• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/parisc/
1/*
2** ccio-dma.c:
3**	DMA management routines for first generation cache-coherent machines.
4**	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5**
6**	(c) Copyright 2000 Grant Grundler
7**	(c) Copyright 2000 Ryan Bradetich
8**	(c) Copyright 2000 Hewlett-Packard Company
9**
10** This program is free software; you can redistribute it and/or modify
11** it under the terms of the GNU General Public License as published by
12** the Free Software Foundation; either version 2 of the License, or
13** (at your option) any later version.
14**
15**
16**  "Real Mode" operation refers to U2/Uturn chip operation.
17**  U2/Uturn were designed to perform coherency checks w/o using
18**  the I/O MMU - basically what x86 does.
19**
20**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21**      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23**
24**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25**
26**  Drawbacks of using Real Mode are:
27**	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29**	o Ability to do scatter/gather in HW is lost.
30**	o Doesn't work under PCX-U/U+ machines since they didn't follow
31**        the coherency design originally worked out. Only PCX-W does.
32*/
33
34#include <linux/types.h>
35#include <linux/kernel.h>
36#include <linux/init.h>
37#include <linux/mm.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/string.h>
41#include <linux/pci.h>
42#include <linux/reboot.h>
43#include <linux/proc_fs.h>
44#include <linux/seq_file.h>
45#include <linux/scatterlist.h>
46#include <linux/iommu-helper.h>
47
48#include <asm/byteorder.h>
49#include <asm/cache.h>		/* for L1_CACHE_BYTES */
50#include <asm/uaccess.h>
51#include <asm/page.h>
52#include <asm/dma.h>
53#include <asm/io.h>
54#include <asm/hardware.h>       /* for register_module() */
55#include <asm/parisc-device.h>
56
57/*
58** Choose "ccio" since that's what HP-UX calls it.
59** Make it easier for folks to migrate from one to the other :^)
60*/
61#define MODULE_NAME "ccio"
62
63#undef DEBUG_CCIO_RES
64#undef DEBUG_CCIO_RUN
65#undef DEBUG_CCIO_INIT
66#undef DEBUG_CCIO_RUN_SG
67
68#ifdef CONFIG_PROC_FS
69/* depends on proc fs support. But costs CPU performance. */
70#undef CCIO_COLLECT_STATS
71#endif
72
73#include <asm/runway.h>		/* for proc_runway_root */
74
75#ifdef DEBUG_CCIO_INIT
76#define DBG_INIT(x...)  printk(x)
77#else
78#define DBG_INIT(x...)
79#endif
80
81#ifdef DEBUG_CCIO_RUN
82#define DBG_RUN(x...)   printk(x)
83#else
84#define DBG_RUN(x...)
85#endif
86
87#ifdef DEBUG_CCIO_RES
88#define DBG_RES(x...)   printk(x)
89#else
90#define DBG_RES(x...)
91#endif
92
93#ifdef DEBUG_CCIO_RUN_SG
94#define DBG_RUN_SG(x...) printk(x)
95#else
96#define DBG_RUN_SG(x...)
97#endif
98
99#define CCIO_INLINE	inline
100#define WRITE_U32(value, addr) __raw_writel(value, addr)
101#define READ_U32(addr) __raw_readl(addr)
102
103#define U2_IOA_RUNWAY 0x580
104#define U2_BC_GSC     0x501
105#define UTURN_IOA_RUNWAY 0x581
106#define UTURN_BC_GSC     0x502
107
108#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
109#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
110#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
111
112struct ioa_registers {
113        /* Runway Supervisory Set */
114        int32_t    unused1[12];
115        uint32_t   io_command;             /* Offset 12 */
116        uint32_t   io_status;              /* Offset 13 */
117        uint32_t   io_control;             /* Offset 14 */
118        int32_t    unused2[1];
119
120        /* Runway Auxiliary Register Set */
121        uint32_t   io_err_resp;            /* Offset  0 */
122        uint32_t   io_err_info;            /* Offset  1 */
123        uint32_t   io_err_req;             /* Offset  2 */
124        uint32_t   io_err_resp_hi;         /* Offset  3 */
125        uint32_t   io_tlb_entry_m;         /* Offset  4 */
126        uint32_t   io_tlb_entry_l;         /* Offset  5 */
127        uint32_t   unused3[1];
128        uint32_t   io_pdir_base;           /* Offset  7 */
129        uint32_t   io_io_low_hv;           /* Offset  8 */
130        uint32_t   io_io_high_hv;          /* Offset  9 */
131        uint32_t   unused4[1];
132        uint32_t   io_chain_id_mask;       /* Offset 11 */
133        uint32_t   unused5[2];
134        uint32_t   io_io_low;              /* Offset 14 */
135        uint32_t   io_io_high;             /* Offset 15 */
136};
137
138/*
139** IOA Registers
140** -------------
141**
142** Runway IO_CONTROL Register (+0x38)
143**
144** The Runway IO_CONTROL register controls the forwarding of transactions.
145**
146** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
147** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
148**
149** o mode field indicates the address translation of transactions
150**   forwarded from Runway to GSC+:
151**       Mode Name     Value        Definition
152**       Off (default)   0          Opaque to matching addresses.
153**       Include         1          Transparent for matching addresses.
154**       Peek            3          Map matching addresses.
155**
156**       + "Off" mode: Runway transactions which match the I/O range
157**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
158**       + "Include" mode: all addresses within the I/O range specified
159**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
160**         forwarded. This is the I/O Adapter's normal operating mode.
