• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wireless/ath/ath9k/
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58{
59	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61	return priv_ops->macversion_supported(ah->hw_version.macVersion);
62}
63
64static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65					struct ath9k_channel *chan)
66{
67	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68}
69
70static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71{
72	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73		return;
74
75	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76}
77
78static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79{
80	/* You will not have this callback if using the old ANI */
81	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82		return;
83
84	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85}
86
87/********************/
88/* Helper Functions */
89/********************/
90
91static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
92{
93	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95	if (!ah->curchan) /* should really check for CCK instead */
96		return usecs *ATH9K_CLOCK_RATE_CCK;
97	if (conf->channel->band == IEEE80211_BAND_2GHZ)
98		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
99
100	if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101		return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102	else
103		return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
104}
105
106static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
107{
108	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
109
110	if (conf_is_ht40(conf))
111		return ath9k_hw_mac_clks(ah, usecs) * 2;
112	else
113		return ath9k_hw_mac_clks(ah, usecs);
114}
115
116bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117{
118	int i;
119
120	BUG_ON(timeout < AH_TIME_QUANTUM);
121
122	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123		if ((REG_READ(ah, reg) & mask) == val)
124			return true;
125
126		udelay(AH_TIME_QUANTUM);
127	}
128
129	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131		  timeout, reg, REG_READ(ah, reg), mask, val);
132
133	return false;
134}
135EXPORT_SYMBOL(ath9k_hw_wait);
136
137u32 ath9k_hw_reverse_bits(u32 val, u32 n)
138{
139	u32 retval;
140	int i;
141
142	for (i = 0, retval = 0; i < n; i++) {
143		retval = (retval << 1) | (val & 1);
144		val >>= 1;
145	}
146	return retval;
147}
148
149bool ath9k_get_channel_edges(struct ath_hw *ah,
150			     u16 flags, u16 *low,
151			     u16 *high)
152{
153	struct ath9k_hw_capabilities *pCap = &ah->caps;
154
155	if (flags & CHANNEL_5GHZ) {
156		*low = pCap->low_5ghz_chan;
157		*high = pCap->high_5ghz_chan;
158		return true;
159	}
160	if ((flags & CHANNEL_2GHZ)) {
161		*low = pCap->low_2ghz_chan;
162		*high = pCap->high_2ghz_chan;
163		return true;
164	}
165	return false;
166}
167
168u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169			   u8 phy, int kbps,
170			   u32 frameLen, u16 rateix,
171			   bool shortPreamble)
172{
173	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
174
175	if (kbps == 0)
176		return 0;
177
178	switch (phy) {
179	case WLAN_RC_PHY_CCK:
180		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181		if (shortPreamble)
182			phyTime >>= 1;
183		numBits = frameLen << 3;
184		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185		break;
186	case WLAN_RC_PHY_OFDM:
187		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189			numBits = OFDM_PLCP_BITS + (frameLen << 3);
190			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191			txTime = OFDM_SIFS_TIME_QUARTER
192				+ OFDM_PREAMBLE_TIME_QUARTER
193				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194		} else if (ah->curchan &&
195			   IS_CHAN_HALF_RATE(ah->curchan)) {
196			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197			numBits = OFDM_PLCP_BITS + (frameLen << 3);
198			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199			txTime = OFDM_SIFS_TIME_HALF +
200				OFDM_PREAMBLE_TIME_HALF
201				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
202		} else {
203			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204			numBits = OFDM_PLCP_BITS + (frameLen << 3);
205			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207				+ (numSymbols * OFDM_SYMBOL_TIME);
208		}
209		break;
210	default:
211		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
213		txTime = 0;
214		break;
215	}
216
217	return txTime;
218}
219EXPORT_SYMBOL(ath9k_hw_computetxtime);
220
221void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222				  struct ath9k_channel *chan,
223				  struct chan_centers *centers)
224{
225	int8_t extoff;
226
227	if (!IS_CHAN_HT40(chan)) {
228		centers->ctl_center = centers->ext_center =
229			centers->synth_center = chan->channel;
230		return;
231	}
232
233	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235		centers->synth_center =
236			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237		extoff = 1;
238	} else {
239		centers->synth_center =
240			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241		extoff = -1;
242	}
243
244	centers->ctl_center =
245		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246	/* 25 MHz spacing is supported by hw but not on upper layers */
247	centers->ext_center =
248		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249}
250
251/******************/
252/* Chip Revisions */
253/******************/
254
255static void ath9k_hw_read_revisions(struct ath_hw *ah)
256{
257	u32 val;
258
259	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
260
261	if (val == 0xFF) {
262		val = REG_READ(ah, AR_SREV);
263		ah->hw_version.macVersion =
264			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267	} else {
268		if (!AR_SREV_9100(ah))
269			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270
271		ah->hw_version.macRev = val & AR_SREV_REVISION;
272
273		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274			ah->is_pciexpress = true;
275	}
276}
277
