• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/usb/gadget/
1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 *      Ben Dooks <ben@simtec.co.uk>
6 *      http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13*/
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/delay.h>
24#include <linux/io.h>
25#include <linux/slab.h>
26#include <linux/clk.h>
27
28#include <linux/usb/ch9.h>
29#include <linux/usb/gadget.h>
30
31#include <mach/map.h>
32
33#include <plat/regs-usb-hsotg-phy.h>
34#include <plat/regs-usb-hsotg.h>
35#include <mach/regs-sys.h>
36#include <plat/udc-hs.h>
37#include <plat/cpu.h>
38
39#define DMA_ADDR_INVALID (~((dma_addr_t)0))
40
41/* EP0_MPS_LIMIT
42 *
43 * Unfortunately there seems to be a limit of the amount of data that can
44 * be transfered by IN transactions on EP0. This is either 127 bytes or 3
45 * packets (which practially means 1 packet and 63 bytes of data) when the
46 * MPS is set to 64.
47 *
48 * This means if we are wanting to move >127 bytes of data, we need to
49 * split the transactions up, but just doing one packet at a time does
50 * not work (this may be an implicit DATA0 PID on first packet of the
51 * transaction) and doing 2 packets is outside the controller's limits.
52 *
53 * If we try to lower the MPS size for EP0, then no transfers work properly
54 * for EP0, and the system will fail basic enumeration. As no cause for this
55 * has currently been found, we cannot support any large IN transfers for
56 * EP0.
57 */
58#define EP0_MPS_LIMIT	64
59
60struct s3c_hsotg;
61struct s3c_hsotg_req;
62
63/**
64 * struct s3c_hsotg_ep - driver endpoint definition.
65 * @ep: The gadget layer representation of the endpoint.
66 * @name: The driver generated name for the endpoint.
67 * @queue: Queue of requests for this endpoint.
68 * @parent: Reference back to the parent device structure.
69 * @req: The current request that the endpoint is processing. This is
70 *       used to indicate an request has been loaded onto the endpoint
71 *       and has yet to be completed (maybe due to data move, or simply
72 *	 awaiting an ack from the core all the data has been completed).
73 * @debugfs: File entry for debugfs file for this endpoint.
74 * @lock: State lock to protect contents of endpoint.
75 * @dir_in: Set to true if this endpoint is of the IN direction, which
76 *	    means that it is sending data to the Host.
77 * @index: The index for the endpoint registers.
78 * @name: The name array passed to the USB core.
79 * @halted: Set if the endpoint has been halted.
80 * @periodic: Set if this is a periodic ep, such as Interrupt
81 * @sent_zlp: Set if we've sent a zero-length packet.
82 * @total_data: The total number of data bytes done.
83 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
84 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
85 * @last_load: The offset of data for the last start of request.
86 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
87 *
88 * This is the driver's state for each registered enpoint, allowing it
89 * to keep track of transactions that need doing. Each endpoint has a
90 * lock to protect the state, to try and avoid using an overall lock
91 * for the host controller as much as possible.
92 *
93 * For periodic IN endpoints, we have fifo_size and fifo_load to try
94 * and keep track of the amount of data in the periodic FIFO for each
95 * of these as we don't have a status register that tells us how much
96 * is in each of them. (note, this may actually be useless information
97 * as in shared-fifo mode periodic in acts like a single-frame packet
98 * buffer than a fifo)
99 */
100struct s3c_hsotg_ep {
101	struct usb_ep		ep;
102	struct list_head	queue;
103	struct s3c_hsotg	*parent;
104	struct s3c_hsotg_req	*req;
105	struct dentry		*debugfs;
106
107	spinlock_t		lock;
108
109	unsigned long		total_data;
110	unsigned int		size_loaded;
111	unsigned int		last_load;
112	unsigned int		fifo_load;
113	unsigned short		fifo_size;
114
115	unsigned char		dir_in;
116	unsigned char		index;
117
118	unsigned int		halted:1;
119	unsigned int		periodic:1;
120	unsigned int		sent_zlp:1;
121
122	char			name[10];
123};
124
125#define S3C_HSOTG_EPS	(8+1)	/* limit to 9 for the moment */
126
127/**
128 * struct s3c_hsotg - driver state.
129 * @dev: The parent device supplied to the probe function
130 * @driver: USB gadget driver
131 * @plat: The platform specific configuration data.
132 * @regs: The memory area mapped for accessing registers.
133 * @regs_res: The resource that was allocated when claiming register space.
134 * @irq: The IRQ number we are using
135 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
136 * @debug_root: root directrory for debugfs.
137 * @debug_file: main status file for debugfs.
138 * @debug_fifo: FIFO status file for debugfs.
139 * @ep0_reply: Request used for ep0 reply.
140 * @ep0_buff: Buffer for EP0 reply data, if needed.
141 * @ctrl_buff: Buffer for EP0 control requests.
142 * @ctrl_req: Request for EP0 control packets.
143 * @eps: The endpoints being supplied to the gadget framework
144 */
145struct s3c_hsotg {
146	struct device		 *dev;
147	struct usb_gadget_driver *driver;
148	struct s3c_hsotg_plat	 *plat;
149
150	void __iomem		*regs;
151	struct resource		*regs_res;
152	int			irq;
153	struct clk		*clk;
154
155	unsigned int		dedicated_fifos:1;
156
157	struct dentry		*debug_root;
158	struct dentry		*debug_file;
159	struct dentry		*debug_fifo;
160
161	struct usb_request	*ep0_reply;
162	struct usb_request	*ctrl_req;
163	u8			ep0_buff[8];
164	u8			ctrl_buff[8];
165
166	struct usb_gadget	gadget;
167	struct s3c_hsotg_ep	eps[];
168};
169
170/**
171 * struct s3c_hsotg_req - data transfer request
172 * @req: The USB gadget request
173 * @queue: The list of requests for the endpoint this is queued for.
174 * @in_progress: Has already had size/packets written to core
175 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
176 */
177struct s3c_hsotg_req {
178	struct usb_request	req;
179	struct list_head	queue;
180	unsigned char		in_progress;
181	unsigned char		mapped;
182};
183
184/* conversion functions */
185static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
186{
187	return container_of(req, struct s3c_hsotg_req, req);
188}
189
190static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
191{
192	return container_of(ep, struct s3c_hsotg_ep, ep);
193}
194
195static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
196{
197	return container_of(gadget, struct s3c_hsotg, gadget);
198}
199
200static inline void __orr32(void __iomem *ptr, u32 val)
201{
202	writel(readl(ptr) | val, ptr);
203}
204
205static inline void __bic32(void __iomem *ptr, u32 val)
206{
207	writel(readl(ptr) & ~val, ptr);
208}
209
210/* forward decleration of functions */
211static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
212
213/**
214 * using_dma - return the DMA status of the driver.
215 * @hsotg: The driver state.
216 *
217 * Return true if we're using DMA.
218 *
219 * Currently, we have the DMA support code worked into everywhere
220 * that needs it, but the AMBA DMA implementation in the hardware can
221 * only DMA from 32bit aligned addresses. This means that gadgets such
222 * as the CDC Ethernet cannot work as they often pass packets which are
223 * not 32bit aligned.
224 *
225 * Unfortunately the choice to use DMA or not is global to the controller
226 * and seems to be only settable when the controller is being put through
227 * a core reset. This means we either need to fix the gadgets to take
228 * account of DMA alignment, or add bounce buffers (yuerk).
229 *
230 * Until this issue is sorted out, we always return 'false'.
231 */
232static inline bool using_dma(struct s3c_hsotg *hsotg)
233{
234	return false;	/* support is not complete */
235}
236
237/**
238 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
239 * @hsotg: The device state
240 * @ints: A bitmask of the interrupts to enable
241 */
242static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
243{
244	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
245	u32 new_gsintmsk;
246
247	new_gsintmsk = gsintmsk | ints;
248
249	if (new_gsintmsk != gsintmsk) {
250		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
251		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
252	}
253}
254
255/**
256 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
257 * @hsotg: The device state
258 * @ints: A bitmask of the interrupts to enable
259 */
260static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
261{
262	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
263	u32 new_gsintmsk;
264
265	new_gsintmsk = gsintmsk & ~ints;
266
267	if (new_gsintmsk != gsintmsk)
268		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
269}
270
271/**
272 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
273 * @hsotg: The device state
274 * @ep: The endpoint index
275 * @dir_in: True if direction is in.
276 * @en: The enable value, true to enable
277 *
278 * Set or clear the mask for an individual endpoint's interrupt
279 * request.
280 */
281static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
282				 unsigned int ep, unsigned int dir_in,
283				 unsigned int en)
284{
285	unsigned long flags;
286	u32 bit = 1 << ep;
287	u32 daint;
288
289	if (!dir_in)
290		bit <<= 16;
291
292	local_irq_save(flags);
293	daint = readl(hsotg->regs + S3C_DAINTMSK);
294	if (en)
295		daint |= bit;
296	else
297		daint &= ~bit;
298	writel(daint, hsotg->regs + S3C_DAINTMSK);
299	local_irq_restore(flags);
300}
301
302/**
303 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
304 * @hsotg: The device instance.
305 */
306static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
307{
308	unsigned int ep;
309	unsigned int addr;
310	unsigned int size;
311	int timeout;
312	u32 val;
313
314	/* the ryu 2.6.24 release ahs
315	   writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
316	   writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
317		S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
318		hsotg->regs + S3C_GNPTXFSIZ);
319	*/
320
321	/* set FIFO sizes to 2048/1024 */
322
323	writel(2048, hsotg->regs + S3C_GRXFSIZ);
324	writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
325	       S3C_GNPTXFSIZ_NPTxFDep(1024),
326	       hsotg->regs + S3C_GNPTXFSIZ);
327
328	/* arange all the rest of the TX FIFOs, as some versions of this
329	 * block have overlapping default addresses. This also ensures
330	 * that if the settings have been changed, then they are set to
331	 * known values. */
332
333	/* start at the end of the GNPTXFSIZ, rounded up */
334	addr = 2048 + 1024;
335	size = 768;
336
337	/* currently we allocate TX FIFOs for all possible endpoints,
338	 * and assume that they are all the same size. */
339
340	for (ep = 0; ep <= 15; ep++) {
341		val = addr;
342		val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
343		addr += size;
344
345		writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
346	}
347
348	/* according to p428 of the design guide, we need to ensure that
349	 * all fifos are flushed before continuing */
350
351	writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
352	       S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
353
354	/* wait until the fifos are both flushed */
355	timeout = 100;
356	while (1) {
357		val = readl(hsotg->regs + S3C_GRSTCTL);
358
359		if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
360			break;
361
362		if (--timeout == 0) {
363			dev_err(hsotg->dev,
364				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
365				__func__, val);
366		}
367
368		udelay(1);
369	}
370
371	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
372}
373
374/**
375 * @ep: USB endpoint to allocate request for.
376 * @flags: Allocation flags
377 *
378 * Allocate a new USB request structure appropriate for the specified endpoint
379 */
380static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
381						      gfp_t flags)
382{
383	struct s3c_hsotg_req *req;
384
385	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
386	if (!req)
387		return NULL;
388
389	INIT_LIST_HEAD(&req->queue);
390
391	req->req.dma = DMA_ADDR_INVALID;
392	return &req->req;
393}
394
395/**
396 * is_ep_periodic - return true if the endpoint is in periodic mode.
397 * @hs_ep: The endpoint to query.
398 *
399 * Returns true if the endpoint is in periodic mode, meaning it is being
400 * used for an Interrupt or ISO transfer.
401 */
402static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
403{
404	return hs_ep->periodic;
405}
406
407/**
408 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
409 * @hsotg: The device state.
410 * @hs_ep: The endpoint for the request
411 * @hs_req: The request being processed.
412 *
413 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
414 * of a request to ensure the buffer is ready for access by the caller.