161**       + "Peek" mode: used during system configuration to initialize the
162**         GSC+ bus. Runway Write_Shorts in the address range specified by
163**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
164**         *AND* the GSC+ address is remapped to the Broadcast Physical
165**         Address space by setting the 14 high order address bits of the
166**         32 bit GSC+ address to ones.
167**
168** o TLB field affects transactions which are forwarded from GSC+ to Runway.
169**   "Real" mode is the poweron default.
170**
171**   TLB Mode  Value  Description
172**   Real        0    No TLB translation. Address is directly mapped and the
173**                    virtual address is composed of selected physical bits.
174**   Error       1    Software fills the TLB manually.
175**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
176**
177**
178** IO_IO_LOW_HV	  +0x60 (HV dependent)
179** IO_IO_HIGH_HV  +0x64 (HV dependent)
180** IO_IO_LOW      +0x78	(Architected register)
181** IO_IO_HIGH     +0x7c	(Architected register)
182**
183** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
184** I/O Adapter address space, respectively.
185**
186** 0  ... 7 | 8 ... 15 |  16   ...   31 |
187** 11111111 | 11111111 |      address   |
188**
189** Each LOW/HIGH pair describes a disjoint address space region.
190** (2 per GSC+ port). Each incoming Runway transaction address is compared
191** with both sets of LOW/HIGH registers. If the address is in the range
192** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
193** for forwarded to the respective GSC+ bus.
194** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
195** an address space region.
196**
197** In order for a Runway address to reside within GSC+ extended address space:
198**	Runway Address [0:7]    must identically compare to 8'b11111111
199**	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
200** 	Runway Address [12:23]  must be greater than or equal to
201**	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
202**	Runway Address [24:39]  is not used in the comparison.
203**
204** When the Runway transaction is forwarded to GSC+, the GSC+ address is
205** as follows:
206**	GSC+ Address[0:3]	4'b1111
207**	GSC+ Address[4:29]	Runway Address[12:37]
208**	GSC+ Address[30:31]	2'b00
209**
210** All 4 Low/High registers must be initialized (by PDC) once the lower bus
211** is interrogated and address space is defined. The operating system will
212** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
213** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
214** and IO_IO_HIGH registers should not be subsequently altered by the OS.
215**
216** Writes to both sets of registers will take effect immediately, bypassing
217** the queues, which ensures that subsequent Runway transactions are checked
218** against the updated bounds values. However reads are queued, introducing
219** the possibility of a read being bypassed by a subsequent write to the same
220** register. This sequence can be avoided by having software wait for read
221** returns before issuing subsequent writes.
222*/
223
224struct ioc {
225	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
226	u8  *res_map;	                /* resource map, bit == pdir entry */
227	u64 *pdir_base;	                /* physical base address */
228	u32 pdir_size; 			/* bytes, function of IOV Space size */
229	u32 res_hint;	                /* next available IOVP -
230					   circular search */
231	u32 res_size;		    	/* size of resource map in bytes */
232	spinlock_t res_lock;
233
234#ifdef CCIO_COLLECT_STATS
235#define CCIO_SEARCH_SAMPLE 0x100
236	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
237	unsigned long avg_idx;		  /* current index into avg_search */
238	unsigned long used_pages;
239	unsigned long msingle_calls;
240	unsigned long msingle_pages;
241	unsigned long msg_calls;
242	unsigned long msg_pages;
243	unsigned long usingle_calls;
244	unsigned long usingle_pages;
245	unsigned long usg_calls;
246	unsigned long usg_pages;
247#endif
248	unsigned short cujo20_bug;
249
250	/* STUFF We don't need in performance path */
251	u32 chainid_shift; 		/* specify bit location of chain_id */
252	struct ioc *next;		/* Linked list of discovered iocs */
253	const char *name;		/* device name from firmware */
254	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
255	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
256	struct resource mmio_region[2]; /* The "routed" MMIO regions */
257};
258
259static struct ioc *ioc_list;
260static int ioc_count;
261
262/**************************************************************
263*
264*   I/O Pdir Resource Management
265*
266*   Bits set in the resource map are in use.
267*   Each bit can represent a number of pages.
268*   LSbs represent lower addresses (IOVA's).
269*
270*   This was was copied from sba_iommu.c. Don't try to unify
271*   the two resource managers unless a way to have different
272*   allocation policies is also adjusted. We'd like to avoid
273*   I/O TLB thrashing by having resource allocation policy
274*   match the I/O TLB replacement policy.
275*
276***************************************************************/
277#define IOVP_SIZE PAGE_SIZE
278#define IOVP_SHIFT PAGE_SHIFT
279#define IOVP_MASK PAGE_MASK
280
281/* Convert from IOVP to IOVA and vice versa. */
282#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
283#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
284
285#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
286#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
287#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
288
289/*
290** Don't worry about the 150% average search length on a miss.
291** If the search wraps around, and passes the res_hint, it will
292** cause the kernel to panic anyhow.
293*/
294#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
295       for(; res_ptr < res_end; ++res_ptr) { \
296		int ret;\
297		unsigned int idx;\
298		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
299		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
300		if ((0 == (*res_ptr & mask)) && !ret) { \
301			*res_ptr |= mask; \
302			res_idx = idx;\
303			ioc->res_hint = res_idx + (size >> 3); \
304			goto resource_found; \
305		} \
306	}
307
308#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
309       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
310       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
311       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
312       res_ptr = (u##size *)&(ioc)->res_map[0]; \
313       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
314
315/*
316** Find available bit in this ioa's resource map.
317** Use a "circular" search:
318**   o Most IOVA's are "temporary" - avg search time should be small.
319** o keep a history of what happened for debugging
320** o KISS.