278/************************************/
279/* HW Attach, Detach, Init Routines */
280/************************************/
281
282static void ath9k_hw_disablepcie(struct ath_hw *ah)
283{
284	if (AR_SREV_9100(ah))
285		return;
286
287	ENABLE_REGWRITE_BUFFER(ah);
288
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298
299	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300
301	REGWRITE_BUFFER_FLUSH(ah);
302	DISABLE_REGWRITE_BUFFER(ah);
303}
304
305/* This should work for all families including legacy */
306static bool ath9k_hw_chip_test(struct ath_hw *ah)
307{
308	struct ath_common *common = ath9k_hw_common(ah);
309	u32 regAddr[2] = { AR_STA_ID0 };
310	u32 regHold[2];
311	u32 patternData[4] = { 0x55555555,
312			       0xaaaaaaaa,
313			       0x66666666,
314			       0x99999999 };
315	int i, j, loop_max;
316
317	if (!AR_SREV_9300_20_OR_LATER(ah)) {
318		loop_max = 2;
319		regAddr[1] = AR_PHY_BASE + (8 << 2);
320	} else
321		loop_max = 1;
322
323	for (i = 0; i < loop_max; i++) {
324		u32 addr = regAddr[i];
325		u32 wrData, rdData;
326
327		regHold[i] = REG_READ(ah, addr);
328		for (j = 0; j < 0x100; j++) {
329			wrData = (j << 16) | j;
330			REG_WRITE(ah, addr, wrData);
331			rdData = REG_READ(ah, addr);
332			if (rdData != wrData) {
333				ath_print(common, ATH_DBG_FATAL,
334					  "address test failed "
335					  "addr: 0x%08x - wr:0x%08x != "
336					  "rd:0x%08x\n",
337					  addr, wrData, rdData);
338				return false;
339			}
340		}
341		for (j = 0; j < 4; j++) {
342			wrData = patternData[j];
343			REG_WRITE(ah, addr, wrData);
344			rdData = REG_READ(ah, addr);
345			if (wrData != rdData) {
346				ath_print(common, ATH_DBG_FATAL,
347					  "address test failed "
348					  "addr: 0x%08x - wr:0x%08x != "
349					  "rd:0x%08x\n",
350					  addr, wrData, rdData);
351				return false;
352			}
353		}
354		REG_WRITE(ah, regAddr[i], regHold[i]);
355	}
356	udelay(100);
357
358	return true;
359}
360
361static void ath9k_hw_init_config(struct ath_hw *ah)
362{
363	int i;
364
365	ah->config.dma_beacon_response_time = 2;
366	ah->config.sw_beacon_response_time = 10;
367	ah->config.additional_swba_backoff = 0;
368	ah->config.ack_6mb = 0x0;
369	ah->config.cwm_ignore_extcca = 0;
370	ah->config.pcie_powersave_enable = 0;
371	ah->config.pcie_clock_req = 0;
372	ah->config.pcie_waen = 0;
373	ah->config.analog_shiftreg = 1;
374	ah->config.ofdm_trig_low = 200;
375	ah->config.ofdm_trig_high = 500;
376	ah->config.cck_trig_high = 200;
377	ah->config.cck_trig_low = 100;
378	ah->config.enable_ani = true;
379
380	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381		ah->config.spurchans[i][0] = AR_NO_SPUR;
382		ah->config.spurchans[i][1] = AR_NO_SPUR;
383	}
384
385	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386		ah->config.ht_enable = 1;
387	else
388		ah->config.ht_enable = 0;
389
390	/* PAPRD needs some more work to be enabled */
391	ah->config.paprd_disable = 1;
392
393	ah->config.rx_intr_mitigation = true;
394	ah->config.pcieSerDesWrite = true;
395
396	/*
397	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
398	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
399	 * This means we use it for all AR5416 devices, and the few
400	 * minor PCI AR9280 devices out there.
401	 *
402	 * Serialization is required because these devices do not handle
403	 * well the case of two concurrent reads/writes due to the latency
404	 * involved. During one read/write another read/write can be issued
405	 * on another CPU while the previous read/write may still be working
406	 * on our hardware, if we hit this case the hardware poops in a loop.
407	 * We prevent this by serializing reads and writes.
408	 *
409	 * This issue is not present on PCI-Express devices or pre-AR5416
410	 * devices (legacy, 802.11abg).
411	 */
412	if (num_possible_cpus() > 1)
413		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
414}
415
416static void ath9k_hw_init_defaults(struct ath_hw *ah)
417{
418	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
419
420	regulatory->country_code = CTRY_DEFAULT;
421	regulatory->power_limit = MAX_RATE_POWER;
422	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
423
424	ah->hw_version.magic = AR5416_MAGIC;
425	ah->hw_version.subvendorid = 0;
426
427	ah->ah_flags = 0;
428	if (!AR_SREV_9100(ah))
429		ah->ah_flags = AH_USE_EEPROM;
430
431	ah->atim_window = 0;
432	ah->sta_id1_defaults =
433		AR_STA_ID1_CRPT_MIC_ENABLE |
434		AR_STA_ID1_MCAST_KSRCH;
435	ah->beacon_interval = 100;
436	ah->enable_32kHz_clock = DONT_USE_32KHZ;
437	ah->slottime = (u32) -1;
438	ah->globaltxtimeout = (u32) -1;
439	ah->power_mode = ATH9K_PM_UNDEFINED;
440}
441
442static int ath9k_hw_init_macaddr(struct ath_hw *ah)
443{
444	struct ath_common *common = ath9k_hw_common(ah);
445	u32 sum;
446	int i;
447	u16 eeval;
448	u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
449
450	sum = 0;
451	for (i = 0; i < 3; i++) {
452		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
453		sum += eeval;
454		common->macaddr[2 * i] = eeval >> 8;
455		common->macaddr[2 * i + 1] = eeval & 0xff;
456	}
457	if (sum == 0 || sum == 0xffff * 3)
458		return -EADDRNOTAVAIL;
459
460	return 0;
461}
462
463static int ath9k_hw_post_init(struct ath_hw *ah)
464{
465	int ecode;
466
467	if (!AR_SREV_9271(ah)) {
468		if (!ath9k_hw_chip_test(ah))
469			return -ENODEV;
470	}
471
472	if (!AR_SREV_9300_20_OR_LATER(ah)) {
473		ecode = ar9002_hw_rf_claim(ah);
474		if (ecode != 0)
475			return ecode;
476	}
477
478	ecode = ath9k_hw_eeprom_init(ah);
479	if (ecode != 0)
480		return ecode;
481
482	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
483		  "Eeprom VER: %d, REV: %d\n",
484		  ah->eep_ops->get_eeprom_ver(ah),
485		  ah->eep_ops->get_eeprom_rev(ah));
486
487	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
488	if (ecode) {
489		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
490			  "Failed allocating banks for "
491			  "external radio\n");
492		ath9k_hw_rf_free_ext_banks(ah);
493		return ecode;
494	}
495
496	if (!AR_SREV_9100(ah)) {