415*/
416static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
417				struct s3c_hsotg_ep *hs_ep,
418				struct s3c_hsotg_req *hs_req)
419{
420	struct usb_request *req = &hs_req->req;
421	enum dma_data_direction dir;
422
423	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
424
425	/* ignore this if we're not moving any data */
426	if (hs_req->req.length == 0)
427		return;
428
429	if (hs_req->mapped) {
430		/* we mapped this, so unmap and remove the dma */
431
432		dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
433
434		req->dma = DMA_ADDR_INVALID;
435		hs_req->mapped = 0;
436	} else {
437		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
438	}
439}
440
441/**
442 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
443 * @hsotg: The controller state.
444 * @hs_ep: The endpoint we're going to write for.
445 * @hs_req: The request to write data for.
446 *
447 * This is called when the TxFIFO has some space in it to hold a new
448 * transmission and we have something to give it. The actual setup of
449 * the data size is done elsewhere, so all we have to do is to actually
450 * write the data.
451 *
452 * The return value is zero if there is more space (or nothing was done)
453 * otherwise -ENOSPC is returned if the FIFO space was used up.
454 *
455 * This routine is only needed for PIO
456*/
457static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
458				struct s3c_hsotg_ep *hs_ep,
459				struct s3c_hsotg_req *hs_req)
460{
461	bool periodic = is_ep_periodic(hs_ep);
462	u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
463	int buf_pos = hs_req->req.actual;
464	int to_write = hs_ep->size_loaded;
465	void *data;
466	int can_write;
467	int pkt_round;
468
469	to_write -= (buf_pos - hs_ep->last_load);
470
471	/* if there's nothing to write, get out early */
472	if (to_write == 0)
473		return 0;
474
475	if (periodic && !hsotg->dedicated_fifos) {
476		u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
477		int size_left;
478		int size_done;
479
480		/* work out how much data was loaded so we can calculate
481		 * how much data is left in the fifo. */
482
483		size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
484
485		/* if shared fifo, we cannot write anything until the
486		 * previous data has been completely sent.
487		 */
488		if (hs_ep->fifo_load != 0) {
489			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
490			return -ENOSPC;
491		}
492
493		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
494			__func__, size_left,
495			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
496
497		/* how much of the data has moved */
498		size_done = hs_ep->size_loaded - size_left;
499
500		/* how much data is left in the fifo */
501		can_write = hs_ep->fifo_load - size_done;
502		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
503			__func__, can_write);
504
505		can_write = hs_ep->fifo_size - can_write;
506		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
507			__func__, can_write);
508
509		if (can_write <= 0) {
510			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
511			return -ENOSPC;
512		}
513	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
514		can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
515
516		can_write &= 0xffff;
517		can_write *= 4;
518	} else {
519		if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
520			dev_dbg(hsotg->dev,
521				"%s: no queue slots available (0x%08x)\n",
522				__func__, gnptxsts);
523
524			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
525			return -ENOSPC;
526		}
527
528		can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
529		can_write *= 4;	/* fifo size is in 32bit quantities. */
530	}
531
532	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
533		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
534
535	/* limit to 512 bytes of data, it seems at least on the non-periodic
536	 * FIFO, requests of >512 cause the endpoint to get stuck with a
537	 * fragment of the end of the transfer in it.
538	 */
539	if (can_write > 512)
540		can_write = 512;
541
542	/* limit the write to one max-packet size worth of data, but allow
543	 * the transfer to return that it did not run out of fifo space
544	 * doing it. */
545	if (to_write > hs_ep->ep.maxpacket) {
546		to_write = hs_ep->ep.maxpacket;
547
548		s3c_hsotg_en_gsint(hsotg,
549				   periodic ? S3C_GINTSTS_PTxFEmp :
550				   S3C_GINTSTS_NPTxFEmp);
551	}
552
553	/* see if we can write data */
554
555	if (to_write > can_write) {
556		to_write = can_write;
557		pkt_round = to_write % hs_ep->ep.maxpacket;
558
559		/* Not sure, but we probably shouldn't be writing partial
560		 * packets into the FIFO, so round the write down to an
561		 * exact number of packets.
562		 *
563		 * Note, we do not currently check to see if we can ever
564		 * write a full packet or not to the FIFO.
565		 */
566
567		if (pkt_round)
568			to_write -= pkt_round;
569
570		/* enable correct FIFO interrupt to alert us when there
571		 * is more room left. */
572
573		s3c_hsotg_en_gsint(hsotg,
574				   periodic ? S3C_GINTSTS_PTxFEmp :
575				   S3C_GINTSTS_NPTxFEmp);
576	}
577
578	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
579		 to_write, hs_req->req.length, can_write, buf_pos);
580
581	if (to_write <= 0)
582		return -ENOSPC;
583
584	hs_req->req.actual = buf_pos + to_write;
585	hs_ep->total_data += to_write;
586
587	if (periodic)
588		hs_ep->fifo_load += to_write;
589
590	to_write = DIV_ROUND_UP(to_write, 4);
591	data = hs_req->req.buf + buf_pos;
592
593	writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
594
595	return (to_write >= can_write) ? -ENOSPC : 0;
596}
597
598/**
599 * get_ep_limit - get the maximum data legnth for this endpoint
600 * @hs_ep: The endpoint
601 *
602 * Return the maximum data that can be queued in one go on a given endpoint
603 * so that transfers that are too long can be split.
604 */
605static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
606{
607	int index = hs_ep->index;
608	unsigned maxsize;
609	unsigned maxpkt;
610
611	if (index != 0) {
612		maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
613		maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
614	} else {
615		maxsize = 64+64;
616		if (hs_ep->dir_in) {
617			maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
618		} else {
619			maxpkt = 2;
620		}
621	}
622
623	/* we made the constant loading easier above by using +1 */
624	maxpkt--;
625	maxsize--;
626
627	/* constrain by packet count if maxpkts*pktsize is greater
628	 * than the length register size. */
629
630	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
631		maxsize = maxpkt * hs_ep->ep.maxpacket;
632
633	return maxsize;
634}
635
636/**
637 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
638 * @hsotg: The controller state.
639 * @hs_ep: The endpoint to process a request for
640 * @hs_req: The request to start.
641 * @continuing: True if we are doing more for the current request.
642 *
643 * Start the given request running by setting the endpoint registers
644 * appropriately, and writing any data to the FIFOs.
645 */
646static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
647				struct s3c_hsotg_ep *hs_ep,
648				struct s3c_hsotg_req *hs_req,
649				bool continuing)
650{
651	struct usb_request *ureq = &hs_req->req;
652	int index = hs_ep->index;
653	int dir_in = hs_ep->dir_in;
654	u32 epctrl_reg;
655	u32 epsize_reg;
656	u32 epsize;
657	u32 ctrl;
658	unsigned length;
659	unsigned packets;
660	unsigned maxreq;
661
662	if (index != 0) {
663		if (hs_ep->req && !continuing) {
664			dev_err(hsotg->dev, "%s: active request\n", __func__);
665			WARN_ON(1);
666			return;
667		} else if (hs_ep->req != hs_req && continuing) {
668			dev_err(hsotg->dev,
669				"%s: continue different req\n", __func__);
670			WARN_ON(1);
671			return;
672		}
673	}
674
675	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
676	epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
677
678	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
679		__func__, readl(hsotg->regs + epctrl_reg), index,
680		hs_ep->dir_in ? "in" : "out");
681
682	length = ureq->length - ureq->actual;
683
684	if (0)
685		dev_dbg(hsotg->dev,
686			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
687			ureq->buf, length, ureq->dma,
688			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
689
690	maxreq = get_ep_limit(hs_ep);
691	if (length > maxreq) {
692		int round = maxreq % hs_ep->ep.maxpacket;
693
694		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
695			__func__, length, maxreq, round);
696
697		/* round down to multiple of packets */
698		if (round)
699			maxreq -= round;
700
701		length = maxreq;
702	}
703
704	if (length)
705		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
706	else
707		packets = 1;	/* send one packet if length is zero. */
708
709	if (dir_in && index != 0)
710		epsize = S3C_DxEPTSIZ_MC(1);
711	else
712		epsize = 0;
713
714	if (index != 0 && ureq->zero) {
715		/* test for the packets being exactly right for the
716		 * transfer */
717
718		if (length == (packets * hs_ep->ep.maxpacket))
719			packets++;
720	}
721
722	epsize |= S3C_DxEPTSIZ_PktCnt(packets);
723	epsize |= S3C_DxEPTSIZ_XferSize(length);
724
725	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
726		__func__, packets, length, ureq->length, epsize, epsize_reg);
727
728	/* store the request as the current one we're doing */
729	hs_ep->req = hs_req;
730
731	/* write size / packets */
732	writel(epsize, hsotg->regs + epsize_reg);
733
734	ctrl = readl(hsotg->regs + epctrl_reg);
735
736	if (ctrl & S3C_DxEPCTL_Stall) {
737		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
738
739		/* not sure what we can do here, if it is EP0 then we should
740		 * get this cleared once the endpoint has transmitted the
741		 * STALL packet, otherwise it needs to be cleared by the
742		 * host.
743		 */
744	}
745
746	if (using_dma(hsotg)) {
747		unsigned int dma_reg;
748
749		/* write DMA address to control register, buffer already
750		 * synced by s3c_hsotg_ep_queue().  */
751
752		dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
753		writel(ureq->dma, hsotg->regs + dma_reg);
754
755		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
756			__func__, ureq->dma, dma_reg);
757	}
758
759	ctrl |= S3C_DxEPCTL_EPEna;	/* ensure ep enabled */
760	ctrl |= S3C_DxEPCTL_USBActEp;
761	ctrl |= S3C_DxEPCTL_CNAK;	/* clear NAK set by core */
762
763	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
764	writel(ctrl, hsotg->regs + epctrl_reg);
765
766	/* set these, it seems that DMA support increments past the end
767	 * of the packet buffer so we need to calculate the length from
768	 * this information. */
769	hs_ep->size_loaded = length;
770	hs_ep->last_load = ureq->actual;
771
772	if (dir_in && !using_dma(hsotg)) {
773		/* set these anyway, we may need them for non-periodic in */
774		hs_ep->fifo_load = 0;
775
776		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
777	}
778
779	/* clear the INTknTXFEmpMsk when we start request, more as a aide
780	 * to debugging to see what is going on. */
781	if (dir_in)
782		writel(S3C_DIEPMSK_INTknTXFEmpMsk,
783		       hsotg->regs + S3C_DIEPINT(index));
784
785	/* Note, trying to clear the NAK here causes problems with transmit
786	 * on the S3C6400 ending up with the TXFIFO becomming full. */
787
788	/* check ep is enabled */
789	if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
790		dev_warn(hsotg->dev,
791			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
792			 index, readl(hsotg->regs + epctrl_reg));
793
794	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
795		__func__, readl(hsotg->regs + epctrl_reg));
796}
797
798/**
799 * s3c_hsotg_map_dma - map the DMA memory being used for the request
800 * @hsotg: The device state.
801 * @hs_ep: The endpoint the request is on.
802 * @req: The request being processed.
803 *
804 * We've been asked to queue a request, so ensure that the memory buffer
805 * is correctly setup for DMA. If we've been passed an extant DMA address
806 * then ensure the buffer has been synced to memory. If our buffer has no
807 * DMA memory, then we map the memory and mark our request to allow us to
808 * cleanup on completion.
