
1586					   size);
1587
1588			extent = btrfs_item_ptr(leaf, slot,
1589						struct btrfs_file_extent_item);
1590			comp = btrfs_file_extent_compression(leaf, extent);
1591			type = btrfs_file_extent_type(leaf, extent);
1592			if (type == BTRFS_FILE_EXTENT_REG ||
1593			    type == BTRFS_FILE_EXTENT_PREALLOC) {
1594				disko = btrfs_file_extent_disk_bytenr(leaf,
1595								      extent);
1596				diskl = btrfs_file_extent_disk_num_bytes(leaf,
1597								 extent);
1598				datao = btrfs_file_extent_offset(leaf, extent);
1599				datal = btrfs_file_extent_num_bytes(leaf,
1600								    extent);
1601			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1602				/* take upper bound, may be compressed */
1603				datal = btrfs_file_extent_ram_bytes(leaf,
1604								    extent);
1605			}
1606			btrfs_release_path(root, path);
1607
1608			if (key.offset + datal < off ||
1609			    key.offset >= off+len)
1610				goto next;
1611
1612			memcpy(&new_key, &key, sizeof(new_key));
1613			new_key.objectid = inode->i_ino;
1614			new_key.offset = key.offset + destoff - off;
1615
1616			trans = btrfs_start_transaction(root, 1);
1617			if (IS_ERR(trans)) {
1618				ret = PTR_ERR(trans);
1619				goto out;
1620			}
1621
1622			if (type == BTRFS_FILE_EXTENT_REG ||
1623			    type == BTRFS_FILE_EXTENT_PREALLOC) {
1624				if (off > key.offset) {
1625					datao += off - key.offset;
1626					datal -= off - key.offset;
1627				}
1628
1629				if (key.offset + datal > off + len)
1630					datal = off + len - key.offset;
1631
1632				ret = btrfs_drop_extents(trans, inode,
1633							 new_key.offset,
1634							 new_key.offset + datal,
1635							 &hint_byte, 1);
1636				BUG_ON(ret);
1637
1638				ret = btrfs_insert_empty_item(trans, root, path,
1639							      &new_key, size);
1640				BUG_ON(ret);
1641
1642				leaf = path->nodes[0];
1643				slot = path->slots[0];
1644				write_extent_buffer(leaf, buf,
1645					    btrfs_item_ptr_offset(leaf, slot),
1646					    size);
1647
1648				extent = btrfs_item_ptr(leaf, slot,
1649						struct btrfs_file_extent_item);
1650
1651				/* disko == 0 means it's a hole */
1652				if (!disko)
1653					datao = 0;
1654
1655				btrfs_set_file_extent_offset(leaf, extent,
1656							     datao);
1657				btrfs_set_file_extent_num_bytes(leaf, extent,
1658								datal);
1659				if (disko) {
1660					inode_add_bytes(inode, datal);
1661					ret = btrfs_inc_extent_ref(trans, root,
1662							disko, diskl, 0,
1663							root->root_key.objectid,
1664							inode->i_ino,
1665							new_key.offset - datao);
1666					BUG_ON(ret);
1667				}
1668			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1669				u64 skip = 0;
1670				u64 trim = 0;
1671				if (off > key.offset) {
1672					skip = off - key.offset;
1673					new_key.offset += skip;
1674				}
1675
1676				if (key.offset + datal > off+len)
1677					trim = key.offset + datal - (off+len);
1678
1679				if (comp && (skip || trim)) {
1680					ret = -EINVAL;
1681					btrfs_end_transaction(trans, root);
1682					goto out;
1683				}
1684				size -= skip + trim;
1685				datal -= skip + trim;
1686
1687				ret = btrfs_drop_extents(trans, inode,
1688							 new_key.offset,
1689							 new_key.offset + datal,
1690							 &hint_byte, 1);
1691				BUG_ON(ret);
1692
1693				ret = btrfs_insert_empty_item(trans, root, path,
1694							      &new_key, size);
1695				BUG_ON(ret);
1696
1697				if (skip) {
1698					u32 start =
1699					  btrfs_file_extent_calc_inline_size(0);
1700					memmove(buf+start, buf+start+skip,
1701						datal);
1702				}
1703
1704				leaf = path->nodes[0];
1705				slot = path->slots[0];
1706				write_extent_buffer(leaf, buf,
1707					    btrfs_item_ptr_offset(leaf, slot),
1708					    size);
1709				inode_add_bytes(inode, datal);
1710			}
1711
