• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wireless/rt2x00/
1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, write to the
17	Free Software Foundation, Inc.,
18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22	Module: rt2500usb
23	Abstract: rt2500usb device specific routines.
24	Supported chipsets: RT2570.
25 */
26
27#include <linux/delay.h>
28#include <linux/etherdevice.h>
29#include <linux/init.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/slab.h>
33#include <linux/usb.h>
34
35#include "rt2x00.h"
36#include "rt2x00usb.h"
37#include "rt2500usb.h"
38
39/*
40 * Allow hardware encryption to be disabled.
41 */
42static int modparam_nohwcrypt = 0;
43module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46/*
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2500usb_register_read and rt2500usb_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * If the csr_mutex is already held then the _lock variants must
59 * be used instead.
60 */
61static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62					   const unsigned int offset,
63					   u16 *value)
64{
65	__le16 reg;
66	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67				      USB_VENDOR_REQUEST_IN, offset,
68				      &reg, sizeof(reg), REGISTER_TIMEOUT);
69	*value = le16_to_cpu(reg);
70}
71
72static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73						const unsigned int offset,
74						u16 *value)
75{
76	__le16 reg;
77	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78				       USB_VENDOR_REQUEST_IN, offset,
79				       &reg, sizeof(reg), REGISTER_TIMEOUT);
80	*value = le16_to_cpu(reg);
81}
82
83static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84						const unsigned int offset,
85						void *value, const u16 length)
86{
87	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88				      USB_VENDOR_REQUEST_IN, offset,
89				      value, length,
90				      REGISTER_TIMEOUT16(length));
91}
92
93static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94					    const unsigned int offset,
95					    u16 value)
96{
97	__le16 reg = cpu_to_le16(value);
98	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99				      USB_VENDOR_REQUEST_OUT, offset,
100				      &reg, sizeof(reg), REGISTER_TIMEOUT);
101}
102
103static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104						 const unsigned int offset,
105						 u16 value)
106{
107	__le16 reg = cpu_to_le16(value);
108	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109				       USB_VENDOR_REQUEST_OUT, offset,
110				       &reg, sizeof(reg), REGISTER_TIMEOUT);
111}
112
113static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114						 const unsigned int offset,
115						 void *value, const u16 length)
116{
117	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118				      USB_VENDOR_REQUEST_OUT, offset,
119				      value, length,
120				      REGISTER_TIMEOUT16(length));
121}
122
123static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124				  const unsigned int offset,
125				  struct rt2x00_field16 field,
126				  u16 *reg)
127{
128	unsigned int i;
129
130	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132		if (!rt2x00_get_field16(*reg, field))
133			return 1;
134		udelay(REGISTER_BUSY_DELAY);
135	}
136
137	ERROR(rt2x00dev, "Indirect register access failed: "
138	      "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139	*reg = ~0;
140
141	return 0;
142}
143
144#define WAIT_FOR_BBP(__dev, __reg) \
145	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146#define WAIT_FOR_RF(__dev, __reg) \
147	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150				const unsigned int word, const u8 value)
151{
152	u16 reg;
153
154	mutex_lock(&rt2x00dev->csr_mutex);
155
156	/*
157	 * Wait until the BBP becomes available, afterwards we
158	 * can safely write the new data into the register.
159	 */
160	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161		reg = 0;
162		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167	}
168
169	mutex_unlock(&rt2x00dev->csr_mutex);
170}
171
172static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173			       const unsigned int word, u8 *value)
174{
175	u16 reg;
176
177	mutex_lock(&rt2x00dev->csr_mutex);
178
179	/*
180	 * Wait until the BBP becomes available, afterwards we
181	 * can safely write the read request into the register.
182	 * After the data has been written, we wait until hardware
183	 * returns the correct value, if at any time the register
184	 * doesn't become available in time, reg will be 0xffffffff
185	 * which means we return 0xff to the caller.
186	 */
187	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188		reg = 0;
189		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194		if (WAIT_FOR_BBP(rt2x00dev, &reg))
195			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196	}
197
198	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200	mutex_unlock(&rt2x00dev->csr_mutex);
201}
202
203static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204			       const unsigned int word, const u32 value)
205{
206	u16 reg;
207
208	mutex_lock(&rt2x00dev->csr_mutex);
209
210	/*
211	 * Wait until the RF becomes available, afterwards we
212	 * can safely write the new data into the register.
