• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/staging/octeon/
1/***********************license start***************
2 * Author: Cavium Networks
3 *
4 * Contact: support@caviumnetworks.com
5 * This file is part of the OCTEON SDK
6 *
7 * Copyright (c) 2003-2008 Cavium Networks
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this file; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * or visit http://www.gnu.org/licenses/.
23 *
24 * This file may also be available under a different license from Cavium.
25 * Contact Cavium Networks for more information
26 ***********************license end**************************************/
27
28/*
29 *
30 * Support library for the SPI
31 */
32#include <asm/octeon/octeon.h>
33
34#include "cvmx-config.h"
35
36#include "cvmx-pko.h"
37#include "cvmx-spi.h"
38
39#include "cvmx-spxx-defs.h"
40#include "cvmx-stxx-defs.h"
41#include "cvmx-srxx-defs.h"
42
43#define INVOKE_CB(function_p, args...)		\
44	do {					\
45		if (function_p) {		\
46			res = function_p(args); \
47			if (res)		\
48				return res;	\
49		}				\
50	} while (0)
51
52#if CVMX_ENABLE_DEBUG_PRINTS
53static const char *modes[] =
54    { "UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex" };
55#endif
56
57/* Default callbacks, can be overridden
58 *  using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks
59 */
60static cvmx_spi_callbacks_t cvmx_spi_callbacks = {
61	.reset_cb = cvmx_spi_reset_cb,
62	.calendar_setup_cb = cvmx_spi_calendar_setup_cb,
63	.clock_detect_cb = cvmx_spi_clock_detect_cb,
64	.training_cb = cvmx_spi_training_cb,
65	.calendar_sync_cb = cvmx_spi_calendar_sync_cb,
66	.interface_up_cb = cvmx_spi_interface_up_cb
67};
68
69/**
70 * Get current SPI4 initialization callbacks
71 *
72 * @callbacks:  Pointer to the callbacks structure.to fill
73 *
74 * Returns Pointer to cvmx_spi_callbacks_t structure.
75 */
76void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t *callbacks)
77{
78	memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks));
79}
80
81/**
82 * Set new SPI4 initialization callbacks
83 *
84 * @new_callbacks:  Pointer to an updated callbacks structure.
85 */
86void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t *new_callbacks)
87{
88	memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks));
89}
90
91/**
92 * Initialize and start the SPI interface.
93 *
94 * @interface: The identifier of the packet interface to configure and
95 *                  use as a SPI interface.
96 * @mode:      The operating mode for the SPI interface. The interface
97 *                  can operate as a full duplex (both Tx and Rx data paths
98 *                  active) or as a halfplex (either the Tx data path is
99 *                  active or the Rx data path is active, but not both).
100 * @timeout:   Timeout to wait for clock synchronization in seconds
101 * @num_ports: Number of SPI ports to configure
102 *
103 * Returns Zero on success, negative of failure.
104 */
105int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout,
106			     int num_ports)
107{
108	int res = -1;
109
110	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
111		return res;
112
113	/* Callback to perform SPI4 reset */
114	INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
115
116	/* Callback to perform calendar setup */
117	INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode,
118		  num_ports);
119
120	/* Callback to perform clock detection */
121	INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
122
123	/* Callback to perform SPI4 link training */
124	INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
125
126	/* Callback to perform calendar sync */
127	INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
128		  timeout);
129
130	/* Callback to handle interface coming up */
131	INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
132
133	return res;
134}
135
136/**
137 * This routine restarts the SPI interface after it has lost synchronization
138 * with its correspondent system.
139 *
140 * @interface: The identifier of the packet interface to configure and
141 *                  use as a SPI interface.
142 * @mode:      The operating mode for the SPI interface. The interface
143 *                  can operate as a full duplex (both Tx and Rx data paths
144 *                  active) or as a halfplex (either the Tx data path is
145 *                  active or the Rx data path is active, but not both).