809*/
810static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
811			     struct s3c_hsotg_ep *hs_ep,
812			     struct usb_request *req)
813{
814	enum dma_data_direction dir;
815	struct s3c_hsotg_req *hs_req = our_req(req);
816
817	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
818
819	/* if the length is zero, ignore the DMA data */
820	if (hs_req->req.length == 0)
821		return 0;
822
823	if (req->dma == DMA_ADDR_INVALID) {
824		dma_addr_t dma;
825
826		dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
827
828		if (unlikely(dma_mapping_error(hsotg->dev, dma)))
829			goto dma_error;
830
831		if (dma & 3) {
832			dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
833				__func__);
834
835			dma_unmap_single(hsotg->dev, dma, req->length, dir);
836			return -EINVAL;
837		}
838
839		hs_req->mapped = 1;
840		req->dma = dma;
841	} else {
842		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
843		hs_req->mapped = 0;
844	}
845
846	return 0;
847
848dma_error:
849	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
850		__func__, req->buf, req->length);
851
852	return -EIO;
853}
854
855static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
856			      gfp_t gfp_flags)
857{
858	struct s3c_hsotg_req *hs_req = our_req(req);
859	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860	struct s3c_hsotg *hs = hs_ep->parent;
861	unsigned long irqflags;
862	bool first;
863
864	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
865		ep->name, req, req->length, req->buf, req->no_interrupt,
866		req->zero, req->short_not_ok);
867
868	/* initialise status of the request */
869	INIT_LIST_HEAD(&hs_req->queue);
870	req->actual = 0;
871	req->status = -EINPROGRESS;
872
873	/* if we're using DMA, sync the buffers as necessary */
874	if (using_dma(hs)) {
875		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
876		if (ret)
877			return ret;
878	}
879
880	spin_lock_irqsave(&hs_ep->lock, irqflags);
881
882	first = list_empty(&hs_ep->queue);
883	list_add_tail(&hs_req->queue, &hs_ep->queue);
884
885	if (first)
886		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
887
888	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
889
890	return 0;
891}
892
893static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
894				      struct usb_request *req)
895{
896	struct s3c_hsotg_req *hs_req = our_req(req);
897
898	kfree(hs_req);
899}
900
901/**
902 * s3c_hsotg_complete_oursetup - setup completion callback
903 * @ep: The endpoint the request was on.
904 * @req: The request completed.
905 *
906 * Called on completion of any requests the driver itself
907 * submitted that need cleaning up.
908 */
909static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
910					struct usb_request *req)
911{
912	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
913	struct s3c_hsotg *hsotg = hs_ep->parent;
914
915	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
916
917	s3c_hsotg_ep_free_request(ep, req);
918}
919
920/**
921 * ep_from_windex - convert control wIndex value to endpoint
922 * @hsotg: The driver state.
923 * @windex: The control request wIndex field (in host order).
924 *
925 * Convert the given wIndex into a pointer to an driver endpoint
926 * structure, or return NULL if it is not a valid endpoint.
927*/
928static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
929					   u32 windex)
930{
931	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
932	int dir = (windex & USB_DIR_IN) ? 1 : 0;
933	int idx = windex & 0x7F;
934
935	if (windex >= 0x100)
936		return NULL;
937
938	if (idx > S3C_HSOTG_EPS)
939		return NULL;
940
941	if (idx && ep->dir_in != dir)
942		return NULL;
943
944	return ep;
945}
946
947/**
948 * s3c_hsotg_send_reply - send reply to control request
949 * @hsotg: The device state
950 * @ep: Endpoint 0
951 * @buff: Buffer for request
952 * @length: Length of reply.
953 *
954 * Create a request and queue it on the given endpoint. This is useful as
955 * an internal method of sending replies to certain control requests, etc.
956 */
957static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
958				struct s3c_hsotg_ep *ep,
959				void *buff,
960				int length)
961{
962	struct usb_request *req;
963	int ret;
964
965	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
966
967	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
968	hsotg->ep0_reply = req;
969	if (!req) {
970		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
971		return -ENOMEM;
972	}
973
974	req->buf = hsotg->ep0_buff;
975	req->length = length;
976	req->zero = 1; /* always do zero-length final transfer */
977	req->complete = s3c_hsotg_complete_oursetup;
978
979	if (length)
980		memcpy(req->buf, buff, length);
981	else
982		ep->sent_zlp = 1;
983
984	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
985	if (ret) {
986		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
987		return ret;
988	}
989
990	return 0;
991}
992
993/**
994 * s3c_hsotg_process_req_status - process request GET_STATUS
995 * @hsotg: The device state
996 * @ctrl: USB control request
997 */
998static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
999					struct usb_ctrlrequest *ctrl)
1000{
1001	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1002	struct s3c_hsotg_ep *ep;
1003	__le16 reply;
1004	int ret;
1005
1006	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1007
1008	if (!ep0->dir_in) {
1009		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1010		return -EINVAL;
1011	}
1012
1013	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1014	case USB_RECIP_DEVICE:
1015		reply = cpu_to_le16(0); /* bit 0 => self powered,
1016					 * bit 1 => remote wakeup */
1017		break;
1018
1019	case USB_RECIP_INTERFACE:
1020		/* currently, the data result should be zero */
1021		reply = cpu_to_le16(0);
1022		break;
1023
1024	case USB_RECIP_ENDPOINT:
1025		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1026		if (!ep)
1027			return -ENOENT;
1028
1029		reply = cpu_to_le16(ep->halted ? 1 : 0);
1030		break;
1031
1032	default:
1033		return 0;
1034	}
1035
1036	if (le16_to_cpu(ctrl->wLength) != 2)
1037		return -EINVAL;
1038
1039	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1040	if (ret) {
1041		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1042		return ret;
1043	}
1044
1045	return 1;
1046}
1047
1048static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1049
1050/**
1051 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1052 * @hsotg: The device state
1053 * @ctrl: USB control request
1054 */
1055static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1056					 struct usb_ctrlrequest *ctrl)
1057{
1058	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1059	struct s3c_hsotg_ep *ep;
1060
1061	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1062		__func__, set ? "SET" : "CLEAR");
1063
1064	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1065		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1066		if (!ep) {
1067			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1068				__func__, le16_to_cpu(ctrl->wIndex));
1069			return -ENOENT;
1070		}
1071
1072		switch (le16_to_cpu(ctrl->wValue)) {
1073		case USB_ENDPOINT_HALT:
1074			s3c_hsotg_ep_sethalt(&ep->ep, set);
1075			break;
1076
1077		default:
1078			return -ENOENT;
1079		}
1080	} else
1081		return -ENOENT;  /* currently only deal with endpoint */
1082
1083	return 1;
1084}
1085
1086/**
1087 * s3c_hsotg_process_control - process a control request
1088 * @hsotg: The device state
1089 * @ctrl: The control request received
1090 *
1091 * The controller has received the SETUP phase of a control request, and
1092 * needs to work out what to do next (and whether to pass it on to the
1093 * gadget driver).
1094 */
1095static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1096				      struct usb_ctrlrequest *ctrl)
1097{
1098	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1099	int ret = 0;
1100	u32 dcfg;
1101
1102	ep0->sent_zlp = 0;
1103
1104	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1105		 ctrl->bRequest, ctrl->bRequestType,
1106		 ctrl->wValue, ctrl->wLength);
1107
1108	/* record the direction of the request, for later use when enquing
1109	 * packets onto EP0. */
1110
1111	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1112	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1113
1114	/* if we've no data with this request, then the last part of the
1115	 * transaction is going to implicitly be IN. */
1116	if (ctrl->wLength == 0)
1117		ep0->dir_in = 1;
1118
1119	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1120		switch (ctrl->bRequest) {
1121		case USB_REQ_SET_ADDRESS:
1122			dcfg = readl(hsotg->regs + S3C_DCFG);
1123			dcfg &= ~S3C_DCFG_DevAddr_MASK;
1124			dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1125			writel(dcfg, hsotg->regs + S3C_DCFG);
1126
1127			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1128
1129			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1130			return;
1131
1132		case USB_REQ_GET_STATUS:
1133			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1134			break;
1135
1136		case USB_REQ_CLEAR_FEATURE:
1137		case USB_REQ_SET_FEATURE:
1138			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1139			break;
1140		}
1141	}
1142
1143	/* as a fallback, try delivering it to the driver to deal with */
1144
1145	if (ret == 0 && hsotg->driver) {
1146		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1147		if (ret < 0)
1148			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1149	}
1150
1151	if (ret > 0) {
1152		if (!ep0->dir_in) {
1153			/* need to generate zlp in reply or take data */
1154			/* todo - deal with any data we might be sent? */
1155			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1156		}
1157	}
1158
1159	/* the request is either unhandlable, or is not formatted correctly
1160	 * so respond with a STALL for the status stage to indicate failure.
1161	 */
1162
1163	if (ret < 0) {
1164		u32 reg;
1165		u32 ctrl;
1166
1167		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1168		reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1169
1170		/* S3C_DxEPCTL_Stall will be cleared by EP once it has
1171		 * taken effect, so no need to clear later. */
1172
1173		ctrl = readl(hsotg->regs + reg);
1174		ctrl |= S3C_DxEPCTL_Stall;
1175		ctrl |= S3C_DxEPCTL_CNAK;
1176		writel(ctrl, hsotg->regs + reg);
1177
1178		dev_dbg(hsotg->dev,
1179			"writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1180			ctrl, reg, readl(hsotg->regs + reg));
1181
1182		/* don't belive we need to anything more to get the EP
1183		 * to reply with a STALL packet */
1184	}
1185}
1186
1187static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1188
1189/**
1190 * s3c_hsotg_complete_setup - completion of a setup transfer
1191 * @ep: The endpoint the request was on.
1192 * @req: The request completed.
1193 *
1194 * Called on completion of any requests the driver itself submitted for
1195 * EP0 setup packets
1196 */
1197static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1198				     struct usb_request *req)
1199{
1200	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1201	struct s3c_hsotg *hsotg = hs_ep->parent;
1202
1203	if (req->status < 0) {
1204		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1205		return;
1206	}
1207
1208	if (req->actual == 0)
1209		s3c_hsotg_enqueue_setup(hsotg);
1210	else
1211		s3c_hsotg_process_control(hsotg, req->buf);
1212}
1213
1214/**
1215 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1216 * @hsotg: The device state.
1217 *
1218 * Enqueue a request on EP0 if necessary to received any SETUP packets
1219 * received from the host.
1220 */
1221static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1222{
1223	struct usb_request *req = hsotg->ctrl_req;
1224	struct s3c_hsotg_req *hs_req = our_req(req);
1225	int ret;
1226
1227	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1228
1229	req->zero = 0;
1230	req->length = 8;
1231	req->buf = hsotg->ctrl_buff;
1232	req->complete = s3c_hsotg_complete_setup;
1233
1234	if (!list_empty(&hs_req->queue)) {
1235		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1236		return;
1237	}
1238
1239	hsotg->eps[0].dir_in = 0;
1240
1241	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1242	if (ret < 0) {
1243		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1244		/* Don't think there's much we can do other than watch the
1245		 * driver fail. */
1246	}
1247}
1248
1249/**
1250 * get_ep_head - return the first request on the endpoint
1251 * @hs_ep: The controller endpoint to get
1252 *
1253 * Get the first request on the endpoint.
1254*/
1255static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1256{
1257	if (list_empty(&hs_ep->queue))
1258		return NULL;
1259
1260	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1261}
1262
1263/**
1264 * s3c_hsotg_complete_request - complete a request given to us
1265 * @hsotg: The device state.
1266 * @hs_ep: The endpoint the request was on.
1267 * @hs_req: The request to complete.
1268 * @result: The result code (0 => Ok, otherwise errno)
1269 *
1270 * The given request has finished, so call the necessary completion
1271 * if it has one and then look to see if we can start a new request
1272 * on the endpoint.
1273 *
1274 * Note, expects the ep to already be locked as appropriate.
1275*/
1276static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1277				       struct s3c_hsotg_ep *hs_ep,
1278				       struct s3c_hsotg_req *hs_req,
1279				       int result)
1280{
1281	bool restart;
1282
1283	if (!hs_req) {
1284		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1285		return;
1286	}
1287
1288	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1289		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1290
1291	/* only replace the status if we've not already set an error
1292	 * from a previous transaction */
1293
1294	if (hs_req->req.status == -EINPROGRESS)
1295		hs_req->req.status = result;
1296
1297	hs_ep->req = NULL;
1298	list_del_init(&hs_req->queue);
1299
1300	if (using_dma(hsotg))
1301		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1302
1303	/* call the complete request with the locks off, just in case the
1304	 * request tries to queue more work for this endpoint. */
1305
1306	if (hs_req->req.complete) {
1307		spin_unlock(&hs_ep->lock);
1308		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1309		spin_lock(&hs_ep->lock);
1310	}
1311
1312	/* Look to see if there is anything else to do. Note, the completion
1313	 * of the previous request may have caused a new request to be started
1314	 * so be careful when doing this. */
1315
1316	if (!hs_ep->req && result >= 0) {
1317		restart = !list_empty(&hs_ep->queue);
1318		if (restart) {
1319			hs_req = get_ep_head(hs_ep);
1320			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1321		}
1322	}
1323}
1324
1325/**
1326 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1327 * @hsotg: The device state.