1712			btrfs_mark_buffer_dirty(leaf);
1713			btrfs_release_path(root, path);
1714
1715			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1716
1717			/*
1718			 * we round up to the block size at eof when
1719			 * determining which extents to clone above,
1720			 * but shouldn't round up the file size
1721			 */
1722			endoff = new_key.offset + datal;
1723			if (endoff > off+olen)
1724				endoff = off+olen;
1725			if (endoff > inode->i_size)
1726				btrfs_i_size_write(inode, endoff);
1727
1728			BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
1729			ret = btrfs_update_inode(trans, root, inode);
1730			BUG_ON(ret);
1731			btrfs_end_transaction(trans, root);
1732		}
1733next:
1734		btrfs_release_path(root, path);
1735		key.offset++;
1736	}
1737	ret = 0;
1738out:
1739	btrfs_release_path(root, path);
1740	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1741out_unlock:
1742	mutex_unlock(&src->i_mutex);
1743	mutex_unlock(&inode->i_mutex);
1744	vfree(buf);
1745	btrfs_free_path(path);
1746out_fput:
1747	fput(src_file);
1748out_drop_write:
1749	mnt_drop_write(file->f_path.mnt);
1750	return ret;
1751}
1752
1753static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
1754{
1755	struct btrfs_ioctl_clone_range_args args;
1756
1757	if (copy_from_user(&args, argp, sizeof(args)))
1758		return -EFAULT;
1759	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
1760				 args.src_length, args.dest_offset);
1761}
1762
1763/*
1764 * there are many ways the trans_start and trans_end ioctls can lead
1765 * to deadlocks.  They should only be used by applications that
1766 * basically own the machine, and have a very in depth understanding
1767 * of all the possible deadlocks and enospc problems.
1768 */
1769static long btrfs_ioctl_trans_start(struct file *file)
1770{
1771	struct inode *inode = fdentry(file)->d_inode;
1772	struct btrfs_root *root = BTRFS_I(inode)->root;
1773	struct btrfs_trans_handle *trans;
1774	int ret;
1775
1776	ret = -EPERM;
1777	if (!capable(CAP_SYS_ADMIN))
1778		goto out;
1779
1780	ret = -EINPROGRESS;
1781	if (file->private_data)
1782		goto out;
1783
1784	ret = mnt_want_write(file->f_path.mnt);
1785	if (ret)
1786		goto out;
1787
1788	mutex_lock(&root->fs_info->trans_mutex);
1789	root->fs_info->open_ioctl_trans++;
1790	mutex_unlock(&root->fs_info->trans_mutex);
1791
1792	ret = -ENOMEM;
1793	trans = btrfs_start_ioctl_transaction(root, 0);
1794	if (!trans)
1795		goto out_drop;
1796
1797	file->private_data = trans;
1798	return 0;
1799
1800out_drop:
1801	mutex_lock(&root->fs_info->trans_mutex);
1802	root->fs_info->open_ioctl_trans--;
1803	mutex_unlock(&root->fs_info->trans_mutex);
1804	mnt_drop_write(file->f_path.mnt);
1805out:
1806	return ret;
1807}
1808
1809static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
1810{
1811	struct inode *inode = fdentry(file)->d_inode;
1812	struct btrfs_root *root = BTRFS_I(inode)->root;
1813	struct btrfs_root *new_root;
1814	struct btrfs_dir_item *di;
1815	struct btrfs_trans_handle *trans;
1816	struct btrfs_path *path;
1817	struct btrfs_key location;
1818	struct btrfs_disk_key disk_key;
1819	struct btrfs_super_block *disk_super;
1820	u64 features;
1821	u64 objectid = 0;
1822	u64 dir_id;
1823
1824	if (!capable(CAP_SYS_ADMIN))
1825		return -EPERM;
1826
1827	if (copy_from_user(&objectid, argp, sizeof(objectid)))
1828		return -EFAULT;
1829
1830	if (!objectid)
1831		objectid = root->root_key.objectid;
1832
1833	location.objectid = objectid;
1834	location.type = BTRFS_ROOT_ITEM_KEY;
1835	location.offset = (u64)-1;
1836
1837	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
1838	if (IS_ERR(new_root))
1839		return PTR_ERR(new_root);
1840
1841	if (btrfs_root_refs(&new_root->root_item) == 0)
1842		return -ENOENT;
1843
1844	path = btrfs_alloc_path();
