1/*
2 *	An async IO implementation for Linux
3 *	Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 *	Implements an efficient asynchronous io interface.
6 *
7 *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8 *
9 *	See ../COPYING for licensing terms.
10 */
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/errno.h>
14#include <linux/time.h>
15#include <linux/aio_abi.h>
16#include <linux/module.h>
17#include <linux/syscalls.h>
18#include <linux/backing-dev.h>
19#include <linux/uio.h>
20
21#define DEBUG 0
22
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
28#include <linux/mmu_context.h>
29#include <linux/slab.h>
30#include <linux/timer.h>
31#include <linux/aio.h>
32#include <linux/highmem.h>
33#include <linux/workqueue.h>
34#include <linux/security.h>
35#include <linux/eventfd.h>
36#include <linux/blkdev.h>
37#include <linux/mempool.h>
38#include <linux/hash.h>
39#include <linux/compat.h>
40
41#include <asm/kmap_types.h>
42#include <asm/uaccess.h>
43
44#if DEBUG > 1
45#define dprintk		printk
46#else
47#define dprintk(x...)	do { ; } while (0)
48#endif
49
50/*------ sysctl variables----*/
51static DEFINE_SPINLOCK(aio_nr_lock);
52unsigned long aio_nr;		/* current system wide number of aio requests */
53unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
54/*----end sysctl variables---*/
55
56static struct kmem_cache	*kiocb_cachep;
57static struct kmem_cache	*kioctx_cachep;
58
59static struct workqueue_struct *aio_wq;
60
61/* Used for rare fput completion. */
62static void aio_fput_routine(struct work_struct *);
63static DECLARE_WORK(fput_work, aio_fput_routine);
64
65static DEFINE_SPINLOCK(fput_lock);
66static LIST_HEAD(fput_head);
67
68#define AIO_BATCH_HASH_BITS	3 /* allocated on-stack, so don't go crazy */
69#define AIO_BATCH_HASH_SIZE	(1 << AIO_BATCH_HASH_BITS)
70struct aio_batch_entry {
71	struct hlist_node list;
72	struct address_space *mapping;
73};
74mempool_t *abe_pool;
75
76static void aio_kick_handler(struct work_struct *);
77static void aio_queue_work(struct kioctx *);
78
79/* aio_setup
80 *	Creates the slab caches used by the aio routines, panic on
81 *	failure as this is done early during the boot sequence.
82 */
83static int __init aio_setup(void)
84{
85	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
87
88	aio_wq = create_workqueue("aio");
89	abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
90	BUG_ON(!abe_pool);
91
92	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
93
94	return 0;
95}
96__initcall(aio_setup);
97
98static void aio_free_ring(struct kioctx *ctx)
99{
100	struct aio_ring_info *info = &ctx->ring_info;
101	long i;
102
103	for (i=0; i<info->nr_pages; i++)
104		put_page(info->ring_pages[i]);
105
106	if (info->mmap_size) {
107		down_write(&ctx->mm->mmap_sem);
108		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
109		up_write(&ctx->mm->mmap_sem);
110	}
111
112	if (info->ring_pages && info->ring_pages != info->internal_pages)
113		kfree(info->ring_pages);
114	info->ring_pages = NULL;
115	info->nr = 0;
116}
117
118static int aio_setup_ring(struct kioctx *ctx)
119{
120	struct aio_ring *ring;
121	struct aio_ring_info *info = &ctx->ring_info;
122	unsigned nr_events = ctx->max_reqs;
123	unsigned long size;
124	int nr_pages;
125
126	/* Compensate for the ring buffer's head/tail overlap entry */
127	nr_events += 2;	/* 1 is required, 2 for good luck */
128
129	size = sizeof(struct aio_ring);
130	size += sizeof(struct io_event) * nr_events;
131	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
132
133	if (nr_pages < 0)
134		return -EINVAL;
135
136	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
137
138	info->nr = 0;
139	info->ring_pages = info->internal_pages;
140	if (nr_pages > AIO_RING_PAGES) {
141		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
142		if (!info->ring_pages)
143			return -ENOMEM;
144	}
145
146	info->mmap_size = nr_pages * PAGE_SIZE;
147	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
148	down_write(&ctx->mm->mmap_sem);
149	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
150				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
151				  0);
152	if (IS_ERR((void *)info->mmap_base)) {
153		up_write(&ctx->mm->mmap_sem);
154		info->mmap_size = 0;
155		aio_free_ring(ctx);
156		return -EAGAIN;
157	}
158
159	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
160	info->nr_pages = get_user_pages(current, ctx->mm,
161					info->mmap_base, nr_pages,
162					1, 0, info->ring_pages, NULL);
163	up_write(&ctx->mm->mmap_sem);
164
165	if (unlikely(info->nr_pages != nr_pages)) {
166		aio_free_ring(ctx);
167		return -EAGAIN;
168	}
169
170	ctx->user_id = info->mmap_base;
171
172	info->nr = nr_events;		/* trusted copy */
173
174	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
175	ring->nr = nr_events;	/* user copy */
176	ring->id = ctx->user_id;
177	ring->head = ring->tail = 0;
178	ring->magic = AIO_RING_MAGIC;
179	ring->compat_features = AIO_RING_COMPAT_FEATURES;
180	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
181	ring->header_length = sizeof(struct aio_ring);
182	kunmap_atomic(ring, KM_USER0);
183
184	return 0;
185}
186
187
188/* aio_ring_event: returns a pointer to the event at the given index from
189 * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
190 */
191#define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
192#define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193#define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
194
195#define aio_ring_event(info, nr, km) ({					\
196	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
197	struct io_event *__event;					\
198	__event = kmap_atomic(						\
199			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200	__event += pos % AIO_EVENTS_PER_PAGE;				\
201	__event;							\
202})
203
204#define put_aio_ring_event(event, km) do {	\
205	struct io_event *__event = (event);	\
206	(void)__event;				\
207	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
208} while(0)
209
210static void ctx_rcu_free(struct rcu_head *head)
211{
212	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
213	unsigned nr_events = ctx->max_reqs;
214
215	kmem_cache_free(kioctx_cachep, ctx);
216
217	if (nr_events) {
218		spin_lock(&aio_nr_lock);
219		BUG_ON(aio_nr - nr_events > aio_nr);
220		aio_nr -= nr_events;
221		spin_unlock(&aio_nr_lock);
222	}
223}
224
225/* __put_ioctx
226 *	Called when the last user of an aio context has gone away,
227 *	and the struct needs to be freed.