213	 */
214	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215		reg = 0;
216		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219		reg = 0;
220		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226		rt2x00_rf_write(rt2x00dev, word, value);
227	}
228
229	mutex_unlock(&rt2x00dev->csr_mutex);
230}
231
232#ifdef CONFIG_RT2X00_LIB_DEBUGFS
233static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234				     const unsigned int offset,
235				     u32 *value)
236{
237	rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238}
239
240static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241				      const unsigned int offset,
242				      u32 value)
243{
244	rt2500usb_register_write(rt2x00dev, offset, value);
245}
246
247static const struct rt2x00debug rt2500usb_rt2x00debug = {
248	.owner	= THIS_MODULE,
249	.csr	= {
250		.read		= _rt2500usb_register_read,
251		.write		= _rt2500usb_register_write,
252		.flags		= RT2X00DEBUGFS_OFFSET,
253		.word_base	= CSR_REG_BASE,
254		.word_size	= sizeof(u16),
255		.word_count	= CSR_REG_SIZE / sizeof(u16),
256	},
257	.eeprom	= {
258		.read		= rt2x00_eeprom_read,
259		.write		= rt2x00_eeprom_write,
260		.word_base	= EEPROM_BASE,
261		.word_size	= sizeof(u16),
262		.word_count	= EEPROM_SIZE / sizeof(u16),
263	},
264	.bbp	= {
265		.read		= rt2500usb_bbp_read,
266		.write		= rt2500usb_bbp_write,
267		.word_base	= BBP_BASE,
268		.word_size	= sizeof(u8),
269		.word_count	= BBP_SIZE / sizeof(u8),
270	},
271	.rf	= {
272		.read		= rt2x00_rf_read,
273		.write		= rt2500usb_rf_write,
274		.word_base	= RF_BASE,
275		.word_size	= sizeof(u32),
276		.word_count	= RF_SIZE / sizeof(u32),
277	},
278};
279#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282{
283	u16 reg;
284
285	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286	return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287}
288
289#ifdef CONFIG_RT2X00_LIB_LEDS
290static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291				     enum led_brightness brightness)
292{
293	struct rt2x00_led *led =
294	    container_of(led_cdev, struct rt2x00_led, led_dev);
295	unsigned int enabled = brightness != LED_OFF;
296	u16 reg;
297
298	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302	else if (led->type == LED_TYPE_ACTIVITY)
303		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306}
307
308static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309			       unsigned long *delay_on,
310			       unsigned long *delay_off)
311{
312	struct rt2x00_led *led =
313	    container_of(led_cdev, struct rt2x00_led, led_dev);
314	u16 reg;
315
316	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321	return 0;
322}
323
324static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325			       struct rt2x00_led *led,
326			       enum led_type type)
327{
328	led->rt2x00dev = rt2x00dev;
329	led->type = type;
330	led->led_dev.brightness_set = rt2500usb_brightness_set;
331	led->led_dev.blink_set = rt2500usb_blink_set;
332	led->flags = LED_INITIALIZED;
333}
334#endif /* CONFIG_RT2X00_LIB_LEDS */
335
336/*
337 * Configuration handlers.
338 */
339
340/*
341 * rt2500usb does not differentiate between shared and pairwise
342 * keys, so we should use the same function for both key types.
343 */
344static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345				struct rt2x00lib_crypto *crypto,
346				struct ieee80211_key_conf *key)
347{
348	u32 mask;
349	u16 reg;
350	enum cipher curr_cipher;
351
352	if (crypto->cmd == SET_KEY) {
353		/*
354		 * Disallow to set WEP key other than with index 0,
355		 * it is known that not work at least on some hardware.
356		 * SW crypto will be used in that case.
357		 */
358		if (key->alg == ALG_WEP && key->keyidx != 0)
359			return -EOPNOTSUPP;
360
361		/*
362		 * Pairwise key will always be entry 0, but this
363		 * could collide with a shared key on the same
364		 * position...
365		 */
366		mask = TXRX_CSR0_KEY_ID.bit_mask;
367
368		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370		reg &= mask;
371
372		if (reg && reg == mask)
373			return -ENOSPC;
374
375		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376
377		key->hw_key_idx += reg ? ffz(reg) : 0;
378		/*
379		 * Hardware requires that all keys use the same cipher
380		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381		 * If this is not the first key, compare the cipher with the
382		 * first one and fall back to SW crypto if not the same.
383		 */
384		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385			return -EOPNOTSUPP;
386
387		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388					      crypto->key, sizeof(crypto->key));
389
390		/*
391		 * The driver does not support the IV/EIV generation
392		 * in hardware. However it demands the data to be provided
393		 * both separately as well as inside the frame.
394		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395		 * to ensure rt2x00lib will not strip the data from the
396		 * frame after the copy, now we must tell mac80211
397		 * to generate the IV/EIV data.
398		 */
399		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401	}
402
403	/*
404	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405	 * a particular key is valid.
406	 */
407	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410
411	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412	if (crypto->cmd == SET_KEY)
413		mask |= 1 << key->hw_key_idx;
414	else if (crypto->cmd == DISABLE_KEY)
415		mask &= ~(1 << key->hw_key_idx);
416	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418
419	return 0;
420}
421
422static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423				    const unsigned int filter_flags)
424{
425	u16 reg;
426
427	/*
428	 * Start configuration steps.
429	 * Note that the version error will always be dropped
430	 * and broadcast frames will always be accepted since
431	 * there is no filter for it at this time.
432	 */
433	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435			   !(filter_flags & FIF_FCSFAIL));
436	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437			   !(filter_flags & FIF_PLCPFAIL));
438	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439			   !(filter_flags & FIF_CONTROL));
440	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
441			   !(filter_flags & FIF_PROMISC_IN_BSS));
442	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
443			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
444			   !rt2x00dev->intf_ap_count);
445	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
446	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
447			   !(filter_flags & FIF_ALLMULTI));
448	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
449	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
450}
451
452static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
453				  struct rt2x00_intf *intf,
454				  struct rt2x00intf_conf *conf,
455				  const unsigned int flags)
456{
457	unsigned int bcn_preload;
458	u16 reg;
459
460	if (flags & CONFIG_UPDATE_TYPE) {
461		/*
462		 * Enable beacon config
463		 */
464		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
465		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
466		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
467		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
468				   2 * (conf->type != NL80211_IFTYPE_STATION));
469		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
470
471		/*
472		 * Enable synchronisation.