1328 * @hs_ep: The endpoint the request was on.
1329 * @hs_req: The request to complete.
1330 * @result: The result code (0 => Ok, otherwise errno)
1331 *
1332 * See s3c_hsotg_complete_request(), but called with the endpoint's
1333 * lock held.
1334*/
1335static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1336					    struct s3c_hsotg_ep *hs_ep,
1337					    struct s3c_hsotg_req *hs_req,
1338					    int result)
1339{
1340	unsigned long flags;
1341
1342	spin_lock_irqsave(&hs_ep->lock, flags);
1343	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1344	spin_unlock_irqrestore(&hs_ep->lock, flags);
1345}
1346
1347/**
1348 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1349 * @hsotg: The device state.
1350 * @ep_idx: The endpoint index for the data
1351 * @size: The size of data in the fifo, in bytes
1352 *
1353 * The FIFO status shows there is data to read from the FIFO for a given
1354 * endpoint, so sort out whether we need to read the data into a request
1355 * that has been made for that endpoint.
1356 */
1357static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1358{
1359	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1360	struct s3c_hsotg_req *hs_req = hs_ep->req;
1361	void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1362	int to_read;
1363	int max_req;
1364	int read_ptr;
1365
1366	if (!hs_req) {
1367		u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1368		int ptr;
1369
1370		dev_warn(hsotg->dev,
1371			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1372			 __func__, size, ep_idx, epctl);
1373
1374		/* dump the data from the FIFO, we've nothing we can do */
1375		for (ptr = 0; ptr < size; ptr += 4)
1376			(void)readl(fifo);
1377
1378		return;
1379	}
1380
1381	spin_lock(&hs_ep->lock);
1382
1383	to_read = size;
1384	read_ptr = hs_req->req.actual;
1385	max_req = hs_req->req.length - read_ptr;
1386
1387	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1388		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1389
1390	if (to_read > max_req) {
1391		/* more data appeared than we where willing
1392		 * to deal with in this request.
1393		 */
1394
1395		/* currently we don't deal this */
1396		WARN_ON_ONCE(1);
1397	}
1398
1399	hs_ep->total_data += to_read;
1400	hs_req->req.actual += to_read;
1401	to_read = DIV_ROUND_UP(to_read, 4);
1402
1403	/* note, we might over-write the buffer end by 3 bytes depending on
1404	 * alignment of the data. */
1405	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1406
1407	spin_unlock(&hs_ep->lock);
1408}
1409
1410/**
1411 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1412 * @hsotg: The device instance
1413 * @req: The request currently on this endpoint
1414 *
1415 * Generate a zero-length IN packet request for terminating a SETUP
1416 * transaction.
1417 *
1418 * Note, since we don't write any data to the TxFIFO, then it is
1419 * currently belived that we do not need to wait for any space in
1420 * the TxFIFO.
1421 */
1422static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1423			       struct s3c_hsotg_req *req)
1424{
1425	u32 ctrl;
1426
1427	if (!req) {
1428		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1429		return;
1430	}
1431
1432	if (req->req.length == 0) {
1433		hsotg->eps[0].sent_zlp = 1;
1434		s3c_hsotg_enqueue_setup(hsotg);
1435		return;
1436	}
1437
1438	hsotg->eps[0].dir_in = 1;
1439	hsotg->eps[0].sent_zlp = 1;
1440
1441	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1442
1443	/* issue a zero-sized packet to terminate this */
1444	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1445	       S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1446
1447	ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1448	ctrl |= S3C_DxEPCTL_CNAK;  /* clear NAK set by core */
1449	ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1450	ctrl |= S3C_DxEPCTL_USBActEp;
1451	writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1452}
1453
1454/**
1455 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1456 * @hsotg: The device instance
1457 * @epnum: The endpoint received from
1458 * @was_setup: Set if processing a SetupDone event.
1459 *
1460 * The RXFIFO has delivered an OutDone event, which means that the data
1461 * transfer for an OUT endpoint has been completed, either by a short
1462 * packet or by the finish of a transfer.
1463*/
1464static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1465				     int epnum, bool was_setup)
1466{
1467	u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1468	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1469	struct s3c_hsotg_req *hs_req = hs_ep->req;
1470	struct usb_request *req = &hs_req->req;
1471	unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1472	int result = 0;
1473
1474	if (!hs_req) {
1475		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1476		return;
1477	}
1478
1479	if (using_dma(hsotg)) {
1480		unsigned size_done;
1481
1482		/* Calculate the size of the transfer by checking how much
1483		 * is left in the endpoint size register and then working it
1484		 * out from the amount we loaded for the transfer.
1485		 *
1486		 * We need to do this as DMA pointers are always 32bit aligned
1487		 * so may overshoot/undershoot the transfer.
1488		 */
1489
1490		size_done = hs_ep->size_loaded - size_left;
1491		size_done += hs_ep->last_load;
1492
1493		req->actual = size_done;
1494	}
1495
1496	/* if there is more request to do, schedule new transfer */
1497	if (req->actual < req->length && size_left == 0) {
1498		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1499		return;
1500	}
1501
1502	if (req->actual < req->length && req->short_not_ok) {
1503		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1504			__func__, req->actual, req->length);
1505
1506		/* todo - what should we return here? there's no one else
1507		 * even bothering to check the status. */
1508	}
1509
1510	if (epnum == 0) {
1511		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1512			s3c_hsotg_send_zlp(hsotg, hs_req);
1513	}
1514
1515	s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1516}
1517
1518/**
1519 * s3c_hsotg_read_frameno - read current frame number
1520 * @hsotg: The device instance
1521 *
1522 * Return the current frame number
1523*/
1524static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1525{
1526	u32 dsts;
1527
1528	dsts = readl(hsotg->regs + S3C_DSTS);
1529	dsts &= S3C_DSTS_SOFFN_MASK;
1530	dsts >>= S3C_DSTS_SOFFN_SHIFT;
1531
1532	return dsts;
1533}
1534
1535/**
1536 * s3c_hsotg_handle_rx - RX FIFO has data
1537 * @hsotg: The device instance
1538 *
1539 * The IRQ handler has detected that the RX FIFO has some data in it
1540 * that requires processing, so find out what is in there and do the
1541 * appropriate read.
1542 *
1543 * The RXFIFO is a true FIFO, the packets comming out are still in packet
1544 * chunks, so if you have x packets received on an endpoint you'll get x
1545 * FIFO events delivered, each with a packet's worth of data in it.
1546 *
1547 * When using DMA, we should not be processing events from the RXFIFO
1548 * as the actual data should be sent to the memory directly and we turn
1549 * on the completion interrupts to get notifications of transfer completion.
1550 */
1551static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1552{
1553	u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1554	u32 epnum, status, size;
1555
1556	WARN_ON(using_dma(hsotg));
1557
1558	epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1559	status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1560
1561	size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1562	size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1563
1564	if (1)
1565		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1566			__func__, grxstsr, size, epnum);
1567
1568#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1569
1570	switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1571	case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1572		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1573		break;
1574
1575	case __status(S3C_GRXSTS_PktSts_OutDone):
1576		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1577			s3c_hsotg_read_frameno(hsotg));
1578
1579		if (!using_dma(hsotg))
1580			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1581		break;
1582
1583	case __status(S3C_GRXSTS_PktSts_SetupDone):
1584		dev_dbg(hsotg->dev,
1585			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1586			s3c_hsotg_read_frameno(hsotg),
1587			readl(hsotg->regs + S3C_DOEPCTL(0)));
1588
1589		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1590		break;
1591
1592	case __status(S3C_GRXSTS_PktSts_OutRX):
1593		s3c_hsotg_rx_data(hsotg, epnum, size);
1594		break;
1595
1596	case __status(S3C_GRXSTS_PktSts_SetupRX):
1597		dev_dbg(hsotg->dev,
1598			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1599			s3c_hsotg_read_frameno(hsotg),
1600			readl(hsotg->regs + S3C_DOEPCTL(0)));
1601
1602		s3c_hsotg_rx_data(hsotg, epnum, size);
1603		break;
1604
1605	default:
1606		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1607			 __func__, grxstsr);
1608
1609		s3c_hsotg_dump(hsotg);
1610		break;
1611	}
1612}
1613
1614/**
1615 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1616 * @mps: The maximum packet size in bytes.
1617*/
1618static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1619{
1620	switch (mps) {
1621	case 64:
1622		return S3C_D0EPCTL_MPS_64;
1623	case 32:
1624		return S3C_D0EPCTL_MPS_32;
1625	case 16:
1626		return S3C_D0EPCTL_MPS_16;
1627	case 8:
1628		return S3C_D0EPCTL_MPS_8;
1629	}
1630
1631	/* bad max packet size, warn and return invalid result */
1632	WARN_ON(1);
1633	return (u32)-1;
1634}
1635
1636/**
1637 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1638 * @hsotg: The driver state.
1639 * @ep: The index number of the endpoint
1640 * @mps: The maximum packet size in bytes
1641 *
1642 * Configure the maximum packet size for the given endpoint, updating
1643 * the hardware control registers to reflect this.
1644 */
1645static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1646				       unsigned int ep, unsigned int mps)
1647{
1648	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1649	void __iomem *regs = hsotg->regs;
1650	u32 mpsval;
1651	u32 reg;
1652
1653	if (ep == 0) {
1654		/* EP0 is a special case */
1655		mpsval = s3c_hsotg_ep0_mps(mps);
1656		if (mpsval > 3)
1657			goto bad_mps;
1658	} else {
1659		if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1660			goto bad_mps;
1661
1662		mpsval = mps;
1663	}
1664
1665	hs_ep->ep.maxpacket = mps;
1666
1667	/* update both the in and out endpoint controldir_ registers, even
1668	 * if one of the directions may not be in use. */
1669
1670	reg = readl(regs + S3C_DIEPCTL(ep));
1671	reg &= ~S3C_DxEPCTL_MPS_MASK;
1672	reg |= mpsval;
1673	writel(reg, regs + S3C_DIEPCTL(ep));
1674
1675	reg = readl(regs + S3C_DOEPCTL(ep));
1676	reg &= ~S3C_DxEPCTL_MPS_MASK;
1677	reg |= mpsval;
1678	writel(reg, regs + S3C_DOEPCTL(ep));
1679
1680	return;
1681
1682bad_mps:
1683	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1684}
1685
1686
1687/**
1688 * s3c_hsotg_trytx - check to see if anything needs transmitting
1689 * @hsotg: The driver state
1690 * @hs_ep: The driver endpoint to check.
1691 *
1692 * Check to see if there is a request that has data to send, and if so
1693 * make an attempt to write data into the FIFO.
1694 */
1695static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1696			   struct s3c_hsotg_ep *hs_ep)
1697{
1698	struct s3c_hsotg_req *hs_req = hs_ep->req;
1699
1700	if (!hs_ep->dir_in || !hs_req)
1701		return 0;
1702
1703	if (hs_req->req.actual < hs_req->req.length) {
1704		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1705			hs_ep->index);
1706		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1707	}
1708
1709	return 0;
1710}
1711
1712/**
1713 * s3c_hsotg_complete_in - complete IN transfer
1714 * @hsotg: The device state.
1715 * @hs_ep: The endpoint that has just completed.
1716 *
1717 * An IN transfer has been completed, update the transfer's state and then
1718 * call the relevant completion routines.
1719 */
1720static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1721				  struct s3c_hsotg_ep *hs_ep)
1722{
1723	struct s3c_hsotg_req *hs_req = hs_ep->req;
1724	u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1725	int size_left, size_done;
1726
1727	if (!hs_req) {
1728		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1729		return;
1730	}
1731
1732	/* Calculate the size of the transfer by checking how much is left
1733	 * in the endpoint size register and then working it out from
1734	 * the amount we loaded for the transfer.
1735	 *
1736	 * We do this even for DMA, as the transfer may have incremented
1737	 * past the end of the buffer (DMA transfers are always 32bit
1738	 * aligned).