146 * @timeout:   Timeout to wait for clock synchronization in seconds
147 *
148 * Returns Zero on success, negative of failure.
149 */
150int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout)
151{
152	int res = -1;
153
154	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
155		return res;
156
157	cvmx_dprintf("SPI%d: Restart %s\n", interface, modes[mode]);
158
159	/* Callback to perform SPI4 reset */
160	INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
161
162	/* NOTE: Calendar setup is not performed during restart */
163	/*       Refer to cvmx_spi_start_interface() for the full sequence */
164
165	/* Callback to perform clock detection */
166	INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
167
168	/* Callback to perform SPI4 link training */
169	INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
170
171	/* Callback to perform calendar sync */
172	INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
173		  timeout);
174
175	/* Callback to handle interface coming up */
176	INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
177
178	return res;
179}
180
181/**
182 * Callback to perform SPI4 reset
183 *
184 * @interface: The identifier of the packet interface to configure and
185 *                  use as a SPI interface.
186 * @mode:      The operating mode for the SPI interface. The interface
187 *                  can operate as a full duplex (both Tx and Rx data paths
188 *                  active) or as a halfplex (either the Tx data path is
189 *                  active or the Rx data path is active, but not both).
190 *
191 * Returns Zero on success, non-zero error code on failure (will cause
192 * SPI initialization to abort)
193 */
194int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode)
195{
196	union cvmx_spxx_dbg_deskew_ctl spxx_dbg_deskew_ctl;
197	union cvmx_spxx_clk_ctl spxx_clk_ctl;
198	union cvmx_spxx_bist_stat spxx_bist_stat;
199	union cvmx_spxx_int_msk spxx_int_msk;
200	union cvmx_stxx_int_msk stxx_int_msk;
201	union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
202	int index;
203	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
204
205	/* Disable SPI error events while we run BIST */
206	spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface));
207	cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0);
208	stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface));
209	cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0);
210
211	/* Run BIST in the SPI interface */
212	cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0);
213	cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0);
214	spxx_clk_ctl.u64 = 0;
215	spxx_clk_ctl.s.runbist = 1;
216	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
217	cvmx_wait(10 * MS);
218	spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface));
219	if (spxx_bist_stat.s.stat0)
220		cvmx_dprintf
221		    ("ERROR SPI%d: BIST failed on receive datapath FIFO\n",
222		     interface);
223	if (spxx_bist_stat.s.stat1)
224		cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n",
225			     interface);
226	if (spxx_bist_stat.s.stat2)
227		cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n",
228			     interface);
229
230	/* Clear the calendar table after BIST to fix parity errors */
231	for (index = 0; index < 32; index++) {
232		union cvmx_srxx_spi4_calx srxx_spi4_calx;
233		union cvmx_stxx_spi4_calx stxx_spi4_calx;
234
235		srxx_spi4_calx.u64 = 0;
236		srxx_spi4_calx.s.oddpar = 1;
237		cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
238			       srxx_spi4_calx.u64);
239
240		stxx_spi4_calx.u64 = 0;
241		stxx_spi4_calx.s.oddpar = 1;
242		cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
243			       stxx_spi4_calx.u64);
