• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/rtc/
1/*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/rtc.h>
15#include <linux/sched.h>
16#include <linux/log2.h>
17
18int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
19{
20	int err;
21
22	err = mutex_lock_interruptible(&rtc->ops_lock);
23	if (err)
24		return err;
25
26	if (!rtc->ops)
27		err = -ENODEV;
28	else if (!rtc->ops->read_time)
29		err = -EINVAL;
30	else {
31		memset(tm, 0, sizeof(struct rtc_time));
32		err = rtc->ops->read_time(rtc->dev.parent, tm);
33	}
34
35	mutex_unlock(&rtc->ops_lock);
36	return err;
37}
38EXPORT_SYMBOL_GPL(rtc_read_time);
39
40int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
41{
42	int err;
43
44	err = rtc_valid_tm(tm);
45	if (err != 0)
46		return err;
47
48	err = mutex_lock_interruptible(&rtc->ops_lock);
49	if (err)
50		return err;
51
52	if (!rtc->ops)
53		err = -ENODEV;
54	else if (rtc->ops->set_time)
55		err = rtc->ops->set_time(rtc->dev.parent, tm);
56	else if (rtc->ops->set_mmss) {
57		unsigned long secs;
58		err = rtc_tm_to_time(tm, &secs);
59		if (err == 0)
60			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
61	} else
62		err = -EINVAL;
63
64	mutex_unlock(&rtc->ops_lock);
65	return err;
66}
67EXPORT_SYMBOL_GPL(rtc_set_time);
68
69int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
70{
71	int err;
72
73	err = mutex_lock_interruptible(&rtc->ops_lock);
74	if (err)
75		return err;
76
77	if (!rtc->ops)
78		err = -ENODEV;
79	else if (rtc->ops->set_mmss)
80		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
81	else if (rtc->ops->read_time && rtc->ops->set_time) {
82		struct rtc_time new, old;
83
84		err = rtc->ops->read_time(rtc->dev.parent, &old);
85		if (err == 0) {
86			rtc_time_to_tm(secs, &new);
87
88			/*
89			 * avoid writing when we're going to change the day of
90			 * the month. We will retry in the next minute. This
91			 * basically means that if the RTC must not drift
92			 * by more than 1 minute in 11 minutes.
93			 */
94			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
95				(new.tm_hour == 23 && new.tm_min == 59)))
96				err = rtc->ops->set_time(rtc->dev.parent,
97						&new);
98		}
99	}
100	else
101		err = -EINVAL;
102
103	mutex_unlock(&rtc->ops_lock);
104
105	return err;
106}
107EXPORT_SYMBOL_GPL(rtc_set_mmss);
108
109static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
110{
111	int err;
112
113	err = mutex_lock_interruptible(&rtc->ops_lock);
114	if (err)
115		return err;
116
117	if (rtc->ops == NULL)
118		err = -ENODEV;
119	else if (!rtc->ops->read_alarm)
120		err = -EINVAL;
121	else {
122		memset(alarm, 0, sizeof(struct rtc_wkalrm));
123		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
124	}
125
126	mutex_unlock(&rtc->ops_lock);
127	return err;
128}
129
130int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
131{
132	int err;
133	struct rtc_time before, now;
134	int first_time = 1;
135	unsigned long t_now, t_alm;
136	enum { none, day, month, year } missing = none;
137	unsigned days;
138
139	/* The lower level RTC driver may return -1 in some fields,
140	 * creating invalid alarm->time values, for reasons like:
141	 *
142	 *   - The hardware may not be capable of filling them in;
143	 *     many alarms match only on time-of-day fields, not
144	 *     day/month/year calendar data.
145	 *
146	 *   - Some hardware uses illegal values as "wildcard" match
147	 *     values, which non-Linux firmware (like a BIOS) may try
148	 *     to set up as e.g. "alarm 15 minutes after each hour".
149	 *     Linux uses only oneshot alarms.
150	 *
151	 * When we see that here, we deal with it by using values from
152	 * a current RTC timestamp for any missing (-1) values.  The
153	 * RTC driver prevents "periodic alarm" modes.
154	 *
155	 * But this can be racey, because some fields of the RTC timestamp
156	 * may have wrapped in the interval since we read the RTC alarm,
157	 * which would lead to us inserting inconsistent values in place
158	 * of the -1 fields.
159	 *
160	 * Reading the alarm and timestamp in the reverse sequence
161	 * would have the same race condition, and not solve the issue.
162	 *
163	 * So, we must first read the RTC timestamp,
164	 * then read the RTC alarm value,
165	 * and then read a second RTC timestamp.
166	 *
167	 * If any fields of the second timestamp have changed
168	 * when compared with the first timestamp, then we know
169	 * our timestamp may be inconsistent with that used by
170	 * the low-level rtc_read_alarm_internal() function.
171	 *
172	 * So, when the two timestamps disagree, we just loop and do
173	 * the process again to get a fully consistent set of values.