497		ath9k_hw_ani_setup(ah);
498		ath9k_hw_ani_init(ah);
499	}
500
501	return 0;
502}
503
504static void ath9k_hw_attach_ops(struct ath_hw *ah)
505{
506	if (AR_SREV_9300_20_OR_LATER(ah))
507		ar9003_hw_attach_ops(ah);
508	else
509		ar9002_hw_attach_ops(ah);
510}
511
512/* Called for all hardware families */
513static int __ath9k_hw_init(struct ath_hw *ah)
514{
515	struct ath_common *common = ath9k_hw_common(ah);
516	int r = 0;
517
518	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
519		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
520
521	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
522		ath_print(common, ATH_DBG_FATAL,
523			  "Couldn't reset chip\n");
524		return -EIO;
525	}
526
527	ath9k_hw_init_defaults(ah);
528	ath9k_hw_init_config(ah);
529
530	ath9k_hw_attach_ops(ah);
531
532	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
533		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
534		return -EIO;
535	}
536
537	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
538		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
539		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
540		     !ah->is_pciexpress)) {
541			ah->config.serialize_regmode =
542				SER_REG_MODE_ON;
543		} else {
544			ah->config.serialize_regmode =
545				SER_REG_MODE_OFF;
546		}
547	}
548
549	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
550		ah->config.serialize_regmode);
551
552	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
553		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
554	else
555		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
556
557	if (!ath9k_hw_macversion_supported(ah)) {
558		ath_print(common, ATH_DBG_FATAL,
559			  "Mac Chip Rev 0x%02x.%x is not supported by "
560			  "this driver\n", ah->hw_version.macVersion,
561			  ah->hw_version.macRev);
562		return -EOPNOTSUPP;
563	}
564
565	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
566		ah->is_pciexpress = false;
567
568	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
569	ath9k_hw_init_cal_settings(ah);
570
571	ah->ani_function = ATH9K_ANI_ALL;
572	if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
573		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
574	if (!AR_SREV_9300_20_OR_LATER(ah))
575		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
576
577	ath9k_hw_init_mode_regs(ah);
578
579	/*
580	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
581	 * We need to do this to avoid RMW of this register. We cannot
582	 * read the reg when chip is asleep.
583	 */
584	ah->WARegVal = REG_READ(ah, AR_WA);
585	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
586			 AR_WA_ASPM_TIMER_BASED_DISABLE);
587
588	if (ah->is_pciexpress)
589		ath9k_hw_configpcipowersave(ah, 0, 0);
590	else
591		ath9k_hw_disablepcie(ah);
592
593	if (!AR_SREV_9300_20_OR_LATER(ah))
594		ar9002_hw_cck_chan14_spread(ah);
595
596	r = ath9k_hw_post_init(ah);
597	if (r)
598		return r;
599
600	ath9k_hw_init_mode_gain_regs(ah);
601	r = ath9k_hw_fill_cap_info(ah);
602	if (r)
603		return r;
604
605	r = ath9k_hw_init_macaddr(ah);
606	if (r) {
607		ath_print(common, ATH_DBG_FATAL,
608			  "Failed to initialize MAC address\n");
609		return r;
610	}
611
612	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
613		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
614	else
615		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
616
617	ah->bb_watchdog_timeout_ms = 25;
618
619	common->state = ATH_HW_INITIALIZED;
620
621	return 0;
622}
623
624int ath9k_hw_init(struct ath_hw *ah)
625{
626	int ret;
627	struct ath_common *common = ath9k_hw_common(ah);
628
629	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
630	switch (ah->hw_version.devid) {
631	case AR5416_DEVID_PCI:
632	case AR5416_DEVID_PCIE:
633	case AR5416_AR9100_DEVID:
634	case AR9160_DEVID_PCI:
635	case AR9280_DEVID_PCI:
636	case AR9280_DEVID_PCIE:
637	case AR9285_DEVID_PCIE:
638	case AR9287_DEVID_PCI:
639	case AR9287_DEVID_PCIE:
640	case AR2427_DEVID_PCIE:
641	case AR9300_DEVID_PCIE:
642		break;
643	default:
644		if (common->bus_ops->ath_bus_type == ATH_USB)
645			break;
646		ath_print(common, ATH_DBG_FATAL,
647			  "Hardware device ID 0x%04x not supported\n",
648			  ah->hw_version.devid);
649		return -EOPNOTSUPP;
650	}
651
652	ret = __ath9k_hw_init(ah);
653	if (ret) {
654		ath_print(common, ATH_DBG_FATAL,
655			  "Unable to initialize hardware; "
656			  "initialization status: %d\n", ret);
657		return ret;
658	}
659
660	return 0;
661}
662EXPORT_SYMBOL(ath9k_hw_init);
663
664static void ath9k_hw_init_qos(struct ath_hw *ah)
665{
666	ENABLE_REGWRITE_BUFFER(ah);
667
668	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
669	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
670
671	REG_WRITE(ah, AR_QOS_NO_ACK,
672		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
673		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
674		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
675
676	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
677	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
678	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
679	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
680	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
681
682	REGWRITE_BUFFER_FLUSH(ah);
683	DISABLE_REGWRITE_BUFFER(ah);
684}
685
686static void ath9k_hw_init_pll(struct ath_hw *ah,
687			      struct ath9k_channel *chan)
688{
689	u32 pll = ath9k_hw_compute_pll_control(ah, chan);
690
691	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
692
693	/* Switch the core clock for ar9271 to 117Mhz */
694	if (AR_SREV_9271(ah)) {
695		udelay(500);
696		REG_WRITE(ah, 0x50040, 0x304);
697	}
698
699	udelay(RTC_PLL_SETTLE_DELAY);
700
701	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
702}
703
704static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
705					  enum nl80211_iftype opmode)
706{
707	u32 imr_reg = AR_IMR_TXERR |
708		AR_IMR_TXURN |
709		AR_IMR_RXERR |
710		AR_IMR_RXORN |
711		AR_IMR_BCNMISC;