244	}
245
246	/* Re enable reporting of error interrupts */
247	cvmx_write_csr(CVMX_SPXX_INT_REG(interface),
248		       cvmx_read_csr(CVMX_SPXX_INT_REG(interface)));
249	cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64);
250	cvmx_write_csr(CVMX_STXX_INT_REG(interface),
251		       cvmx_read_csr(CVMX_STXX_INT_REG(interface)));
252	cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64);
253
254	/* Setup the CLKDLY right in the middle */
255	spxx_clk_ctl.u64 = 0;
256	spxx_clk_ctl.s.seetrn = 0;
257	spxx_clk_ctl.s.clkdly = 0x10;
258	spxx_clk_ctl.s.runbist = 0;
259	spxx_clk_ctl.s.statdrv = 0;
260	/* This should always be on the opposite edge as statdrv */
261	spxx_clk_ctl.s.statrcv = 1;
262	spxx_clk_ctl.s.sndtrn = 0;
263	spxx_clk_ctl.s.drptrn = 0;
264	spxx_clk_ctl.s.rcvtrn = 0;
265	spxx_clk_ctl.s.srxdlck = 0;
266	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
267	cvmx_wait(100 * MS);
268
269	/* Reset SRX0 DLL */
270	spxx_clk_ctl.s.srxdlck = 1;
271	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
272
273	/* Waiting for Inf0 Spi4 RX DLL to lock */
274	cvmx_wait(100 * MS);
275
276	/* Enable dynamic alignment */
277	spxx_trn4_ctl.s.trntest = 0;
278	spxx_trn4_ctl.s.jitter = 1;
279	spxx_trn4_ctl.s.clr_boot = 1;
280	spxx_trn4_ctl.s.set_boot = 0;
281	if (OCTEON_IS_MODEL(OCTEON_CN58XX))
282		spxx_trn4_ctl.s.maxdist = 3;
283	else
284		spxx_trn4_ctl.s.maxdist = 8;
285	spxx_trn4_ctl.s.macro_en = 1;
286	spxx_trn4_ctl.s.mux_en = 1;
287	cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
288
289	spxx_dbg_deskew_ctl.u64 = 0;
290	cvmx_write_csr(CVMX_SPXX_DBG_DESKEW_CTL(interface),
291		       spxx_dbg_deskew_ctl.u64);
292
293	return 0;
294}
295
296/**
297 * Callback to setup calendar and miscellaneous settings before clock detection
298 *
299 * @interface: The identifier of the packet interface to configure and
300 *                  use as a SPI interface.
301 * @mode:      The operating mode for the SPI interface. The interface
302 *                  can operate as a full duplex (both Tx and Rx data paths
303 *                  active) or as a halfplex (either the Tx data path is
304 *                  active or the Rx data path is active, but not both).
305 * @num_ports: Number of ports to configure on SPI
306 *
307 * Returns Zero on success, non-zero error code on failure (will cause
308 * SPI initialization to abort)
309 */
310int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode,
311			       int num_ports)
312{
313	int port;
314	int index;
315	if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
316		union cvmx_srxx_com_ctl srxx_com_ctl;
317		union cvmx_srxx_spi4_stat srxx_spi4_stat;
318
319		/* SRX0 number of Ports */
320		srxx_com_ctl.u64 = 0;
321		srxx_com_ctl.s.prts = num_ports - 1;
322		srxx_com_ctl.s.st_en = 0;
323		srxx_com_ctl.s.inf_en = 0;
324		cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
325
326		/* SRX0 Calendar Table. This round robbins through all ports */
327		port = 0;
328		index = 0;
329		while (port < num_ports) {
330			union cvmx_srxx_spi4_calx srxx_spi4_calx;
331			srxx_spi4_calx.u64 = 0;
332			srxx_spi4_calx.s.prt0 = port++;
333			srxx_spi4_calx.s.prt1 = port++;
334			srxx_spi4_calx.s.prt2 = port++;
335			srxx_spi4_calx.s.prt3 = port++;
336			srxx_spi4_calx.s.oddpar =
337			    ~(cvmx_dpop(srxx_spi4_calx.u64) & 1);
338			cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
339				       srxx_spi4_calx.u64);
340			index++;
341		}
342		srxx_spi4_stat.u64 = 0;
343		srxx_spi4_stat.s.len = num_ports;
344		srxx_spi4_stat.s.m = 1;
345		cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface),
346			       srxx_spi4_stat.u64);
347	}
348
349	if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
