• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/scsi/libsas/
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/scsi_transport.h>
32#include <scsi/scsi_transport_sas.h>
33#include "../scsi_sas_internal.h"
34
35static int sas_discover_expander(struct domain_device *dev);
36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37static int sas_configure_phy(struct domain_device *dev, int phy_id,
38			     u8 *sas_addr, int include);
39static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
40
41/* ---------- SMP task management ---------- */
42
43static void smp_task_timedout(unsigned long _task)
44{
45	struct sas_task *task = (void *) _task;
46	unsigned long flags;
47
48	spin_lock_irqsave(&task->task_state_lock, flags);
49	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51	spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53	complete(&task->completion);
54}
55
56static void smp_task_done(struct sas_task *task)
57{
58	if (!del_timer(&task->timer))
59		return;
60	complete(&task->completion);
61}
62
63/* Give it some long enough timeout. In seconds. */
64#define SMP_TIMEOUT 10
65
66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67			    void *resp, int resp_size)
68{
69	int res, retry;
70	struct sas_task *task = NULL;
71	struct sas_internal *i =
72		to_sas_internal(dev->port->ha->core.shost->transportt);
73
74	for (retry = 0; retry < 3; retry++) {
75		task = sas_alloc_task(GFP_KERNEL);
76		if (!task)
77			return -ENOMEM;
78
79		task->dev = dev;
80		task->task_proto = dev->tproto;
81		sg_init_one(&task->smp_task.smp_req, req, req_size);
82		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84		task->task_done = smp_task_done;
85
86		task->timer.data = (unsigned long) task;
87		task->timer.function = smp_task_timedout;
88		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89		add_timer(&task->timer);
90
91		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93		if (res) {
94			del_timer(&task->timer);
95			SAS_DPRINTK("executing SMP task failed:%d\n", res);
96			goto ex_err;
97		}
98
99		wait_for_completion(&task->completion);
100		res = -ECOMM;
101		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102			SAS_DPRINTK("smp task timed out or aborted\n");
103			i->dft->lldd_abort_task(task);
104			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105				SAS_DPRINTK("SMP task aborted and not done\n");
106				goto ex_err;
107			}
108		}
109		if (task->task_status.resp == SAS_TASK_COMPLETE &&
110		    task->task_status.stat == SAM_STAT_GOOD) {
111			res = 0;
112			break;
113		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
114		      task->task_status.stat == SAS_DATA_UNDERRUN) {
115			/* no error, but return the number of bytes of
116			 * underrun */
117			res = task->task_status.residual;
118			break;
119		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
120		      task->task_status.stat == SAS_DATA_OVERRUN) {
121			res = -EMSGSIZE;
122			break;
123		} else {
124			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125				    "status 0x%x\n", __func__,
126				    SAS_ADDR(dev->sas_addr),
127				    task->task_status.resp,
128				    task->task_status.stat);
129			sas_free_task(task);
130			task = NULL;
131		}
132	}
133ex_err:
134	BUG_ON(retry == 3 && task != NULL);
135	if (task != NULL) {
136		sas_free_task(task);
137	}
138	return res;
139}
140
141/* ---------- Allocations ---------- */
142
143static inline void *alloc_smp_req(int size)
144{
145	u8 *p = kzalloc(size, GFP_KERNEL);
146	if (p)
147		p[0] = SMP_REQUEST;
148	return p;
149}
150
151static inline void *alloc_smp_resp(int size)
152{
153	return kzalloc(size, GFP_KERNEL);
154}
155
156/* ---------- Expander configuration ---------- */
157
158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159			   void *disc_resp)
160{
161	struct expander_device *ex = &dev->ex_dev;
162	struct ex_phy *phy = &ex->ex_phy[phy_id];
163	struct smp_resp *resp = disc_resp;
164	struct discover_resp *dr = &resp->disc;
165	struct sas_rphy *rphy = dev->rphy;
166	int rediscover = (phy->phy != NULL);
167
168	if (!rediscover) {
169		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171		BUG_ON(!phy->phy);
172	}
173
174	switch (resp->result) {
175	case SMP_RESP_PHY_VACANT:
176		phy->phy_state = PHY_VACANT;
177		return;
178	default:
179		phy->phy_state = PHY_NOT_PRESENT;
180		return;
181	case SMP_RESP_FUNC_ACC:
182		phy->phy_state = PHY_EMPTY; /* do not know yet */
183		break;
184	}
185
186	phy->phy_id = phy_id;
187	phy->attached_dev_type = dr->attached_dev_type;
188	phy->linkrate = dr->linkrate;
189	phy->attached_sata_host = dr->attached_sata_host;
190	phy->attached_sata_dev  = dr->attached_sata_dev;
191	phy->attached_sata_ps   = dr->attached_sata_ps;
192	phy->attached_iproto = dr->iproto << 1;
193	phy->attached_tproto = dr->tproto << 1;
194	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
195	phy->attached_phy_id = dr->attached_phy_id;
196	phy->phy_change_count = dr->change_count;
197	phy->routing_attr = dr->routing_attr;
198	phy->virtual = dr->virtual;
199	phy->last_da_index = -1;
200
201	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
202	phy->phy->identify.target_port_protocols = phy->attached_tproto;
203	phy->phy->identify.phy_identifier = phy_id;
204	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
205	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
206	phy->phy->minimum_linkrate = dr->pmin_linkrate;
207	phy->phy->maximum_linkrate = dr->pmax_linkrate;
208	phy->phy->negotiated_linkrate = phy->linkrate;
209
210	if (!rediscover)
211		sas_phy_add(phy->phy);
212
213	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
214		    SAS_ADDR(dev->sas_addr), phy->phy_id,
215		    phy->routing_attr == TABLE_ROUTING ? 'T' :
216		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
217		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
218		    SAS_ADDR(phy->attached_sas_addr));
219
220	return;
221}
222
223#define DISCOVER_REQ_SIZE  16
224#define DISCOVER_RESP_SIZE 56
225
226static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
227				      u8 *disc_resp, int single)
228{
229	int i, res;
230
231	disc_req[9] = single;
232	for (i = 1 ; i < 3; i++) {
233		struct discover_resp *dr;
234
235		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
236				       disc_resp, DISCOVER_RESP_SIZE);
237		if (res)
238			return res;
239		/* This is detecting a failure to transmit inital
240		 * dev to host FIS as described in section G.5 of
241		 * sas-2 r 04b */
242		dr = &((struct smp_resp *)disc_resp)->disc;
243		if (!(dr->attached_dev_type == 0 &&
244		      dr->attached_sata_dev))
245			break;
246		/* In order to generate the dev to host FIS, we
247		 * send a link reset to the expander port */
248		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
249		/* Wait for the reset to trigger the negotiation */
250		msleep(500);
251	}
252	sas_set_ex_phy(dev, single, disc_resp);
253	return 0;
254}
255
256static int sas_ex_phy_discover(struct domain_device *dev, int single)
257{
258	struct expander_device *ex = &dev->ex_dev;
259	int  res = 0;
260	u8   *disc_req;
261	u8   *disc_resp;
262
263	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
264	if (!disc_req)
265		return -ENOMEM;
266
267	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
268	if (!disc_resp) {
269		kfree(disc_req);
270		return -ENOMEM;
271	}
272
273	disc_req[1] = SMP_DISCOVER;
274
275	if (0 <= single && single < ex->num_phys) {
276		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
277	} else {
278		int i;
279
280		for (i = 0; i < ex->num_phys; i++) {