473		 */
474		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
475		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
476		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
477
478		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
479		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
480		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
481		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
482		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
483	}
484
485	if (flags & CONFIG_UPDATE_MAC)
486		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
487					      (3 * sizeof(__le16)));
488
489	if (flags & CONFIG_UPDATE_BSSID)
490		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
491					      (3 * sizeof(__le16)));
492}
493
494static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495				 struct rt2x00lib_erp *erp)
496{
497	u16 reg;
498
499	rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
500	rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
501			   !!erp->short_preamble);
502	rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
503
504	rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
505
506	rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
507	rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
508	rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
509
510	rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
511	rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
512	rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
513}
514
515static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
516				 struct antenna_setup *ant)
517{
518	u8 r2;
519	u8 r14;
520	u16 csr5;
521	u16 csr6;
522
523	/*
524	 * We should never come here because rt2x00lib is supposed
525	 * to catch this and send us the correct antenna explicitely.
526	 */
527	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
528	       ant->tx == ANTENNA_SW_DIVERSITY);
529
530	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
531	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
532	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
533	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
534
535	/*
536	 * Configure the TX antenna.
537	 */
538	switch (ant->tx) {
539	case ANTENNA_HW_DIVERSITY:
540		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
541		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
542		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
543		break;
544	case ANTENNA_A:
545		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
546		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
547		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
548		break;
549	case ANTENNA_B:
550	default:
551		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
552		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
553		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
554		break;
555	}
556
557	/*
558	 * Configure the RX antenna.
559	 */
560	switch (ant->rx) {
561	case ANTENNA_HW_DIVERSITY:
562		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
563		break;
564	case ANTENNA_A:
565		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
566		break;
567	case ANTENNA_B:
568	default:
569		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
570		break;
571	}
572
573	/*
574	 * RT2525E and RT5222 need to flip TX I/Q
575	 */
576	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
577		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
578		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
579		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
580
581		/*
582		 * RT2525E does not need RX I/Q Flip.
583		 */
584		if (rt2x00_rf(rt2x00dev, RF2525E))
585			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
586	} else {
587		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
588		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
589	}
590
591	rt2500usb_bbp_write(rt2x00dev, 2, r2);
592	rt2500usb_bbp_write(rt2x00dev, 14, r14);
593	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
594	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
595}
596
597static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
598				     struct rf_channel *rf, const int txpower)
599{
600	/*
601	 * Set TXpower.
602	 */
603	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
604
605	/*
606	 * For RT2525E we should first set the channel to half band higher.
607	 */
608	if (rt2x00_rf(rt2x00dev, RF2525E)) {
609		static const u32 vals[] = {
610			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
611			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
612			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
613			0x00000902, 0x00000906
614		};
615
616		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
617		if (rf->rf4)
618			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
619	}
620
621	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
622	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
623	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
624	if (rf->rf4)
625		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
626}
627
628static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
629				     const int txpower)
630{
631	u32 rf3;
632
633	rt2x00_rf_read(rt2x00dev, 3, &rf3);
634	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
635	rt2500usb_rf_write(rt2x00dev, 3, rf3);
636}
637
638static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
639				struct rt2x00lib_conf *libconf)
640{
641	enum dev_state state =
642	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
643		STATE_SLEEP : STATE_AWAKE;
644	u16 reg;
645
646	if (state == STATE_SLEEP) {
647		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
648		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
649				   rt2x00dev->beacon_int - 20);
650		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
651				   libconf->conf->listen_interval - 1);
652
653		/* We must first disable autowake before it can be enabled */
654		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
655		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
656
657		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
658		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
659	} else {
660		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
661		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
662		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
663	}
664
665	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
666}
667
668static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
669			     struct rt2x00lib_conf *libconf,
670			     const unsigned int flags)
671{
672	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
673		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
674					 libconf->conf->power_level);
675	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
676	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
677		rt2500usb_config_txpower(rt2x00dev,
678					 libconf->conf->power_level);
679	if (flags & IEEE80211_CONF_CHANGE_PS)
680		rt2500usb_config_ps(rt2x00dev, libconf);
681}
682
683/*
684 * Link tuning
685 */
686static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
687				 struct link_qual *qual)
688{
689	u16 reg;
690
691	/*
692	 * Update FCS error count from register.
693	 */
694	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
695	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
696
697	/*
698	 * Update False CCA count from register.
699	 */
700	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
701	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
702}
703
704static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
705				  struct link_qual *qual)
706{
707	u16 eeprom;
708	u16 value;
709
710	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
711	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
712	rt2500usb_bbp_write(rt2x00dev, 24, value);
713
714	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
715	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
716	rt2500usb_bbp_write(rt2x00dev, 25, value);
717
718	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
719	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
720	rt2500usb_bbp_write(rt2x00dev, 61, value);
721
722	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
723	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
724	rt2500usb_bbp_write(rt2x00dev, 17, value);
725
726	qual->vgc_level = value;
727}
728
729/*
730 * Initialization functions.