321**
322** Perf optimizations:
323** o search for log2(size) bits at a time.
324** o search for available resource bits using byte/word/whatever.
325** o use different search for "large" (eg > 4 pages) or "very large"
326**   (eg > 16 pages) mappings.
327*/
328
329/**
330 * ccio_alloc_range - Allocate pages in the ioc's resource map.
331 * @ioc: The I/O Controller.
332 * @pages_needed: The requested number of pages to be mapped into the
333 * I/O Pdir...
334 *
335 * This function searches the resource map of the ioc to locate a range
336 * of available pages for the requested size.
337 */
338static int
339ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
340{
341	unsigned int pages_needed = size >> IOVP_SHIFT;
342	unsigned int res_idx;
343	unsigned long boundary_size;
344#ifdef CCIO_COLLECT_STATS
345	unsigned long cr_start = mfctl(16);
346#endif
347
348	BUG_ON(pages_needed == 0);
349	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
350
351	DBG_RES("%s() size: %d pages_needed %d\n",
352		__func__, size, pages_needed);
353
354	/*
355	** "seek and ye shall find"...praying never hurts either...
356	** ggg sacrifices another 710 to the computer gods.
357	*/
358
359	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
360			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
361
362	if (pages_needed <= 8) {
363		/*
364		 * LAN traffic will not thrash the TLB IFF the same NIC
365		 * uses 8 adjacent pages to map separate payload data.
366		 * ie the same byte in the resource bit map.
367		 */
368		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
369	} else if (pages_needed <= 16) {
370		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
371	} else if (pages_needed <= 32) {
372		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
373#ifdef __LP64__
374	} else if (pages_needed <= 64) {
375		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
376#endif
377	} else {
378		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
379		       __FILE__,  __func__, pages_needed);
380	}
381
382	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
383	      __func__);
384
385resource_found:
386
387	DBG_RES("%s() res_idx %d res_hint: %d\n",
388		__func__, res_idx, ioc->res_hint);
389
390#ifdef CCIO_COLLECT_STATS
391	{
392		unsigned long cr_end = mfctl(16);
393		unsigned long tmp = cr_end - cr_start;
394		/* check for roll over */
395		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
396	}
397	ioc->avg_search[ioc->avg_idx++] = cr_start;
398	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
399	ioc->used_pages += pages_needed;
400#endif
401	/*
402	** return the bit address.
403	*/
404	return res_idx << 3;
405}
406
407#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
408        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
409        BUG_ON((*res_ptr & mask) != mask); \
410        *res_ptr &= ~(mask);
411
412/**
413 * ccio_free_range - Free pages from the ioc's resource map.
414 * @ioc: The I/O Controller.
415 * @iova: The I/O Virtual Address.
416 * @pages_mapped: The requested number of pages to be freed from the
417 * I/O Pdir.
418 *
419 * This function frees the resouces allocated for the iova.
420 */
421static void
422ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
423{
424	unsigned long iovp = CCIO_IOVP(iova);
425	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
426
427	BUG_ON(pages_mapped == 0);
428	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
429	BUG_ON(pages_mapped > BITS_PER_LONG);
430
431	DBG_RES("%s():  res_idx: %d pages_mapped %d\n",
432		__func__, res_idx, pages_mapped);
433
434#ifdef CCIO_COLLECT_STATS
435	ioc->used_pages -= pages_mapped;
436#endif
437
438	if(pages_mapped <= 8) {
439		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
440	} else if(pages_mapped <= 16) {
441		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
442	} else if(pages_mapped <= 32) {
443		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
444#ifdef __LP64__
445	} else if(pages_mapped <= 64) {
446		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
447#endif
448	} else {
449		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
450		      __func__);
451	}
452}
453
454/****************************************************************
455**
456**          CCIO dma_ops support routines
457**
458*****************************************************************/
459
460typedef unsigned long space_t;
461#define KERNEL_SPACE 0
462
463#define IOPDIR_VALID    0x01UL
464#define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
465#ifdef CONFIG_EISA
466#define HINT_STOP_MOST  0x04UL	/* LSL support */
467#else
468#define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
469#endif
470#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
471#define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
472
473
474/*
475** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
476** ccio_alloc_consistent() depends on this to get SAFE_DMA
477** when it passes in BIDIRECTIONAL flag.
478*/
479static u32 hint_lookup[] = {
480	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
481	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
482	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
483};
484
485/**
486 * ccio_io_pdir_entry - Initialize an I/O Pdir.
487 * @pdir_ptr: A pointer into I/O Pdir.
488 * @sid: The Space Identifier.
489 * @vba: The virtual address.
490 * @hints: The DMA Hint.
491 *
492 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
493 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
494 * entry consists of 8 bytes as shown below (MSB == bit 0):
495 *
496 *
497 * WORD 0:
498 * +------+----------------+-----------------------------------------------+
499 * | Phys | Virtual Index  |               Phys                            |
500 * | 0:3  |     0:11       |               4:19                            |
501 * |4 bits|   12 bits      |              16 bits                          |
502 * +------+----------------+-----------------------------------------------+
503 * WORD 1:
504 * +-----------------------+-----------------------------------------------+
505 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
506 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
507 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
508 * +-----------------------+-----------------------------------------------+
509 *
510 * The virtual index field is filled with the results of the LCI
511 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
512 * index are bits 12:19 of the value returned by LCI.
513 */
514static void CCIO_INLINE
515ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
516		   unsigned long hints)
517{
518	register unsigned long pa;
519	register unsigned long ci; /* coherent index */
520
521	/* We currently only support kernel addresses */
522	BUG_ON(sid != KERNEL_SPACE);
523
524	mtsp(sid,1);
525
526	/*
527	** WORD 1 - low order word
528	** "hints" parm includes the VALID bit!