228 */
229static void __put_ioctx(struct kioctx *ctx)
230{
231	BUG_ON(ctx->reqs_active);
232
233	cancel_delayed_work(&ctx->wq);
234	cancel_work_sync(&ctx->wq.work);
235	aio_free_ring(ctx);
236	mmdrop(ctx->mm);
237	ctx->mm = NULL;
238	pr_debug("__put_ioctx: freeing %p\n", ctx);
239	call_rcu(&ctx->rcu_head, ctx_rcu_free);
240}
241
242#define get_ioctx(kioctx) do {						\
243	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
244	atomic_inc(&(kioctx)->users);					\
245} while (0)
246#define put_ioctx(kioctx) do {						\
247	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
248	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
249		__put_ioctx(kioctx);					\
250} while (0)
251
252/* ioctx_alloc
253 *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
254 */
255static struct kioctx *ioctx_alloc(unsigned nr_events)
256{
257	struct mm_struct *mm;
258	struct kioctx *ctx;
259	int did_sync = 0;
260
261	/* Prevent overflows */
262	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
263	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
264		pr_debug("ENOMEM: nr_events too high\n");
265		return ERR_PTR(-EINVAL);
266	}
267
268	if ((unsigned long)nr_events > aio_max_nr)
269		return ERR_PTR(-EAGAIN);
270
271	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
272	if (!ctx)
273		return ERR_PTR(-ENOMEM);
274
275	ctx->max_reqs = nr_events;
276	mm = ctx->mm = current->mm;
277	atomic_inc(&mm->mm_count);
278
279	atomic_set(&ctx->users, 1);
280	spin_lock_init(&ctx->ctx_lock);
281	spin_lock_init(&ctx->ring_info.ring_lock);
282	init_waitqueue_head(&ctx->wait);
283
284	INIT_LIST_HEAD(&ctx->active_reqs);
285	INIT_LIST_HEAD(&ctx->run_list);
286	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
287
288	if (aio_setup_ring(ctx) < 0)
289		goto out_freectx;
290
291	/* limit the number of system wide aios */
292	do {
293		spin_lock_bh(&aio_nr_lock);
294		if (aio_nr + nr_events > aio_max_nr ||
295		    aio_nr + nr_events < aio_nr)
296			ctx->max_reqs = 0;
297		else
298			aio_nr += ctx->max_reqs;
299		spin_unlock_bh(&aio_nr_lock);
300		if (ctx->max_reqs || did_sync)
301			break;
302
303		/* wait for rcu callbacks to have completed before giving up */
304		synchronize_rcu();
305		did_sync = 1;
306		ctx->max_reqs = nr_events;
307	} while (1);
308
309	if (ctx->max_reqs == 0)
310		goto out_cleanup;
311
312	/* now link into global list. */
313	spin_lock(&mm->ioctx_lock);
314	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
315	spin_unlock(&mm->ioctx_lock);
316
317	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
318		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
319	return ctx;
320
321out_cleanup:
322	__put_ioctx(ctx);
323	return ERR_PTR(-EAGAIN);
324
325out_freectx:
326	mmdrop(mm);
327	kmem_cache_free(kioctx_cachep, ctx);
328	ctx = ERR_PTR(-ENOMEM);
329
330	dprintk("aio: error allocating ioctx %p\n", ctx);
331	return ctx;
332}
333
334/* aio_cancel_all
335 *	Cancels all outstanding aio requests on an aio context.  Used
336 *	when the processes owning a context have all exited to encourage
337 *	the rapid destruction of the kioctx.
338 */
339static void aio_cancel_all(struct kioctx *ctx)
340{
341	int (*cancel)(struct kiocb *, struct io_event *);
342	struct io_event res;
343	spin_lock_irq(&ctx->ctx_lock);
344	ctx->dead = 1;
345	while (!list_empty(&ctx->active_reqs)) {
346		struct list_head *pos = ctx->active_reqs.next;
347		struct kiocb *iocb = list_kiocb(pos);
348		list_del_init(&iocb->ki_list);
349		cancel = iocb->ki_cancel;
350		kiocbSetCancelled(iocb);
351		if (cancel) {
352			iocb->ki_users++;
353			spin_unlock_irq(&ctx->ctx_lock);
354			cancel(iocb, &res);
355			spin_lock_irq(&ctx->ctx_lock);
356		}
357	}
358	spin_unlock_irq(&ctx->ctx_lock);
359}
360
361static void wait_for_all_aios(struct kioctx *ctx)
362{
363	struct task_struct *tsk = current;
364	DECLARE_WAITQUEUE(wait, tsk);
365
366	spin_lock_irq(&ctx->ctx_lock);
367	if (!ctx->reqs_active)
368		goto out;
369
370	add_wait_queue(&ctx->wait, &wait);
371	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
372	while (ctx->reqs_active) {
373		spin_unlock_irq(&ctx->ctx_lock);
374		io_schedule();
375		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
376		spin_lock_irq(&ctx->ctx_lock);
377	}
378	__set_task_state(tsk, TASK_RUNNING);
379	remove_wait_queue(&ctx->wait, &wait);
380
381out:
382	spin_unlock_irq(&ctx->ctx_lock);
383}
384
385/* wait_on_sync_kiocb:
386 *	Waits on the given sync kiocb to complete.
387 */
388ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
389{
390	while (iocb->ki_users) {
391		set_current_state(TASK_UNINTERRUPTIBLE);
392		if (!iocb->ki_users)
393			break;
394		io_schedule();
395	}
396	__set_current_state(TASK_RUNNING);
397	return iocb->ki_user_data;
398}
399EXPORT_SYMBOL(wait_on_sync_kiocb);
400
401/* exit_aio: called when the last user of mm goes away.  At this point,
402 * there is no way for any new requests to be submited or any of the
403 * io_* syscalls to be called on the context.  However, there may be
404 * outstanding requests which hold references to the context; as they
405 * go away, they will call put_ioctx and release any pinned memory
406 * associated with the request (held via struct page * references).
407 */
408void exit_aio(struct mm_struct *mm)
409{
410	struct kioctx *ctx;
411
412	while (!hlist_empty(&mm->ioctx_list)) {
413		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
414		hlist_del_rcu(&ctx->list);
415
416		aio_cancel_all(ctx);
417
418		wait_for_all_aios(ctx);
419		/*
420		 * Ensure we don't leave the ctx on the aio_wq
421		 */
422		cancel_work_sync(&ctx->wq.work);
423
424		if (1 != atomic_read(&ctx->users))
425			printk(KERN_DEBUG
426				"exit_aio:ioctx still alive: %d %d %d\n",
427				atomic_read(&ctx->users), ctx->dead,
428				ctx->reqs_active);
429		put_ioctx(ctx);
430	}
431}
432
433/* aio_get_req
434 *	Allocate a slot for an aio request.  Increments the users count
435 * of the kioctx so that the kioctx stays around until all requests are
436 * complete.  Returns NULL if no requests are free.
437 *
438 * Returns with kiocb->users set to 2.  The io submit code path holds
439 * an extra reference while submitting the i/o.
440 * This prevents races between the aio code path referencing the
441 * req (after submitting it) and aio_complete() freeing the req.
442 */
443static struct kiocb *__aio_get_req(struct kioctx *ctx)
444{
445	struct kiocb *req = NULL;
446	struct aio_ring *ring;
447	int okay = 0;
448
449	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
450	if (unlikely(!req))
451		return NULL;
452
453	req->ki_flags = 0;
454	req->ki_users = 2;
455	req->ki_key = 0;
456	req->ki_ctx = ctx;
457	req->ki_cancel = NULL;
458	req->ki_retry = NULL;
459	req->ki_dtor = NULL;
460	req->private = NULL;
461	req->ki_iovec = NULL;
462	INIT_LIST_HEAD(&req->ki_run_list);
463	req->ki_eventfd = NULL;
464
465	/* Check if the completion queue has enough free space to
466	 * accept an event from this io.