712
713	if (AR_SREV_9300_20_OR_LATER(ah)) {
714		imr_reg |= AR_IMR_RXOK_HP;
715		if (ah->config.rx_intr_mitigation)
716			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
717		else
718			imr_reg |= AR_IMR_RXOK_LP;
719
720	} else {
721		if (ah->config.rx_intr_mitigation)
722			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
723		else
724			imr_reg |= AR_IMR_RXOK;
725	}
726
727	if (ah->config.tx_intr_mitigation)
728		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
729	else
730		imr_reg |= AR_IMR_TXOK;
731
732	if (opmode == NL80211_IFTYPE_AP)
733		imr_reg |= AR_IMR_MIB;
734
735	ENABLE_REGWRITE_BUFFER(ah);
736
737	REG_WRITE(ah, AR_IMR, imr_reg);
738	ah->imrs2_reg |= AR_IMR_S2_GTT;
739	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
740
741	if (!AR_SREV_9100(ah)) {
742		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
743		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
744		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
745	}
746
747	REGWRITE_BUFFER_FLUSH(ah);
748	DISABLE_REGWRITE_BUFFER(ah);
749
750	if (AR_SREV_9300_20_OR_LATER(ah)) {
751		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
752		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
753		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
754		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
755	}
756}
757
758static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
759{
760	u32 val = ath9k_hw_mac_to_clks(ah, us);
761	val = min(val, (u32) 0xFFFF);
762	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
763}
764
765static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
766{
767	u32 val = ath9k_hw_mac_to_clks(ah, us);
768	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
769	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
770}
771
772static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
773{
774	u32 val = ath9k_hw_mac_to_clks(ah, us);
775	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
776	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
777}
778
779static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
780{
781	if (tu > 0xFFFF) {
782		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
783			  "bad global tx timeout %u\n", tu);
784		ah->globaltxtimeout = (u32) -1;
785		return false;
786	} else {
787		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
788		ah->globaltxtimeout = tu;
789		return true;
790	}
791}
792
793void ath9k_hw_init_global_settings(struct ath_hw *ah)
794{
795	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
796	int acktimeout;
797	int slottime;
798	int sifstime;
799
800	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
801		  ah->misc_mode);
802
803	if (ah->misc_mode != 0)
804		REG_WRITE(ah, AR_PCU_MISC,
805			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
806
807	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
808		sifstime = 16;
809	else
810		sifstime = 10;
811
812	/* As defined by IEEE 802.11-2007 17.3.8.6 */
813	slottime = ah->slottime + 3 * ah->coverage_class;
814	acktimeout = slottime + sifstime;
815
816	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
817		acktimeout += 64 - sifstime - ah->slottime;
818
819	ath9k_hw_setslottime(ah, slottime);
820	ath9k_hw_set_ack_timeout(ah, acktimeout);
821	ath9k_hw_set_cts_timeout(ah, acktimeout);
822	if (ah->globaltxtimeout != (u32) -1)
823		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
824}
825EXPORT_SYMBOL(ath9k_hw_init_global_settings);
826
827void ath9k_hw_deinit(struct ath_hw *ah)
828{
829	struct ath_common *common = ath9k_hw_common(ah);
830
831	if (common->state < ATH_HW_INITIALIZED)
832		goto free_hw;
833
834	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
835
836free_hw:
837	ath9k_hw_rf_free_ext_banks(ah);
838}
839EXPORT_SYMBOL(ath9k_hw_deinit);
840
841/*******/
842/* INI */
843/*******/
844
845u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
846{
847	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
848
849	if (IS_CHAN_B(chan))
850		ctl |= CTL_11B;
851	else if (IS_CHAN_G(chan))
852		ctl |= CTL_11G;
853	else
854		ctl |= CTL_11A;
855
856	return ctl;
857}
858
859/****************************************/
860/* Reset and Channel Switching Routines */
861/****************************************/
862
863static inline void ath9k_hw_set_dma(struct ath_hw *ah)
864{
865	struct ath_common *common = ath9k_hw_common(ah);
866	u32 regval;
867
868	ENABLE_REGWRITE_BUFFER(ah);
869
870	/*
871	 * set AHB_MODE not to do cacheline prefetches
872	*/
873	if (!AR_SREV_9300_20_OR_LATER(ah)) {
874		regval = REG_READ(ah, AR_AHB_MODE);
875		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
876	}
877
878	/*
879	 * let mac dma reads be in 128 byte chunks
880	 */
881	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
882	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
883
884	REGWRITE_BUFFER_FLUSH(ah);
885	DISABLE_REGWRITE_BUFFER(ah);
886
887	/*
888	 * Restore TX Trigger Level to its pre-reset value.
889	 * The initial value depends on whether aggregation is enabled, and is
890	 * adjusted whenever underruns are detected.
891	 */
892	if (!AR_SREV_9300_20_OR_LATER(ah))
893		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
894
895	ENABLE_REGWRITE_BUFFER(ah);
896
897	/*
898	 * let mac dma writes be in 128 byte chunks
899	 */
900	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
901	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
902
903	/*
904	 * Setup receive FIFO threshold to hold off TX activities
905	 */
906	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
907
908	if (AR_SREV_9300_20_OR_LATER(ah)) {
909		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
910		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
911
912		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
913			ah->caps.rx_status_len);
914	}
915
916	/*
917	 * reduce the number of usable entries in PCU TXBUF to avoid
918	 * wrap around issues.
919	 */
920	if (AR_SREV_9285(ah)) {
921		/* For AR9285 the number of Fifos are reduced to half.