1739	 */
1740
1741	size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1742
1743	size_done = hs_ep->size_loaded - size_left;
1744	size_done += hs_ep->last_load;
1745
1746	if (hs_req->req.actual != size_done)
1747		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1748			__func__, hs_req->req.actual, size_done);
1749
1750	hs_req->req.actual = size_done;
1751
1752	/* if we did all of the transfer, and there is more data left
1753	 * around, then try restarting the rest of the request */
1754
1755	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1756		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1757		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1758	} else
1759		s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1760}
1761
1762/**
1763 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1764 * @hsotg: The driver state
1765 * @idx: The index for the endpoint (0..15)
1766 * @dir_in: Set if this is an IN endpoint
1767 *
1768 * Process and clear any interrupt pending for an individual endpoint
1769*/
1770static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1771			    int dir_in)
1772{
1773	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1774	u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1775	u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1776	u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1777	u32 ints;
1778	u32 clear = 0;
1779
1780	ints = readl(hsotg->regs + epint_reg);
1781
1782	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1783		__func__, idx, dir_in ? "in" : "out", ints);
1784
1785	if (ints & S3C_DxEPINT_XferCompl) {
1786		dev_dbg(hsotg->dev,
1787			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1788			__func__, readl(hsotg->regs + epctl_reg),
1789			readl(hsotg->regs + epsiz_reg));
1790
1791		/* we get OutDone from the FIFO, so we only need to look
1792		 * at completing IN requests here */
1793		if (dir_in) {
1794			s3c_hsotg_complete_in(hsotg, hs_ep);
1795
1796			if (idx == 0 && !hs_ep->req)
1797				s3c_hsotg_enqueue_setup(hsotg);
1798		} else if (using_dma(hsotg)) {
1799			/* We're using DMA, we need to fire an OutDone here
1800			 * as we ignore the RXFIFO. */
1801
1802			s3c_hsotg_handle_outdone(hsotg, idx, false);
1803		}
1804
1805		clear |= S3C_DxEPINT_XferCompl;
1806	}
1807
1808	if (ints & S3C_DxEPINT_EPDisbld) {
1809		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1810		clear |= S3C_DxEPINT_EPDisbld;
1811	}
1812
1813	if (ints & S3C_DxEPINT_AHBErr) {
1814		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1815		clear |= S3C_DxEPINT_AHBErr;
1816	}
1817
1818	if (ints & S3C_DxEPINT_Setup) {  /* Setup or Timeout */
1819		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1820
1821		if (using_dma(hsotg) && idx == 0) {
1822			/* this is the notification we've received a
1823			 * setup packet. In non-DMA mode we'd get this
1824			 * from the RXFIFO, instead we need to process
1825			 * the setup here. */
1826
1827			if (dir_in)
1828				WARN_ON_ONCE(1);
1829			else
1830				s3c_hsotg_handle_outdone(hsotg, 0, true);
1831		}
1832
1833		clear |= S3C_DxEPINT_Setup;
1834	}
1835
1836	if (ints & S3C_DxEPINT_Back2BackSetup) {
1837		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1838		clear |= S3C_DxEPINT_Back2BackSetup;
1839	}
1840
1841	if (dir_in) {
1842		/* not sure if this is important, but we'll clear it anyway
1843		 */
1844		if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1845			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1846				__func__, idx);
1847			clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
1848		}
1849
1850		/* this probably means something bad is happening */
1851		if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1852			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1853				 __func__, idx);
1854			clear |= S3C_DIEPMSK_INTknEPMisMsk;
1855		}
1856
1857		/* FIFO has space or is empty (see GAHBCFG) */
1858		if (hsotg->dedicated_fifos &&
1859		    ints & S3C_DIEPMSK_TxFIFOEmpty) {
1860			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1861				__func__, idx);
1862			s3c_hsotg_trytx(hsotg, hs_ep);
1863			clear |= S3C_DIEPMSK_TxFIFOEmpty;
1864		}
1865	}
1866
1867	writel(clear, hsotg->regs + epint_reg);
1868}
1869
1870/**
1871 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1872 * @hsotg: The device state.
1873 *
1874 * Handle updating the device settings after the enumeration phase has
1875 * been completed.
1876*/
1877static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1878{
1879	u32 dsts = readl(hsotg->regs + S3C_DSTS);
1880	int ep0_mps = 0, ep_mps;
1881
1882	/* This should signal the finish of the enumeration phase
1883	 * of the USB handshaking, so we should now know what rate
1884	 * we connected at. */
1885
1886	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1887
1888	/* note, since we're limited by the size of transfer on EP0, and
1889	 * it seems IN transfers must be a even number of packets we do
1890	 * not advertise a 64byte MPS on EP0. */
1891
1892	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1893	switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1894	case S3C_DSTS_EnumSpd_FS:
1895	case S3C_DSTS_EnumSpd_FS48:
1896		hsotg->gadget.speed = USB_SPEED_FULL;
1897		dev_info(hsotg->dev, "new device is full-speed\n");
1898
1899		ep0_mps = EP0_MPS_LIMIT;
1900		ep_mps = 64;
1901		break;
1902
1903	case S3C_DSTS_EnumSpd_HS:
1904		dev_info(hsotg->dev, "new device is high-speed\n");
1905		hsotg->gadget.speed = USB_SPEED_HIGH;
1906
1907		ep0_mps = EP0_MPS_LIMIT;
1908		ep_mps = 512;
1909		break;
1910
1911	case S3C_DSTS_EnumSpd_LS:
1912		hsotg->gadget.speed = USB_SPEED_LOW;
1913		dev_info(hsotg->dev, "new device is low-speed\n");
1914
1915		/* note, we don't actually support LS in this driver at the
1916		 * moment, and the documentation seems to imply that it isn't
1917		 * supported by the PHYs on some of the devices.
1918		 */
1919		break;
1920	}
1921
1922	/* we should now know the maximum packet size for an
1923	 * endpoint, so set the endpoints to a default value. */
1924
1925	if (ep0_mps) {
1926		int i;
1927		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1928		for (i = 1; i < S3C_HSOTG_EPS; i++)
1929			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1930	}
1931
1932	/* ensure after enumeration our EP0 is active */
1933
1934	s3c_hsotg_enqueue_setup(hsotg);
1935
1936	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1937		readl(hsotg->regs + S3C_DIEPCTL0),
1938		readl(hsotg->regs + S3C_DOEPCTL0));
1939}
1940
1941/**
1942 * kill_all_requests - remove all requests from the endpoint's queue
1943 * @hsotg: The device state.
1944 * @ep: The endpoint the requests may be on.
1945 * @result: The result code to use.
1946 * @force: Force removal of any current requests
1947 *
1948 * Go through the requests on the given endpoint and mark them
1949 * completed with the given result code.
1950 */
1951static void kill_all_requests(struct s3c_hsotg *hsotg,
1952			      struct s3c_hsotg_ep *ep,
1953			      int result, bool force)
1954{
1955	struct s3c_hsotg_req *req, *treq;
1956	unsigned long flags;
1957
1958	spin_lock_irqsave(&ep->lock, flags);
1959
1960	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1961		/* currently, we can't do much about an already
1962		 * running request on an in endpoint */
1963
1964		if (ep->req == req && ep->dir_in && !force)
1965			continue;
1966
1967		s3c_hsotg_complete_request(hsotg, ep, req,
1968					   result);
1969	}
1970
1971	spin_unlock_irqrestore(&ep->lock, flags);
1972}
1973
1974#define call_gadget(_hs, _entry) \
1975	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
1976	    (_hs)->driver && (_hs)->driver->_entry)	\
1977		(_hs)->driver->_entry(&(_hs)->gadget);
1978
1979/**
1980 * s3c_hsotg_disconnect_irq - disconnect irq service
1981 * @hsotg: The device state.
1982 *
1983 * A disconnect IRQ has been received, meaning that the host has
1984 * lost contact with the bus. Remove all current transactions
1985 * and signal the gadget driver that this has happened.
1986*/
1987static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1988{
1989	unsigned ep;
1990
1991	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1992		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1993
1994	call_gadget(hsotg, disconnect);
1995}
1996
1997/**
1998 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1999 * @hsotg: The device state:
2000 * @periodic: True if this is a periodic FIFO interrupt
2001 */
2002static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2003{
2004	struct s3c_hsotg_ep *ep;
2005	int epno, ret;
2006
2007	/* look through for any more data to transmit */
2008
2009	for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2010		ep = &hsotg->eps[epno];
2011
2012		if (!ep->dir_in)
2013			continue;
2014
2015		if ((periodic && !ep->periodic) ||
2016		    (!periodic && ep->periodic))
2017			continue;
2018
2019		ret = s3c_hsotg_trytx(hsotg, ep);
2020		if (ret < 0)
2021			break;
2022	}
2023}
2024
2025static struct s3c_hsotg *our_hsotg;
2026
2027/* IRQ flags which will trigger a retry around the IRQ loop */
2028#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2029			S3C_GINTSTS_PTxFEmp |  \
2030			S3C_GINTSTS_RxFLvl)
2031
2032/**
2033 * s3c_hsotg_irq - handle device interrupt
2034 * @irq: The IRQ number triggered
2035 * @pw: The pw value when registered the handler.
2036 */
2037static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2038{
2039	struct s3c_hsotg *hsotg = pw;
2040	int retry_count = 8;
2041	u32 gintsts;
2042	u32 gintmsk;
2043
2044irq_retry:
2045	gintsts = readl(hsotg->regs + S3C_GINTSTS);
2046	gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2047
2048	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2049		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2050
2051	gintsts &= gintmsk;
2052
2053	if (gintsts & S3C_GINTSTS_OTGInt) {
2054		u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2055
2056		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2057
2058		writel(otgint, hsotg->regs + S3C_GOTGINT);
2059		writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
2060	}
2061
2062	if (gintsts & S3C_GINTSTS_DisconnInt) {
2063		dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2064		writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2065
2066		s3c_hsotg_disconnect_irq(hsotg);
2067	}
2068
2069	if (gintsts & S3C_GINTSTS_SessReqInt) {
2070		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2071		writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2072	}
2073
2074	if (gintsts & S3C_GINTSTS_EnumDone) {
2075		s3c_hsotg_irq_enumdone(hsotg);
2076		writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2077	}
2078
2079	if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2080		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2081			readl(hsotg->regs + S3C_DSTS),
2082			readl(hsotg->regs + S3C_GOTGCTL));
2083
2084		writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2085	}
2086
2087	if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2088		u32 daint = readl(hsotg->regs + S3C_DAINT);
2089		u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2090		u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2091		int ep;
2092
2093		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2094
2095		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2096			if (daint_out & 1)
2097				s3c_hsotg_epint(hsotg, ep, 0);
2098		}
2099
2100		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2101			if (daint_in & 1)
2102				s3c_hsotg_epint(hsotg, ep, 1);
2103		}
2104
2105		writel(daint, hsotg->regs + S3C_DAINT);
2106		writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
2107		       hsotg->regs + S3C_GINTSTS);
2108	}
2109
2110	if (gintsts & S3C_GINTSTS_USBRst) {
2111		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2112		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2113			readl(hsotg->regs + S3C_GNPTXSTS));
2114
2115		kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2116
2117		/* it seems after a reset we can end up with a situation
2118		 * where the TXFIFO still has data in it... the docs
2119		 * suggest resetting all the fifos, so use the init_fifo
2120		 * code to relayout and flush the fifos.