174	 *
175	 * This could all instead be done in the lower level driver,
176	 * but since more than one lower level RTC implementation needs it,
177	 * then it's probably best best to do it here instead of there..
178	 */
179
180	/* Get the "before" timestamp */
181	err = rtc_read_time(rtc, &before);
182	if (err < 0)
183		return err;
184	do {
185		if (!first_time)
186			memcpy(&before, &now, sizeof(struct rtc_time));
187		first_time = 0;
188
189		/* get the RTC alarm values, which may be incomplete */
190		err = rtc_read_alarm_internal(rtc, alarm);
191		if (err)
192			return err;
193		if (!alarm->enabled)
194			return 0;
195
196		/* full-function RTCs won't have such missing fields */
197		if (rtc_valid_tm(&alarm->time) == 0)
198			return 0;
199
200		/* get the "after" timestamp, to detect wrapped fields */
201		err = rtc_read_time(rtc, &now);
202		if (err < 0)
203			return err;
204
205		/* note that tm_sec is a "don't care" value here: */
206	} while (   before.tm_min   != now.tm_min
207		 || before.tm_hour  != now.tm_hour
208		 || before.tm_mon   != now.tm_mon
209		 || before.tm_year  != now.tm_year);
210
211	/* Fill in the missing alarm fields using the timestamp; we
212	 * know there's at least one since alarm->time is invalid.
213	 */
214	if (alarm->time.tm_sec == -1)
215		alarm->time.tm_sec = now.tm_sec;
216	if (alarm->time.tm_min == -1)
217		alarm->time.tm_min = now.tm_min;
218	if (alarm->time.tm_hour == -1)
219		alarm->time.tm_hour = now.tm_hour;
220
221	/* For simplicity, only support date rollover for now */
222	if (alarm->time.tm_mday == -1) {
223		alarm->time.tm_mday = now.tm_mday;
224		missing = day;
225	}
226	if (alarm->time.tm_mon == -1) {
227		alarm->time.tm_mon = now.tm_mon;
228		if (missing == none)
229			missing = month;
230	}
231	if (alarm->time.tm_year == -1) {
232		alarm->time.tm_year = now.tm_year;
233		if (missing == none)
234			missing = year;
235	}
236
237	/* with luck, no rollover is needed */
238	rtc_tm_to_time(&now, &t_now);
239	rtc_tm_to_time(&alarm->time, &t_alm);
240	if (t_now < t_alm)
241		goto done;
242
243	switch (missing) {
244
245	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
246	 * that will trigger at 5am will do so at 5am Tuesday, which
247	 * could also be in the next month or year.  This is a common
248	 * case, especially for PCs.
249	 */
250	case day:
251		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
252		t_alm += 24 * 60 * 60;
253		rtc_time_to_tm(t_alm, &alarm->time);
254		break;
255
256	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
257	 * be next month.  An alarm matching on the 30th, 29th, or 28th
258	 * may end up in the month after that!  Many newer PCs support
259	 * this type of alarm.
260	 */
261	case month:
262		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
263		do {
264			if (alarm->time.tm_mon < 11)
265				alarm->time.tm_mon++;
266			else {
267				alarm->time.tm_mon = 0;
268				alarm->time.tm_year++;
269			}
270			days = rtc_month_days(alarm->time.tm_mon,
271					alarm->time.tm_year);
272		} while (days < alarm->time.tm_mday);
273		break;
274
275	/* Year rollover ... easy except for leap years! */
276	case year:
277		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
278		do {
279			alarm->time.tm_year++;
280		} while (rtc_valid_tm(&alarm->time) != 0);
281		break;
282
283	default:
284		dev_warn(&rtc->dev, "alarm rollover not handled\n");
285	}
286
287done:
288	return 0;
289}
290EXPORT_SYMBOL_GPL(rtc_read_alarm);
291
292int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
293{
294	int err;
295
296	err = rtc_valid_tm(&alarm->time);
297	if (err != 0)
298		return err;
299
300	err = mutex_lock_interruptible(&rtc->ops_lock);
301	if (err)
302		return err;
303
304	if (!rtc->ops)
305		err = -ENODEV;
306	else if (!rtc->ops->set_alarm)
307		err = -EINVAL;
308	else
309		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
310
311	mutex_unlock(&rtc->ops_lock);
312	return err;
313}
314EXPORT_SYMBOL_GPL(rtc_set_alarm);
315
316int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
317{
318	int err = mutex_lock_interruptible(&rtc->ops_lock);
319	if (err)
320		return err;
321
322	if (!rtc->ops)
323		err = -ENODEV;
324	else if (!rtc->ops->alarm_irq_enable)
325		err = -EINVAL;
326	else
327		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
328
329	mutex_unlock(&rtc->ops_lock);
330	return err;
331}
332EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
333
334int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
335{
336	int err = mutex_lock_interruptible(&rtc->ops_lock);
337	if (err)
338		return err;
339
340#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
341	if (enabled == 0 && rtc->uie_irq_active) {
342		mutex_unlock(&rtc->ops_lock);
343		return rtc_dev_update_irq_enable_emul(rtc, enabled);
344	}
345#endif
346
347	if (!rtc->ops)
348		err = -ENODEV;
349	else if (!rtc->ops->update_irq_enable)
350		err = -EINVAL;
351	else
352		err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
353
354	mutex_unlock(&rtc->ops_lock);
355
356#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
357	/*
358	 * Enable emulation if the driver did not provide
359	 * the update_irq_enable function pointer or if returned
360	 * -EINVAL to signal that it has been configured without
361	 * interrupts or that are not available at the moment.