529	** "dep" clobbers the physical address offset bits as well.
530	*/
531	pa = virt_to_phys(vba);
532	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
533	((u32 *)pdir_ptr)[1] = (u32) pa;
534
535	/*
536	** WORD 0 - high order word
537	*/
538
539#ifdef __LP64__
540	/*
541	** get bits 12:15 of physical address
542	** shift bits 16:31 of physical address
543	** and deposit them
544	*/
545	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
546	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
547	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
548#else
549	pa = 0;
550#endif
551	/*
552	** get CPU coherency index bits
553	** Grab virtual index [0:11]
554	** Deposit virt_idx bits into I/O PDIR word
555	*/
556	asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
557	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
558	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
559
560	((u32 *)pdir_ptr)[0] = (u32) pa;
561
562
563	asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
564	asm volatile("sync");
565}
566
567static CCIO_INLINE void
568ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
569{
570	u32 chain_size = 1 << ioc->chainid_shift;
571
572	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
573	byte_cnt += chain_size;
574
575	while(byte_cnt > chain_size) {
576		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
577		iovp += chain_size;
578		byte_cnt -= chain_size;
579	}
580}
581
582static CCIO_INLINE void
583ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
584{
585	u32 iovp = (u32)CCIO_IOVP(iova);
586	size_t saved_byte_cnt;
587
588	/* round up to nearest page size */
589	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
590
591	while(byte_cnt > 0) {
592		/* invalidate one page at a time */
593		unsigned int idx = PDIR_INDEX(iovp);
594		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
595
596		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
597		pdir_ptr[7] = 0;	/* clear only VALID bit */
598		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
599
600		iovp     += IOVP_SIZE;
601		byte_cnt -= IOVP_SIZE;
602	}
603
604	asm volatile("sync");
605	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
606}
607
608/****************************************************************
609**
610**          CCIO dma_ops
611**
612*****************************************************************/
613
614/**
615 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
616 * @dev: The PCI device.
617 * @mask: A bit mask describing the DMA address range of the device.
618 *
619 * This function implements the pci_dma_supported function.
620 */
621static int
622ccio_dma_supported(struct device *dev, u64 mask)
623{
624	if(dev == NULL) {
625		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
626		BUG();
627		return 0;
628	}
629
630	/* only support 32-bit devices (ie PCI/GSC) */
631	return (int)(mask == 0xffffffffUL);
632}
633
634/**
635 * ccio_map_single - Map an address range into the IOMMU.
636 * @dev: The PCI device.
637 * @addr: The start address of the DMA region.
638 * @size: The length of the DMA region.
639 * @direction: The direction of the DMA transaction (to/from device).
640 *
641 * This function implements the pci_map_single function.
642 */
643static dma_addr_t
644ccio_map_single(struct device *dev, void *addr, size_t size,
645		enum dma_data_direction direction)
646{
647	int idx;
648	struct ioc *ioc;
649	unsigned long flags;
650	dma_addr_t iovp;
651	dma_addr_t offset;
652	u64 *pdir_start;
653	unsigned long hint = hint_lookup[(int)direction];
654
655	BUG_ON(!dev);
656	ioc = GET_IOC(dev);
657
658	BUG_ON(size <= 0);
659
660	/* save offset bits */
661	offset = ((unsigned long) addr) & ~IOVP_MASK;
662
663	/* round up to nearest IOVP_SIZE */
664	size = ALIGN(size + offset, IOVP_SIZE);
665	spin_lock_irqsave(&ioc->res_lock, flags);
666
667#ifdef CCIO_COLLECT_STATS
668	ioc->msingle_calls++;
669	ioc->msingle_pages += size >> IOVP_SHIFT;
670#endif
671
672	idx = ccio_alloc_range(ioc, dev, size);
673	iovp = (dma_addr_t)MKIOVP(idx);
674
675	pdir_start = &(ioc->pdir_base[idx]);
676
677	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
678		__func__, addr, (long)iovp | offset, size);
679
680	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
681	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
682		hint |= HINT_SAFE_DMA;
683
684	while(size > 0) {
685		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
686
687		DBG_RUN(" pdir %p %08x%08x\n",
688			pdir_start,
689			(u32) (((u32 *) pdir_start)[0]),
690			(u32) (((u32 *) pdir_start)[1]));
691		++pdir_start;
692		addr += IOVP_SIZE;
693		size -= IOVP_SIZE;
694	}
695
696	spin_unlock_irqrestore(&ioc->res_lock, flags);
697
698	/* form complete address */
699	return CCIO_IOVA(iovp, offset);
700}
701
702/**
703 * ccio_unmap_single - Unmap an address range from the IOMMU.
704 * @dev: The PCI device.
705 * @addr: The start address of the DMA region.
706 * @size: The length of the DMA region.
707 * @direction: The direction of the DMA transaction (to/from device).
708 *
709 * This function implements the pci_unmap_single function.
710 */
711static void
712ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
713		  enum dma_data_direction direction)
714{
715	struct ioc *ioc;
716	unsigned long flags;
717	dma_addr_t offset = iova & ~IOVP_MASK;
718
719	BUG_ON(!dev);
720	ioc = GET_IOC(dev);
721
722	DBG_RUN("%s() iovp 0x%lx/%x\n",
723		__func__, (long)iova, size);
724
725	iova ^= offset;        /* clear offset bits */
726	size += offset;
727	size = ALIGN(size, IOVP_SIZE);
728
729	spin_lock_irqsave(&ioc->res_lock, flags);
730
731#ifdef CCIO_COLLECT_STATS
732	ioc->usingle_calls++;
733	ioc->usingle_pages += size >> IOVP_SHIFT;
734#endif
735
736	ccio_mark_invalid(ioc, iova, size);
737	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
738	spin_unlock_irqrestore(&ioc->res_lock, flags);
739}
740
741/**
742 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
743 * @dev: The PCI device.