2121		 */
2122
2123		s3c_hsotg_init_fifo(hsotg);
2124
2125		s3c_hsotg_enqueue_setup(hsotg);
2126
2127		writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2128	}
2129
2130	/* check both FIFOs */
2131
2132	if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2133		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2134
2135		/* Disable the interrupt to stop it happening again
2136		 * unless one of these endpoint routines decides that
2137		 * it needs re-enabling */
2138
2139		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2140		s3c_hsotg_irq_fifoempty(hsotg, false);
2141
2142		writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
2143	}
2144
2145	if (gintsts & S3C_GINTSTS_PTxFEmp) {
2146		dev_dbg(hsotg->dev, "PTxFEmp\n");
2147
2148		/* See note in S3C_GINTSTS_NPTxFEmp */
2149
2150		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2151		s3c_hsotg_irq_fifoempty(hsotg, true);
2152
2153		writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
2154	}
2155
2156	if (gintsts & S3C_GINTSTS_RxFLvl) {
2157		/* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2158		 * we need to retry s3c_hsotg_handle_rx if this is still
2159		 * set. */
2160
2161		s3c_hsotg_handle_rx(hsotg);
2162		writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
2163	}
2164
2165	if (gintsts & S3C_GINTSTS_ModeMis) {
2166		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2167		writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2168	}
2169
2170	if (gintsts & S3C_GINTSTS_USBSusp) {
2171		dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2172		writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2173
2174		call_gadget(hsotg, suspend);
2175	}
2176
2177	if (gintsts & S3C_GINTSTS_WkUpInt) {
2178		dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2179		writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2180
2181		call_gadget(hsotg, resume);
2182	}
2183
2184	if (gintsts & S3C_GINTSTS_ErlySusp) {
2185		dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2186		writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2187	}
2188
2189	/* these next two seem to crop-up occasionally causing the core
2190	 * to shutdown the USB transfer, so try clearing them and logging
2191	 * the occurence. */
2192
2193	if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2194		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2195
2196		s3c_hsotg_dump(hsotg);
2197
2198		writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2199		writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
2200	}
2201
2202	if (gintsts & S3C_GINTSTS_GINNakEff) {
2203		dev_info(hsotg->dev, "GINNakEff triggered\n");
2204
2205		s3c_hsotg_dump(hsotg);
2206
2207		writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2208		writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
2209	}
2210
2211	/* if we've had fifo events, we should try and go around the
2212	 * loop again to see if there's any point in returning yet. */
2213
2214	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2215			goto irq_retry;
2216
2217	return IRQ_HANDLED;
2218}
2219
2220/**
2221 * s3c_hsotg_ep_enable - enable the given endpoint
2222 * @ep: The USB endpint to configure
2223 * @desc: The USB endpoint descriptor to configure with.
2224 *
2225 * This is called from the USB gadget code's usb_ep_enable().
2226*/
2227static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2228			       const struct usb_endpoint_descriptor *desc)
2229{
2230	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2231	struct s3c_hsotg *hsotg = hs_ep->parent;
2232	unsigned long flags;
2233	int index = hs_ep->index;
2234	u32 epctrl_reg;
2235	u32 epctrl;
2236	u32 mps;
2237	int dir_in;
2238	int ret = 0;
2239
2240	dev_dbg(hsotg->dev,
2241		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2242		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2243		desc->wMaxPacketSize, desc->bInterval);
2244
2245	/* not to be called for EP0 */
2246	WARN_ON(index == 0);
2247
2248	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2249	if (dir_in != hs_ep->dir_in) {
2250		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2251		return -EINVAL;
2252	}
2253
2254	mps = le16_to_cpu(desc->wMaxPacketSize);
2255
2256	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2257
2258	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2259	epctrl = readl(hsotg->regs + epctrl_reg);
2260
2261	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2262		__func__, epctrl, epctrl_reg);
2263
2264	spin_lock_irqsave(&hs_ep->lock, flags);
2265
2266	epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2267	epctrl |= S3C_DxEPCTL_MPS(mps);
2268
2269	/* mark the endpoint as active, otherwise the core may ignore
2270	 * transactions entirely for this endpoint */
2271	epctrl |= S3C_DxEPCTL_USBActEp;
2272
2273	/* set the NAK status on the endpoint, otherwise we might try and
2274	 * do something with data that we've yet got a request to process
2275	 * since the RXFIFO will take data for an endpoint even if the
2276	 * size register hasn't been set.
2277	 */
2278
2279	epctrl |= S3C_DxEPCTL_SNAK;
2280
2281	/* update the endpoint state */
2282	hs_ep->ep.maxpacket = mps;
2283
2284	/* default, set to non-periodic */
2285	hs_ep->periodic = 0;
2286
2287	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2288	case USB_ENDPOINT_XFER_ISOC:
2289		dev_err(hsotg->dev, "no current ISOC support\n");
2290		ret = -EINVAL;
2291		goto out;
2292
2293	case USB_ENDPOINT_XFER_BULK:
2294		epctrl |= S3C_DxEPCTL_EPType_Bulk;
2295		break;
2296
2297	case USB_ENDPOINT_XFER_INT:
2298		if (dir_in) {
2299			/* Allocate our TxFNum by simply using the index
2300			 * of the endpoint for the moment. We could do
2301			 * something better if the host indicates how
2302			 * many FIFOs we are expecting to use. */
2303
2304			hs_ep->periodic = 1;
2305			epctrl |= S3C_DxEPCTL_TxFNum(index);
2306		}
2307
2308		epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2309		break;
2310
2311	case USB_ENDPOINT_XFER_CONTROL:
2312		epctrl |= S3C_DxEPCTL_EPType_Control;
2313		break;
2314	}
2315
2316	/* if the hardware has dedicated fifos, we must give each IN EP
2317	 * a unique tx-fifo even if it is non-periodic.
2318	 */
2319	if (dir_in && hsotg->dedicated_fifos)
2320		epctrl |= S3C_DxEPCTL_TxFNum(index);
2321
2322	/* for non control endpoints, set PID to D0 */
2323	if (index)
2324		epctrl |= S3C_DxEPCTL_SetD0PID;
2325
2326	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2327		__func__, epctrl);
2328
2329	writel(epctrl, hsotg->regs + epctrl_reg);
2330	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2331		__func__, readl(hsotg->regs + epctrl_reg));
2332
2333	/* enable the endpoint interrupt */
2334	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2335
2336out:
2337	spin_unlock_irqrestore(&hs_ep->lock, flags);
2338	return ret;
2339}
2340
2341static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2342{
2343	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2344	struct s3c_hsotg *hsotg = hs_ep->parent;
2345	int dir_in = hs_ep->dir_in;
2346	int index = hs_ep->index;
2347	unsigned long flags;
2348	u32 epctrl_reg;
2349	u32 ctrl;
2350
2351	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2352
2353	if (ep == &hsotg->eps[0].ep) {
2354		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2355		return -EINVAL;
2356	}
2357
2358	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2359
2360	/* terminate all requests with shutdown */
2361	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2362
2363	spin_lock_irqsave(&hs_ep->lock, flags);
2364
2365	ctrl = readl(hsotg->regs + epctrl_reg);
2366	ctrl &= ~S3C_DxEPCTL_EPEna;
2367	ctrl &= ~S3C_DxEPCTL_USBActEp;
2368	ctrl |= S3C_DxEPCTL_SNAK;
2369
2370	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2371	writel(ctrl, hsotg->regs + epctrl_reg);
2372
2373	/* disable endpoint interrupts */
2374	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2375
2376	spin_unlock_irqrestore(&hs_ep->lock, flags);
2377	return 0;
2378}
2379
2380/**
2381 * on_list - check request is on the given endpoint
2382 * @ep: The endpoint to check.
2383 * @test: The request to test if it is on the endpoint.
2384*/
2385static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2386{
2387	struct s3c_hsotg_req *req, *treq;
2388
2389	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2390		if (req == test)
2391			return true;
2392	}
2393
2394	return false;
2395}
2396
2397static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2398{
2399	struct s3c_hsotg_req *hs_req = our_req(req);
2400	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2401	struct s3c_hsotg *hs = hs_ep->parent;
2402	unsigned long flags;
2403
2404	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2405
2406	if (hs_req == hs_ep->req) {
2407		dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2408		return -EINPROGRESS;
2409	}
2410
2411	spin_lock_irqsave(&hs_ep->lock, flags);
2412
2413	if (!on_list(hs_ep, hs_req)) {
2414		spin_unlock_irqrestore(&hs_ep->lock, flags);
2415		return -EINVAL;
2416	}
2417
2418	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2419	spin_unlock_irqrestore(&hs_ep->lock, flags);
2420
2421	return 0;
2422}
2423
2424static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2425{
2426	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2427	struct s3c_hsotg *hs = hs_ep->parent;
2428	int index = hs_ep->index;
2429	unsigned long irqflags;
2430	u32 epreg;
2431	u32 epctl;
2432
2433	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2434
2435	spin_lock_irqsave(&hs_ep->lock, irqflags);
2436
2437	/* write both IN and OUT control registers */
2438
2439	epreg = S3C_DIEPCTL(index);
2440	epctl = readl(hs->regs + epreg);
2441
2442	if (value)
2443		epctl |= S3C_DxEPCTL_Stall;
2444	else
2445		epctl &= ~S3C_DxEPCTL_Stall;
2446
2447	writel(epctl, hs->regs + epreg);
2448
2449	epreg = S3C_DOEPCTL(index);
2450	epctl = readl(hs->regs + epreg);
2451
2452	if (value)
2453		epctl |= S3C_DxEPCTL_Stall;
2454	else
2455		epctl &= ~S3C_DxEPCTL_Stall;
2456
2457	writel(epctl, hs->regs + epreg);
2458
2459	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2460
2461	return 0;
2462}
2463
2464static struct usb_ep_ops s3c_hsotg_ep_ops = {
2465	.enable		= s3c_hsotg_ep_enable,
2466	.disable	= s3c_hsotg_ep_disable,
2467	.alloc_request	= s3c_hsotg_ep_alloc_request,
2468	.free_request	= s3c_hsotg_ep_free_request,
2469	.queue		= s3c_hsotg_ep_queue,
2470	.dequeue	= s3c_hsotg_ep_dequeue,
2471	.set_halt	= s3c_hsotg_ep_sethalt,
2472	/* note, don't belive we have any call for the fifo routines */
2473};
2474
2475/**
2476 * s3c_hsotg_corereset - issue softreset to the core
2477 * @hsotg: The device state
2478 *
2479 * Issue a soft reset to the core, and await the core finishing it.