922		 * So set the usable tx buf size also to half to
923		 * avoid data/delimiter underruns
924		 */
925		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
926			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
927	} else if (!AR_SREV_9271(ah)) {
928		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
929			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
930	}
931
932	REGWRITE_BUFFER_FLUSH(ah);
933	DISABLE_REGWRITE_BUFFER(ah);
934
935	if (AR_SREV_9300_20_OR_LATER(ah))
936		ath9k_hw_reset_txstatus_ring(ah);
937}
938
939static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
940{
941	u32 val;
942
943	val = REG_READ(ah, AR_STA_ID1);
944	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
945	switch (opmode) {
946	case NL80211_IFTYPE_AP:
947		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
948			  | AR_STA_ID1_KSRCH_MODE);
949		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
950		break;
951	case NL80211_IFTYPE_ADHOC:
952	case NL80211_IFTYPE_MESH_POINT:
953		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
954			  | AR_STA_ID1_KSRCH_MODE);
955		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
956		break;
957	case NL80211_IFTYPE_STATION:
958	case NL80211_IFTYPE_MONITOR:
959		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
960		break;
961	}
962}
963
964void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
965				   u32 *coef_mantissa, u32 *coef_exponent)
966{
967	u32 coef_exp, coef_man;
968
969	for (coef_exp = 31; coef_exp > 0; coef_exp--)
970		if ((coef_scaled >> coef_exp) & 0x1)
971			break;
972
973	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
974
975	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
976
977	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
978	*coef_exponent = coef_exp - 16;
979}
980
981static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
982{
983	u32 rst_flags;
984	u32 tmpReg;
985
986	if (AR_SREV_9100(ah)) {
987		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
988		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
989		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
990		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
991		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
992	}
993
994	ENABLE_REGWRITE_BUFFER(ah);
995
996	if (AR_SREV_9300_20_OR_LATER(ah)) {
997		REG_WRITE(ah, AR_WA, ah->WARegVal);
998		udelay(10);
999	}
1000
1001	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1002		  AR_RTC_FORCE_WAKE_ON_INT);
1003
1004	if (AR_SREV_9100(ah)) {
1005		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1006			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1007	} else {
1008		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1009		if (tmpReg &
1010		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1011		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1012			u32 val;
1013			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1014
1015			val = AR_RC_HOSTIF;
1016			if (!AR_SREV_9300_20_OR_LATER(ah))
1017				val |= AR_RC_AHB;
1018			REG_WRITE(ah, AR_RC, val);
1019
1020		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1021			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1022
1023		rst_flags = AR_RTC_RC_MAC_WARM;
1024		if (type == ATH9K_RESET_COLD)
1025			rst_flags |= AR_RTC_RC_MAC_COLD;
1026	}
1027
1028	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1029
1030	REGWRITE_BUFFER_FLUSH(ah);
1031	DISABLE_REGWRITE_BUFFER(ah);
1032
1033	udelay(50);
1034
1035	REG_WRITE(ah, AR_RTC_RC, 0);
1036	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1037		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1038			  "RTC stuck in MAC reset\n");
1039		return false;
1040	}
1041
1042	if (!AR_SREV_9100(ah))
1043		REG_WRITE(ah, AR_RC, 0);
1044
1045	if (AR_SREV_9100(ah))
1046		udelay(50);
1047
1048	return true;
1049}
1050
1051static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1052{
1053	ENABLE_REGWRITE_BUFFER(ah);
1054
1055	if (AR_SREV_9300_20_OR_LATER(ah)) {
1056		REG_WRITE(ah, AR_WA, ah->WARegVal);
1057		udelay(10);
1058	}
1059
1060	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1061		  AR_RTC_FORCE_WAKE_ON_INT);
1062
1063	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1064		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1065
1066	REG_WRITE(ah, AR_RTC_RESET, 0);
1067	udelay(2);
1068
1069	REGWRITE_BUFFER_FLUSH(ah);
1070	DISABLE_REGWRITE_BUFFER(ah);
1071
1072	if (!AR_SREV_9300_20_OR_LATER(ah))
1073		udelay(2);
1074
1075	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1076		REG_WRITE(ah, AR_RC, 0);
1077
1078	REG_WRITE(ah, AR_RTC_RESET, 1);
1079
1080	if (!ath9k_hw_wait(ah,
1081			   AR_RTC_STATUS,
1082			   AR_RTC_STATUS_M,
1083			   AR_RTC_STATUS_ON,
1084			   AH_WAIT_TIMEOUT)) {
1085		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1086			  "RTC not waking up\n");
1087		return false;
1088	}
1089
1090	ath9k_hw_read_revisions(ah);
1091
1092	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1093}
1094
1095static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1096{
1097	if (AR_SREV_9300_20_OR_LATER(ah)) {
1098		REG_WRITE(ah, AR_WA, ah->WARegVal);
1099		udelay(10);
1100	}
1101
1102	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1103		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1104
1105	switch (type) {
1106	case ATH9K_RESET_POWER_ON:
1107		return ath9k_hw_set_reset_power_on(ah);
1108	case ATH9K_RESET_WARM:
1109	case ATH9K_RESET_COLD:
1110		return ath9k_hw_set_reset(ah, type);
1111	default:
1112		return false;
1113	}
1114}
1115
1116static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1117				struct ath9k_channel *chan)
1118{
1119	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1120		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1121			return false;
1122	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1123		return false;
1124
1125	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1126		return false;
1127
1128	ah->chip_fullsleep = false;
1129	ath9k_hw_init_pll(ah, chan);
1130	ath9k_hw_set_rfmode(ah, chan);
1131
1132	return true;
1133}
1134
1135static bool ath9k_hw_channel_change(struct ath_hw *ah,
1136				    struct ath9k_channel *chan)
1137{
1138	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1139	struct ath_common *common = ath9k_hw_common(ah);
1140	struct ieee80211_channel *channel = chan->chan;
1141	u32 qnum;
1142	int r;
1143