467	 */
468	spin_lock_irq(&ctx->ctx_lock);
469	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
470	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
471		list_add(&req->ki_list, &ctx->active_reqs);
472		ctx->reqs_active++;
473		okay = 1;
474	}
475	kunmap_atomic(ring, KM_USER0);
476	spin_unlock_irq(&ctx->ctx_lock);
477
478	if (!okay) {
479		kmem_cache_free(kiocb_cachep, req);
480		req = NULL;
481	}
482
483	return req;
484}
485
486static inline struct kiocb *aio_get_req(struct kioctx *ctx)
487{
488	struct kiocb *req;
489	/* Handle a potential starvation case -- should be exceedingly rare as
490	 * requests will be stuck on fput_head only if the aio_fput_routine is
491	 * delayed and the requests were the last user of the struct file.
492	 */
493	req = __aio_get_req(ctx);
494	if (unlikely(NULL == req)) {
495		aio_fput_routine(NULL);
496		req = __aio_get_req(ctx);
497	}
498	return req;
499}
500
501static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
502{
503	assert_spin_locked(&ctx->ctx_lock);
504
505	if (req->ki_eventfd != NULL)
506		eventfd_ctx_put(req->ki_eventfd);
507	if (req->ki_dtor)
508		req->ki_dtor(req);
509	if (req->ki_iovec != &req->ki_inline_vec)
510		kfree(req->ki_iovec);
511	kmem_cache_free(kiocb_cachep, req);
512	ctx->reqs_active--;
513
514	if (unlikely(!ctx->reqs_active && ctx->dead))
515		wake_up(&ctx->wait);
516}
517
518static void aio_fput_routine(struct work_struct *data)
519{
520	spin_lock_irq(&fput_lock);
521	while (likely(!list_empty(&fput_head))) {
522		struct kiocb *req = list_kiocb(fput_head.next);
523		struct kioctx *ctx = req->ki_ctx;
524
525		list_del(&req->ki_list);
526		spin_unlock_irq(&fput_lock);
527
528		/* Complete the fput(s) */
529		if (req->ki_filp != NULL)
530			fput(req->ki_filp);
531
532		/* Link the iocb into the context's free list */
533		spin_lock_irq(&ctx->ctx_lock);
534		really_put_req(ctx, req);
535		spin_unlock_irq(&ctx->ctx_lock);
536
537		put_ioctx(ctx);
538		spin_lock_irq(&fput_lock);
539	}
540	spin_unlock_irq(&fput_lock);
541}
542
543/* __aio_put_req
544 *	Returns true if this put was the last user of the request.
545 */
546static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
547{
548	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
549		req, atomic_long_read(&req->ki_filp->f_count));
550
551	assert_spin_locked(&ctx->ctx_lock);
552
553	req->ki_users--;
554	BUG_ON(req->ki_users < 0);
555	if (likely(req->ki_users))
556		return 0;
557	list_del(&req->ki_list);		/* remove from active_reqs */
558	req->ki_cancel = NULL;
559	req->ki_retry = NULL;
560
561	/*
562	 * Try to optimize the aio and eventfd file* puts, by avoiding to
563	 * schedule work in case it is not final fput() time. In normal cases,
564	 * we would not be holding the last reference to the file*, so
565	 * this function will be executed w/out any aio kthread wakeup.
566	 */
567	if (unlikely(!fput_atomic(req->ki_filp))) {
568		get_ioctx(ctx);
569		spin_lock(&fput_lock);
570		list_add(&req->ki_list, &fput_head);
571		spin_unlock(&fput_lock);
572		queue_work(aio_wq, &fput_work);
573	} else {
574		req->ki_filp = NULL;
575		really_put_req(ctx, req);
576	}
577	return 1;
578}
579
580/* aio_put_req
581 *	Returns true if this put was the last user of the kiocb,
582 *	false if the request is still in use.
583 */
584int aio_put_req(struct kiocb *req)
585{
586	struct kioctx *ctx = req->ki_ctx;
587	int ret;
588	spin_lock_irq(&ctx->ctx_lock);
589	ret = __aio_put_req(ctx, req);
590	spin_unlock_irq(&ctx->ctx_lock);
591	return ret;
592}
593EXPORT_SYMBOL(aio_put_req);
594
595static struct kioctx *lookup_ioctx(unsigned long ctx_id)
596{
597	struct mm_struct *mm = current->mm;
598	struct kioctx *ctx, *ret = NULL;
599	struct hlist_node *n;
600
601	rcu_read_lock();
602
603	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
604		if (ctx->user_id == ctx_id && !ctx->dead) {
605			get_ioctx(ctx);
606			ret = ctx;
607			break;
608		}
609	}
610
611	rcu_read_unlock();
612	return ret;
613}
614
615/*
616 * Queue up a kiocb to be retried. Assumes that the kiocb
617 * has already been marked as kicked, and places it on
618 * the retry run list for the corresponding ioctx, if it
619 * isn't already queued. Returns 1 if it actually queued
620 * the kiocb (to tell the caller to activate the work
621 * queue to process it), or 0, if it found that it was
622 * already queued.
623 */
624static inline int __queue_kicked_iocb(struct kiocb *iocb)
625{
626	struct kioctx *ctx = iocb->ki_ctx;
627
628	assert_spin_locked(&ctx->ctx_lock);
629
630	if (list_empty(&iocb->ki_run_list)) {
631		list_add_tail(&iocb->ki_run_list,
632			&ctx->run_list);
633		return 1;
634	}
635	return 0;
636}
637
638/* aio_run_iocb
639 *	This is the core aio execution routine. It is
640 *	invoked both for initial i/o submission and
641 *	subsequent retries via the aio_kick_handler.
642 *	Expects to be invoked with iocb->ki_ctx->lock
643 *	already held. The lock is released and reacquired
644 *	as needed during processing.
645 *
646 * Calls the iocb retry method (already setup for the
647 * iocb on initial submission) for operation specific
648 * handling, but takes care of most of common retry
649 * execution details for a given iocb. The retry method
650 * needs to be non-blocking as far as possible, to avoid
651 * holding up other iocbs waiting to be serviced by the
652 * retry kernel thread.
653 *
654 * The trickier parts in this code have to do with
655 * ensuring that only one retry instance is in progress
656 * for a given iocb at any time. Providing that guarantee
657 * simplifies the coding of individual aio operations as
658 * it avoids various potential races.
659 */
660static ssize_t aio_run_iocb(struct kiocb *iocb)
661{
662	struct kioctx	*ctx = iocb->ki_ctx;
663	ssize_t (*retry)(struct kiocb *);
664	ssize_t ret;
665
666	if (!(retry = iocb->ki_retry)) {
667		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668		return 0;
669	}
670
671	/*
672	 * We don't want the next retry iteration for this
673	 * operation to start until this one has returned and
674	 * updated the iocb state. However, wait_queue functions
675	 * can trigger a kick_iocb from interrupt context in the
676	 * meantime, indicating that data is available for the next
677	 * iteration. We want to remember that and enable the
678	 * next retry iteration _after_ we are through with
679	 * this one.