744 * @size: The length of the DMA region.
745 * @dma_handle: The DMA address handed back to the device (not the cpu).
746 *
747 * This function implements the pci_alloc_consistent function.
748 */
749static void *
750ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
751{
752      void *ret;
753        ret = (void *) __get_free_pages(flag, get_order(size));
754
755	if (ret) {
756		memset(ret, 0, size);
757		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
758	}
759
760	return ret;
761}
762
763/**
764 * ccio_free_consistent - Free a consistent DMA mapping.
765 * @dev: The PCI device.
766 * @size: The length of the DMA region.
767 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
768 * @dma_handle: The device address returned from the ccio_alloc_consistent.
769 *
770 * This function implements the pci_free_consistent function.
771 */
772static void
773ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
774		     dma_addr_t dma_handle)
775{
776	ccio_unmap_single(dev, dma_handle, size, 0);
777	free_pages((unsigned long)cpu_addr, get_order(size));
778}
779
780/*
781** Since 0 is a valid pdir_base index value, can't use that
782** to determine if a value is valid or not. Use a flag to indicate
783** the SG list entry contains a valid pdir index.
784*/
785#define PIDE_FLAG 0x80000000UL
786
787#ifdef CCIO_COLLECT_STATS
788#define IOMMU_MAP_STATS
789#endif
790#include "iommu-helpers.h"
791
792/**
793 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
794 * @dev: The PCI device.
795 * @sglist: The scatter/gather list to be mapped in the IOMMU.
796 * @nents: The number of entries in the scatter/gather list.
797 * @direction: The direction of the DMA transaction (to/from device).
798 *
799 * This function implements the pci_map_sg function.
800 */
801static int
802ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
803	    enum dma_data_direction direction)
804{
805	struct ioc *ioc;
806	int coalesced, filled = 0;
807	unsigned long flags;
808	unsigned long hint = hint_lookup[(int)direction];
809	unsigned long prev_len = 0, current_len = 0;
810	int i;
811
812	BUG_ON(!dev);
813	ioc = GET_IOC(dev);
814
815	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
816
817	/* Fast path single entry scatterlists. */
818	if (nents == 1) {
819		sg_dma_address(sglist) = ccio_map_single(dev,
820				(void *)sg_virt_addr(sglist), sglist->length,
821				direction);
822		sg_dma_len(sglist) = sglist->length;
823		return 1;
824	}
825
826	for(i = 0; i < nents; i++)
827		prev_len += sglist[i].length;
828
829	spin_lock_irqsave(&ioc->res_lock, flags);
830
831#ifdef CCIO_COLLECT_STATS
832	ioc->msg_calls++;
833#endif
834
835	/*
836	** First coalesce the chunks and allocate I/O pdir space
837	**
838	** If this is one DMA stream, we can properly map using the
839	** correct virtual address associated with each DMA page.
840	** w/o this association, we wouldn't have coherent DMA!
841	** Access to the virtual address is what forces a two pass algorithm.
842	*/
843	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
844
845	/*
846	** Program the I/O Pdir
847	**
848	** map the virtual addresses to the I/O Pdir
849	** o dma_address will contain the pdir index
850	** o dma_len will contain the number of bytes to map
851	** o page/offset contain the virtual address.
852	*/
853	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
854
855	spin_unlock_irqrestore(&ioc->res_lock, flags);
856
857	BUG_ON(coalesced != filled);
858
859	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
860
861	for (i = 0; i < filled; i++)
862		current_len += sg_dma_len(sglist + i);
863
864	BUG_ON(current_len != prev_len);
865
866	return filled;
867}
868
869/**
870 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
871 * @dev: The PCI device.
872 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
873 * @nents: The number of entries in the scatter/gather list.
874 * @direction: The direction of the DMA transaction (to/from device).
875 *
876 * This function implements the pci_unmap_sg function.