1144	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1145		if (ath9k_hw_numtxpending(ah, qnum)) {
1146			ath_print(common, ATH_DBG_QUEUE,
1147				  "Transmit frames pending on "
1148				  "queue %d\n", qnum);
1149			return false;
1150		}
1151	}
1152
1153	if (!ath9k_hw_rfbus_req(ah)) {
1154		ath_print(common, ATH_DBG_FATAL,
1155			  "Could not kill baseband RX\n");
1156		return false;
1157	}
1158
1159	ath9k_hw_set_channel_regs(ah, chan);
1160
1161	r = ath9k_hw_rf_set_freq(ah, chan);
1162	if (r) {
1163		ath_print(common, ATH_DBG_FATAL,
1164			  "Failed to set channel\n");
1165		return false;
1166	}
1167
1168	ah->eep_ops->set_txpower(ah, chan,
1169			     ath9k_regd_get_ctl(regulatory, chan),
1170			     channel->max_antenna_gain * 2,
1171			     channel->max_power * 2,
1172			     min((u32) MAX_RATE_POWER,
1173			     (u32) regulatory->power_limit));
1174
1175	ath9k_hw_rfbus_done(ah);
1176
1177	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1178		ath9k_hw_set_delta_slope(ah, chan);
1179
1180	ath9k_hw_spur_mitigate_freq(ah, chan);
1181
1182	return true;
1183}
1184
1185bool ath9k_hw_check_alive(struct ath_hw *ah)
1186{
1187	int count = 50;
1188	u32 reg;
1189
1190	if (AR_SREV_9285_10_OR_LATER(ah))
1191		return true;
1192
1193	do {
1194		reg = REG_READ(ah, AR_OBS_BUS_1);
1195
1196		if ((reg & 0x7E7FFFEF) == 0x00702400)
1197			continue;
1198
1199		switch (reg & 0x7E000B00) {
1200		case 0x1E000000:
1201		case 0x52000B00:
1202		case 0x18000B00:
1203			continue;
1204		default:
1205			return true;
1206		}
1207	} while (count-- > 0);
1208
1209	return false;
1210}
1211EXPORT_SYMBOL(ath9k_hw_check_alive);
1212
1213int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1214		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1215{
1216	struct ath_common *common = ath9k_hw_common(ah);
1217	u32 saveLedState;
1218	struct ath9k_channel *curchan = ah->curchan;
1219	u32 saveDefAntenna;
1220	u32 macStaId1;
1221	u64 tsf = 0;
1222	int i, r;
1223
1224	ah->txchainmask = common->tx_chainmask;
1225	ah->rxchainmask = common->rx_chainmask;
1226
1227	if (!ah->chip_fullsleep) {
1228		ath9k_hw_abortpcurecv(ah);
1229		if (!ath9k_hw_stopdmarecv(ah)) {
1230			ath_print(common, ATH_DBG_XMIT,
1231				"Failed to stop receive dma\n");
1232			bChannelChange = false;
1233		}
1234	}
1235
1236	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1237		return -EIO;
1238
1239	if (curchan && !ah->chip_fullsleep && ah->caldata)
1240		ath9k_hw_getnf(ah, curchan);
1241
1242	ah->caldata = caldata;
1243	if (caldata &&
1244	    (chan->channel != caldata->channel ||
1245	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1246	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1247		/* Operating channel changed, reset channel calibration data */
1248		memset(caldata, 0, sizeof(*caldata));
1249		ath9k_init_nfcal_hist_buffer(ah, chan);
1250	}
1251
1252	if (bChannelChange &&
1253	    (ah->chip_fullsleep != true) &&
1254	    (ah->curchan != NULL) &&
1255	    (chan->channel != ah->curchan->channel) &&
1256	    ((chan->channelFlags & CHANNEL_ALL) ==
1257	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1258	    !AR_SREV_9280(ah)) {
1259
1260		if (ath9k_hw_channel_change(ah, chan)) {
1261			ath9k_hw_loadnf(ah, ah->curchan);
1262			ath9k_hw_start_nfcal(ah, true);
1263			return 0;
1264		}
1265	}
1266
1267	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1268	if (saveDefAntenna == 0)
1269		saveDefAntenna = 1;
1270
1271	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1272
1273	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1274	if (AR_SREV_9100(ah) ||
1275	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1276		tsf = ath9k_hw_gettsf64(ah);
1277
1278	saveLedState = REG_READ(ah, AR_CFG_LED) &
1279		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1280		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1281
1282	ath9k_hw_mark_phy_inactive(ah);
1283
1284	/* Only required on the first reset */
1285	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1286		REG_WRITE(ah,
1287			  AR9271_RESET_POWER_DOWN_CONTROL,
1288			  AR9271_RADIO_RF_RST);
1289		udelay(50);
1290	}
1291
1292	if (!ath9k_hw_chip_reset(ah, chan)) {
1293		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1294		return -EINVAL;
1295	}
1296
1297	/* Only required on the first reset */
1298	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1299		ah->htc_reset_init = false;
1300		REG_WRITE(ah,
1301			  AR9271_RESET_POWER_DOWN_CONTROL,
1302			  AR9271_GATE_MAC_CTL);
1303		udelay(50);
1304	}
1305
1306	/* Restore TSF */
1307	if (tsf)
1308		ath9k_hw_settsf64(ah, tsf);
1309
1310	if (AR_SREV_9280_10_OR_LATER(ah))
1311		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1312
1313	if (!AR_SREV_9300_20_OR_LATER(ah))
1314		ar9002_hw_enable_async_fifo(ah);
1315
1316	r = ath9k_hw_process_ini(ah, chan);
1317	if (r)
1318		return r;
1319
1320	/*
1321	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1322	 * right after the chip reset. When that happens, write a new
1323	 * value after the initvals have been applied, with an offset
1324	 * based on measured time difference
1325	 */
1326	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1327		tsf += 1500;
1328		ath9k_hw_settsf64(ah, tsf);
1329	}
1330
1331	/* Setup MFP options for CCMP */
1332	if (AR_SREV_9280_20_OR_LATER(ah)) {
1333		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1334		 * frames when constructing CCMP AAD. */
1335		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1336			      0xc7ff);
1337		ah->sw_mgmt_crypto = false;
1338	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1339		/* Disable hardware crypto for management frames */
1340		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1341			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1342		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1343			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1344		ah->sw_mgmt_crypto = true;
1345	} else
1346		ah->sw_mgmt_crypto = true;
1347
1348	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1349		ath9k_hw_set_delta_slope(ah, chan);
1350
1351	ath9k_hw_spur_mitigate_freq(ah, chan);
1352	ah->eep_ops->set_board_values(ah, chan);
1353
1354	ath9k_hw_set_operating_mode(ah, ah->opmode);
1355
1356	ENABLE_REGWRITE_BUFFER(ah);
1357
1358	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1359	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1360		  | macStaId1
1361		  | AR_STA_ID1_RTS_USE_DEF
1362		  | (ah->config.