680	 *
681	 * So, in order to be able to register a "kick", but
682	 * prevent it from being queued now, we clear the kick
683	 * flag, but make the kick code *think* that the iocb is
684	 * still on the run list until we are actually done.
685	 * When we are done with this iteration, we check if
686	 * the iocb was kicked in the meantime and if so, queue
687	 * it up afresh.
688	 */
689
690	kiocbClearKicked(iocb);
691
692	/*
693	 * This is so that aio_complete knows it doesn't need to
694	 * pull the iocb off the run list (We can't just call
695	 * INIT_LIST_HEAD because we don't want a kick_iocb to
696	 * queue this on the run list yet)
697	 */
698	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
699	spin_unlock_irq(&ctx->ctx_lock);
700
701	/* Quit retrying if the i/o has been cancelled */
702	if (kiocbIsCancelled(iocb)) {
703		ret = -EINTR;
704		aio_complete(iocb, ret, 0);
705		/* must not access the iocb after this */
706		goto out;
707	}
708
709	/*
710	 * Now we are all set to call the retry method in async
711	 * context.
712	 */
713	ret = retry(iocb);
714
715	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
716		/*
717		 * There's no easy way to restart the syscall since other AIO's
718		 * may be already running. Just fail this IO with EINTR.
719		 */
720		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
721			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
722			ret = -EINTR;
723		aio_complete(iocb, ret, 0);
724	}
725out:
726	spin_lock_irq(&ctx->ctx_lock);
727
728	if (-EIOCBRETRY == ret) {
729		/*
730		 * OK, now that we are done with this iteration
731		 * and know that there is more left to go,
732		 * this is where we let go so that a subsequent
733		 * "kick" can start the next iteration
734		 */
735
736		/* will make __queue_kicked_iocb succeed from here on */
737		INIT_LIST_HEAD(&iocb->ki_run_list);
738		/* we must queue the next iteration ourselves, if it
739		 * has already been kicked */
740		if (kiocbIsKicked(iocb)) {
741			__queue_kicked_iocb(iocb);
742
743			/*
744			 * __queue_kicked_iocb will always return 1 here, because
745			 * iocb->ki_run_list is empty at this point so it should
746			 * be safe to unconditionally queue the context into the
747			 * work queue.
748			 */
749			aio_queue_work(ctx);
750		}
751	}
752	return ret;
753}
754
755/*
756 * __aio_run_iocbs:
757 * 	Process all pending retries queued on the ioctx
758 * 	run list.
759 * Assumes it is operating within the aio issuer's mm
760 * context.
761 */
762static int __aio_run_iocbs(struct kioctx *ctx)
763{
764	struct kiocb *iocb;
765	struct list_head run_list;
766
767	assert_spin_locked(&ctx->ctx_lock);
768
769	list_replace_init(&ctx->run_list, &run_list);
770	while (!list_empty(&run_list)) {
771		iocb = list_entry(run_list.next, struct kiocb,
772			ki_run_list);
773		list_del(&iocb->ki_run_list);
774		/*
775		 * Hold an extra reference while retrying i/o.
776		 */
777		iocb->ki_users++;       /* grab extra reference */
778		aio_run_iocb(iocb);
779		__aio_put_req(ctx, iocb);
780 	}
781	if (!list_empty(&ctx->run_list))
782		return 1;
783	return 0;
784}
785
786static void aio_queue_work(struct kioctx * ctx)
787{
788	unsigned long timeout;
789	/*
790	 * if someone is waiting, get the work started right
791	 * away, otherwise, use a longer delay
792	 */
793	smp_mb();
794	if (waitqueue_active(&ctx->wait))
795		timeout = 1;
796	else
797		timeout = HZ/10;
798	queue_delayed_work(aio_wq, &ctx->wq, timeout);
799}
800
801
802/*
803 * aio_run_iocbs:
804 * 	Process all pending retries queued on the ioctx
805 * 	run list.
806 * Assumes it is operating within the aio issuer's mm
807 * context.
808 */
809static inline void aio_run_iocbs(struct kioctx *ctx)
810{
811	int requeue;
812
813	spin_lock_irq(&ctx->ctx_lock);
814
815	requeue = __aio_run_iocbs(ctx);
816	spin_unlock_irq(&ctx->ctx_lock);
817	if (requeue)
818		aio_queue_work(ctx);
819}
820
821/*
822 * just like aio_run_iocbs, but keeps running them until
823 * the list stays empty
824 */
825static inline void aio_run_all_iocbs(struct kioctx *ctx)
826{
827	spin_lock_irq(&ctx->ctx_lock);
828	while (__aio_run_iocbs(ctx))
829		;
830	spin_unlock_irq(&ctx->ctx_lock);
831}
832
833/*
834 * aio_kick_handler:
835 * 	Work queue handler triggered to process pending
836 * 	retries on an ioctx. Takes on the aio issuer's
837 *	mm context before running the iocbs, so that
838 *	copy_xxx_user operates on the issuer's address
839 *      space.
840 * Run on aiod's context.
841 */
842static void aio_kick_handler(struct work_struct *work)
843{
844	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
845	mm_segment_t oldfs = get_fs();
846	struct mm_struct *mm;
847	int requeue;
848
849	set_fs(USER_DS);
850	use_mm(ctx->mm);
851	spin_lock_irq(&ctx->ctx_lock);
852	requeue =__aio_run_iocbs(ctx);
853	mm = ctx->mm;
854	spin_unlock_irq(&ctx->ctx_lock);
855 	unuse_mm(mm);
856	set_fs(oldfs);
857	/*
858	 * we're in a worker thread already, don't use queue_delayed_work,
859	 */
860	if (requeue)
861		queue_delayed_work(aio_wq, &ctx->wq, 0);
862}
863
864
865/*
866 * Called by kick_iocb to queue the kiocb for retry
867 * and if required activate the aio work queue to process
868 * it
869 */
870static void try_queue_kicked_iocb(struct kiocb *iocb)
871{
872 	struct kioctx	*ctx = iocb->ki_ctx;
873	unsigned long flags;
874	int run = 0;
875
876	spin_lock_irqsave(&ctx->ctx_lock, flags);
877	/* set this inside the lock so that we can't race with aio_run_iocb()
878	 * testing it and putting the iocb on the run list under the lock */
879	if (!kiocbTryKick(iocb))
880		run = __queue_kicked_iocb(iocb);
881	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
882	if (run)
883		aio_queue_work(ctx);
884}
885
886/*
887 * kick_iocb:
888 *      Called typically from a wait queue callback context
889 *      to trigger a retry of the iocb.
890 *      The retry is usually executed by aio workqueue
891 *      threads (See aio_kick_handler).
892 */
893void kick_iocb(struct kiocb *iocb)
894{
895	/* sync iocbs are easy: they can only ever be executing from a
896	 * single context. */
897	if (is_sync_kiocb(iocb)) {
898		kiocbSetKicked(iocb);
899	        wake_up_process(iocb->ki_obj.tsk);
900		return;
901	}
902
903	try_queue_kicked_iocb(iocb);
904}
905EXPORT_SYMBOL(kick_iocb);
906
907/* aio_complete
908 *	Called when the io request on the given iocb is complete.
909 *	Returns true if this is the last user of the request.  The
910 *	only other user of the request can be the cancellation code.