281			res = sas_ex_phy_discover_helper(dev, disc_req,
282							 disc_resp, i);
283			if (res)
284				goto out_err;
285		}
286	}
287out_err:
288	kfree(disc_resp);
289	kfree(disc_req);
290	return res;
291}
292
293static int sas_expander_discover(struct domain_device *dev)
294{
295	struct expander_device *ex = &dev->ex_dev;
296	int res = -ENOMEM;
297
298	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
299	if (!ex->ex_phy)
300		return -ENOMEM;
301
302	res = sas_ex_phy_discover(dev, -1);
303	if (res)
304		goto out_err;
305
306	return 0;
307 out_err:
308	kfree(ex->ex_phy);
309	ex->ex_phy = NULL;
310	return res;
311}
312
313#define MAX_EXPANDER_PHYS 128
314
315static void ex_assign_report_general(struct domain_device *dev,
316					    struct smp_resp *resp)
317{
318	struct report_general_resp *rg = &resp->rg;
319
320	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
321	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
322	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
323	dev->ex_dev.conf_route_table = rg->conf_route_table;
324	dev->ex_dev.configuring = rg->configuring;
325	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
326}
327
328#define RG_REQ_SIZE   8
329#define RG_RESP_SIZE 32
330
331static int sas_ex_general(struct domain_device *dev)
332{
333	u8 *rg_req;
334	struct smp_resp *rg_resp;
335	int res;
336	int i;
337
338	rg_req = alloc_smp_req(RG_REQ_SIZE);
339	if (!rg_req)
340		return -ENOMEM;
341
342	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
343	if (!rg_resp) {
344		kfree(rg_req);
345		return -ENOMEM;
346	}
347
348	rg_req[1] = SMP_REPORT_GENERAL;
349
350	for (i = 0; i < 5; i++) {
351		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
352				       RG_RESP_SIZE);
353
354		if (res) {
355			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
356				    SAS_ADDR(dev->sas_addr), res);
357			goto out;
358		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
359			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
360				    SAS_ADDR(dev->sas_addr), rg_resp->result);
361			res = rg_resp->result;
362			goto out;
363		}
364
365		ex_assign_report_general(dev, rg_resp);
366
367		if (dev->ex_dev.configuring) {
368			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
369				    SAS_ADDR(dev->sas_addr));
370			schedule_timeout_interruptible(5*HZ);
371		} else
372			break;
373	}
374out:
375	kfree(rg_req);
376	kfree(rg_resp);
377	return res;
378}
379
380static void ex_assign_manuf_info(struct domain_device *dev, void
381					*_mi_resp)
382{
383	u8 *mi_resp = _mi_resp;
384	struct sas_rphy *rphy = dev->rphy;
385	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
386
387	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
388	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
389	memcpy(edev->product_rev, mi_resp + 36,
390	       SAS_EXPANDER_PRODUCT_REV_LEN);
391
392	if (mi_resp[8] & 1) {
393		memcpy(edev->component_vendor_id, mi_resp + 40,
394		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
395		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
396		edev->component_revision_id = mi_resp[50];
397	}
398}
399
400#define MI_REQ_SIZE   8
401#define MI_RESP_SIZE 64
402
403static int sas_ex_manuf_info(struct domain_device *dev)
404{
405	u8 *mi_req;
406	u8 *mi_resp;
407	int res;
408
409	mi_req = alloc_smp_req(MI_REQ_SIZE);
410	if (!mi_req)
411		return -ENOMEM;
412
413	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
414	if (!mi_resp) {
415		kfree(mi_req);
416		return -ENOMEM;
417	}
418
419	mi_req[1] = SMP_REPORT_MANUF_INFO;
420
421	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
422	if (res) {
423		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
424			    SAS_ADDR(dev->sas_addr), res);
425		goto out;
426	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
427		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
428			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
429		goto out;
430	}
431
432	ex_assign_manuf_info(dev, mi_resp);
433out:
434	kfree(mi_req);
435	kfree(mi_resp);
436	return res;
437}
438
439#define PC_REQ_SIZE  44
440#define PC_RESP_SIZE 8
441
442int sas_smp_phy_control(struct domain_device *dev, int phy_id,
443			enum phy_func phy_func,
444			struct sas_phy_linkrates *rates)
445{
446	u8 *pc_req;
447	u8 *pc_resp;
448	int res;
449
450	pc_req = alloc_smp_req(PC_REQ_SIZE);
451	if (!pc_req)
452		return -ENOMEM;
453
454	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
455	if (!pc_resp) {
456		kfree(pc_req);
457		return -ENOMEM;
458	}
459
460	pc_req[1] = SMP_PHY_CONTROL;
461	pc_req[9] = phy_id;
462	pc_req[10]= phy_func;
463	if (rates) {
464		pc_req[32] = rates->minimum_linkrate << 4;
465		pc_req[33] = rates->maximum_linkrate << 4;
466	}
467
468	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
469
470	kfree(pc_resp);
471	kfree(pc_req);
472	return res;
473}
474
475static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
476{
477	struct expander_device *ex = &dev->ex_dev;
478	struct ex_phy *phy = &ex->ex_phy[phy_id];
479
480	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
481	phy->linkrate = SAS_PHY_DISABLED;
482}
483
484static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
485{
486	struct expander_device *ex = &dev->ex_dev;
487	int i;
488
489	for (i = 0; i < ex->num_phys; i++) {
490		struct ex_phy *phy = &ex->ex_phy[i];
491
492		if (phy->phy_state == PHY_VACANT ||
493		    phy->phy_state == PHY_NOT_PRESENT)
494			continue;
495
496		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
497			sas_ex_disable_phy(dev, i);
498	}
499}
500
501static int sas_dev_present_in_domain(struct asd_sas_port *port,
502					    u8 *sas_addr)
503{
504	struct domain_device *dev;
505
506	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
507		return 1;
508	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
509		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
510			return 1;
511	}
512	return 0;
513}
514
515#define RPEL_REQ_SIZE	16
516#define RPEL_RESP_SIZE	32
517int sas_smp_get_phy_events(struct sas_phy *phy)
518{
519	int res;
520	u8 *req;
521	u8 *resp;
522	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
523	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
524
525	req = alloc_smp_req(RPEL_REQ_SIZE);
526	if (!req)
527		return -ENOMEM;
528
529	resp = alloc_smp_resp(RPEL_RESP_SIZE);
530	if (!resp) {
531		kfree(req);
532		return -ENOMEM;
533	}
534
535	req[1] = SMP_REPORT_PHY_ERR_LOG;
536	req[9] = phy->number;
537
538	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
539			            resp, RPEL_RESP_SIZE);
540
541	if (!res)
542		goto out;
543
544	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
545	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
546	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
547	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
548
549 out:
550	kfree(resp);
551	return res;
552
553}
554
555#ifdef CONFIG_SCSI_SAS_ATA
556
557#define RPS_REQ_SIZE  16
558#define RPS_RESP_SIZE 60
559
560static int sas_get_report_phy_sata(struct domain_device *dev,
561					  int phy_id,
562					  struct smp_resp *rps_resp)
563{
564	int res;
565	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
566	u8 *resp = (u8 *)rps_resp;
567
568	if (!rps_req)
569		return -ENOMEM;
570
571	rps_req[1] = SMP_REPORT_PHY_SATA;
572	rps_req[9] = phy_id;
573
574	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
575			            rps_resp, RPS_RESP_SIZE);
576
577	/* 0x34 is the FIS type for the D2H fis.  There's a potential
578	 * standards cockup here.  sas-2 explicitly specifies the FIS
579	 * should be encoded so that FIS type is in resp[24].