1363		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1364		  | ah->sta_id1_defaults);
1365	ath_hw_setbssidmask(common);
1366	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1367	ath9k_hw_write_associd(ah);
1368	REG_WRITE(ah, AR_ISR, ~0);
1369	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1370
1371	REGWRITE_BUFFER_FLUSH(ah);
1372	DISABLE_REGWRITE_BUFFER(ah);
1373
1374	r = ath9k_hw_rf_set_freq(ah, chan);
1375	if (r)
1376		return r;
1377
1378	ENABLE_REGWRITE_BUFFER(ah);
1379
1380	for (i = 0; i < AR_NUM_DCU; i++)
1381		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1382
1383	REGWRITE_BUFFER_FLUSH(ah);
1384	DISABLE_REGWRITE_BUFFER(ah);
1385
1386	ah->intr_txqs = 0;
1387	for (i = 0; i < ah->caps.total_queues; i++)
1388		ath9k_hw_resettxqueue(ah, i);
1389
1390	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1391	ath9k_hw_ani_cache_ini_regs(ah);
1392	ath9k_hw_init_qos(ah);
1393
1394	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1395		ath9k_enable_rfkill(ah);
1396
1397	ath9k_hw_init_global_settings(ah);
1398
1399	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1400		ar9002_hw_update_async_fifo(ah);
1401		ar9002_hw_enable_wep_aggregation(ah);
1402	}
1403
1404	REG_WRITE(ah, AR_STA_ID1,
1405		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1406
1407	ath9k_hw_set_dma(ah);
1408
1409	REG_WRITE(ah, AR_OBS, 8);
1410
1411	if (ah->config.rx_intr_mitigation) {
1412		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1413		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1414	}
1415
1416	if (ah->config.tx_intr_mitigation) {
1417		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1418		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1419	}
1420
1421	ath9k_hw_init_bb(ah, chan);
1422
1423	if (!ath9k_hw_init_cal(ah, chan))
1424		return -EIO;
1425
1426	ENABLE_REGWRITE_BUFFER(ah);
1427
1428	ath9k_hw_restore_chainmask(ah);
1429	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1430
1431	REGWRITE_BUFFER_FLUSH(ah);
1432	DISABLE_REGWRITE_BUFFER(ah);
1433
1434	/*
1435	 * For big endian systems turn on swapping for descriptors
1436	 */
1437	if (AR_SREV_9100(ah)) {
1438		u32 mask;
1439		mask = REG_READ(ah, AR_CFG);
1440		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1441			ath_print(common, ATH_DBG_RESET,
1442				"CFG Byte Swap Set 0x%x\n", mask);
1443		} else {
1444			mask =
1445				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1446			REG_WRITE(ah, AR_CFG, mask);
1447			ath_print(common, ATH_DBG_RESET,
1448				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1449		}
1450	} else {
1451		if (common->bus_ops->ath_bus_type == ATH_USB) {
1452			/* Configure AR9271 target WLAN */
1453			if (AR_SREV_9271(ah))
1454				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1455			else
1456				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1457		}
1458#ifdef __BIG_ENDIAN
1459                else
1460			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1461#endif
1462	}
1463
1464	if (ah->btcoex_hw.enabled)
1465		ath9k_hw_btcoex_enable(ah);
1466
1467	if (AR_SREV_9300_20_OR_LATER(ah))
1468		ar9003_hw_bb_watchdog_config(ah);
1469
1470	return 0;
1471}
1472EXPORT_SYMBOL(ath9k_hw_reset);
1473
1474/************************/
1475/* Key Cache Management */
1476/************************/
1477
1478bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1479{
1480	u32 keyType;
1481
1482	if (entry >= ah->caps.keycache_size) {
1483		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1484			  "keychache entry %u out of range\n", entry);
1485		return false;
1486	}
1487
1488	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1489
1490	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1491	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1492	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1493	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1494	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1495	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1496	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1497	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1498
1499	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1500		u16 micentry = entry + 64;
1501
1502		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1503		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1504		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1505		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1506
1507	}
1508
1509	return true;
1510}
1511EXPORT_SYMBOL(ath9k_hw_keyreset);
1512
1513static bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1514{
1515	u32 macHi, macLo;
1516	u32 unicast_flag = AR_KEYTABLE_VALID;
1517
1518	if (entry >= ah->caps.keycache_size) {
1519		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1520			  "keychache entry %u out of range\n", entry);
1521		return false;
1522	}
1523
1524	if (mac != NULL) {
1525		/*
1526		 * AR_KEYTABLE_VALID indicates that the address is a unicast
1527		 * address, which must match the transmitter address for
1528		 * decrypting frames.
1529		 * Not setting this bit allows the hardware to use the key
1530		 * for multicast frame decryption.