731 */
732static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
733{
734	u16 reg;
735
736	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
737				    USB_MODE_TEST, REGISTER_TIMEOUT);
738	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
739				    0x00f0, REGISTER_TIMEOUT);
740
741	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
742	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
743	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
744
745	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
746	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
747
748	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
749	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
750	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
751	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
752	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
753
754	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
755	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
756	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
757	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
758	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
759
760	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
761	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
762	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
763	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
764	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
765	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
766
767	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
768	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
769	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
770	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
771	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
772	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
773
774	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
775	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
776	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
777	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
778	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
779	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
780
781	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
782	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
783	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
784	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
785	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
786	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
787
788	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
789	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
790	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
791	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
792	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
793	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
794
795	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
796	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
797
798	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
799		return -EBUSY;
800
801	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
802	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
803	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
804	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
805	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
806
807	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
808		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
809		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
810	} else {
811		reg = 0;
812		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
813		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
814	}
815	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
816
817	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
818	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
819	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
820	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
821
822	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
823	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
824			   rt2x00dev->rx->data_size);
825	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
826
827	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
828	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
829	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
830	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
831	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
832
833	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
834	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
835	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
836
837	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
838	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
839	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
840
841	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
842	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
843	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
844
845	return 0;
846}
847
848static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
849{
850	unsigned int i;
851	u8 value;
852
853	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
854		rt2500usb_bbp_read(rt2x00dev, 0, &value);
855		if ((value != 0xff) && (value != 0x00))
856			return 0;
857		udelay(REGISTER_BUSY_DELAY);
858	}
859
860	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
861	return -EACCES;
862}
863
864static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
865{
866	unsigned int i;
867	u16 eeprom;
868	u8 value;
869	u8 reg_id;
870
871	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
872		return -EACCES;
873
874	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
875	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
876	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
877	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
878	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
879	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
880	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
881	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
882	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
883	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
884	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
885	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
886	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
887	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
888	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
889	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
890	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
891	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
892	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
893	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
894	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
895	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
896	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
897	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
898	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
899	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
900	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
901	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
902	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
903	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
904	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
905
906	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
907		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
908
909		if (eeprom != 0xffff && eeprom != 0x0000) {
910			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
911			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
912			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
913		}
914	}
915
916	return 0;
917}
918
919/*
920 * Device state switch handlers.
921 */
922static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
923				enum dev_state state)
924{
925	u16 reg;
926
927	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
928	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
929			   (state == STATE_RADIO_RX_OFF) ||
930			   (state == STATE_RADIO_RX_OFF_LINK));
931	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
932}
933
934static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
935{
936	/*
937	 * Initialize all registers.
938	 */
939	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
940		     rt2500usb_init_bbp(rt2x00dev)))
941		return -EIO;
942
943	return 0;
944}
945
946static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
947{
948	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
949	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
950
951	/*
952	 * Disable synchronisation.
953	 */
954	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
955
956	rt2x00usb_disable_radio(rt2x00dev);
957}
958
959static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
960			       enum dev_state state)
961{
962	u16 reg;
963	u16 reg2;
964	unsigned int i;
965	char put_to_sleep;
966	char bbp_state;
967	char rf_state;
968
969	put_to_sleep = (state != STATE_AWAKE);
970
971	reg = 0;
972	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
973	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
974	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
975	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
976	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
977	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
978
979	/*
980	 * Device is not guaranteed to be in the requested state yet.
981	 * We must wait until the register indicates that the
982	 * device has entered the correct state.
983	 */
984	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
985		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
986		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
987		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
988		if (bbp_state == state && rf_state == state)
989			return 0;
990		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
991		msleep(30);
992	}
993
994	return -EBUSY;
995}
996
997static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
998				      enum dev_state state)
999{
1000	int retval = 0;
1001
1002	switch (state) {
1003	case STATE_RADIO_ON:
1004		retval = rt2500usb_enable_radio(rt2x00dev);
1005		break;
1006	case STATE_RADIO_OFF:
1007		rt2500usb_disable_radio(rt2x00dev);
1008		break;
1009	case STATE_RADIO_RX_ON:
1010	case STATE_RADIO_RX_ON_LINK:
1011	case STATE_RADIO_RX_OFF:
1012	case STATE_RADIO_RX_OFF_LINK:
1013		rt2500usb_toggle_rx(rt2x00dev, state);
1014		break;
1015	case STATE_RADIO_IRQ_ON:
1016	case STATE_RADIO_IRQ_ON_ISR:
1017	case STATE_RADIO_IRQ_OFF:
1018	case STATE_RADIO_IRQ_OFF_ISR:
1019		/* No support, but no error either */
1020		break;
1021	case STATE_DEEP_SLEEP:
1022	case STATE_SLEEP:
1023	case STATE_STANDBY:
1024	case STATE_AWAKE:
1025		retval = rt2500usb_set_state(rt2x00dev, state);
1026		break;
1027	default:
1028		retval = -ENOTSUPP;
1029		break;
1030	}
1031
1032	if (unlikely(retval))
1033		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1034		      state, retval);
1035
1036	return retval;
1037}
1038
1039/*
1040 * TX descriptor initialization
1041 */
1042static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1043				    struct sk_buff *skb,
1044				    struct txentry_desc *txdesc)
1045{
1046	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1047	__le32 *txd = (__le32 *) skb->data;
1048	u32 word;
1049
1050	/*
1051	 * Start writing the descriptor words.