580	 * However, some expanders endian reverse this.  Undo the
581	 * reversal here */
582	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
583		int i;
584
585		for (i = 0; i < 5; i++) {
586			int j = 24 + (i*4);
587			u8 a, b;
588			a = resp[j + 0];
589			b = resp[j + 1];
590			resp[j + 0] = resp[j + 3];
591			resp[j + 1] = resp[j + 2];
592			resp[j + 2] = b;
593			resp[j + 3] = a;
594		}
595	}
596
597	kfree(rps_req);
598	return res;
599}
600#endif
601
602static void sas_ex_get_linkrate(struct domain_device *parent,
603				       struct domain_device *child,
604				       struct ex_phy *parent_phy)
605{
606	struct expander_device *parent_ex = &parent->ex_dev;
607	struct sas_port *port;
608	int i;
609
610	child->pathways = 0;
611
612	port = parent_phy->port;
613
614	for (i = 0; i < parent_ex->num_phys; i++) {
615		struct ex_phy *phy = &parent_ex->ex_phy[i];
616
617		if (phy->phy_state == PHY_VACANT ||
618		    phy->phy_state == PHY_NOT_PRESENT)
619			continue;
620
621		if (SAS_ADDR(phy->attached_sas_addr) ==
622		    SAS_ADDR(child->sas_addr)) {
623
624			child->min_linkrate = min(parent->min_linkrate,
625						  phy->linkrate);
626			child->max_linkrate = max(parent->max_linkrate,
627						  phy->linkrate);
628			child->pathways++;
629			sas_port_add_phy(port, phy->phy);
630		}
631	}
632	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
633	child->pathways = min(child->pathways, parent->pathways);
634}
635
636static struct domain_device *sas_ex_discover_end_dev(
637	struct domain_device *parent, int phy_id)
638{
639	struct expander_device *parent_ex = &parent->ex_dev;
640	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
641	struct domain_device *child = NULL;
642	struct sas_rphy *rphy;
643	int res;
644
645	if (phy->attached_sata_host || phy->attached_sata_ps)
646		return NULL;
647
648	child = kzalloc(sizeof(*child), GFP_KERNEL);
649	if (!child)
650		return NULL;
651
652	child->parent = parent;
653	child->port   = parent->port;
654	child->iproto = phy->attached_iproto;
655	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
656	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
657	if (!phy->port) {
658		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
659		if (unlikely(!phy->port))
660			goto out_err;
661		if (unlikely(sas_port_add(phy->port) != 0)) {
662			sas_port_free(phy->port);
663			goto out_err;
664		}
665	}
666	sas_ex_get_linkrate(parent, child, phy);
667
668#ifdef CONFIG_SCSI_SAS_ATA
669	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
670		child->dev_type = SATA_DEV;
671		if (phy->attached_tproto & SAS_PROTOCOL_STP)
672			child->tproto = phy->attached_tproto;
673		if (phy->attached_sata_dev)
674			child->tproto |= SATA_DEV;
675		res = sas_get_report_phy_sata(parent, phy_id,
676					      &child->sata_dev.rps_resp);
677		if (res) {
678			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
679				    "0x%x\n", SAS_ADDR(parent->sas_addr),
680				    phy_id, res);
681			goto out_free;
682		}
683		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
684		       sizeof(struct dev_to_host_fis));
685
686		rphy = sas_end_device_alloc(phy->port);
687		if (unlikely(!rphy))
688			goto out_free;
689
690		sas_init_dev(child);
691
692		child->rphy = rphy;
693
694		spin_lock_irq(&parent->port->dev_list_lock);
695		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
696		spin_unlock_irq(&parent->port->dev_list_lock);
697
698		res = sas_discover_sata(child);
699		if (res) {
700			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
701				    "%016llx:0x%x returned 0x%x\n",
702				    SAS_ADDR(child->sas_addr),
703				    SAS_ADDR(parent->sas_addr), phy_id, res);
704			goto out_list_del;
705		}
706	} else
707#endif
708	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
709		child->dev_type = SAS_END_DEV;
710		rphy = sas_end_device_alloc(phy->port);
711		if (unlikely(!rphy))
712			goto out_free;
713		child->tproto = phy->attached_tproto;
714		sas_init_dev(child);
715
716		child->rphy = rphy;
717		sas_fill_in_rphy(child, rphy);
718
719		spin_lock_irq(&parent->port->dev_list_lock);
720		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
721		spin_unlock_irq(&parent->port->dev_list_lock);
722
723		res = sas_discover_end_dev(child);
724		if (res) {
725			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
726				    "at %016llx:0x%x returned 0x%x\n",
727				    SAS_ADDR(child->sas_addr),
728				    SAS_ADDR(parent->sas_addr), phy_id, res);
729			goto out_list_del;
730		}
731	} else {
732		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
733			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
734			    phy_id);
735		goto out_free;
736	}
737
738	list_add_tail(&child->siblings, &parent_ex->children);
739	return child;
740
741 out_list_del:
742	sas_rphy_free(child->rphy);
743	child->rphy = NULL;
744	list_del(&child->dev_list_node);
745 out_free:
746	sas_port_delete(phy->port);
747 out_err:
748	phy->port = NULL;
749	kfree(child);
750	return NULL;
751}
752
753/* See if this phy is part of a wide port */
754static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
755{
756	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
757	int i;
758
759	for (i = 0; i < parent->ex_dev.num_phys; i++) {
760		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
761
762		if (ephy == phy)
763			continue;
764
765		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
766			    SAS_ADDR_SIZE) && ephy->port) {
767			sas_port_add_phy(ephy->port, phy->phy);
768			phy->port = ephy->port;
769			phy->phy_state = PHY_DEVICE_DISCOVERED;
770			return 0;
771		}
772	}
773
774	return -ENODEV;
775}
776
777static struct domain_device *sas_ex_discover_expander(
778	struct domain_device *parent, int phy_id)
779{
780	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
781	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
782	struct domain_device *child = NULL;
783	struct sas_rphy *rphy;
784	struct sas_expander_device *edev;
785	struct asd_sas_port *port;
786	int res;
787
788	if (phy->routing_attr == DIRECT_ROUTING) {
789		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
790			    "allowed\n",
791			    SAS_ADDR(parent->sas_addr), phy_id,
792			    SAS_ADDR(phy->attached_sas_addr),
793			    phy->attached_phy_id);
794		return NULL;
795	}
796	child = kzalloc(sizeof(*child), GFP_KERNEL);
797	if (!child)
798		return NULL;
799
800	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
801	BUG_ON(sas_port_add(phy->port) != 0);
802
803
804	switch (phy->attached_dev_type) {
805	case EDGE_DEV:
806		rphy = sas_expander_alloc(phy->port,
807					  SAS_EDGE_EXPANDER_DEVICE);
808		break;
809	case FANOUT_DEV:
810		rphy = sas_expander_alloc(phy->port,
811					  SAS_FANOUT_EXPANDER_DEVICE);