2480*/
2481static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2482{
2483	int timeout;
2484	u32 grstctl;
2485
2486	dev_dbg(hsotg->dev, "resetting core\n");
2487
2488	/* issue soft reset */
2489	writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2490
2491	timeout = 1000;
2492	do {
2493		grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2494	} while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2495
2496	if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
2497		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2498		return -EINVAL;
2499	}
2500
2501	timeout = 1000;
2502
2503	while (1) {
2504		u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2505
2506		if (timeout-- < 0) {
2507			dev_info(hsotg->dev,
2508				 "%s: reset failed, GRSTCTL=%08x\n",
2509				 __func__, grstctl);
2510			return -ETIMEDOUT;
2511		}
2512
2513		if (grstctl & S3C_GRSTCTL_CSftRst)
2514			continue;
2515
2516		if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2517			continue;
2518
2519		break; 		/* reset done */
2520	}
2521
2522	dev_dbg(hsotg->dev, "reset successful\n");
2523	return 0;
2524}
2525
2526int usb_gadget_register_driver(struct usb_gadget_driver *driver)
2527{
2528	struct s3c_hsotg *hsotg = our_hsotg;
2529	int ret;
2530
2531	if (!hsotg) {
2532		printk(KERN_ERR "%s: called with no device\n", __func__);
2533		return -ENODEV;
2534	}
2535
2536	if (!driver) {
2537		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2538		return -EINVAL;
2539	}
2540
2541	if (driver->speed != USB_SPEED_HIGH &&
2542	    driver->speed != USB_SPEED_FULL) {
2543		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2544	}
2545
2546	if (!driver->bind || !driver->setup) {
2547		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2548		return -EINVAL;
2549	}
2550
2551	WARN_ON(hsotg->driver);
2552
2553	driver->driver.bus = NULL;
2554	hsotg->driver = driver;
2555	hsotg->gadget.dev.driver = &driver->driver;
2556	hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2557	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2558
2559	ret = device_add(&hsotg->gadget.dev);
2560	if (ret) {
2561		dev_err(hsotg->dev, "failed to register gadget device\n");
2562		goto err;
2563	}
2564
2565	ret = driver->bind(&hsotg->gadget);
2566	if (ret) {
2567		dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2568
2569		hsotg->gadget.dev.driver = NULL;
2570		hsotg->driver = NULL;
2571		goto err;
2572	}
2573
2574	/* we must now enable ep0 ready for host detection and then
2575	 * set configuration. */
2576
2577	s3c_hsotg_corereset(hsotg);
2578
2579	/* set the PLL on, remove the HNP/SRP and set the PHY */
2580	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2581	       (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2582
2583	/* looks like soft-reset changes state of FIFOs */
2584	s3c_hsotg_init_fifo(hsotg);
2585
2586	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2587
2588	writel(1 << 18 | S3C_DCFG_DevSpd_HS,  hsotg->regs + S3C_DCFG);
2589
2590	writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2591	       S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2592	       S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2593	       S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2594	       S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2595	       S3C_GINTSTS_ErlySusp,
2596	       hsotg->regs + S3C_GINTMSK);
2597
2598	if (using_dma(hsotg))
2599		writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2600		       S3C_GAHBCFG_HBstLen_Incr4,
2601		       hsotg->regs + S3C_GAHBCFG);
2602	else
2603		writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2604
2605	/* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2606	 * up being flooded with interrupts if the host is polling the
2607	 * endpoint to try and read data. */
2608
2609	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2610	       S3C_DIEPMSK_INTknEPMisMsk |
2611	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2612	       ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2613	       hsotg->regs + S3C_DIEPMSK);
2614
2615	/* don't need XferCompl, we get that from RXFIFO in slave mode. In
2616	 * DMA mode we may need this. */
2617	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2618	       S3C_DOEPMSK_EPDisbldMsk |
2619	       (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2620				   S3C_DIEPMSK_TimeOUTMsk) : 0),
2621	       hsotg->regs + S3C_DOEPMSK);
2622
2623	writel(0, hsotg->regs + S3C_DAINTMSK);
2624
2625	dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2626		 readl(hsotg->regs + S3C_DIEPCTL0),
2627		 readl(hsotg->regs + S3C_DOEPCTL0));
2628
2629	/* enable in and out endpoint interrupts */
2630	s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2631
2632	/* Enable the RXFIFO when in slave mode, as this is how we collect
2633	 * the data. In DMA mode, we get events from the FIFO but also
2634	 * things we cannot process, so do not use it. */
2635	if (!using_dma(hsotg))
2636		s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2637
2638	/* Enable interrupts for EP0 in and out */
2639	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2640	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2641
2642	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2643	udelay(10);  /* see openiboot */
2644	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2645
2646	dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2647
2648	/* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2649	   writing to the EPCTL register.. */
2650
2651	/* set to read 1 8byte packet */
2652	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2653	       S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2654
2655	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2656	       S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2657	       S3C_DxEPCTL_USBActEp,
2658	       hsotg->regs + S3C_DOEPCTL0);
2659
2660	/* enable, but don't activate EP0in */
2661	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2662	       S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2663
2664	s3c_hsotg_enqueue_setup(hsotg);
2665
2666	dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2667		 readl(hsotg->regs + S3C_DIEPCTL0),
2668		 readl(hsotg->regs + S3C_DOEPCTL0));
2669
2670	/* clear global NAKs */
2671	writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2672	       hsotg->regs + S3C_DCTL);
2673
2674	/* must be at-least 3ms to allow bus to see disconnect */
2675	msleep(3);
2676
2677	/* remove the soft-disconnect and let's go */
2678	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2679
2680	/* report to the user, and return */
2681
2682	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2683	return 0;
2684
2685err:
2686	hsotg->driver = NULL;
2687	hsotg->gadget.dev.driver = NULL;
2688	return ret;
2689}
2690EXPORT_SYMBOL(usb_gadget_register_driver);
2691
2692int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2693{
2694	struct s3c_hsotg *hsotg = our_hsotg;
2695	int ep;
2696
2697	if (!hsotg)
2698		return -ENODEV;
2699
2700	if (!driver || driver != hsotg->driver || !driver->unbind)
2701		return -EINVAL;
2702
2703	/* all endpoints should be shutdown */
2704	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2705		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2706
2707	call_gadget(hsotg, disconnect);
2708
2709	driver->unbind(&hsotg->gadget);
2710	hsotg->driver = NULL;
2711	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2712
2713	device_del(&hsotg->gadget.dev);
2714
2715	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2716		 driver->driver.name);
2717
2718	return 0;
2719}
2720EXPORT_SYMBOL(usb_gadget_unregister_driver);
2721
2722static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2723{
2724	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2725}
2726
2727static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2728	.get_frame	= s3c_hsotg_gadget_getframe,
2729};
2730
2731/**
2732 * s3c_hsotg_initep - initialise a single endpoint
2733 * @hsotg: The device state.
2734 * @hs_ep: The endpoint to be initialised.
2735 * @epnum: The endpoint number
2736 *
2737 * Initialise the given endpoint (as part of the probe and device state
2738 * creation) to give to the gadget driver. Setup the endpoint name, any
2739 * direction information and other state that may be required.
2740 */
2741static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2742				       struct s3c_hsotg_ep *hs_ep,
2743				       int epnum)
2744{
2745	u32 ptxfifo;
2746	char *dir;
2747
2748	if (epnum == 0)
2749		dir = "";
2750	else if ((epnum % 2) == 0) {
2751		dir = "out";
2752	} else {
2753		dir = "in";
2754		hs_ep->dir_in = 1;
2755	}
2756
2757	hs_ep->index = epnum;
2758
2759	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2760
2761	INIT_LIST_HEAD(&hs_ep->queue);
2762	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2763
2764	spin_lock_init(&hs_ep->lock);
2765
2766	/* add to the list of endpoints known by the gadget driver */
2767	if (epnum)
2768		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2769
2770	hs_ep->parent = hsotg;
2771	hs_ep->ep.name = hs_ep->name;
2772	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2773	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2774
2775	/* Read the FIFO size for the Periodic TX FIFO, even if we're
2776	 * an OUT endpoint, we may as well do this if in future the
2777	 * code is changed to make each endpoint's direction changeable.
2778	 */
2779
2780	ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2781	hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2782
2783	/* if we're using dma, we need to set the next-endpoint pointer
2784	 * to be something valid.
2785	 */
2786
2787	if (using_dma(hsotg)) {
2788		u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2789		writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2790		writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2791	}
2792}
2793
2794/**
2795 * s3c_hsotg_otgreset - reset the OtG phy block
2796 * @hsotg: The host state.
2797 *
2798 * Power up the phy, set the basic configuration and start the PHY.
2799 */
2800static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2801{
2802	struct clk *xusbxti;
2803	u32 pwr, osc;
2804
2805	pwr = readl(S3C_PHYPWR);
2806	pwr &= ~0x19;
2807	writel(pwr, S3C_PHYPWR);
2808	mdelay(1);
2809
2810	osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2811
2812	xusbxti = clk_get(hsotg->dev, "xusbxti");
2813	if (xusbxti && !IS_ERR(xusbxti)) {
2814		switch (clk_get_rate(xusbxti)) {
2815		case 12*MHZ:
2816			osc |= S3C_PHYCLK_CLKSEL_12M;
2817			break;
2818		case 24*MHZ:
2819			osc |= S3C_PHYCLK_CLKSEL_24M;
2820			break;
2821		default:
2822		case 48*MHZ:
2823			/* default reference clock */
2824			break;
2825		}
2826		clk_put(xusbxti);
2827	}
2828
2829	writel(osc | 0x10, S3C_PHYCLK);
2830
2831	/* issue a full set of resets to the otg and core */
2832
2833	writel(S3C_RSTCON_PHY, S3C_RSTCON);
2834	udelay(20);	/* at-least 10uS */
2835	writel(0, S3C_RSTCON);
2836}
2837
2838
2839static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2840{
2841	u32 cfg4;
2842
2843	/* unmask subset of endpoint interrupts */
2844
2845	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2846	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2847	       hsotg->regs + S3C_DIEPMSK);
2848
2849	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2850	       S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2851	       hsotg->regs + S3C_DOEPMSK);
2852
2853	writel(0, hsotg->regs + S3C_DAINTMSK);
2854
2855	/* Be in disconnected state until gadget is registered */
2856	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2857
2858	if (0) {
2859		/* post global nak until we're ready */
2860		writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2861		       hsotg->regs + S3C_DCTL);
2862	}
2863
2864	/* setup fifos */
2865
2866	dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2867		 readl(hsotg->regs + S3C_GRXFSIZ),
2868		 readl(hsotg->regs + S3C_GNPTXFSIZ));
2869
2870	s3c_hsotg_init_fifo(hsotg);
2871
2872	/* set the PLL on, remove the HNP/SRP and set the PHY */
2873	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2874	       hsotg->regs + S3C_GUSBCFG);
2875
2876	writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2877	       hsotg->regs + S3C_GAHBCFG);
2878
2879	/* check hardware configuration */
2880
2881	cfg4 = readl(hsotg->regs + 0x50);
2882	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2883
2884	dev_info(hsotg->dev, "%s fifos\n",
2885		 hsotg->dedicated_fifos ? "dedicated" : "shared");
2886}
2887
2888static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2889{
2890	struct device *dev = hsotg->dev;
2891	void __iomem *regs = hsotg->regs;
2892	u32 val;
2893	int idx;
2894
2895	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2896		 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2897		 readl(regs + S3C_DIEPMSK));
2898
2899	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2900		 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2901
2902	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2903		 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2904
2905	/* show periodic fifo settings */
2906
2907	for (idx = 1; idx <= 15; idx++) {
2908		val = readl(regs + S3C_DPTXFSIZn(idx));
2909		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2910			 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2911			 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2912	}
2913
2914	for (idx = 0; idx < 15; idx++) {
2915		dev_info(dev,
2916			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2917			 readl(regs + S3C_DIEPCTL(idx)),
2918			 readl(regs + S3C_DIEPTSIZ(idx)),
2919			 readl(regs + S3C_DIEPDMA(idx)));
2920
2921		val = readl(regs + S3C_DOEPCTL(idx));
2922		dev_info(dev,
2923			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2924			 idx, readl(regs + S3C_DOEPCTL(idx)),
2925			 readl(regs + S3C_DOEPTSIZ(idx)),
2926			 readl(regs + S3C_DOEPDMA(idx)));
2927
2928	}
2929
2930	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2931		 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2932}
2933
2934
2935/**
2936 * state_show - debugfs: show overall driver and device state.
2937 * @seq: The seq file to write to.
2938 * @v: Unused parameter.
2939 *
2940 * This debugfs entry shows the overall state of the hardware and
2941 * some general information about each of the endpoints available
2942 * to the system.
2943 */
2944static int state_show(struct seq_file *seq, void *v)
2945{
2946	struct s3c_hsotg *hsotg = seq->private;
2947	void __iomem *regs = hsotg->regs;
2948	int idx;
2949
2950	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2951		 readl(regs + S3C_DCFG),
2952		 readl(regs + S3C_DCTL),
2953		 readl(regs + S3C_DSTS));
2954
2955	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2956		   readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2957
2958	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2959		   readl(regs + S3C_GINTMSK),
2960		   readl(regs + S3C_GINTSTS));
2961
2962	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2963		   readl(regs + S3C_DAINTMSK),
2964		   readl(regs + S3C_DAINT));
2965
2966	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2967		   readl(regs + S3C_GNPTXSTS),
2968		   readl(regs + S3C_GRXSTSR));
2969
2970	seq_printf(seq, "\nEndpoint status:\n");
2971
2972	for (idx = 0; idx < 15; idx++) {
2973		u32 in, out;
2974
2975		in = readl(regs + S3C_DIEPCTL(idx));
2976		out = readl(regs + S3C_DOEPCTL(idx));
2977
2978		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2979			   idx, in, out);
2980
2981		in = readl(regs + S3C_DIEPTSIZ(idx));
2982		out = readl(regs + S3C_DOEPTSIZ(idx));
2983
2984		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2985			   in, out);
2986
2987		seq_printf(seq, "\n");
2988	}
2989
2990	return 0;
2991}
2992
2993static int state_open(struct inode *inode, struct file *file)
2994{
2995	return single_open(file, state_show, inode->i_private);
2996}
2997
2998static const struct file_operations state_fops = {
2999	.owner		= THIS_MODULE,
3000	.open		= state_open,
3001	.read		= seq_read,
3002	.llseek		= seq_lseek,
3003	.release	= single_release,
3004};
3005
3006/**
3007 * fifo_show - debugfs: show the fifo information
3008 * @seq: The seq_file to write data to.