1845	if (!path)
1846		return -ENOMEM;
1847	path->leave_spinning = 1;
1848
1849	trans = btrfs_start_transaction(root, 1);
1850	if (!trans) {
1851		btrfs_free_path(path);
1852		return -ENOMEM;
1853	}
1854
1855	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
1856	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
1857				   dir_id, "default", 7, 1);
1858	if (IS_ERR_OR_NULL(di)) {
1859		btrfs_free_path(path);
1860		btrfs_end_transaction(trans, root);
1861		printk(KERN_ERR "Umm, you don't have the default dir item, "
1862		       "this isn't going to work\n");
1863		return -ENOENT;
1864	}
1865
1866	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
1867	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
1868	btrfs_mark_buffer_dirty(path->nodes[0]);
1869	btrfs_free_path(path);
1870
1871	disk_super = &root->fs_info->super_copy;
1872	features = btrfs_super_incompat_flags(disk_super);
1873	if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
1874		features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
1875		btrfs_set_super_incompat_flags(disk_super, features);
1876	}
1877	btrfs_end_transaction(trans, root);
1878
1879	return 0;
1880}
1881
1882long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
1883{
1884	struct btrfs_ioctl_space_args space_args;
1885	struct btrfs_ioctl_space_info space;
1886	struct btrfs_ioctl_space_info *dest;
1887	struct btrfs_ioctl_space_info *dest_orig;
1888	struct btrfs_ioctl_space_info *user_dest;
1889	struct btrfs_space_info *info;
1890	int alloc_size;
1891	int ret = 0;
1892	int slot_count = 0;
1893
1894	if (copy_from_user(&space_args,
1895			   (struct btrfs_ioctl_space_args __user *)arg,
1896			   sizeof(space_args)))
1897		return -EFAULT;
1898
1899	/* first we count slots */
1900	rcu_read_lock();
1901	list_for_each_entry_rcu(info, &root->fs_info->space_info, list)
1902		slot_count++;
1903	rcu_read_unlock();
1904
1905	/* space_slots == 0 means they are asking for a count */
1906	if (space_args.space_slots == 0) {
1907		space_args.total_spaces = slot_count;
1908		goto out;
1909	}
1910	alloc_size = sizeof(*dest) * slot_count;
1911	/* we generally have at most 6 or so space infos, one for each raid
1912	 * level.  So, a whole page should be more than enough for everyone
1913	 */
1914	if (alloc_size > PAGE_CACHE_SIZE)
1915		return -ENOMEM;
1916
1917	space_args.total_spaces = 0;
1918	dest = kmalloc(alloc_size, GFP_NOFS);
1919	if (!dest)
1920		return -ENOMEM;
1921	dest_orig = dest;
1922
1923	/* now we have a buffer to copy into */
1924	rcu_read_lock();
1925	list_for_each_entry_rcu(info, &root->fs_info->space_info, list) {
1926		/* make sure we don't copy more than we allocated
1927		 * in our buffer
1928		 */
1929		if (slot_count == 0)
1930			break;
1931		slot_count--;
1932
1933		/* make sure userland has enough room in their buffer */
1934		if (space_args.total_spaces >= space_args.space_slots)
1935			break;
1936
1937		space.flags = info->flags;
1938		space.total_bytes = info->total_bytes;
1939		space.used_bytes = info->bytes_used;
1940		memcpy(dest, &space, sizeof(space));
1941		dest++;
1942		space_args.total_spaces++;
1943	}
1944	rcu_read_unlock();
1945
1946	user_dest = (struct btrfs_ioctl_space_info *)
1947		(arg + sizeof(struct btrfs_ioctl_space_args));
1948
1949	if (copy_to_user(user_dest, dest_orig, alloc_size))
1950		ret = -EFAULT;
1951
1952	kfree(dest_orig);
1953out:
1954	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
1955		ret = -EFAULT;
1956
1957	return ret;
1958}
1959
1960/*
1961 * there are many ways the trans_start and trans_end ioctls can lead
1962 * to deadlocks.  They should only be used by applications that
1963 * basically own the machine, and have a very in depth understanding
1964 * of all the possible deadlocks and enospc problems.