812		break;
813	default:
814		rphy = NULL;	/* shut gcc up */
815		BUG();
816	}
817	port = parent->port;
818	child->rphy = rphy;
819	edev = rphy_to_expander_device(rphy);
820	child->dev_type = phy->attached_dev_type;
821	child->parent = parent;
822	child->port = port;
823	child->iproto = phy->attached_iproto;
824	child->tproto = phy->attached_tproto;
825	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
826	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
827	sas_ex_get_linkrate(parent, child, phy);
828	edev->level = parent_ex->level + 1;
829	parent->port->disc.max_level = max(parent->port->disc.max_level,
830					   edev->level);
831	sas_init_dev(child);
832	sas_fill_in_rphy(child, rphy);
833	sas_rphy_add(rphy);
834
835	spin_lock_irq(&parent->port->dev_list_lock);
836	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
837	spin_unlock_irq(&parent->port->dev_list_lock);
838
839	res = sas_discover_expander(child);
840	if (res) {
841		kfree(child);
842		return NULL;
843	}
844	list_add_tail(&child->siblings, &parent->ex_dev.children);
845	return child;
846}
847
848static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
849{
850	struct expander_device *ex = &dev->ex_dev;
851	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
852	struct domain_device *child = NULL;
853	int res = 0;
854
855	/* Phy state */
856	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
857		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
858			res = sas_ex_phy_discover(dev, phy_id);
859		if (res)
860			return res;
861	}
862
863	/* Parent and domain coherency */
864	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
865			     SAS_ADDR(dev->port->sas_addr))) {
866		sas_add_parent_port(dev, phy_id);
867		return 0;
868	}
869	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
870			    SAS_ADDR(dev->parent->sas_addr))) {
871		sas_add_parent_port(dev, phy_id);
872		if (ex_phy->routing_attr == TABLE_ROUTING)
873			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
874		return 0;
875	}
876
877	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
878		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
879
880	if (ex_phy->attached_dev_type == NO_DEVICE) {
881		if (ex_phy->routing_attr == DIRECT_ROUTING) {
882			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
883			sas_configure_routing(dev, ex_phy->attached_sas_addr);
884		}
885		return 0;
886	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
887		return 0;
888
889	if (ex_phy->attached_dev_type != SAS_END_DEV &&
890	    ex_phy->attached_dev_type != FANOUT_DEV &&
891	    ex_phy->attached_dev_type != EDGE_DEV) {
892		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
893			    "phy 0x%x\n", ex_phy->attached_dev_type,
894			    SAS_ADDR(dev->sas_addr),
895			    phy_id);
896		return 0;
897	}
898
899	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
900	if (res) {
901		SAS_DPRINTK("configure routing for dev %016llx "
902			    "reported 0x%x. Forgotten\n",
903			    SAS_ADDR(ex_phy->attached_sas_addr), res);
904		sas_disable_routing(dev, ex_phy->attached_sas_addr);
905		return res;
906	}
907
908	res = sas_ex_join_wide_port(dev, phy_id);
909	if (!res) {
910		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
911			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
912		return res;
913	}
914
915	switch (ex_phy->attached_dev_type) {
916	case SAS_END_DEV:
917		child = sas_ex_discover_end_dev(dev, phy_id);
918		break;
919	case FANOUT_DEV:
920		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
921			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
922				    "attached to ex %016llx phy 0x%x\n",
923				    SAS_ADDR(ex_phy->attached_sas_addr),
924				    ex_phy->attached_phy_id,
925				    SAS_ADDR(dev->sas_addr),
926				    phy_id);
927			sas_ex_disable_phy(dev, phy_id);
928			break;
929		} else
930			memcpy(dev->port->disc.fanout_sas_addr,
931			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
932		/* fallthrough */
933	case EDGE_DEV:
934		child = sas_ex_discover_expander(dev, phy_id);
935		break;
936	default:
937		break;
938	}
939
940	if (child) {
941		int i;
942
943		for (i = 0; i < ex->num_phys; i++) {
944			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
945			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
946				continue;
947			/*
948			 * Due to races, the phy might not get added to the
949			 * wide port, so we add the phy to the wide port here.
950			 */
951			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
952			    SAS_ADDR(child->sas_addr)) {
953				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
954				res = sas_ex_join_wide_port(dev, i);
955				if (!res)
956					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
957						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
958
959			}
960		}
961	}
962
963	return res;
964}
965
966static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
967{
968	struct expander_device *ex = &dev->ex_dev;
969	int i;
970
971	for (i = 0; i < ex->num_phys; i++) {
972		struct ex_phy *phy = &ex->ex_phy[i];
973
974		if (phy->phy_state == PHY_VACANT ||
975		    phy->phy_state == PHY_NOT_PRESENT)
976			continue;
977
978		if ((phy->attached_dev_type == EDGE_DEV ||
979		     phy->attached_dev_type == FANOUT_DEV) &&
980		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
981
982			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
983
984			return 1;
985		}
986	}
987	return 0;
988}
989
990static int sas_check_level_subtractive_boundary(struct domain_device *dev)
991{
992	struct expander_device *ex = &dev->ex_dev;
993	struct domain_device *child;
994	u8 sub_addr[8] = {0, };
995
996	list_for_each_entry(child, &ex->children, siblings) {
997		if (child->dev_type != EDGE_DEV &&
998		    child->dev_type != FANOUT_DEV)
999			continue;
1000		if (sub_addr[0] == 0) {
1001			sas_find_sub_addr(child, sub_addr);
1002			continue;
1003		} else {
1004			u8 s2[8];
1005
1006			if (sas_find_sub_addr(child, s2) &&
1007			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1008
1009				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1010					    "diverges from subtractive "
1011					    "boundary %016llx\n",
1012					    SAS_ADDR(dev->sas_addr),
1013					    SAS_ADDR(child->sas_addr),
1014					    SAS_ADDR(s2),
1015					    SAS_ADDR(sub_addr));
1016
1017				sas_ex_disable_port(child, s2);
1018			}
1019		}
1020	}
1021	return 0;
1022}
1023/**
1024 * sas_ex_discover_devices -- discover devices attached to this expander
1025 * dev: pointer to the expander domain device
1026 * single: if you want to do a single phy, else set to -1;
1027 *
1028 * Configure this expander for use with its devices and register the
1029 * devices of this expander.