877 */
878static void
879ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
880	      enum dma_data_direction direction)
881{
882	struct ioc *ioc;
883
884	BUG_ON(!dev);
885	ioc = GET_IOC(dev);
886
887	DBG_RUN_SG("%s() START %d entries,  %08lx,%x\n",
888		__func__, nents, sg_virt_addr(sglist), sglist->length);
889
890#ifdef CCIO_COLLECT_STATS
891	ioc->usg_calls++;
892#endif
893
894	while(sg_dma_len(sglist) && nents--) {
895
896#ifdef CCIO_COLLECT_STATS
897		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
898#endif
899		ccio_unmap_single(dev, sg_dma_address(sglist),
900				  sg_dma_len(sglist), direction);
901		++sglist;
902	}
903
904	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
905}
906
907static struct hppa_dma_ops ccio_ops = {
908	.dma_supported =	ccio_dma_supported,
909	.alloc_consistent =	ccio_alloc_consistent,
910	.alloc_noncoherent =	ccio_alloc_consistent,
911	.free_consistent =	ccio_free_consistent,
912	.map_single =		ccio_map_single,
913	.unmap_single =		ccio_unmap_single,
914	.map_sg = 		ccio_map_sg,
915	.unmap_sg = 		ccio_unmap_sg,
916	.dma_sync_single_for_cpu =	NULL,	/* NOP for U2/Uturn */
917	.dma_sync_single_for_device =	NULL,	/* NOP for U2/Uturn */
918	.dma_sync_sg_for_cpu =		NULL,	/* ditto */
919	.dma_sync_sg_for_device =		NULL,	/* ditto */
920};
921
922#ifdef CONFIG_PROC_FS
923static int ccio_proc_info(struct seq_file *m, void *p)
924{
925	int len = 0;
926	struct ioc *ioc = ioc_list;
927
928	while (ioc != NULL) {
929		unsigned int total_pages = ioc->res_size << 3;
930#ifdef CCIO_COLLECT_STATS
931		unsigned long avg = 0, min, max;
932		int j;
933#endif
934
935		len += seq_printf(m, "%s\n", ioc->name);
936
937		len += seq_printf(m, "Cujo 2.0 bug    : %s\n",
938				  (ioc->cujo20_bug ? "yes" : "no"));
939
940		len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
941			       total_pages * 8, total_pages);
942
943#ifdef CCIO_COLLECT_STATS
944		len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
945				  total_pages - ioc->used_pages, ioc->used_pages,
946				  (int)(ioc->used_pages * 100 / total_pages));
947#endif
948
949		len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
950				  ioc->res_size, total_pages);
951
952#ifdef CCIO_COLLECT_STATS
953		min = max = ioc->avg_search[0];
954		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
955			avg += ioc->avg_search[j];
956			if(ioc->avg_search[j] > max)
957				max = ioc->avg_search[j];
958			if(ioc->avg_search[j] < min)
959				min = ioc->avg_search[j];
960		}
961		avg /= CCIO_SEARCH_SAMPLE;
962		len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
963				  min, avg, max);
964
965		len += seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
966				  ioc->msingle_calls, ioc->msingle_pages,
967				  (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
968
969		/* KLUGE - unmap_sg calls unmap_single for each mapped page */
970		min = ioc->usingle_calls - ioc->usg_calls;
971		max = ioc->usingle_pages - ioc->usg_pages;
972		len += seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
973				  min, max, (int)((max * 1000)/min));
974
975		len += seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
976				  ioc->msg_calls, ioc->msg_pages,
977				  (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
978
979		len += seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
980				  ioc->usg_calls, ioc->usg_pages,
981				  (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
982#endif	/* CCIO_COLLECT_STATS */
983
984		ioc = ioc->next;
985	}
986
987	return 0;
988}
989
990static int ccio_proc_info_open(struct inode *inode, struct file *file)
991{
992	return single_open(file, &ccio_proc_info, NULL);
993}
994
995static const struct file_operations ccio_proc_info_fops = {
996	.owner = THIS_MODULE,
997	.open = ccio_proc_info_open,
998	.read = seq_read,
999	.llseek = seq_lseek,
1000	.release = single_release,
1001};
1002
1003static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1004{
1005	int len = 0;
1006	struct ioc *ioc = ioc_list;
1007
1008	while (ioc != NULL) {
1009		u32 *res_ptr = (u32 *)ioc->res_map;
1010		int j;
1011
1012		for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1013			if ((j & 7) == 0)
1014				len += seq_puts(m, "\n   ");
1015			len += seq_printf(m, "%08x", *res_ptr);
1016			res_ptr++;
1017		}
1018		len += seq_puts(m, "\n\n");
1019		ioc = ioc->next;
1020		break;
1021	}
1022
1023	return 0;
1024}
1025
1026static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1027{
1028	return single_open(file, &ccio_proc_bitmap_info, NULL);
1029}
1030
1031static const struct file_operations ccio_proc_bitmap_fops = {
1032	.owner = THIS_MODULE,
1033	.open = ccio_proc_bitmap_open,
1034	.read = seq_read,
1035	.llseek = seq_lseek,
1036	.release = single_release,
1037};
1038#endif /* CONFIG_PROC_FS */
1039
1040/**
1041 * ccio_find_ioc - Find the ioc in the ioc_list
1042 * @hw_path: The hardware path of the ioc.
1043 *
1044 * This function searches the ioc_list for an ioc that matches
1045 * the provide hardware path.
1046 */
1047static struct ioc * ccio_find_ioc(int hw_path)
1048{
1049	int i;
1050	struct ioc *ioc;
1051
1052	ioc = ioc_list;
1053	for (i = 0; i < ioc_count; i++) {
1054		if (ioc->hw_path == hw_path)
1055			return ioc;
1056
1057		ioc = ioc->next;
1058	}
1059
1060	return NULL;
1061}
1062
1063/**
1064 * ccio_get_iommu - Find the iommu which controls this device
1065 * @dev: The parisc device.
1066 *
1067 * This function searches through the registered IOMMU's and returns
1068 * the appropriate IOMMU for the device based on its hardware path.
1069 */
1070void * ccio_get_iommu(const struct parisc_device *dev)
1071{
1072	dev = find_pa_parent_type(dev, HPHW_IOA);
1073	if (!dev)
1074		return NULL;
1075
1076	return ccio_find_ioc(dev->hw_path);
1077}
1078
1079#define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1080
1081/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1082 * to/from certain pages.  To avoid this happening, we mark these pages
1083 * as `used', and ensure that nothing will try to allocate from them.