1965 */
1966long btrfs_ioctl_trans_end(struct file *file)
1967{
1968	struct inode *inode = fdentry(file)->d_inode;
1969	struct btrfs_root *root = BTRFS_I(inode)->root;
1970	struct btrfs_trans_handle *trans;
1971
1972	trans = file->private_data;
1973	if (!trans)
1974		return -EINVAL;
1975	file->private_data = NULL;
1976
1977	btrfs_end_transaction(trans, root);
1978
1979	mutex_lock(&root->fs_info->trans_mutex);
1980	root->fs_info->open_ioctl_trans--;
1981	mutex_unlock(&root->fs_info->trans_mutex);
1982
1983	mnt_drop_write(file->f_path.mnt);
1984	return 0;
1985}
1986
1987long btrfs_ioctl(struct file *file, unsigned int
1988		cmd, unsigned long arg)
1989{
1990	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1991	void __user *argp = (void __user *)arg;
1992
1993	switch (cmd) {
1994	case FS_IOC_GETFLAGS:
1995		return btrfs_ioctl_getflags(file, argp);
1996	case FS_IOC_SETFLAGS:
1997		return btrfs_ioctl_setflags(file, argp);
1998	case FS_IOC_GETVERSION:
1999		return btrfs_ioctl_getversion(file, argp);
2000	case BTRFS_IOC_SNAP_CREATE:
2001		return btrfs_ioctl_snap_create(file, argp, 0);
2002	case BTRFS_IOC_SUBVOL_CREATE:
2003		return btrfs_ioctl_snap_create(file, argp, 1);
2004	case BTRFS_IOC_SNAP_DESTROY:
2005		return btrfs_ioctl_snap_destroy(file, argp);
2006	case BTRFS_IOC_DEFAULT_SUBVOL:
2007		return btrfs_ioctl_default_subvol(file, argp);
2008	case BTRFS_IOC_DEFRAG:
2009		return btrfs_ioctl_defrag(file, NULL);
2010	case BTRFS_IOC_DEFRAG_RANGE:
2011		return btrfs_ioctl_defrag(file, argp);
2012	case BTRFS_IOC_RESIZE:
2013		return btrfs_ioctl_resize(root, argp);
2014	case BTRFS_IOC_ADD_DEV:
2015		return btrfs_ioctl_add_dev(root, argp);
2016	case BTRFS_IOC_RM_DEV:
2017		return btrfs_ioctl_rm_dev(root, argp);
2018	case BTRFS_IOC_BALANCE:
2019		return btrfs_balance(root->fs_info->dev_root);
2020	case BTRFS_IOC_CLONE:
2021		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2022	case BTRFS_IOC_CLONE_RANGE:
2023		return btrfs_ioctl_clone_range(file, argp);
2024	case BTRFS_IOC_TRANS_START:
2025		return btrfs_ioctl_trans_start(file);
2026	case BTRFS_IOC_TRANS_END:
2027		return btrfs_ioctl_trans_end(file);
2028	case BTRFS_IOC_TREE_SEARCH:
2029		return btrfs_ioctl_tree_search(file, argp);
2030	case BTRFS_IOC_INO_LOOKUP:
2031		return btrfs_ioctl_ino_lookup(file, argp);
2032	case BTRFS_IOC_SPACE_INFO:
2033		return btrfs_ioctl_space_info(root, argp);
2034	case BTRFS_IOC_SYNC:
2035		btrfs_sync_fs(file->f_dentry->d_sb, 1);
2036		return 0;
2037	}
2038
2039	return -ENOTTY;
2040}
2041