1030 */
1031static int sas_ex_discover_devices(struct domain_device *dev, int single)
1032{
1033	struct expander_device *ex = &dev->ex_dev;
1034	int i = 0, end = ex->num_phys;
1035	int res = 0;
1036
1037	if (0 <= single && single < end) {
1038		i = single;
1039		end = i+1;
1040	}
1041
1042	for ( ; i < end; i++) {
1043		struct ex_phy *ex_phy = &ex->ex_phy[i];
1044
1045		if (ex_phy->phy_state == PHY_VACANT ||
1046		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1047		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1048			continue;
1049
1050		switch (ex_phy->linkrate) {
1051		case SAS_PHY_DISABLED:
1052		case SAS_PHY_RESET_PROBLEM:
1053		case SAS_SATA_PORT_SELECTOR:
1054			continue;
1055		default:
1056			res = sas_ex_discover_dev(dev, i);
1057			if (res)
1058				break;
1059			continue;
1060		}
1061	}
1062
1063	if (!res)
1064		sas_check_level_subtractive_boundary(dev);
1065
1066	return res;
1067}
1068
1069static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1070{
1071	struct expander_device *ex = &dev->ex_dev;
1072	int i;
1073	u8  *sub_sas_addr = NULL;
1074
1075	if (dev->dev_type != EDGE_DEV)
1076		return 0;
1077
1078	for (i = 0; i < ex->num_phys; i++) {
1079		struct ex_phy *phy = &ex->ex_phy[i];
1080
1081		if (phy->phy_state == PHY_VACANT ||
1082		    phy->phy_state == PHY_NOT_PRESENT)
1083			continue;
1084
1085		if ((phy->attached_dev_type == FANOUT_DEV ||
1086		     phy->attached_dev_type == EDGE_DEV) &&
1087		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1088
1089			if (!sub_sas_addr)
1090				sub_sas_addr = &phy->attached_sas_addr[0];
1091			else if (SAS_ADDR(sub_sas_addr) !=
1092				 SAS_ADDR(phy->attached_sas_addr)) {
1093
1094				SAS_DPRINTK("ex %016llx phy 0x%x "
1095					    "diverges(%016llx) on subtractive "
1096					    "boundary(%016llx). Disabled\n",
1097					    SAS_ADDR(dev->sas_addr), i,
1098					    SAS_ADDR(phy->attached_sas_addr),
1099					    SAS_ADDR(sub_sas_addr));
1100				sas_ex_disable_phy(dev, i);
1101			}
1102		}
1103	}
1104	return 0;
1105}
1106
1107static void sas_print_parent_topology_bug(struct domain_device *child,
1108						 struct ex_phy *parent_phy,
1109						 struct ex_phy *child_phy)
1110{
1111	static const char ra_char[] = {
1112		[DIRECT_ROUTING] = 'D',
1113		[SUBTRACTIVE_ROUTING] = 'S',
1114		[TABLE_ROUTING] = 'T',
1115	};
1116	static const char *ex_type[] = {
1117		[EDGE_DEV] = "edge",
1118		[FANOUT_DEV] = "fanout",
1119	};
1120	struct domain_device *parent = child->parent;
1121
1122	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1123		   "has %c:%c routing link!\n",
1124
1125		   ex_type[parent->dev_type],
1126		   SAS_ADDR(parent->sas_addr),
1127		   parent_phy->phy_id,
1128
1129		   ex_type[child->dev_type],
1130		   SAS_ADDR(child->sas_addr),
1131		   child_phy->phy_id,
1132
1133		   ra_char[parent_phy->routing_attr],
1134		   ra_char[child_phy->routing_attr]);
1135}
1136
1137static int sas_check_eeds(struct domain_device *child,
1138				 struct ex_phy *parent_phy,
1139				 struct ex_phy *child_phy)
1140{
1141	int res = 0;
1142	struct domain_device *parent = child->parent;
1143
1144	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1145		res = -ENODEV;
1146		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1147			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1148			    SAS_ADDR(parent->sas_addr),
1149			    parent_phy->phy_id,
1150			    SAS_ADDR(child->sas_addr),
1151			    child_phy->phy_id,
1152			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1153	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1154		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1155		       SAS_ADDR_SIZE);
1156		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1157		       SAS_ADDR_SIZE);
1158	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1159		    SAS_ADDR(parent->sas_addr)) ||
1160		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1161		    SAS_ADDR(child->sas_addr)))
1162		   &&
1163		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1164		     SAS_ADDR(parent->sas_addr)) ||
1165		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1166		     SAS_ADDR(child->sas_addr))))
1167		;
1168	else {
1169		res = -ENODEV;
1170		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1171			    "phy 0x%x link forms a third EEDS!\n",
1172			    SAS_ADDR(parent->sas_addr),
1173			    parent_phy->phy_id,
1174			    SAS_ADDR(child->sas_addr),
1175			    child_phy->phy_id);
1176	}
1177
1178	return res;
1179}
1180
1181/* Here we spill over 80 columns.  It is intentional.
1182 */
1183static int sas_check_parent_topology(struct domain_device *child)
1184{
1185	struct expander_device *child_ex = &child->ex_dev;
1186	struct expander_device *parent_ex;
1187	int i;
1188	int res = 0;
1189
1190	if (!child->parent)
1191		return 0;
1192
1193	if (child->parent->dev_type != EDGE_DEV &&
1194	    child->parent->dev_type != FANOUT_DEV)
1195		return 0;
1196
1197	parent_ex = &child->parent->ex_dev;
1198
1199	for (i = 0; i < parent_ex->num_phys; i++) {
1200		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1201		struct ex_phy *child_phy;
1202
1203		if (parent_phy->phy_state == PHY_VACANT ||
1204		    parent_phy->phy_state == PHY_NOT_PRESENT)
1205			continue;
1206
1207		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1208			continue;
1209
1210		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1211
1212		switch (child->parent->dev_type) {
1213		case EDGE_DEV:
1214			if (child->dev_type == FANOUT_DEV) {
1215				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1216				    child_phy->routing_attr != TABLE_ROUTING) {
1217					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1218					res = -ENODEV;
1219				}
1220			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1221				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1222					res = sas_check_eeds(child, parent_phy, child_phy);
1223				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1224					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1225					res = -ENODEV;
1226				}
1227			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1228				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1229				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1230				res = -ENODEV;
1231			}
1232			break;
1233		case FANOUT_DEV:
1234			if (parent_phy->routing_attr != TABLE_ROUTING ||
1235			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1236				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1237				res = -ENODEV;
1238			}
1239			break;
1240		default:
1241			break;
1242		}
1243	}
1244
1245	return res;
1246}
1247
1248#define RRI_REQ_SIZE  16
1249#define RRI_RESP_SIZE 44
1250
1251static int sas_configure_present(struct domain_device *dev, int phy_id,
1252				 u8 *sas_addr, int *index, int *present)
1253{
1254	int i, res = 0;
1255	struct expander_device *ex = &dev->ex_dev;
1256	struct ex_phy *phy = &ex->ex_phy[phy_id];
1257	u8 *rri_req;
1258	u8 *rri_resp;
1259
1260	*present = 0;
1261	*index = 0;
1262
1263	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1264	if (!rri_req)