350		union cvmx_stxx_arb_ctl stxx_arb_ctl;
351		union cvmx_gmxx_tx_spi_max gmxx_tx_spi_max;
352		union cvmx_gmxx_tx_spi_thresh gmxx_tx_spi_thresh;
353		union cvmx_gmxx_tx_spi_ctl gmxx_tx_spi_ctl;
354		union cvmx_stxx_spi4_stat stxx_spi4_stat;
355		union cvmx_stxx_spi4_dat stxx_spi4_dat;
356
357		/* STX0 Config */
358		stxx_arb_ctl.u64 = 0;
359		stxx_arb_ctl.s.igntpa = 0;
360		stxx_arb_ctl.s.mintrn = 0;
361		cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64);
362
363		gmxx_tx_spi_max.u64 = 0;
364		gmxx_tx_spi_max.s.max1 = 8;
365		gmxx_tx_spi_max.s.max2 = 4;
366		gmxx_tx_spi_max.s.slice = 0;
367		cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface),
368			       gmxx_tx_spi_max.u64);
369
370		gmxx_tx_spi_thresh.u64 = 0;
371		gmxx_tx_spi_thresh.s.thresh = 4;
372		cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface),
373			       gmxx_tx_spi_thresh.u64);
374
375		gmxx_tx_spi_ctl.u64 = 0;
376		gmxx_tx_spi_ctl.s.tpa_clr = 0;
377		gmxx_tx_spi_ctl.s.cont_pkt = 0;
378		cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface),
379			       gmxx_tx_spi_ctl.u64);
380
381		/* STX0 Training Control */
382		stxx_spi4_dat.u64 = 0;
383		/*Minimum needed by dynamic alignment */
384		stxx_spi4_dat.s.alpha = 32;
385		stxx_spi4_dat.s.max_t = 0xFFFF;	/*Minimum interval is 0x20 */
386		cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface),
387			       stxx_spi4_dat.u64);
388
389		/* STX0 Calendar Table. This round robbins through all ports */
390		port = 0;
391		index = 0;
392		while (port < num_ports) {
393			union cvmx_stxx_spi4_calx stxx_spi4_calx;
394			stxx_spi4_calx.u64 = 0;
395			stxx_spi4_calx.s.prt0 = port++;
396			stxx_spi4_calx.s.prt1 = port++;
397			stxx_spi4_calx.s.prt2 = port++;
398			stxx_spi4_calx.s.prt3 = port++;
399			stxx_spi4_calx.s.oddpar =
400			    ~(cvmx_dpop(stxx_spi4_calx.u64) & 1);
401			cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
402				       stxx_spi4_calx.u64);
403			index++;
404		}
405		stxx_spi4_stat.u64 = 0;
406		stxx_spi4_stat.s.len = num_ports;
407		stxx_spi4_stat.s.m = 1;
408		cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface),
409			       stxx_spi4_stat.u64);
410	}
411
412	return 0;
413}
414
415/**
416 * Callback to perform clock detection
417 *
418 * @interface: The identifier of the packet interface to configure and
419 *                  use as a SPI interface.
420 * @mode:      The operating mode for the SPI interface. The interface
421 *                  can operate as a full duplex (both Tx and Rx data paths
422 *                  active) or as a halfplex (either the Tx data path is
423 *                  active or the Rx data path is active, but not both).
424 * @timeout:   Timeout to wait for clock synchronization in seconds
425 *
426 * Returns Zero on success, non-zero error code on failure (will cause
427 * SPI initialization to abort)
428 */
429int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout)
430{
431	int clock_transitions;
432	union cvmx_spxx_clk_stat stat;
433	uint64_t timeout_time;
434	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
435
436	/*
437	 * Regardless of operating mode, both Tx and Rx clocks must be
438	 * present for the SPI interface to operate.
439	 */
440	cvmx_dprintf("SPI%d: Waiting to see TsClk...\n", interface);
441	timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
442	/*
443	 * Require 100 clock transitions in order to avoid any noise
444	 * in the beginning.
445	 */
446	clock_transitions = 100;
447	do {
448		stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
449		if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions) {
450			/*
451			 * We've seen a clock transition, so decrement
452			 * the number we still need.