362	 */
363	if (err == -EINVAL)
364		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
365#endif
366	return err;
367}
368EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
369
370/**
371 * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
372 * @rtc: the rtc device
373 * @num: how many irqs are being reported (usually one)
374 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
375 * Context: any
376 */
377void rtc_update_irq(struct rtc_device *rtc,
378		unsigned long num, unsigned long events)
379{
380	unsigned long flags;
381
382	spin_lock_irqsave(&rtc->irq_lock, flags);
383	rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
384	spin_unlock_irqrestore(&rtc->irq_lock, flags);
385
386	spin_lock_irqsave(&rtc->irq_task_lock, flags);
387	if (rtc->irq_task)
388		rtc->irq_task->func(rtc->irq_task->private_data);
389	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
390
391	wake_up_interruptible(&rtc->irq_queue);
392	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
393}
394EXPORT_SYMBOL_GPL(rtc_update_irq);
395
396static int __rtc_match(struct device *dev, void *data)
397{
398	char *name = (char *)data;
399
400	if (strcmp(dev_name(dev), name) == 0)
401		return 1;
402	return 0;
403}
404
405struct rtc_device *rtc_class_open(char *name)
406{
407	struct device *dev;
408	struct rtc_device *rtc = NULL;
409
410	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
411	if (dev)
412		rtc = to_rtc_device(dev);
413
414	if (rtc) {
415		if (!try_module_get(rtc->owner)) {
416			put_device(dev);
417			rtc = NULL;
418		}
419	}
420
421	return rtc;
422}
423EXPORT_SYMBOL_GPL(rtc_class_open);
424
425void rtc_class_close(struct rtc_device *rtc)
426{
427	module_put(rtc->owner);
428	put_device(&rtc->dev);
429}
430EXPORT_SYMBOL_GPL(rtc_class_close);
431
432int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
433{
434	int retval = -EBUSY;
435
436	if (task == NULL || task->func == NULL)
437		return -EINVAL;
438
439	/* Cannot register while the char dev is in use */
440	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
441		return -EBUSY;
442
443	spin_lock_irq(&rtc->irq_task_lock);
444	if (rtc->irq_task == NULL) {
445		rtc->irq_task = task;
446		retval = 0;
447	}
448	spin_unlock_irq(&rtc->irq_task_lock);
449
450	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
451
452	return retval;
453}
454EXPORT_SYMBOL_GPL(rtc_irq_register);
455
456void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
457{
458	spin_lock_irq(&rtc->irq_task_lock);
459	if (rtc->irq_task == task)
460		rtc->irq_task = NULL;
461	spin_unlock_irq(&rtc->irq_task_lock);
462}
463EXPORT_SYMBOL_GPL(rtc_irq_unregister);
464
465/**
466 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
467 * @rtc: the rtc device
468 * @task: currently registered with rtc_irq_register()
469 * @enabled: true to enable periodic IRQs
470 * Context: any
471 *
472 * Note that rtc_irq_set_freq() should previously have been used to
473 * specify the desired frequency of periodic IRQ task->func() callbacks.
474 */
475int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
476{
477	int err = 0;
478	unsigned long flags;
479
480	if (rtc->ops->irq_set_state == NULL)
481		return -ENXIO;
482
483	spin_lock_irqsave(&rtc->irq_task_lock, flags);
484	if (rtc->irq_task != NULL && task == NULL)
485		err = -EBUSY;
486	if (rtc->irq_task != task)
487		err = -EACCES;
488	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
489
490	if (err == 0)
491		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
492
493	return err;
494}
495EXPORT_SYMBOL_GPL(rtc_irq_set_state);
496
497/**
498 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
499 * @rtc: the rtc device
500 * @task: currently registered with rtc_irq_register()
501 * @freq: positive frequency with which task->func() will be called
502 * Context: any
503 *
504 * Note that rtc_irq_set_state() is used to enable or disable the
505 * periodic IRQs.
506 */
507int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
508{
509	int err = 0;
510	unsigned long flags;
511
512	if (rtc->ops->irq_set_freq == NULL)
513		return -ENXIO;
514
515	spin_lock_irqsave(&rtc->irq_task_lock, flags);
516	if (rtc->irq_task != NULL && task == NULL)
517		err = -EBUSY;
518	if (rtc->irq_task != task)
519		err = -EACCES;
520	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
521
522	if (err == 0) {
523		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
524		if (err == 0)
525			rtc->irq_freq = freq;
526	}
527	return err;
528}
529EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
530