911 */
912int aio_complete(struct kiocb *iocb, long res, long res2)
913{
914	struct kioctx	*ctx = iocb->ki_ctx;
915	struct aio_ring_info	*info;
916	struct aio_ring	*ring;
917	struct io_event	*event;
918	unsigned long	flags;
919	unsigned long	tail;
920	int		ret;
921
922	/*
923	 * Special case handling for sync iocbs:
924	 *  - events go directly into the iocb for fast handling
925	 *  - the sync task with the iocb in its stack holds the single iocb
926	 *    ref, no other paths have a way to get another ref
927	 *  - the sync task helpfully left a reference to itself in the iocb
928	 */
929	if (is_sync_kiocb(iocb)) {
930		BUG_ON(iocb->ki_users != 1);
931		iocb->ki_user_data = res;
932		iocb->ki_users = 0;
933		wake_up_process(iocb->ki_obj.tsk);
934		return 1;
935	}
936
937	info = &ctx->ring_info;
938
939	/* add a completion event to the ring buffer.
940	 * must be done holding ctx->ctx_lock to prevent
941	 * other code from messing with the tail
942	 * pointer since we might be called from irq
943	 * context.
944	 */
945	spin_lock_irqsave(&ctx->ctx_lock, flags);
946
947	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
948		list_del_init(&iocb->ki_run_list);
949
950	/*
951	 * cancelled requests don't get events, userland was given one
952	 * when the event got cancelled.
953	 */
954	if (kiocbIsCancelled(iocb))
955		goto put_rq;
956
957	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
958
959	tail = info->tail;
960	event = aio_ring_event(info, tail, KM_IRQ0);
961	if (++tail >= info->nr)
962		tail = 0;
963
964	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
965	event->data = iocb->ki_user_data;
966	event->res = res;
967	event->res2 = res2;
968
969	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
970		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
971		res, res2);
972
973	/* after flagging the request as done, we
974	 * must never even look at it again
975	 */
976	smp_wmb();	/* make event visible before updating tail */
977
978	info->tail = tail;
979	ring->tail = tail;
980
981	put_aio_ring_event(event, KM_IRQ0);
982	kunmap_atomic(ring, KM_IRQ1);
983
984	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
985
986	/*
987	 * Check if the user asked us to deliver the result through an
988	 * eventfd. The eventfd_signal() function is safe to be called
989	 * from IRQ context.
990	 */
991	if (iocb->ki_eventfd != NULL)
992		eventfd_signal(iocb->ki_eventfd, 1);
993
994put_rq:
995	/* everything turned out well, dispose of the aiocb. */
996	ret = __aio_put_req(ctx, iocb);
997
998	/*
999	 * We have to order our ring_info tail store above and test
1000	 * of the wait list below outside the wait lock.  This is
1001	 * like in wake_up_bit() where clearing a bit has to be
1002	 * ordered with the unlocked test.
1003	 */
1004	smp_mb();
1005
1006	if (waitqueue_active(&ctx->wait))
1007		wake_up(&ctx->wait);
1008
1009	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1010	return ret;
1011}
1012EXPORT_SYMBOL(aio_complete);
1013
1014static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1015{
1016	struct aio_ring_info *info = &ioctx->ring_info;
1017	struct aio_ring *ring;
1018	unsigned long head;
1019	int ret = 0;
1020
1021	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1022	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1023		 (unsigned long)ring->head, (unsigned long)ring->tail,
1024		 (unsigned long)ring->nr);
1025
1026	if (ring->head == ring->tail)
1027		goto out;
1028
1029	spin_lock(&info->ring_lock);
1030
1031	head = ring->head % info->nr;
1032	if (head != ring->tail) {
1033		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1034		*ent = *evp;
1035		head = (head + 1) % info->nr;
1036		smp_mb(); /* finish reading the event before updatng the head */
1037		ring->head = head;
1038		ret = 1;
1039		put_aio_ring_event(evp, KM_USER1);
1040	}
1041	spin_unlock(&info->ring_lock);
1042
1043out:
1044	kunmap_atomic(ring, KM_USER0);
1045	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1046		 (unsigned long)ring->head, (unsigned long)ring->tail);
1047	return ret;
1048}
1049
1050struct aio_timeout {
1051	struct timer_list	timer;
1052	int			timed_out;
1053	struct task_struct	*p;
1054};
1055
1056static void timeout_func(unsigned long data)
1057{
1058	struct aio_timeout *to = (struct aio_timeout *)data;
1059
1060	to->timed_out = 1;
1061	wake_up_process(to->p);
1062}
1063
1064static inline void init_timeout(struct aio_timeout *to)
1065{
1066	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1067	to->timed_out = 0;
1068	to->p = current;
1069}
1070
1071static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1072			       const struct timespec *ts)
1073{
1074	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1075	if (time_after(to->timer.expires, jiffies))
1076		add_timer(&to->timer);
1077	else
1078		to->timed_out = 1;
1079}
1080
1081static inline void clear_timeout(struct aio_timeout *to)
1082{
1083	del_singleshot_timer_sync(&to->timer);
1084}
1085
1086static int read_events(struct kioctx *ctx,
1087			long min_nr, long nr,
1088			struct io_event __user *event,
1089			struct timespec __user *timeout)
1090{
1091	long			start_jiffies = jiffies;
1092	struct task_struct	*tsk = current;
1093	DECLARE_WAITQUEUE(wait, tsk);
1094	int			ret;
1095	int			i = 0;
1096	struct io_event		ent;
1097	struct aio_timeout	to;
1098	int			retry = 0;
1099
1100	/* needed to zero any padding within an entry (there shouldn't be
1101	 * any, but C is fun!
1102	 */
1103	memset(&ent, 0, sizeof(ent));
1104retry:
1105	ret = 0;
1106	while (likely(i < nr)) {
1107		ret = aio_read_evt(ctx, &ent);
1108		if (unlikely(ret <= 0))
1109			break;
1110
1111		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1112			ent.data, ent.obj, ent.res, ent.res2);
1113
1114		/* Could we split the check in two? */
1115		ret = -EFAULT;
1116		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1117			dprintk("aio: lost an event due to EFAULT.\n");
1118			break;
1119		}
1120		ret = 0;
1121
1122		/* Good, event copied to userland, update counts. */
1123		event ++;
1124		i ++;
1125	}
1126
1127	if (min_nr <= i)
1128		return i;
1129	if (ret)
1130		return ret;
1131
1132	/* End fast path */
1133
1134	/* racey check, but it gets redone */
1135	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1136		retry = 1;
1137		aio_run_all_iocbs(ctx);
1138		goto retry;
1139	}
1140
1141	init_timeout(&to);
1142	if (timeout) {
1143		struct timespec	ts;
1144		ret = -EFAULT;
1145		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1146			goto out;
1147
1148		set_timeout(start_jiffies, &to, &ts);
1149	}
1150
1151	while (likely(i < nr)) {
1152		add_wait_queue_exclusive(&ctx->wait, &wait);
1153		do {
1154			set_task_state(tsk, TASK_INTERRUPTIBLE);
1155			ret = aio_read_evt(ctx, &ent);
1156			if (ret)
1157				break;
1158			if (min_nr <= i)
1159				break;
1160			if (unlikely(ctx->dead)) {
1161				ret = -EINVAL;
1162				break;
1163			}
1164			if (to.timed_out)	/* Only check after read evt */
1165				break;
1166			/* Try to only show up in io wait if there are ops
1167			 *  in flight */
1168			if (ctx->reqs_active)
1169				io_schedule();
1170			else
1171				schedule();
1172			if (signal_pending(tsk)) {
1173				ret = -EINTR;
1174				break;
1175			}
1176			/*ret = aio_read_evt(ctx, &ent);*/
1177		} while (1) ;
1178
1179		set_task_state(tsk, TASK_RUNNING);
1180		remove_wait_queue(&ctx->wait, &wait);
1181
1182		if (unlikely(ret <= 0))
1183			break;
1184
1185		ret = -EFAULT;
1186		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1187			dprintk("aio: lost an event due to EFAULT.\n");
1188			break;
1189		}
1190
1191		/* Good, event copied to userland, update counts. */
1192		event ++;
1193		i ++;
1194	}
1195
1196	if (timeout)
1197		clear_timeout(&to);
1198out:
1199	destroy_timer_on_stack(&to.timer);
1200	return i ? i : ret;
1201}
1202
1203/* Take an ioctx and remove it from the list of ioctx's.  Protects
1204 * against races with itself via ->dead.