1052	 */
1053	rt2x00_desc_read(txd, 0, &word);
1054	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1055	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1056			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1057	rt2x00_set_field32(&word, TXD_W0_ACK,
1058			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1059	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1060			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1061	rt2x00_set_field32(&word, TXD_W0_OFDM,
1062			   (txdesc->rate_mode == RATE_MODE_OFDM));
1063	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1064			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1065	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1066	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1067	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1068	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1069	rt2x00_desc_write(txd, 0, word);
1070
1071	rt2x00_desc_read(txd, 1, &word);
1072	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1073	rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1074	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1075	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1076	rt2x00_desc_write(txd, 1, word);
1077
1078	rt2x00_desc_read(txd, 2, &word);
1079	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1080	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1081	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1082	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1083	rt2x00_desc_write(txd, 2, word);
1084
1085	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1086		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1087		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1088	}
1089
1090	/*
1091	 * Register descriptor details in skb frame descriptor.
1092	 */
1093	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1094	skbdesc->desc = txd;
1095	skbdesc->desc_len = TXD_DESC_SIZE;
1096}
1097
1098/*
1099 * TX data initialization
1100 */
1101static void rt2500usb_beacondone(struct urb *urb);
1102
1103static void rt2500usb_write_beacon(struct queue_entry *entry,
1104				   struct txentry_desc *txdesc)
1105{
1106	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1107	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1108	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1109	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1110	int length;
1111	u16 reg, reg0;
1112
1113	/*
1114	 * Disable beaconing while we are reloading the beacon data,
1115	 * otherwise we might be sending out invalid data.
1116	 */
1117	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1118	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1119	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1120
1121	/*
1122	 * Add space for the descriptor in front of the skb.
1123	 */
1124	skb_push(entry->skb, TXD_DESC_SIZE);
1125	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1126
1127	/*
1128	 * Write the TX descriptor for the beacon.
1129	 */
1130	rt2500usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1131
1132	/*
1133	 * Dump beacon to userspace through debugfs.
1134	 */
1135	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1136
1137	/*
1138	 * USB devices cannot blindly pass the skb->len as the
1139	 * length of the data to usb_fill_bulk_urb. Pass the skb
1140	 * to the driver to determine what the length should be.
1141	 */
1142	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1143
1144	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1145			  entry->skb->data, length, rt2500usb_beacondone,
1146			  entry);
1147
1148	/*
1149	 * Second we need to create the guardian byte.
1150	 * We only need a single byte, so lets recycle
1151	 * the 'flags' field we are not using for beacons.
1152	 */
1153	bcn_priv->guardian_data = 0;
1154	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1155			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1156			  entry);
1157
1158	/*
1159	 * Send out the guardian byte.
1160	 */
1161	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1162
1163	/*
1164	 * Enable beaconing again.
1165	 */
1166	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1167	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1168	reg0 = reg;
1169	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1170	/*
1171	 * Beacon generation will fail initially.
1172	 * To prevent this we need to change the TXRX_CSR19
1173	 * register several times (reg0 is the same as reg
1174	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1175	 * and 1 in reg).
1176	 */
1177	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1178	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1179	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1180	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1181	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1182}
1183
1184static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1185{
1186	int length;
1187
1188	/*
1189	 * The length _must_ be a multiple of 2,
1190	 * but it must _not_ be a multiple of the USB packet size.
1191	 */
1192	length = roundup(entry->skb->len, 2);
1193	length += (2 * !(length % entry->queue->usb_maxpacket));
1194
1195	return length;
1196}
1197
1198/*
1199 * RX control handlers
1200 */
1201static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1202				  struct rxdone_entry_desc *rxdesc)
1203{
1204	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1205	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1206	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1207	__le32 *rxd =
1208	    (__le32 *)(entry->skb->data +
1209		       (entry_priv->urb->actual_length -
1210			entry->queue->desc_size));
1211	u32 word0;
1212	u32 word1;
1213
1214	/*
1215	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1216	 * frame data in rt2x00usb.
1217	 */
1218	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1219	rxd = (__le32 *)skbdesc->desc;
1220
1221	/*
1222	 * It is now safe to read the descriptor on all architectures.
1223	 */
1224	rt2x00_desc_read(rxd, 0, &word0);
1225	rt2x00_desc_read(rxd, 1, &word1);
1226
1227	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1228		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1229	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1230		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1231
1232	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1233	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1234		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1235
1236	if (rxdesc->cipher != CIPHER_NONE) {
1237		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1238		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1239		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1240
1241		/* ICV is located at the end of frame */
1242
1243		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1244		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1245			rxdesc->flags |= RX_FLAG_DECRYPTED;
1246		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1247			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1248	}
1249
1250	/*
1251	 * Obtain the status about this packet.
1252	 * When frame was received with an OFDM bitrate,
1253	 * the signal is the PLCP value. If it was received with
1254	 * a CCK bitrate the signal is the rate in 100kbit/s.
1255	 */
1256	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1257	rxdesc->rssi =
1258	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1259	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1260
1261	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1262		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1263	else
1264		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1265	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1266		rxdesc->dev_flags |= RXDONE_MY_BSS;
1267
1268	/*
1269	 * Adjust the skb memory window to the frame boundaries.
1270	 */
1271	skb_trim(entry->skb, rxdesc->size);
1272}
1273
1274/*
1275 * Interrupt functions.
1276 */
1277static void rt2500usb_beacondone(struct urb *urb)
1278{
1279	struct queue_entry *entry = (struct queue_entry *)urb->context;
1280	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1281
1282	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1283		return;
1284
1285	/*
1286	 * Check if this was the guardian beacon,
1287	 * if that was the case we need to send the real beacon now.
1288	 * Otherwise we should free the sk_buffer, the device
1289	 * should be doing the rest of the work now.