3009 * @v: Unused parameter.
3010 *
3011 * Show the FIFO information for the overall fifo and all the
3012 * periodic transmission FIFOs.
3013*/
3014static int fifo_show(struct seq_file *seq, void *v)
3015{
3016	struct s3c_hsotg *hsotg = seq->private;
3017	void __iomem *regs = hsotg->regs;
3018	u32 val;
3019	int idx;
3020
3021	seq_printf(seq, "Non-periodic FIFOs:\n");
3022	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3023
3024	val = readl(regs + S3C_GNPTXFSIZ);
3025	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3026		   val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3027		   val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3028
3029	seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3030
3031	for (idx = 1; idx <= 15; idx++) {
3032		val = readl(regs + S3C_DPTXFSIZn(idx));
3033
3034		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3035			   val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3036			   val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3037	}
3038
3039	return 0;
3040}
3041
3042static int fifo_open(struct inode *inode, struct file *file)
3043{
3044	return single_open(file, fifo_show, inode->i_private);
3045}
3046
3047static const struct file_operations fifo_fops = {
3048	.owner		= THIS_MODULE,
3049	.open		= fifo_open,
3050	.read		= seq_read,
3051	.llseek		= seq_lseek,
3052	.release	= single_release,
3053};
3054
3055
3056static const char *decode_direction(int is_in)
3057{
3058	return is_in ? "in" : "out";
3059}
3060
3061/**
3062 * ep_show - debugfs: show the state of an endpoint.
3063 * @seq: The seq_file to write data to.
3064 * @v: Unused parameter.
3065 *
3066 * This debugfs entry shows the state of the given endpoint (one is
3067 * registered for each available).
3068*/
3069static int ep_show(struct seq_file *seq, void *v)
3070{
3071	struct s3c_hsotg_ep *ep = seq->private;
3072	struct s3c_hsotg *hsotg = ep->parent;
3073	struct s3c_hsotg_req *req;
3074	void __iomem *regs = hsotg->regs;
3075	int index = ep->index;
3076	int show_limit = 15;
3077	unsigned long flags;
3078
3079	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3080		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3081
3082	/* first show the register state */
3083
3084	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3085		   readl(regs + S3C_DIEPCTL(index)),
3086		   readl(regs + S3C_DOEPCTL(index)));
3087
3088	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3089		   readl(regs + S3C_DIEPDMA(index)),
3090		   readl(regs + S3C_DOEPDMA(index)));
3091
3092	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3093		   readl(regs + S3C_DIEPINT(index)),
3094		   readl(regs + S3C_DOEPINT(index)));
3095
3096	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3097		   readl(regs + S3C_DIEPTSIZ(index)),
3098		   readl(regs + S3C_DOEPTSIZ(index)));
3099
3100	seq_printf(seq, "\n");
3101	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3102	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3103
3104	seq_printf(seq, "request list (%p,%p):\n",
3105		   ep->queue.next, ep->queue.prev);
3106
3107	spin_lock_irqsave(&ep->lock, flags);
3108
3109	list_for_each_entry(req, &ep->queue, queue) {
3110		if (--show_limit < 0) {
3111			seq_printf(seq, "not showing more requests...\n");
3112			break;
3113		}
3114
3115		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3116			   req == ep->req ? '*' : ' ',
3117			   req, req->req.length, req->req.buf);
3118		seq_printf(seq, "%d done, res %d\n",
3119			   req->req.actual, req->req.status);
3120	}
3121
3122	spin_unlock_irqrestore(&ep->lock, flags);
3123
3124	return 0;
3125}
3126
3127static int ep_open(struct inode *inode, struct file *file)
3128{
3129	return single_open(file, ep_show, inode->i_private);
3130}
3131
3132static const struct file_operations ep_fops = {
3133	.owner		= THIS_MODULE,
3134	.open		= ep_open,
3135	.read		= seq_read,
3136	.llseek		= seq_lseek,
3137	.release	= single_release,
3138};
3139
3140/**
3141 * s3c_hsotg_create_debug - create debugfs directory and files
3142 * @hsotg: The driver state
3143 *
3144 * Create the debugfs files to allow the user to get information
3145 * about the state of the system. The directory name is created
3146 * with the same name as the device itself, in case we end up
3147 * with multiple blocks in future systems.
3148*/
3149static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3150{
3151	struct dentry *root;
3152	unsigned epidx;
3153
3154	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3155	hsotg->debug_root = root;
3156	if (IS_ERR(root)) {
3157		dev_err(hsotg->dev, "cannot create debug root\n");
3158		return;
3159	}
3160
3161	/* create general state file */
3162
3163	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3164						hsotg, &state_fops);
3165
3166	if (IS_ERR(hsotg->debug_file))
3167		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3168
3169	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3170						hsotg, &fifo_fops);
3171
3172	if (IS_ERR(hsotg->debug_fifo))
3173		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3174
3175	/* create one file for each endpoint */
3176
3177	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3178		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3179
3180		ep->debugfs = debugfs_create_file(ep->name, 0444,
3181						  root, ep, &ep_fops);
3182
3183		if (IS_ERR(ep->debugfs))
3184			dev_err(hsotg->dev, "failed to create %s debug file\n",
3185				ep->name);
3186	}
3187}
3188
3189/**
3190 * s3c_hsotg_delete_debug - cleanup debugfs entries
3191 * @hsotg: The driver state
3192 *
3193 * Cleanup (remove) the debugfs files for use on module exit.
3194*/
3195static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3196{
3197	unsigned epidx;
3198
3199	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3200		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3201		debugfs_remove(ep->debugfs);
3202	}
3203
3204	debugfs_remove(hsotg->debug_file);
3205	debugfs_remove(hsotg->debug_fifo);
3206	debugfs_remove(hsotg->debug_root);
3207}
3208
3209/**
3210 * s3c_hsotg_gate - set the hardware gate for the block
3211 * @pdev: The device we bound to
3212 * @on: On or off.
3213 *
3214 * Set the hardware gate setting into the block. If we end up on
3215 * something other than an S3C64XX, then we might need to change this
3216 * to using a platform data callback, or some other mechanism.
3217 */
3218static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3219{
3220	unsigned long flags;
3221	u32 others;
3222
3223	local_irq_save(flags);
3224
3225	others = __raw_readl(S3C64XX_OTHERS);
3226	if (on)
3227		others |= S3C64XX_OTHERS_USBMASK;
3228	else
3229		others &= ~S3C64XX_OTHERS_USBMASK;
3230	__raw_writel(others, S3C64XX_OTHERS);
3231
3232	local_irq_restore(flags);
3233}
3234
3235static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3236
3237static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3238{
3239	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3240	struct device *dev = &pdev->dev;
3241	struct s3c_hsotg *hsotg;
3242	struct resource *res;
3243	int epnum;
3244	int ret;
3245
3246	if (!plat)
3247		plat = &s3c_hsotg_default_pdata;
3248
3249	hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3250			sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3251			GFP_KERNEL);
3252	if (!hsotg) {
3253		dev_err(dev, "cannot get memory\n");
3254		return -ENOMEM;
3255	}
3256
3257	hsotg->dev = dev;
3258	hsotg->plat = plat;
3259
3260	hsotg->clk = clk_get(&pdev->dev, "otg");
3261	if (IS_ERR(hsotg->clk)) {
3262		dev_err(dev, "cannot get otg clock\n");
3263		ret = -EINVAL;
3264		goto err_mem;
3265	}
3266
3267	platform_set_drvdata(pdev, hsotg);
3268
3269	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3270	if (!res) {
3271		dev_err(dev, "cannot find register resource 0\n");
3272		ret = -EINVAL;
3273		goto err_clk;
3274	}
3275
3276	hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3277					     dev_name(dev));
3278	if (!hsotg->regs_res) {
3279		dev_err(dev, "cannot reserve registers\n");
3280		ret = -ENOENT;
3281		goto err_clk;
3282	}
3283
3284	hsotg->regs = ioremap(res->start, resource_size(res));
3285	if (!hsotg->regs) {
3286		dev_err(dev, "cannot map registers\n");
3287		ret = -ENXIO;
3288		goto err_regs_res;
3289	}
3290
3291	ret = platform_get_irq(pdev, 0);
3292	if (ret < 0) {
3293		dev_err(dev, "cannot find IRQ\n");
3294		goto err_regs;
3295	}
3296
3297	hsotg->irq = ret;
3298
3299	ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3300	if (ret < 0) {
3301		dev_err(dev, "cannot claim IRQ\n");
3302		goto err_regs;
3303	}
3304
3305	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3306
3307	device_initialize(&hsotg->gadget.dev);
3308
3309	dev_set_name(&hsotg->gadget.dev, "gadget");
3310
3311	hsotg->gadget.is_dualspeed = 1;
3312	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3313	hsotg->gadget.name = dev_name(dev);
3314
3315	hsotg->gadget.dev.parent = dev;
3316	hsotg->gadget.dev.dma_mask = dev->dma_mask;
3317
3318	/* setup endpoint information */
3319
3320	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3321	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3322
3323	/* allocate EP0 request */
3324
3325	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3326						     GFP_KERNEL);
3327	if (!hsotg->ctrl_req) {
3328		dev_err(dev, "failed to allocate ctrl req\n");
3329		goto err_regs;
3330	}
3331
3332	/* reset the system */
3333
3334	clk_enable(hsotg->clk);
3335
3336	s3c_hsotg_gate(pdev, true);
3337
3338	s3c_hsotg_otgreset(hsotg);
3339	s3c_hsotg_corereset(hsotg);
3340	s3c_hsotg_init(hsotg);
3341
3342	/* initialise the endpoints now the core has been initialised */
3343	for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3344		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3345
3346	s3c_hsotg_create_debug(hsotg);
3347
3348	s3c_hsotg_dump(hsotg);
3349
3350	our_hsotg = hsotg;
3351	return 0;
3352
3353err_regs:
3354	iounmap(hsotg->regs);
3355
3356err_regs_res:
3357	release_resource(hsotg->regs_res);
3358	kfree(hsotg->regs_res);
3359err_clk:
3360	clk_put(hsotg->clk);
3361err_mem:
3362	kfree(hsotg);
3363	return ret;
3364}
3365
3366static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3367{
3368	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3369
3370	s3c_hsotg_delete_debug(hsotg);
3371
3372	usb_gadget_unregister_driver(hsotg->driver);
3373
3374	free_irq(hsotg->irq, hsotg);
3375	iounmap(hsotg->regs);
3376
3377	release_resource(hsotg->regs_res);
3378	kfree(hsotg->regs_res);
3379
3380	s3c_hsotg_gate(pdev, false);
3381
3382	clk_disable(hsotg->clk);
3383	clk_put(hsotg->clk);
3384
3385	kfree(hsotg);
3386	return 0;
3387}
3388
3389#define s3c_hsotg_suspend NULL
3390#define s3c_hsotg_resume NULL
3391
3392static struct platform_driver s3c_hsotg_driver = {
3393	.driver		= {
3394		.name	= "s3c-hsotg",
3395		.owner	= THIS_MODULE,
3396	},
3397	.probe		= s3c_hsotg_probe,
3398	.remove		= __devexit_p(s3c_hsotg_remove),
3399	.suspend	= s3c_hsotg_suspend,
3400	.resume		= s3c_hsotg_resume,
3401};
3402
3403static int __init s3c_hsotg_modinit(void)
3404{
3405	return platform_driver_register(&s3c_hsotg_driver);
3406}
3407
3408static void __exit s3c_hsotg_modexit(void)
3409{
3410	platform_driver_unregister(&s3c_hsotg_driver);
3411}
3412
3413module_init(s3c_hsotg_modinit);
3414module_exit(s3c_hsotg_modexit);
3415
3416MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3417MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3418MODULE_LICENSE("GPL");
3419MODULE_ALIAS("platform:s3c-hsotg");
3420