1205 */
1206static void io_destroy(struct kioctx *ioctx)
1207{
1208	struct mm_struct *mm = current->mm;
1209	int was_dead;
1210
1211	/* delete the entry from the list is someone else hasn't already */
1212	spin_lock(&mm->ioctx_lock);
1213	was_dead = ioctx->dead;
1214	ioctx->dead = 1;
1215	hlist_del_rcu(&ioctx->list);
1216	spin_unlock(&mm->ioctx_lock);
1217
1218	dprintk("aio_release(%p)\n", ioctx);
1219	if (likely(!was_dead))
1220		put_ioctx(ioctx);	/* twice for the list */
1221
1222	aio_cancel_all(ioctx);
1223	wait_for_all_aios(ioctx);
1224
1225	/*
1226	 * Wake up any waiters.  The setting of ctx->dead must be seen
1227	 * by other CPUs at this point.  Right now, we rely on the
1228	 * locking done by the above calls to ensure this consistency.
1229	 */
1230	wake_up(&ioctx->wait);
1231	put_ioctx(ioctx);	/* once for the lookup */
1232}
1233
1234/* sys_io_setup:
1235 *	Create an aio_context capable of receiving at least nr_events.
1236 *	ctxp must not point to an aio_context that already exists, and
1237 *	must be initialized to 0 prior to the call.  On successful
1238 *	creation of the aio_context, *ctxp is filled in with the resulting
1239 *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1240 *	if the specified nr_events exceeds internal limits.  May fail
1241 *	with -EAGAIN if the specified nr_events exceeds the user's limit
1242 *	of available events.  May fail with -ENOMEM if insufficient kernel
1243 *	resources are available.  May fail with -EFAULT if an invalid
1244 *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1245 *	implemented.
1246 */
1247SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1248{
1249	struct kioctx *ioctx = NULL;
1250	unsigned long ctx;
1251	long ret;
1252
1253	ret = get_user(ctx, ctxp);
1254	if (unlikely(ret))
1255		goto out;
1256
1257	ret = -EINVAL;
1258	if (unlikely(ctx || nr_events == 0)) {
1259		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1260		         ctx, nr_events);
1261		goto out;
1262	}
1263
1264	ioctx = ioctx_alloc(nr_events);
1265	ret = PTR_ERR(ioctx);
1266	if (!IS_ERR(ioctx)) {
1267		ret = put_user(ioctx->user_id, ctxp);
1268		if (!ret)
1269			return 0;
1270
1271		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1272		io_destroy(ioctx);
1273	}
1274
1275out:
1276	return ret;
1277}
1278
1279/* sys_io_destroy:
1280 *	Destroy the aio_context specified.  May cancel any outstanding
1281 *	AIOs and block on completion.  Will fail with -ENOSYS if not
1282 *	implemented.  May fail with -EINVAL if the context pointed to
1283 *	is invalid.
1284 */
1285SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1286{
1287	struct kioctx *ioctx = lookup_ioctx(ctx);
1288	if (likely(NULL != ioctx)) {
1289		io_destroy(ioctx);
1290		return 0;
1291	}
1292	pr_debug("EINVAL: io_destroy: invalid context id\n");
1293	return -EINVAL;
1294}
1295
1296static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1297{
1298	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1299
1300	BUG_ON(ret <= 0);
1301
1302	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1303		ssize_t this = min((ssize_t)iov->iov_len, ret);
1304		iov->iov_base += this;
1305		iov->iov_len -= this;
1306		iocb->ki_left -= this;
1307		ret -= this;
1308		if (iov->iov_len == 0) {
1309			iocb->ki_cur_seg++;
1310			iov++;
1311		}
1312	}
1313
1314	/* the caller should not have done more io than what fit in
1315	 * the remaining iovecs */
1316	BUG_ON(ret > 0 && iocb->ki_left == 0);
1317}
1318
1319static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1320{
1321	struct file *file = iocb->ki_filp;
1322	struct address_space *mapping = file->f_mapping;
1323	struct inode *inode = mapping->host;
1324	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1325			 unsigned long, loff_t);
1326	ssize_t ret = 0;
1327	unsigned short opcode;
1328
1329	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1330		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1331		rw_op = file->f_op->aio_read;
1332		opcode = IOCB_CMD_PREADV;
1333	} else {
1334		rw_op = file->f_op->aio_write;
1335		opcode = IOCB_CMD_PWRITEV;
1336	}
1337
1338	/* This matches the pread()/pwrite() logic */
1339	if (iocb->ki_pos < 0)
1340		return -EINVAL;
1341
1342	do {
1343		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1344			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1345			    iocb->ki_pos);
1346		if (ret > 0)
1347			aio_advance_iovec(iocb, ret);
1348
1349	/* retry all partial writes.  retry partial reads as long as its a
1350	 * regular file. */
1351	} while (ret > 0 && iocb->ki_left > 0 &&
1352		 (opcode == IOCB_CMD_PWRITEV ||
1353		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1354
1355	/* This means we must have transferred all that we could */
1356	/* No need to retry anymore */
1357	if ((ret == 0) || (iocb->ki_left == 0))
1358		ret = iocb->ki_nbytes - iocb->ki_left;
1359
1360	/* If we managed to write some out we return that, rather than
1361	 * the eventual error. */
1362	if (opcode == IOCB_CMD_PWRITEV
1363	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1364	    && iocb->ki_nbytes - iocb->ki_left)
1365		ret = iocb->ki_nbytes - iocb->ki_left;
1366
1367	return ret;
1368}
1369
1370static ssize_t aio_fdsync(struct kiocb *iocb)
1371{
1372	struct file *file = iocb->ki_filp;
1373	ssize_t ret = -EINVAL;
1374
1375	if (file->f_op->aio_fsync)
1376		ret = file->f_op->aio_fsync(iocb, 1);
1377	return ret;
1378}
1379
1380static ssize_t aio_fsync(struct kiocb *iocb)
1381{
1382	struct file *file = iocb->ki_filp;
1383	ssize_t ret = -EINVAL;
1384
1385	if (file->f_op->aio_fsync)
1386		ret = file->f_op->aio_fsync(iocb, 0);
1387	return ret;
1388}
1389
1390static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1391{
1392	ssize_t ret;
1393
1394#ifdef CONFIG_COMPAT
1395	if (compat)
1396		ret = compat_rw_copy_check_uvector(type,
1397				(struct compat_iovec __user *)kiocb->ki_buf,
1398				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1399				&kiocb->ki_iovec);
1400	else
1401#endif
1402		ret = rw_copy_check_uvector(type,
1403				(struct iovec __user *)kiocb->ki_buf,
1404				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1405				&kiocb->ki_iovec);
1406	if (ret < 0)
1407		goto out;
1408
1409	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1410	kiocb->ki_cur_seg = 0;
1411	/* ki_nbytes/left now reflect bytes instead of segs */
1412	kiocb->ki_nbytes = ret;
1413	kiocb->ki_left = ret;
1414
1415	ret = 0;
1416out:
1417	return ret;
1418}
1419
1420static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1421{
1422	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1423	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1424	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1425	kiocb->ki_nr_segs = 1;
1426	kiocb->ki_cur_seg = 0;
1427	return 0;
1428}
1429
1430/*
1431 * aio_setup_iocb:
1432 *	Performs the initial checks and aio retry method
1433 *	setup for the kiocb at the time of io submission.