1290	 */
1291	if (bcn_priv->guardian_urb == urb) {
1292		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1293	} else if (bcn_priv->urb == urb) {
1294		dev_kfree_skb(entry->skb);
1295		entry->skb = NULL;
1296	}
1297}
1298
1299/*
1300 * Device probe functions.
1301 */
1302static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1303{
1304	u16 word;
1305	u8 *mac;
1306	u8 bbp;
1307
1308	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1309
1310	/*
1311	 * Start validation of the data that has been read.
1312	 */
1313	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1314	if (!is_valid_ether_addr(mac)) {
1315		random_ether_addr(mac);
1316		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1317	}
1318
1319	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1320	if (word == 0xffff) {
1321		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1322		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1323				   ANTENNA_SW_DIVERSITY);
1324		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1325				   ANTENNA_SW_DIVERSITY);
1326		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1327				   LED_MODE_DEFAULT);
1328		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1329		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1330		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1331		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1332		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1333	}
1334
1335	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1336	if (word == 0xffff) {
1337		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1338		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1339		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1340		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1341		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1342	}
1343
1344	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1345	if (word == 0xffff) {
1346		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1347				   DEFAULT_RSSI_OFFSET);
1348		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1349		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1350	}
1351
1352	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1353	if (word == 0xffff) {
1354		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1355		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1356		EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1357	}
1358
1359	/*
1360	 * Switch lower vgc bound to current BBP R17 value,
1361	 * lower the value a bit for better quality.
1362	 */
1363	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1364	bbp -= 6;
1365
1366	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1367	if (word == 0xffff) {
1368		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1369		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1370		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1371		EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1372	} else {
1373		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1374		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1375	}
1376
1377	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1378	if (word == 0xffff) {
1379		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1380		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1381		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1382		EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1383	}
1384
1385	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1386	if (word == 0xffff) {
1387		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1388		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1389		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1390		EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1391	}
1392
1393	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1394	if (word == 0xffff) {
1395		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1396		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1397		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1398		EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1399	}
1400
1401	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1402	if (word == 0xffff) {
1403		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1404		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1405		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1406		EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1407	}
1408
1409	return 0;
1410}
1411
1412static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1413{
1414	u16 reg;
1415	u16 value;
1416	u16 eeprom;
1417
1418	/*
1419	 * Read EEPROM word for configuration.
1420	 */
1421	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1422
1423	/*
1424	 * Identify RF chipset.
1425	 */
1426	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1427	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1428	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1429
1430	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1431		ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1432		return -ENODEV;
1433	}
1434
1435	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1436	    !rt2x00_rf(rt2x00dev, RF2523) &&
1437	    !rt2x00_rf(rt2x00dev, RF2524) &&
1438	    !rt2x00_rf(rt2x00dev, RF2525) &&
1439	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1440	    !rt2x00_rf(rt2x00dev, RF5222)) {
1441		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1442		return -ENODEV;
1443	}
1444
1445	/*
1446	 * Identify default antenna configuration.
1447	 */
1448	rt2x00dev->default_ant.tx =
1449	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1450	rt2x00dev->default_ant.rx =
1451	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1452
1453	/*
1454	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1455	 * I am not 100% sure about this, but the legacy drivers do not
1456	 * indicate antenna swapping in software is required when
1457	 * diversity is enabled.
1458	 */
1459	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1460		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1461	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1462		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1463
1464	/*
1465	 * Store led mode, for correct led behaviour.
1466	 */
1467#ifdef CONFIG_RT2X00_LIB_LEDS
1468	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1469
1470	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1471	if (value == LED_MODE_TXRX_ACTIVITY ||
1472	    value == LED_MODE_DEFAULT ||
1473	    value == LED_MODE_ASUS)
1474		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1475				   LED_TYPE_ACTIVITY);
1476#endif /* CONFIG_RT2X00_LIB_LEDS */
1477
1478	/*
1479	 * Detect if this device has an hardware controlled radio.
1480	 */
1481	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1482		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1483
1484	/*
1485	 * Read the RSSI <-> dBm offset information.
1486	 */
1487	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1488	rt2x00dev->rssi_offset =
1489	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1490
1491	return 0;
1492}
1493
1494/*
1495 * RF value list for RF2522
1496 * Supports: 2.4 GHz
1497 */
1498static const struct rf_channel rf_vals_bg_2522[] = {
1499	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1500	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1501	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1502	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1503	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1504	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1505	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1506	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1507	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1508	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1509	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1510	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1511	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1512	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1513};
1514
1515/*
1516 * RF value list for RF2523
1517 * Supports: 2.4 GHz
1518 */
1519static const struct rf_channel rf_vals_bg_2523[] = {
1520	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1521	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1522	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1523	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1524	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1525	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1526	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1527	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1528	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1529	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1530	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1531	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1532	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1533	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1534};
1535
1536/*
1537 * RF value list for RF2524
1538 * Supports: 2.4 GHz
1539 */
1540static const struct rf_channel rf_vals_bg_2524[] = {
1541	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1542	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1543	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1544	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1545	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1546	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1547	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1548	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1549	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1550	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1551	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1552	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1553	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1554	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1555};
1556
1557/*
1558 * RF value list for RF2525
1559 * Supports: 2.4 GHz
1560 */
1561static const struct rf_channel rf_vals_bg_2525[] = {
1562	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1563	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1564	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1565	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1566	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1567	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1568	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1569	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1570	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1571	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1572	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1573	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1574	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1575	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1576};
1577
1578/*
1579 * RF value list for RF2525e
1580 * Supports: 2.4 GHz
1581 */
1582static const struct rf_channel rf_vals_bg_2525e[] = {
1583	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1584	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1585	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1586	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1587	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1588	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1589	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1590	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1591	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1592	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1593	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1594	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1595	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1596	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1597};
1598
1599/*
1600 * RF value list for RF5222
1601 * Supports: 2.4 GHz & 5.2 GHz
1602 */
1603static const struct rf_channel rf_vals_5222[] = {
1604	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1605	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1606	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1607	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1608	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1609	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1610	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1611	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1612	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1613	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1614	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1615	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1616	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1617	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1618
1619	/* 802.11 UNI / HyperLan 2 */
1620	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1621	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1622	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1623	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1624	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1625	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1626	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1627	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1628
1629	/* 802.11 HyperLan 2 */
1630	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1631	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1632	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1633	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1634	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1635	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1636	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1637	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1638	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1639	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1640
1641	/* 802.11 UNII */
1642	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1643	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1644	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1645	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1646	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1647};
1648
1649static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1650{
1651	struct hw_mode_spec *spec = &rt2x00dev->spec;
1652	struct channel_info *info;
1653	char *tx_power;
1654	unsigned int i;
1655
1656	/*
1657	 * Initialize all hw fields.