453			 */
454			clock_transitions--;
455			cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
456			stat.s.s4clk0 = 0;
457			stat.s.s4clk1 = 0;
458		}
459		if (cvmx_get_cycle() > timeout_time) {
460			cvmx_dprintf("SPI%d: Timeout\n", interface);
461			return -1;
462		}
463	} while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0);
464
465	cvmx_dprintf("SPI%d: Waiting to see RsClk...\n", interface);
466	timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
467	/*
468	 * Require 100 clock transitions in order to avoid any noise in the
469	 * beginning.
470	 */
471	clock_transitions = 100;
472	do {
473		stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
474		if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions) {
475			/*
476			 * We've seen a clock transition, so decrement
477			 * the number we still need
478			 */
479			clock_transitions--;
480			cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
481			stat.s.d4clk0 = 0;
482			stat.s.d4clk1 = 0;
483		}
484		if (cvmx_get_cycle() > timeout_time) {
485			cvmx_dprintf("SPI%d: Timeout\n", interface);
486			return -1;
487		}
488	} while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0);
489
490	return 0;
491}
492
493/**
494 * Callback to perform link training
495 *
496 * @interface: The identifier of the packet interface to configure and
497 *                  use as a SPI interface.
498 * @mode:      The operating mode for the SPI interface. The interface
499 *                  can operate as a full duplex (both Tx and Rx data paths
500 *                  active) or as a halfplex (either the Tx data path is
501 *                  active or the Rx data path is active, but not both).
502 * @timeout:   Timeout to wait for link to be trained (in seconds)
503 *
504 * Returns Zero on success, non-zero error code on failure (will cause
505 * SPI initialization to abort)
506 */
507int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout)
508{
509	union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
510	union cvmx_spxx_clk_stat stat;
511	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
512	uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
513	int rx_training_needed;
514
515	/* SRX0 & STX0 Inf0 Links are configured - begin training */
516	union cvmx_spxx_clk_ctl spxx_clk_ctl;
517	spxx_clk_ctl.u64 = 0;
518	spxx_clk_ctl.s.seetrn = 0;
519	spxx_clk_ctl.s.clkdly = 0x10;
520	spxx_clk_ctl.s.runbist = 0;
521	spxx_clk_ctl.s.statdrv = 0;
522	/* This should always be on the opposite edge as statdrv */
523	spxx_clk_ctl.s.statrcv = 1;
524	spxx_clk_ctl.s.sndtrn = 1;
525	spxx_clk_ctl.s.drptrn = 1;
526	spxx_clk_ctl.s.rcvtrn = 1;
527	spxx_clk_ctl.s.srxdlck = 1;
528	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
529	cvmx_wait(1000 * MS);
530
531	/* SRX0 clear the boot bit */
532	spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface));
533	spxx_trn4_ctl.s.clr_boot = 1;
534	cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
535
536	/* Wait for the training sequence to complete */
537	cvmx_dprintf("SPI%d: Waiting for training\n", interface);
538	cvmx_wait(1000 * MS);
539	/* Wait a really long time here */
540	timeout_time = cvmx_get_cycle() + 1000ull * MS * 600;
541	/*
542	 * The HRM says we must wait for 34 + 16 * MAXDIST training sequences.
543	 * We'll be pessimistic and wait for a lot more.
544	 */
545	rx_training_needed = 500;
546	do {
547		stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
548		if (stat.s.srxtrn && rx_training_needed) {
549			rx_training_needed--;
550			cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
551			stat.s.srxtrn = 0;
552		}
553		if (cvmx_get_cycle() > timeout_time) {
554			cvmx_dprintf("SPI%d: Timeout\n", interface);
555			return -1;
556		}
557	} while (stat.s.srxtrn == 0);
558
559	return 0;
560}
561
562/**
563 * Callback to perform calendar data synchronization
564 *
565 * @interface: The identifier of the packet interface to configure and
566 *                  use as a SPI interface.