1084 */
1085void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1086{
1087	unsigned int idx;
1088	struct parisc_device *dev = parisc_parent(cujo);
1089	struct ioc *ioc = ccio_get_iommu(dev);
1090	u8 *res_ptr;
1091
1092	ioc->cujo20_bug = 1;
1093	res_ptr = ioc->res_map;
1094	idx = PDIR_INDEX(iovp) >> 3;
1095
1096	while (idx < ioc->res_size) {
1097 		res_ptr[idx] |= 0xff;
1098		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1099	}
1100}
1101
1102
1103/* Uturn supports 256 TLB entries */
1104#define CCIO_CHAINID_SHIFT	8
1105#define CCIO_CHAINID_MASK	0xff
1106
1107/* We *can't* support JAVA (T600). Venture there at your own risk. */
1108static const struct parisc_device_id ccio_tbl[] = {
1109	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1110	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1111	{ 0, }
1112};
1113
1114static int ccio_probe(struct parisc_device *dev);
1115
1116static struct parisc_driver ccio_driver = {
1117	.name =		"ccio",
1118	.id_table =	ccio_tbl,
1119	.probe =	ccio_probe,
1120};
1121
1122/**
1123 * ccio_ioc_init - Initialize the I/O Controller
1124 * @ioc: The I/O Controller.
1125 *
1126 * Initialize the I/O Controller which includes setting up the
1127 * I/O Page Directory, the resource map, and initalizing the
1128 * U2/Uturn chip into virtual mode.
1129 */
1130static void
1131ccio_ioc_init(struct ioc *ioc)
1132{
1133	int i;
1134	unsigned int iov_order;
1135	u32 iova_space_size;
1136
1137	/*
1138	** Determine IOVA Space size from memory size.
1139	**
1140	** Ideally, PCI drivers would register the maximum number
1141	** of DMA they can have outstanding for each device they
1142	** own.  Next best thing would be to guess how much DMA
1143	** can be outstanding based on PCI Class/sub-class. Both
1144	** methods still require some "extra" to support PCI
1145	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1146	*/
1147
1148	iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1149
1150	/* limit IOVA space size to 1MB-1GB */
1151
1152	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1153		iova_space_size =  1 << (20 - PAGE_SHIFT);
1154#ifdef __LP64__
1155	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1156		iova_space_size =  1 << (30 - PAGE_SHIFT);
1157#endif
1158	}
1159
1160	/*
1161	** iova space must be log2() in size.
1162	** thus, pdir/res_map will also be log2().
1163	*/
1164
1165	/* We could use larger page sizes in order to *decrease* the number
1166	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1167	**
1168	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1169	**   since the pages must also be physically contiguous - typically
1170	**   this is the case under linux."
1171	*/
1172
1173	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1174
1175	/* iova_space_size is now bytes, not pages */
1176	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1177
1178	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1179
1180	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1181
1182	/* Verify it's a power of two */
1183	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1184
1185	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1186			__func__, ioc->ioc_regs,
1187			(unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1188			iova_space_size>>20,
1189			iov_order + PAGE_SHIFT);
1190
1191	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1192						 get_order(ioc->pdir_size));
1193	if(NULL == ioc->pdir_base) {
1194		panic("%s() could not allocate I/O Page Table\n", __func__);
1195	}
1196	memset(ioc->pdir_base, 0, ioc->pdir_size);
1197
1198	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1199	DBG_INIT(" base %p\n", ioc->pdir_base);
1200
1201	/* resource map size dictated by pdir_size */
1202 	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1203	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1204
1205	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1206					      get_order(ioc->res_size));
1207	if(NULL == ioc->res_map) {
1208		panic("%s() could not allocate resource map\n", __func__);
1209	}
1210	memset(ioc->res_map, 0, ioc->res_size);
1211
1212	/* Initialize the res_hint to 16 */
1213	ioc->res_hint = 16;
1214
1215	/* Initialize the spinlock */
1216	spin_lock_init(&ioc->res_lock);
1217
1218	/*
1219	** Chainid is the upper most bits of an IOVP used to determine
1220	** which TLB entry an IOVP will use.
1221	*/
1222	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1223	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1224
1225	/*
1226	** Initialize IOA hardware
1227	*/
1228	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1229		  &ioc->ioc_regs->io_chain_id_mask);
1230
1231	WRITE_U32(virt_to_phys(ioc->pdir_base),
1232		  &ioc->ioc_regs->io_pdir_base);
1233
1234	/*
1235	** Go to "Virtual Mode"
1236	*/
1237	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1238
1239	/*
1240	** Initialize all I/O TLB entries to 0 (Valid bit off).
1241	*/
1242	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1243	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1244
1245	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1246		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1247			  &ioc->ioc_regs->io_command);
1248	}
1249}
1250
1251static void __init
1252ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1253{
1254	int result;
1255
1256	res->parent = NULL;
1257	res->flags = IORESOURCE_MEM;
1258	/*
1259	 * bracing ((signed) ...) are required for 64bit kernel because
1260	 * we only want to sign extend the lower 16 bits of the register.
1261	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1262	 */
1263	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1264	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1265	res->name = name;
1266	/*
1267	 * Check if this MMIO range is disable
1268	 */
1269	if (res->end + 1 == res->start)
1270		return;
1271
1272	/* On some platforms (e.g. K-Class), we have already registered
1273	 * resources for devices reported by firmware. Some are children
1274	 * of ccio.
1275	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1276	 */
1277	result = insert_resource(&iomem_resource, res);
1278	if (result < 0) {
1279		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1280			__func__, (unsigned long)res->start, (unsigned long)res->end);
1281	}
1282}
1283
1284static void __init ccio_init_resources(struct ioc *ioc)
1285{
1286	struct resource *res = ioc->mmio_region;
1287	char *name = kmalloc(14, GFP_KERNEL);
1288
1289	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1290
1291	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1292	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1293}
1294
1295static int new_ioc_area(struct resource *res, unsigned long size,
1296		unsigned long min, unsigned long max, unsigned long align)
1297{
1298	if (max <= min)
1299		return -EBUSY;
1300
1301	res->start = (max - size + 1) &~ (align - 1);
1302	res->end = res->start + size;
1303
1304	/* We might be trying to expand the MMIO range to include
1305	 * a child device that has already registered it's MMIO space.