1658	 */
1659	rt2x00dev->hw->flags =
1660	    IEEE80211_HW_RX_INCLUDES_FCS |
1661	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1662	    IEEE80211_HW_SIGNAL_DBM |
1663	    IEEE80211_HW_SUPPORTS_PS |
1664	    IEEE80211_HW_PS_NULLFUNC_STACK;
1665
1666	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1667	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1668				rt2x00_eeprom_addr(rt2x00dev,
1669						   EEPROM_MAC_ADDR_0));
1670
1671	/*
1672	 * Initialize hw_mode information.
1673	 */
1674	spec->supported_bands = SUPPORT_BAND_2GHZ;
1675	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1676
1677	if (rt2x00_rf(rt2x00dev, RF2522)) {
1678		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1679		spec->channels = rf_vals_bg_2522;
1680	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1681		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1682		spec->channels = rf_vals_bg_2523;
1683	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1684		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1685		spec->channels = rf_vals_bg_2524;
1686	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1687		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1688		spec->channels = rf_vals_bg_2525;
1689	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1690		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1691		spec->channels = rf_vals_bg_2525e;
1692	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1693		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1694		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1695		spec->channels = rf_vals_5222;
1696	}
1697
1698	/*
1699	 * Create channel information array
1700	 */
1701	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1702	if (!info)
1703		return -ENOMEM;
1704
1705	spec->channels_info = info;
1706
1707	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1708	for (i = 0; i < 14; i++) {
1709		info[i].max_power = MAX_TXPOWER;
1710		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1711	}
1712
1713	if (spec->num_channels > 14) {
1714		for (i = 14; i < spec->num_channels; i++) {
1715			info[i].max_power = MAX_TXPOWER;
1716			info[i].default_power1 = DEFAULT_TXPOWER;
1717		}
1718	}
1719
1720	return 0;
1721}
1722
1723static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1724{
1725	int retval;
1726
1727	/*
1728	 * Allocate eeprom data.
1729	 */
1730	retval = rt2500usb_validate_eeprom(rt2x00dev);
1731	if (retval)
1732		return retval;
1733
1734	retval = rt2500usb_init_eeprom(rt2x00dev);
1735	if (retval)
1736		return retval;
1737
1738	/*
1739	 * Initialize hw specifications.
1740	 */
1741	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1742	if (retval)
1743		return retval;
1744
1745	/*
1746	 * This device requires the atim queue
1747	 */
1748	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1749	__set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1750	if (!modparam_nohwcrypt) {
1751		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1752		__set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1753	}
1754	__set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
1755
1756	/*
1757	 * Set the rssi offset.