567 * @mode:      The operating mode for the SPI interface. The interface
568 *                  can operate as a full duplex (both Tx and Rx data paths
569 *                  active) or as a halfplex (either the Tx data path is
570 *                  active or the Rx data path is active, but not both).
571 * @timeout:   Timeout to wait for calendar data in seconds
572 *
573 * Returns Zero on success, non-zero error code on failure (will cause
574 * SPI initialization to abort)
575 */
576int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout)
577{
578	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
579	if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
580		/* SRX0 interface should be good, send calendar data */
581		union cvmx_srxx_com_ctl srxx_com_ctl;
582		cvmx_dprintf
583		    ("SPI%d: Rx is synchronized, start sending calendar data\n",
584		     interface);
585		srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
586		srxx_com_ctl.s.inf_en = 1;
587		srxx_com_ctl.s.st_en = 1;
588		cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
589	}
590
591	if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
592		/* STX0 has achieved sync */
593		/* The corespondant board should be sending calendar data */
594		/* Enable the STX0 STAT receiver. */
595		union cvmx_spxx_clk_stat stat;
596		uint64_t timeout_time;
597		union cvmx_stxx_com_ctl stxx_com_ctl;
598		stxx_com_ctl.u64 = 0;
599		stxx_com_ctl.s.st_en = 1;
600		cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
601
602		/* Waiting for calendar sync on STX0 STAT */
603		cvmx_dprintf("SPI%d: Waiting to sync on STX[%d] STAT\n",
604			     interface, interface);
605		timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
606		/* SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10) */
607		do {
608			stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
609			if (cvmx_get_cycle() > timeout_time) {
610				cvmx_dprintf("SPI%d: Timeout\n", interface);
611				return -1;
612			}
613		} while (stat.s.stxcal == 0);
614	}
615
616	return 0;
617}
618
619/**
620 * Callback to handle interface up
621 *
622 * @interface: The identifier of the packet interface to configure and
623 *                  use as a SPI interface.
624 * @mode:      The operating mode for the SPI interface. The interface
625 *                  can operate as a full duplex (both Tx and Rx data paths
626 *                  active) or as a halfplex (either the Tx data path is
627 *                  active or the Rx data path is active, but not both).
628 *
629 * Returns Zero on success, non-zero error code on failure (will cause
630 * SPI initialization to abort)
631 */
632int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode)
633{
634	union cvmx_gmxx_rxx_frm_min gmxx_rxx_frm_min;
635	union cvmx_gmxx_rxx_frm_max gmxx_rxx_frm_max;
636	union cvmx_gmxx_rxx_jabber gmxx_rxx_jabber;
637
638	if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
639		union cvmx_srxx_com_ctl srxx_com_ctl;
640		srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
641		srxx_com_ctl.s.inf_en = 1;
642		cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
643		cvmx_dprintf("SPI%d: Rx is now up\n", interface);
644	}
645
646	if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
647		union cvmx_stxx_com_ctl stxx_com_ctl;
648		stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface));
649		stxx_com_ctl.s.inf_en = 1;
650		cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
651		cvmx_dprintf("SPI%d: Tx is now up\n", interface);
652	}
653
654	gmxx_rxx_frm_min.u64 = 0;
655	gmxx_rxx_frm_min.s.len = 64;
656	cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0, interface),
657		       gmxx_rxx_frm_min.u64);
658	gmxx_rxx_frm_max.u64 = 0;
659	gmxx_rxx_frm_max.s.len = 64 * 1024 - 4;
660	cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0, interface),
661		       gmxx_rxx_frm_max.u64);
662	gmxx_rxx_jabber.u64 = 0;
663	gmxx_rxx_jabber.s.cnt = 64 * 1024 - 4;
664	cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0, interface), gmxx_rxx_jabber.u64);
665
666	return 0;
667}
668