1434 */
1435static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1436{
1437	struct file *file = kiocb->ki_filp;
1438	ssize_t ret = 0;
1439
1440	switch (kiocb->ki_opcode) {
1441	case IOCB_CMD_PREAD:
1442		ret = -EBADF;
1443		if (unlikely(!(file->f_mode & FMODE_READ)))
1444			break;
1445		ret = -EFAULT;
1446		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1447			kiocb->ki_left)))
1448			break;
1449		ret = security_file_permission(file, MAY_READ);
1450		if (unlikely(ret))
1451			break;
1452		ret = aio_setup_single_vector(kiocb);
1453		if (ret)
1454			break;
1455		ret = -EINVAL;
1456		if (file->f_op->aio_read)
1457			kiocb->ki_retry = aio_rw_vect_retry;
1458		break;
1459	case IOCB_CMD_PWRITE:
1460		ret = -EBADF;
1461		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1462			break;
1463		ret = -EFAULT;
1464		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1465			kiocb->ki_left)))
1466			break;
1467		ret = security_file_permission(file, MAY_WRITE);
1468		if (unlikely(ret))
1469			break;
1470		ret = aio_setup_single_vector(kiocb);
1471		if (ret)
1472			break;
1473		ret = -EINVAL;
1474		if (file->f_op->aio_write)
1475			kiocb->ki_retry = aio_rw_vect_retry;
1476		break;
1477	case IOCB_CMD_PREADV:
1478		ret = -EBADF;
1479		if (unlikely(!(file->f_mode & FMODE_READ)))
1480			break;
1481		ret = security_file_permission(file, MAY_READ);
1482		if (unlikely(ret))
1483			break;
1484		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1485		if (ret)
1486			break;
1487		ret = -EINVAL;
1488		if (file->f_op->aio_read)
1489			kiocb->ki_retry = aio_rw_vect_retry;
1490		break;
1491	case IOCB_CMD_PWRITEV:
1492		ret = -EBADF;
1493		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1494			break;
1495		ret = security_file_permission(file, MAY_WRITE);
1496		if (unlikely(ret))
1497			break;
1498		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1499		if (ret)
1500			break;
1501		ret = -EINVAL;
1502		if (file->f_op->aio_write)
1503			kiocb->ki_retry = aio_rw_vect_retry;
1504		break;
1505	case IOCB_CMD_FDSYNC:
1506		ret = -EINVAL;
1507		if (file->f_op->aio_fsync)
1508			kiocb->ki_retry = aio_fdsync;
1509		break;
1510	case IOCB_CMD_FSYNC:
1511		ret = -EINVAL;
1512		if (file->f_op->aio_fsync)
1513			kiocb->ki_retry = aio_fsync;
1514		break;
1515	default:
1516		dprintk("EINVAL: io_submit: no operation provided\n");
1517		ret = -EINVAL;
1518	}
1519
1520	if (!kiocb->ki_retry)
1521		return ret;
1522
1523	return 0;
1524}
1525
1526static void aio_batch_add(struct address_space *mapping,
1527			  struct hlist_head *batch_hash)
1528{
1529	struct aio_batch_entry *abe;
1530	struct hlist_node *pos;
1531	unsigned bucket;
1532
1533	bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1534	hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1535		if (abe->mapping == mapping)
1536			return;
1537	}
1538
1539	abe = mempool_alloc(abe_pool, GFP_KERNEL);
1540	BUG_ON(!igrab(mapping->host));
1541	abe->mapping = mapping;
1542	hlist_add_head(&abe->list, &batch_hash[bucket]);
1543	return;
1544}
1545
1546static void aio_batch_free(struct hlist_head *batch_hash)
1547{
1548	struct aio_batch_entry *abe;
1549	struct hlist_node *pos, *n;
1550	int i;
1551
1552	for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1553		hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1554			blk_run_address_space(abe->mapping);
1555			iput(abe->mapping->host);
1556			hlist_del(&abe->list);
1557			mempool_free(abe, abe_pool);
1558		}
1559	}
1560}
1561
1562static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1563			 struct iocb *iocb, struct hlist_head *batch_hash,
1564			 bool compat)
1565{
1566	struct kiocb *req;
1567	struct file *file;
1568	ssize_t ret;
1569
1570	/* enforce forwards compatibility on users */
1571	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1572		pr_debug("EINVAL: io_submit: reserve field set\n");
1573		return -EINVAL;
1574	}
1575
1576	/* prevent overflows */
1577	if (unlikely(
1578	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1579	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1580	    ((ssize_t)iocb->aio_nbytes < 0)
1581	   )) {
1582		pr_debug("EINVAL: io_submit: overflow check\n");
1583		return -EINVAL;
1584	}
1585
1586	file = fget(iocb->aio_fildes);
1587	if (unlikely(!file))
1588		return -EBADF;
1589
1590	req = aio_get_req(ctx);		/* returns with 2 references to req */
1591	if (unlikely(!req)) {
1592		fput(file);
1593		return -EAGAIN;
1594	}
1595	req->ki_filp = file;
1596	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1597		/*
1598		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1599		 * instance of the file* now. The file descriptor must be
1600		 * an eventfd() fd, and will be signaled for each completed
1601		 * event using the eventfd_signal() function.