1265		return -ENOMEM;
1266
1267	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1268	if (!rri_resp) {
1269		kfree(rri_req);
1270		return -ENOMEM;
1271	}
1272
1273	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1274	rri_req[9] = phy_id;
1275
1276	for (i = 0; i < ex->max_route_indexes ; i++) {
1277		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1278		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1279				       RRI_RESP_SIZE);
1280		if (res)
1281			goto out;
1282		res = rri_resp[2];
1283		if (res == SMP_RESP_NO_INDEX) {
1284			SAS_DPRINTK("overflow of indexes: dev %016llx "
1285				    "phy 0x%x index 0x%x\n",
1286				    SAS_ADDR(dev->sas_addr), phy_id, i);
1287			goto out;
1288		} else if (res != SMP_RESP_FUNC_ACC) {
1289			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1290				    "result 0x%x\n", __func__,
1291				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1292			goto out;
1293		}
1294		if (SAS_ADDR(sas_addr) != 0) {
1295			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1296				*index = i;
1297				if ((rri_resp[12] & 0x80) == 0x80)
1298					*present = 0;
1299				else
1300					*present = 1;
1301				goto out;
1302			} else if (SAS_ADDR(rri_resp+16) == 0) {
1303				*index = i;
1304				*present = 0;
1305				goto out;
1306			}
1307		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1308			   phy->last_da_index < i) {
1309			phy->last_da_index = i;
1310			*index = i;
1311			*present = 0;
1312			goto out;
1313		}
1314	}
1315	res = -1;
1316out:
1317	kfree(rri_req);
1318	kfree(rri_resp);
1319	return res;
1320}
1321
1322#define CRI_REQ_SIZE  44
1323#define CRI_RESP_SIZE  8
1324
1325static int sas_configure_set(struct domain_device *dev, int phy_id,
1326			     u8 *sas_addr, int index, int include)
1327{
1328	int res;
1329	u8 *cri_req;
1330	u8 *cri_resp;
1331
1332	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1333	if (!cri_req)
1334		return -ENOMEM;
1335
1336	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1337	if (!cri_resp) {
1338		kfree(cri_req);
1339		return -ENOMEM;
1340	}
1341
1342	cri_req[1] = SMP_CONF_ROUTE_INFO;
1343	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1344	cri_req[9] = phy_id;
1345	if (SAS_ADDR(sas_addr) == 0 || !include)
1346		cri_req[12] |= 0x80;
1347	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1348
1349	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1350			       CRI_RESP_SIZE);
1351	if (res)
1352		goto out;
1353	res = cri_resp[2];
1354	if (res == SMP_RESP_NO_INDEX) {
1355		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1356			    "index 0x%x\n",
1357			    SAS_ADDR(dev->sas_addr), phy_id, index);
1358	}
1359out:
1360	kfree(cri_req);
1361	kfree(cri_resp);
1362	return res;
1363}
1364
1365static int sas_configure_phy(struct domain_device *dev, int phy_id,
1366				    u8 *sas_addr, int include)
1367{
1368	int index;
1369	int present;
1370	int res;
1371
1372	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1373	if (res)
1374		return res;
1375	if (include ^ present)
1376		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1377
1378	return res;
1379}
1380
1381/**
1382 * sas_configure_parent -- configure routing table of parent
1383 * parent: parent expander
1384 * child: child expander
1385 * sas_addr: SAS port identifier of device directly attached to child
1386 */
1387static int sas_configure_parent(struct domain_device *parent,
1388				struct domain_device *child,
1389				u8 *sas_addr, int include)
1390{
1391	struct expander_device *ex_parent = &parent->ex_dev;
1392	int res = 0;
1393	int i;
1394
1395	if (parent->parent) {
1396		res = sas_configure_parent(parent->parent, parent, sas_addr,
1397					   include);
1398		if (res)
1399			return res;
1400	}
1401
1402	if (ex_parent->conf_route_table == 0) {
1403		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1404			    SAS_ADDR(parent->sas_addr));
1405		return 0;
1406	}
1407
1408	for (i = 0; i < ex_parent->num_phys; i++) {
1409		struct ex_phy *phy = &ex_parent->ex_phy[i];
1410
1411		if ((phy->routing_attr == TABLE_ROUTING) &&
1412		    (SAS_ADDR(phy->attached_sas_addr) ==
1413		     SAS_ADDR(child->sas_addr))) {
1414			res = sas_configure_phy(parent, i, sas_addr, include);
1415			if (res)
1416				return res;
1417		}
1418	}
1419
1420	return res;
1421}
1422
1423/**
1424 * sas_configure_routing -- configure routing
1425 * dev: expander device
1426 * sas_addr: port identifier of device directly attached to the expander device
1427 */
1428static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1429{
1430	if (dev->parent)
1431		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1432	return 0;
1433}
1434
1435static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1436{
1437	if (dev->parent)
1438		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1439	return 0;
1440}
1441
1442/**
1443 * sas_discover_expander -- expander discovery
1444 * @ex: pointer to expander domain device
1445 *
1446 * See comment in sas_discover_sata().
1447 */
1448static int sas_discover_expander(struct domain_device *dev)
1449{
1450	int res;
1451
1452	res = sas_notify_lldd_dev_found(dev);
1453	if (res)
1454		return res;
1455
1456	res = sas_ex_general(dev);
1457	if (res)
1458		goto out_err;
1459	res = sas_ex_manuf_info(dev);
1460	if (res)
1461		goto out_err;
1462
1463	res = sas_expander_discover(dev);
1464	if (res) {
1465		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1466			    SAS_ADDR(dev->sas_addr), res);
1467		goto out_err;
1468	}
1469
1470	sas_check_ex_subtractive_boundary(dev);
1471	res = sas_check_parent_topology(dev);
1472	if (res)
1473		goto out_err;
1474	return 0;
1475out_err:
1476	sas_notify_lldd_dev_gone(dev);
1477	return res;
1478}
1479
1480static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1481{
1482	int res = 0;
1483	struct domain_device *dev;
1484
1485	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1486		if (dev->dev_type == EDGE_DEV ||
1487		    dev->dev_type == FANOUT_DEV) {
1488			struct sas_expander_device *ex =
1489				rphy_to_expander_device(dev->rphy);
1490
1491			if (level == ex->level)
1492				res = sas_ex_discover_devices(dev, -1);
1493			else if (level > 0)
1494				res = sas_ex_discover_devices(port->port_dev, -1);
1495
1496		}
1497	}
1498
1499	return res;
1500}
1501
1502static int sas_ex_bfs_disc(struct asd_sas_port *port)
1503{
1504	int res;
1505	int level;
1506
1507	do {
1508		level = port->disc.max_level;
1509		res = sas_ex_level_discovery(port, level);
1510		mb();
1511	} while (level < port->disc.max_level);
1512
1513	return res;
1514}
1515
1516int sas_discover_root_expander(struct domain_device *dev)
1517{
1518	int res;
1519	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1520
1521	res = sas_rphy_add(dev->rphy);
1522	if (res)
1523		goto out_err;
1524
1525	ex->level = dev->port->disc.max_level; /* 0 */
1526	res = sas_discover_expander(dev);
1527	if (res)
1528		goto out_err2;
1529
1530	sas_ex_bfs_disc(dev->port);
1531
1532	return res;
1533
1534out_err2:
1535	sas_rphy_remove(dev->rphy);
1536out_err:
1537	return res;