1758	 */
1759	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1760
1761	return 0;
1762}
1763
1764static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1765	.tx			= rt2x00mac_tx,
1766	.start			= rt2x00mac_start,
1767	.stop			= rt2x00mac_stop,
1768	.add_interface		= rt2x00mac_add_interface,
1769	.remove_interface	= rt2x00mac_remove_interface,
1770	.config			= rt2x00mac_config,
1771	.configure_filter	= rt2x00mac_configure_filter,
1772	.set_tim		= rt2x00mac_set_tim,
1773	.set_key		= rt2x00mac_set_key,
1774	.sw_scan_start		= rt2x00mac_sw_scan_start,
1775	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1776	.get_stats		= rt2x00mac_get_stats,
1777	.bss_info_changed	= rt2x00mac_bss_info_changed,
1778	.conf_tx		= rt2x00mac_conf_tx,
1779	.rfkill_poll		= rt2x00mac_rfkill_poll,
1780};
1781
1782static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1783	.probe_hw		= rt2500usb_probe_hw,
1784	.initialize		= rt2x00usb_initialize,
1785	.uninitialize		= rt2x00usb_uninitialize,
1786	.clear_entry		= rt2x00usb_clear_entry,
1787	.set_device_state	= rt2500usb_set_device_state,
1788	.rfkill_poll		= rt2500usb_rfkill_poll,
1789	.link_stats		= rt2500usb_link_stats,
1790	.reset_tuner		= rt2500usb_reset_tuner,
1791	.watchdog		= rt2x00usb_watchdog,
1792	.write_tx_desc		= rt2500usb_write_tx_desc,
1793	.write_beacon		= rt2500usb_write_beacon,
1794	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1795	.kick_tx_queue		= rt2x00usb_kick_tx_queue,
1796	.kill_tx_queue		= rt2x00usb_kill_tx_queue,
1797	.fill_rxdone		= rt2500usb_fill_rxdone,
1798	.config_shared_key	= rt2500usb_config_key,
1799	.config_pairwise_key	= rt2500usb_config_key,
1800	.config_filter		= rt2500usb_config_filter,
1801	.config_intf		= rt2500usb_config_intf,
1802	.config_erp		= rt2500usb_config_erp,
1803	.config_ant		= rt2500usb_config_ant,
1804	.config			= rt2500usb_config,
1805};
1806
1807static const struct data_queue_desc rt2500usb_queue_rx = {
1808	.entry_num		= RX_ENTRIES,
1809	.data_size		= DATA_FRAME_SIZE,
1810	.desc_size		= RXD_DESC_SIZE,
1811	.priv_size		= sizeof(struct queue_entry_priv_usb),
1812};
1813
1814static const struct data_queue_desc rt2500usb_queue_tx = {
1815	.entry_num		= TX_ENTRIES,
1816	.data_size		= DATA_FRAME_SIZE,
1817	.desc_size		= TXD_DESC_SIZE,
1818	.priv_size		= sizeof(struct queue_entry_priv_usb),
1819};
1820
1821static const struct data_queue_desc rt2500usb_queue_bcn = {
1822	.entry_num		= BEACON_ENTRIES,
1823	.data_size		= MGMT_FRAME_SIZE,
1824	.desc_size		= TXD_DESC_SIZE,
1825	.priv_size		= sizeof(struct queue_entry_priv_usb_bcn),
1826};
1827
1828static const struct data_queue_desc rt2500usb_queue_atim = {
1829	.entry_num		= ATIM_ENTRIES,
1830	.data_size		= DATA_FRAME_SIZE,
1831	.desc_size		= TXD_DESC_SIZE,
1832	.priv_size		= sizeof(struct queue_entry_priv_usb),
1833};
1834
1835static const struct rt2x00_ops rt2500usb_ops = {
1836	.name			= KBUILD_MODNAME,
1837	.max_sta_intf		= 1,
1838	.max_ap_intf		= 1,
1839	.eeprom_size		= EEPROM_SIZE,
1840	.rf_size		= RF_SIZE,
1841	.tx_queues		= NUM_TX_QUEUES,
1842	.extra_tx_headroom	= TXD_DESC_SIZE,
1843	.rx			= &rt2500usb_queue_rx,
1844	.tx			= &rt2500usb_queue_tx,
1845	.bcn			= &rt2500usb_queue_bcn,
1846	.atim			= &rt2500usb_queue_atim,
1847	.lib			= &rt2500usb_rt2x00_ops,
1848	.hw			= &rt2500usb_mac80211_ops,
1849#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1850	.debugfs		= &rt2500usb_rt2x00debug,
1851#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1852};
1853
1854/*
1855 * rt2500usb module information.
1856 */
1857static struct usb_device_id rt2500usb_device_table[] = {
1858	/* ASUS */
1859	{ USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1860	{ USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1861	/* Belkin */
1862	{ USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1863	{ USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1864	{ USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1865	/* Cisco Systems */
1866	{ USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1867	{ USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1868	{ USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1869	/* CNet */
1870	{ USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1871	/* Conceptronic */
1872	{ USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1873	/* D-LINK */
1874	{ USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1875	/* Gigabyte */
1876	{ USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1877	{ USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1878	/* Hercules */
1879	{ USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1880	/* Melco */
1881	{ USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1882	{ USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1883	{ USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1884	{ USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1885	{ USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1886	/* MSI */
1887	{ USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1888	{ USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1889	{ USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1890	/* Ralink */
1891	{ USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1892	{ USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1893	{ USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1894	{ USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1895	/* Sagem */
1896	{ USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1897	/* Siemens */
1898	{ USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1899	/* SMC */
1900	{ USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1901	/* Spairon */
1902	{ USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1903	/* SURECOM */
1904	{ USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1905	/* Trust */
1906	{ USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1907	/* VTech */
1908	{ USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1909	/* Zinwell */
1910	{ USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1911	{ 0, }
1912};
1913
1914MODULE_AUTHOR(DRV_PROJECT);
1915MODULE_VERSION(DRV_VERSION);
1916MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1917MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1918MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1919MODULE_LICENSE("GPL");
1920
1921static struct usb_driver rt2500usb_driver = {
1922	.name		= KBUILD_MODNAME,
1923	.id_table	= rt2500usb_device_table,
1924	.probe		= rt2x00usb_probe,
1925	.disconnect	= rt2x00usb_disconnect,
1926	.suspend	= rt2x00usb_suspend,
1927	.resume		= rt2x00usb_resume,
1928};
1929
1930static int __init rt2500usb_init(void)
1931{
1932	return usb_register(&rt2500usb_driver);
1933}
1934
1935static void __exit rt2500usb_exit(void)
1936{
1937	usb_deregister(&rt2500usb_driver);
1938}
1939
1940module_init(rt2500usb_init);
1941module_exit(rt2500usb_exit);
1942