1306	 * Use "insert" instead of request_resource().
1307	 */
1308	if (!insert_resource(&iomem_resource, res))
1309		return 0;
1310
1311	return new_ioc_area(res, size, min, max - size, align);
1312}
1313
1314static int expand_ioc_area(struct resource *res, unsigned long size,
1315		unsigned long min, unsigned long max, unsigned long align)
1316{
1317	unsigned long start, len;
1318
1319	if (!res->parent)
1320		return new_ioc_area(res, size, min, max, align);
1321
1322	start = (res->start - size) &~ (align - 1);
1323	len = res->end - start + 1;
1324	if (start >= min) {
1325		if (!adjust_resource(res, start, len))
1326			return 0;
1327	}
1328
1329	start = res->start;
1330	len = ((size + res->end + align) &~ (align - 1)) - start;
1331	if (start + len <= max) {
1332		if (!adjust_resource(res, start, len))
1333			return 0;
1334	}
1335
1336	return -EBUSY;
1337}
1338
1339/*
1340 * Dino calls this function.  Beware that we may get called on systems
1341 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1342 * So it's legal to find no parent IOC.
1343 *
1344 * Some other issues: one of the resources in the ioc may be unassigned.
1345 */
1346int ccio_allocate_resource(const struct parisc_device *dev,
1347		struct resource *res, unsigned long size,
1348		unsigned long min, unsigned long max, unsigned long align)
1349{
1350	struct resource *parent = &iomem_resource;
1351	struct ioc *ioc = ccio_get_iommu(dev);
1352	if (!ioc)
1353		goto out;
1354
1355	parent = ioc->mmio_region;
1356	if (parent->parent &&
1357	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1358		return 0;
1359
1360	if ((parent + 1)->parent &&
1361	    !allocate_resource(parent + 1, res, size, min, max, align,
1362				NULL, NULL))
1363		return 0;
1364
1365	if (!expand_ioc_area(parent, size, min, max, align)) {
1366		__raw_writel(((parent->start)>>16) | 0xffff0000,
1367			     &ioc->ioc_regs->io_io_low);
1368		__raw_writel(((parent->end)>>16) | 0xffff0000,
1369			     &ioc->ioc_regs->io_io_high);
1370	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1371		parent++;
1372		__raw_writel(((parent->start)>>16) | 0xffff0000,
1373			     &ioc->ioc_regs->io_io_low_hv);
1374		__raw_writel(((parent->end)>>16) | 0xffff0000,
1375			     &ioc->ioc_regs->io_io_high_hv);
1376	} else {
1377		return -EBUSY;
1378	}
1379
1380 out:
1381	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1382}
1383
1384int ccio_request_resource(const struct parisc_device *dev,
1385		struct resource *res)
1386{
1387	struct resource *parent;
1388	struct ioc *ioc = ccio_get_iommu(dev);
1389
1390	if (!ioc) {
1391		parent = &iomem_resource;
1392	} else if ((ioc->mmio_region->start <= res->start) &&
1393			(res->end <= ioc->mmio_region->end)) {
1394		parent = ioc->mmio_region;
1395	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1396			(res->end <= (ioc->mmio_region + 1)->end)) {
1397		parent = ioc->mmio_region + 1;
1398	} else {
1399		return -EBUSY;
1400	}
1401
1402	/* "transparent" bus bridges need to register MMIO resources
1403	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1404	 * registered their resources in the PDC "bus walk" (See
1405	 * arch/parisc/kernel/inventory.c).
1406	 */
1407	return insert_resource(parent, res);
1408}
1409
1410/**
1411 * ccio_probe - Determine if ccio should claim this device.
1412 * @dev: The device which has been found
1413 *
1414 * Determine if ccio should claim this chip (return 0) or not (return 1).
1415 * If so, initialize the chip and tell other partners in crime they
1416 * have work to do.
1417 */
1418static int __init ccio_probe(struct parisc_device *dev)
1419{
1420	int i;
1421	struct ioc *ioc, **ioc_p = &ioc_list;
1422
1423	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1424	if (ioc == NULL) {
1425		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1426		return 1;
1427	}
1428
1429	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1430
1431	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1432		(unsigned long)dev->hpa.start);
1433
1434	for (i = 0; i < ioc_count; i++) {
1435		ioc_p = &(*ioc_p)->next;
1436	}
1437	*ioc_p = ioc;
1438
1439	ioc->hw_path = dev->hw_path;
1440	ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1441	ccio_ioc_init(ioc);
1442	ccio_init_resources(ioc);
1443	hppa_dma_ops = &ccio_ops;
1444	dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1445
1446	/* if this fails, no I/O cards will work, so may as well bug */
1447	BUG_ON(dev->dev.platform_data == NULL);
1448	HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1449
1450#ifdef CONFIG_PROC_FS
1451	if (ioc_count == 0) {
1452		proc_create(MODULE_NAME, 0, proc_runway_root,
1453			    &ccio_proc_info_fops);
1454		proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1455			    &ccio_proc_bitmap_fops);
1456	}
1457#endif
1458	ioc_count++;
1459
1460	parisc_has_iommu();
1461	return 0;
1462}
1463
1464/**
1465 * ccio_init - ccio initialization procedure.
1466 *
1467 * Register this driver.
1468 */
1469void __init ccio_init(void)
1470{
1471	register_parisc_driver(&ccio_driver);
1472}
1473