1538}
1539
1540/* ---------- Domain revalidation ---------- */
1541
1542static int sas_get_phy_discover(struct domain_device *dev,
1543				int phy_id, struct smp_resp *disc_resp)
1544{
1545	int res;
1546	u8 *disc_req;
1547
1548	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1549	if (!disc_req)
1550		return -ENOMEM;
1551
1552	disc_req[1] = SMP_DISCOVER;
1553	disc_req[9] = phy_id;
1554
1555	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1556			       disc_resp, DISCOVER_RESP_SIZE);
1557	if (res)
1558		goto out;
1559	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1560		res = disc_resp->result;
1561		goto out;
1562	}
1563out:
1564	kfree(disc_req);
1565	return res;
1566}
1567
1568static int sas_get_phy_change_count(struct domain_device *dev,
1569				    int phy_id, int *pcc)
1570{
1571	int res;
1572	struct smp_resp *disc_resp;
1573
1574	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1575	if (!disc_resp)
1576		return -ENOMEM;
1577
1578	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1579	if (!res)
1580		*pcc = disc_resp->disc.change_count;
1581
1582	kfree(disc_resp);
1583	return res;
1584}
1585
1586static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1587					 int phy_id, u8 *attached_sas_addr)
1588{
1589	int res;
1590	struct smp_resp *disc_resp;
1591	struct discover_resp *dr;
1592
1593	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1594	if (!disc_resp)
1595		return -ENOMEM;
1596	dr = &disc_resp->disc;
1597
1598	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1599	if (!res) {
1600		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1601		if (dr->attached_dev_type == 0)
1602			memset(attached_sas_addr, 0, 8);
1603	}
1604	kfree(disc_resp);
1605	return res;
1606}
1607
1608static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1609			      int from_phy, bool update)
1610{
1611	struct expander_device *ex = &dev->ex_dev;
1612	int res = 0;
1613	int i;
1614
1615	for (i = from_phy; i < ex->num_phys; i++) {
1616		int phy_change_count = 0;
1617
1618		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1619		if (res)
1620			goto out;
1621		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1622			if (update)
1623				ex->ex_phy[i].phy_change_count =
1624					phy_change_count;
1625			*phy_id = i;
1626			return 0;
1627		}
1628	}
1629out:
1630	return res;
1631}
1632
1633static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1634{
1635	int res;
1636	u8  *rg_req;
1637	struct smp_resp  *rg_resp;
1638
1639	rg_req = alloc_smp_req(RG_REQ_SIZE);
1640	if (!rg_req)
1641		return -ENOMEM;
1642
1643	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1644	if (!rg_resp) {
1645		kfree(rg_req);
1646		return -ENOMEM;
1647	}
1648
1649	rg_req[1] = SMP_REPORT_GENERAL;
1650
1651	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1652			       RG_RESP_SIZE);
1653	if (res)
1654		goto out;
1655	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1656		res = rg_resp->result;
1657		goto out;
1658	}
1659
1660	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1661out:
1662	kfree(rg_resp);
1663	kfree(rg_req);
1664	return res;
1665}
1666/**
1667 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1668 * @dev:domain device to be detect.
1669 * @src_dev: the device which originated BROADCAST(CHANGE).
1670 *
1671 * Add self-configuration expander suport. Suppose two expander cascading,
1672 * when the first level expander is self-configuring, hotplug the disks in
1673 * second level expander, BROADCAST(CHANGE) will not only be originated
1674 * in the second level expander, but also be originated in the first level
1675 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1676 * expander changed count in two level expanders will all increment at least
1677 * once, but the phy which chang count has changed is the source device which
1678 * we concerned.
1679 */
1680
1681static int sas_find_bcast_dev(struct domain_device *dev,
1682			      struct domain_device **src_dev)
1683{
1684	struct expander_device *ex = &dev->ex_dev;
1685	int ex_change_count = -1;
1686	int phy_id = -1;
1687	int res;
1688	struct domain_device *ch;
1689
1690	res = sas_get_ex_change_count(dev, &ex_change_count);
1691	if (res)
1692		goto out;
1693	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1694		/* Just detect if this expander phys phy change count changed,
1695		* in order to determine if this expander originate BROADCAST,
1696		* and do not update phy change count field in our structure.
1697		*/
1698		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1699		if (phy_id != -1) {
1700			*src_dev = dev;
1701			ex->ex_change_count = ex_change_count;
1702			SAS_DPRINTK("Expander phy change count has changed\n");
1703			return res;
1704		} else
1705			SAS_DPRINTK("Expander phys DID NOT change\n");
1706	}
1707	list_for_each_entry(ch, &ex->children, siblings) {
1708		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1709			res = sas_find_bcast_dev(ch, src_dev);
1710			if (src_dev)
1711				return res;
1712		}
1713	}
1714out:
1715	return res;
1716}
1717
1718static void sas_unregister_ex_tree(struct domain_device *dev)
1719{
1720	struct expander_device *ex = &dev->ex_dev;
1721	struct domain_device *child, *n;
1722
1723	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1724		if (child->dev_type == EDGE_DEV ||
1725		    child->dev_type == FANOUT_DEV)
1726			sas_unregister_ex_tree(child);
1727		else
1728			sas_unregister_dev(child);
1729	}
1730	sas_unregister_dev(dev);
1731}
1732
1733static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1734					 int phy_id, bool last)
1735{
1736	struct expander_device *ex_dev = &parent->ex_dev;
1737	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1738	struct domain_device *child, *n;
1739	if (last) {
1740		list_for_each_entry_safe(child, n,
1741			&ex_dev->children, siblings) {
1742			if (SAS_ADDR(child->sas_addr) ==
1743			    SAS_ADDR(phy->attached_sas_addr)) {
1744				if (child->dev_type == EDGE_DEV ||
1745				    child->dev_type == FANOUT_DEV)
1746					sas_unregister_ex_tree(child);
1747				else
1748					sas_unregister_dev(child);
1749				break;
1750			}
1751		}
1752		sas_disable_routing(parent, phy->attached_sas_addr);
1753	}
1754	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1755	sas_port_delete_phy(phy->port, phy->phy);
1756	if (phy->port->num_phys == 0)
1757		sas_port_delete(phy->port);
1758	phy->port = NULL;
1759}
1760
1761static int sas_discover_bfs_by_root_level(struct domain_device *root,
1762					  const int level)
1763{
1764	struct expander_device *ex_root = &root->ex_dev;
1765	struct domain_device *child;
1766	int res = 0;
1767
1768	list_for_each_entry(child, &ex_root->children, siblings) {
1769		if (child->dev_type == EDGE_DEV ||
1770		    child->dev_type == FANOUT_DEV) {
1771			struct sas_expander_device *ex =
1772				rphy_to_expander_device(child->rphy);
1773
1774			if (level > ex->level)
1775				res = sas_discover_bfs_by_root_level(child,
1776								     level);
1777			else if (level == ex->level)
1778				res = sas_ex_discover_devices(child, -1);