1602		 */
1603		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1604		if (IS_ERR(req->ki_eventfd)) {
1605			ret = PTR_ERR(req->ki_eventfd);
1606			req->ki_eventfd = NULL;
1607			goto out_put_req;
1608		}
1609	}
1610
1611	ret = put_user(req->ki_key, &user_iocb->aio_key);
1612	if (unlikely(ret)) {
1613		dprintk("EFAULT: aio_key\n");
1614		goto out_put_req;
1615	}
1616
1617	req->ki_obj.user = user_iocb;
1618	req->ki_user_data = iocb->aio_data;
1619	req->ki_pos = iocb->aio_offset;
1620
1621	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1622	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1623	req->ki_opcode = iocb->aio_lio_opcode;
1624
1625	ret = aio_setup_iocb(req, compat);
1626
1627	if (ret)
1628		goto out_put_req;
1629
1630	spin_lock_irq(&ctx->ctx_lock);
1631	aio_run_iocb(req);
1632	if (!list_empty(&ctx->run_list)) {
1633		/* drain the run list */
1634		while (__aio_run_iocbs(ctx))
1635			;
1636	}
1637	spin_unlock_irq(&ctx->ctx_lock);
1638	if (req->ki_opcode == IOCB_CMD_PREAD ||
1639	    req->ki_opcode == IOCB_CMD_PREADV ||
1640	    req->ki_opcode == IOCB_CMD_PWRITE ||
1641	    req->ki_opcode == IOCB_CMD_PWRITEV)
1642		aio_batch_add(file->f_mapping, batch_hash);
1643
1644	aio_put_req(req);	/* drop extra ref to req */
1645	return 0;
1646
1647out_put_req:
1648	aio_put_req(req);	/* drop extra ref to req */
1649	aio_put_req(req);	/* drop i/o ref to req */
1650	return ret;
1651}
1652
1653long do_io_submit(aio_context_t ctx_id, long nr,
1654		  struct iocb __user *__user *iocbpp, bool compat)
1655{
1656	struct kioctx *ctx;
1657	long ret = 0;
1658	int i;
1659	struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1660
1661	if (unlikely(nr < 0))
1662		return -EINVAL;
1663
1664	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1665		nr = LONG_MAX/sizeof(*iocbpp);
1666
1667	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1668		return -EFAULT;
1669
1670	ctx = lookup_ioctx(ctx_id);
1671	if (unlikely(!ctx)) {
1672		pr_debug("EINVAL: io_submit: invalid context id\n");
1673		return -EINVAL;
1674	}
1675
1676	/*
1677	 * AKPM: should this return a partial result if some of the IOs were
1678	 * successfully submitted?
1679	 */
1680	for (i=0; i<nr; i++) {
1681		struct iocb __user *user_iocb;
1682		struct iocb tmp;
1683
1684		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1685			ret = -EFAULT;
1686			break;
1687		}
1688
1689		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1690			ret = -EFAULT;
1691			break;
1692		}
1693
1694		ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat);
1695		if (ret)
1696			break;
1697	}
1698	aio_batch_free(batch_hash);
1699
1700	put_ioctx(ctx);
1701	return i ? i : ret;
1702}
1703
1704/* sys_io_submit:
1705 *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1706 *	the number of iocbs queued.  May return -EINVAL if the aio_context
1707 *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1708 *	*iocbpp[0] is not properly initialized, if the operation specified
1709 *	is invalid for the file descriptor in the iocb.  May fail with
1710 *	-EFAULT if any of the data structures point to invalid data.  May
1711 *	fail with -EBADF if the file descriptor specified in the first
1712 *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1713 *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1714 *	fail with -ENOSYS if not implemented.
1715 */
1716SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1717		struct iocb __user * __user *, iocbpp)
1718{
1719	return do_io_submit(ctx_id, nr, iocbpp, 0);
1720}
1721
1722/* lookup_kiocb
1723 *	Finds a given iocb for cancellation.
1724 */
1725static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1726				  u32 key)
1727{
1728	struct list_head *pos;
1729
1730	assert_spin_locked(&ctx->ctx_lock);
1731
1732	/* TODO: use a hash or array, this sucks. */
1733	list_for_each(pos, &ctx->active_reqs) {
1734		struct kiocb *kiocb = list_kiocb(pos);
1735		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1736			return kiocb;
1737	}
1738	return NULL;
1739}
1740
1741/* sys_io_cancel:
1742 *	Attempts to cancel an iocb previously passed to io_submit.  If
1743 *	the operation is successfully cancelled, the resulting event is
1744 *	copied into the memory pointed to by result without being placed
1745 *	into the completion queue and 0 is returned.  May fail with
1746 *	-EFAULT if any of the data structures pointed to are invalid.
1747 *	May fail with -EINVAL if aio_context specified by ctx_id is
1748 *	invalid.  May fail with -EAGAIN if the iocb specified was not
1749 *	cancelled.  Will fail with -ENOSYS if not implemented.
1750 */
1751SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1752		struct io_event __user *, result)
1753{
1754	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1755	struct kioctx *ctx;
1756	struct kiocb *kiocb;
1757	u32 key;
1758	int ret;
1759
1760	ret = get_user(key, &iocb->aio_key);
1761	if (unlikely(ret))
1762		return -EFAULT;
1763
1764	ctx = lookup_ioctx(ctx_id);
1765	if (unlikely(!ctx))
1766		return -EINVAL;
1767
1768	spin_lock_irq(&ctx->ctx_lock);
1769	ret = -EAGAIN;
1770	kiocb = lookup_kiocb(ctx, iocb, key);
1771	if (kiocb && kiocb->ki_cancel) {
1772		cancel = kiocb->ki_cancel;
1773		kiocb->ki_users ++;
1774		kiocbSetCancelled(kiocb);
1775	} else
1776		cancel = NULL;
1777	spin_unlock_irq(&ctx->ctx_lock);
1778
1779	if (NULL != cancel) {
1780		struct io_event tmp;
1781		pr_debug("calling cancel\n");
1782		memset(&tmp, 0, sizeof(tmp));
1783		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1784		tmp.data = kiocb->ki_user_data;
1785		ret = cancel(kiocb, &tmp);
1786		if (!ret) {
1787			/* Cancellation succeeded -- copy the result
1788			 * into the user's buffer.
1789			 */
1790			if (copy_to_user(result, &tmp, sizeof(tmp)))
1791				ret = -EFAULT;
1792		}
1793	} else
1794		ret = -EINVAL;
1795
1796	put_ioctx(ctx);
1797
1798	return ret;
1799}
1800
1801/* io_getevents:
1802 *	Attempts to read at least min_nr events and up to nr events from
1803 *	the completion queue for the aio_context specified by ctx_id. If
1804 *	it succeeds, the number of read events is returned. May fail with
1805 *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1806 *	out of range, if timeout is out of range.  May fail with -EFAULT
1807 *	if any of the memory specified is invalid.  May return 0 or
1808 *	< min_nr if the timeout specified by timeout has elapsed
1809 *	before sufficient events are available, where timeout == NULL
1810 *	specifies an infinite timeout. Note that the timeout pointed to by
1811 *	timeout is relative and will be updated if not NULL and the
1812 *	operation blocks. Will fail with -ENOSYS if not implemented.
1813 */
1814SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1815		long, min_nr,
1816		long, nr,
1817		struct io_event __user *, events,
1818		struct timespec __user *, timeout)
1819{
1820	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1821	long ret = -EINVAL;
1822
1823	if (likely(ioctx)) {
1824		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1825			ret = read_events(ioctx, min_nr, nr, events, timeout);
1826		put_ioctx(ioctx);
1827	}
1828
1829	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1830	return ret;
1831}
1832