1779		}
1780	}
1781	return res;
1782}
1783
1784static int sas_discover_bfs_by_root(struct domain_device *dev)
1785{
1786	int res;
1787	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1788	int level = ex->level+1;
1789
1790	res = sas_ex_discover_devices(dev, -1);
1791	if (res)
1792		goto out;
1793	do {
1794		res = sas_discover_bfs_by_root_level(dev, level);
1795		mb();
1796		level += 1;
1797	} while (level <= dev->port->disc.max_level);
1798out:
1799	return res;
1800}
1801
1802static int sas_discover_new(struct domain_device *dev, int phy_id)
1803{
1804	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1805	struct domain_device *child;
1806	bool found = false;
1807	int res, i;
1808
1809	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1810		    SAS_ADDR(dev->sas_addr), phy_id);
1811	res = sas_ex_phy_discover(dev, phy_id);
1812	if (res)
1813		goto out;
1814	/* to support the wide port inserted */
1815	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1816		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1817		if (i == phy_id)
1818			continue;
1819		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1820		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1821			found = true;
1822			break;
1823		}
1824	}
1825	if (found) {
1826		sas_ex_join_wide_port(dev, phy_id);
1827		return 0;
1828	}
1829	res = sas_ex_discover_devices(dev, phy_id);
1830	if (!res)
1831		goto out;
1832	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1833		if (SAS_ADDR(child->sas_addr) ==
1834		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1835			if (child->dev_type == EDGE_DEV ||
1836			    child->dev_type == FANOUT_DEV)
1837				res = sas_discover_bfs_by_root(child);
1838			break;
1839		}
1840	}
1841out:
1842	return res;
1843}
1844
1845static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1846{
1847	struct expander_device *ex = &dev->ex_dev;
1848	struct ex_phy *phy = &ex->ex_phy[phy_id];
1849	u8 attached_sas_addr[8];
1850	int res;
1851
1852	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1853	switch (res) {
1854	case SMP_RESP_NO_PHY:
1855		phy->phy_state = PHY_NOT_PRESENT;
1856		sas_unregister_devs_sas_addr(dev, phy_id, last);
1857		goto out; break;
1858	case SMP_RESP_PHY_VACANT:
1859		phy->phy_state = PHY_VACANT;
1860		sas_unregister_devs_sas_addr(dev, phy_id, last);
1861		goto out; break;
1862	case SMP_RESP_FUNC_ACC:
1863		break;
1864	}
1865
1866	if (SAS_ADDR(attached_sas_addr) == 0) {
1867		phy->phy_state = PHY_EMPTY;
1868		sas_unregister_devs_sas_addr(dev, phy_id, last);
1869	} else if (SAS_ADDR(attached_sas_addr) ==
1870		   SAS_ADDR(phy->attached_sas_addr)) {
1871		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1872			    SAS_ADDR(dev->sas_addr), phy_id);
1873		sas_ex_phy_discover(dev, phy_id);
1874	} else
1875		res = sas_discover_new(dev, phy_id);
1876out:
1877	return res;
1878}
1879
1880/**
1881 * sas_rediscover - revalidate the domain.
1882 * @dev:domain device to be detect.
1883 * @phy_id: the phy id will be detected.
1884 *
1885 * NOTE: this process _must_ quit (return) as soon as any connection
1886 * errors are encountered.  Connection recovery is done elsewhere.
1887 * Discover process only interrogates devices in order to discover the
1888 * domain.For plugging out, we un-register the device only when it is
1889 * the last phy in the port, for other phys in this port, we just delete it
1890 * from the port.For inserting, we do discovery when it is the
1891 * first phy,for other phys in this port, we add it to the port to
1892 * forming the wide-port.
1893 */
1894static int sas_rediscover(struct domain_device *dev, const int phy_id)
1895{
1896	struct expander_device *ex = &dev->ex_dev;
1897	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1898	int res = 0;
1899	int i;
1900	bool last = true;	/* is this the last phy of the port */
1901
1902	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1903		    SAS_ADDR(dev->sas_addr), phy_id);
1904
1905	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1906		for (i = 0; i < ex->num_phys; i++) {
1907			struct ex_phy *phy = &ex->ex_phy[i];
1908
1909			if (i == phy_id)
1910				continue;
1911			if (SAS_ADDR(phy->attached_sas_addr) ==
1912			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1913				SAS_DPRINTK("phy%d part of wide port with "
1914					    "phy%d\n", phy_id, i);
1915				last = false;
1916				break;
1917			}
1918		}
1919		res = sas_rediscover_dev(dev, phy_id, last);
1920	} else
1921		res = sas_discover_new(dev, phy_id);
1922	return res;
1923}
1924
1925/**
1926 * sas_revalidate_domain -- revalidate the domain
1927 * @port: port to the domain of interest
1928 *
1929 * NOTE: this process _must_ quit (return) as soon as any connection
1930 * errors are encountered.  Connection recovery is done elsewhere.
1931 * Discover process only interrogates devices in order to discover the
1932 * domain.
1933 */
1934int sas_ex_revalidate_domain(struct domain_device *port_dev)
1935{
1936	int res;
1937	struct domain_device *dev = NULL;
1938
1939	res = sas_find_bcast_dev(port_dev, &dev);
1940	if (res)
1941		goto out;
1942	if (dev) {
1943		struct expander_device *ex = &dev->ex_dev;
1944		int i = 0, phy_id;
1945
1946		do {
1947			phy_id = -1;
1948			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1949			if (phy_id == -1)
1950				break;
1951			res = sas_rediscover(dev, phy_id);
1952			i = phy_id + 1;
1953		} while (i < ex->num_phys);
1954	}
1955out:
1956	return res;
1957}
1958
1959int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1960		    struct request *req)
1961{
1962	struct domain_device *dev;
1963	int ret, type;
1964	struct request *rsp = req->next_rq;
1965
1966	if (!rsp) {
1967		printk("%s: space for a smp response is missing\n",
1968		       __func__);
1969		return -EINVAL;
1970	}
1971
1972	/* no rphy means no smp target support (ie aic94xx host) */
1973	if (!rphy)
1974		return sas_smp_host_handler(shost, req, rsp);
1975
1976	type = rphy->identify.device_type;
1977
1978	if (type != SAS_EDGE_EXPANDER_DEVICE &&
1979	    type != SAS_FANOUT_EXPANDER_DEVICE) {
1980		printk("%s: can we send a smp request to a device?\n",
1981		       __func__);
1982		return -EINVAL;
1983	}
1984
1985	dev = sas_find_dev_by_rphy(rphy);
1986	if (!dev) {
1987		printk("%s: fail to find a domain_device?\n", __func__);
1988		return -EINVAL;
1989	}
1990
1991	/* do we need to support multiple segments? */
1992	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1993		printk("%s: multiple segments req %u %u, rsp %u %u\n",
1994		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
1995		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
1996		return -EINVAL;
1997	}
1998
1999	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2000			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2001	if (ret > 0) {
2002		/* positive number is the untransferred residual */
2003		rsp->resid_len = ret;
2004		req->resid_len = 0;
2005		ret = 0;
2006	} else if (ret == 0) {
2007		rsp->resid_len = 0;
2008		req->resid_len = 0;
2009	}
2010
2011	return ret;
2012}
2013