1531		 */
1532		if (mac[0] & 0x01)
1533			unicast_flag = 0;
1534
1535		macHi = (mac[5] << 8) | mac[4];
1536		macLo = (mac[3] << 24) |
1537			(mac[2] << 16) |
1538			(mac[1] << 8) |
1539			mac[0];
1540		macLo >>= 1;
1541		macLo |= (macHi & 1) << 31;
1542		macHi >>= 1;
1543	} else {
1544		macLo = macHi = 0;
1545	}
1546	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1547	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1548
1549	return true;
1550}
1551
1552bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1553				 const struct ath9k_keyval *k,
1554				 const u8 *mac)
1555{
1556	const struct ath9k_hw_capabilities *pCap = &ah->caps;
1557	struct ath_common *common = ath9k_hw_common(ah);
1558	u32 key0, key1, key2, key3, key4;
1559	u32 keyType;
1560
1561	if (entry >= pCap->keycache_size) {
1562		ath_print(common, ATH_DBG_FATAL,
1563			  "keycache entry %u out of range\n", entry);
1564		return false;
1565	}
1566
1567	switch (k->kv_type) {
1568	case ATH9K_CIPHER_AES_OCB:
1569		keyType = AR_KEYTABLE_TYPE_AES;
1570		break;
1571	case ATH9K_CIPHER_AES_CCM:
1572		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1573			ath_print(common, ATH_DBG_ANY,
1574				  "AES-CCM not supported by mac rev 0x%x\n",
1575				  ah->hw_version.macRev);
1576			return false;
1577		}
1578		keyType = AR_KEYTABLE_TYPE_CCM;
1579		break;
1580	case ATH9K_CIPHER_TKIP:
1581		keyType = AR_KEYTABLE_TYPE_TKIP;
1582		if (ATH9K_IS_MIC_ENABLED(ah)
1583		    && entry + 64 >= pCap->keycache_size) {
1584			ath_print(common, ATH_DBG_ANY,
1585				  "entry %u inappropriate for TKIP\n", entry);
1586			return false;
1587		}
1588		break;
1589	case ATH9K_CIPHER_WEP:
1590		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1591			ath_print(common, ATH_DBG_ANY,
1592				  "WEP key length %u too small\n", k->kv_len);
1593			return false;
1594		}
1595		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1596			keyType = AR_KEYTABLE_TYPE_40;
1597		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1598			keyType = AR_KEYTABLE_TYPE_104;
1599		else
1600			keyType = AR_KEYTABLE_TYPE_128;
1601		break;
1602	case ATH9K_CIPHER_CLR:
1603		keyType = AR_KEYTABLE_TYPE_CLR;
1604		break;
1605	default:
1606		ath_print(common, ATH_DBG_FATAL,
1607			  "cipher %u not supported\n", k->kv_type);
1608		return false;
1609	}
1610
1611	key0 = get_unaligned_le32(k->kv_val + 0);
1612	key1 = get_unaligned_le16(k->kv_val + 4);
1613	key2 = get_unaligned_le32(k->kv_val + 6);
1614	key3 = get_unaligned_le16(k->kv_val + 10);
1615	key4 = get_unaligned_le32(k->kv_val + 12);
1616	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1617		key4 &= 0xff;
1618
1619	/*
1620	 * Note: Key cache registers access special memory area that requires
1621	 * two 32-bit writes to actually update the values in the internal
1622	 * memory. Consequently, the exact order and pairs used here must be
1623	 * maintained.
1624	 */
1625
1626	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1627		u16 micentry = entry + 64;
1628
1629		/*
1630		 * Write inverted key[47:0] first to avoid Michael MIC errors
1631		 * on frames that could be sent or received at the same time.
1632		 * The correct key will be written in the end once everything
1633		 * else is ready.
1634		 */
1635		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1636		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1637
1638		/* Write key[95:48] */
1639		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1640		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1641
1642		/* Write key[127:96] and key type */
1643		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1644		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1645
1646		/* Write MAC address for the entry */
1647		(void) ath9k_hw_keysetmac(ah, entry, mac);
1648
1649		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1650			/*
1651			 * TKIP uses two key cache entries:
1652			 * Michael MIC TX/RX keys in the same key cache entry
1653			 * (idx = main index + 64):
1654			 * key0 [31:0] = RX key [31:0]
1655			 * key1 [15:0] = TX key [31:16]
1656			 * key1 [31:16] = reserved
1657			 * key2 [31:0] = RX key [63:32]
1658			 * key3 [15:0] = TX key [15:0]
1659			 * key3 [31:16] = reserved
1660			 * key4 [31:0] = TX key [63:32]
1661			 */
1662			u32 mic0, mic1, mic2, mic3, mic4;
1663
1664			mic0 = get_unaligned_le32(k->kv_mic + 0);
1665			mic2 = get_unaligned_le32(k->kv_mic + 4);
1666			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1667			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1668			mic4 = get_unaligned_le32(k->kv_txmic + 4);
1669
1670			/* Write RX[31:0] and TX[31:16] */
1671			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1672			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1673
1674			/* Write RX[63:32] and TX[15:0] */
1675			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1676			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1677
1678			/* Write TX[63:32] and keyType(reserved) */
1679			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1680			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1681				  AR_KEYTABLE_TYPE_CLR);
1682
1683		} else {
1684			/*
1685			 * TKIP uses four key cache entries (two for group
1686			 * keys):
1687			 * Michael MIC TX/RX keys are in different key cache
1688			 * entries (idx = main index + 64 for TX and
1689			 * main index + 32 + 96 for RX):
1690			 * key0 [31:0] = TX/RX MIC key [31:0]
1691			 * key1 [31:0] = reserved
1692			 * key2 [31:0] = TX/RX MIC key [63:32]
1693			 * key3 [31:0] = reserved
1694			 * key4 [31:0] = reserved
1695			 *
1696			 * Upper layer code will call this function separately
1697			 * for TX and RX keys when these registers offsets are
1698			 * used.
1699			 */
1700			u32 mic0, mic2;
1701
1702			mic0 = get_unaligned_le32(k->kv_mic + 0);
1703			mic2 = get_unaligned_le32(k->kv_mic + 4);
1704
1705			/* Write MIC key[31:0] */
1706			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1707			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1708
1709			/* Write MIC key[63:32] */
1710			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1711			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1712
1713			/* Write TX[63:32] and keyType(reserved) */
1714			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1715			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1716				  AR_KEYTABLE_TYPE_CLR);
1717		}
1718
1719		/* MAC address registers are reserved for the MIC entry */
1720		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1721		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1722
1723		/*
1724		 * Write the correct (un-inverted) key[47:0] last to enable
1725		 * TKIP now that all other registers are set with correct
1726		 * values.
1727		 */
1728		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1729		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1730	} else {
1731		/* Write key[47:0] */
1732		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1733		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1734
1735		/* Write key[95:48] */
1736		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1737		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1738
1739		/* Write key[127:96] and key type */
1740		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1741		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1742
1743		/* Write MAC address for the entry */
1744		(void) ath9k_hw_keysetmac(ah, entry, mac);
1745	}
1746
1747	return true;
1748}
1749EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1750
1751/******************************/
1752/* Power Management (Chipset) */
1753/******************************/
1754
1755/*
1756 * Notify Power Mgt is disabled in self-generated frames.
1757 * If requested, force chip to sleep.
1758 */
1759static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1760{
1761	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1762	if (setChip) {
1763		/*
1764		 * Clear the RTC force wake bit to allow the
1765		 * mac to go to sleep.
1766		 */
1767		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1768			    AR_RTC_FORCE_WAKE_EN);
1769		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1770			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1771
1772		/* Shutdown chip. Active low */
1773		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1774			REG_CLR_BIT(ah, (AR_RTC_RESET),
1775				    AR_RTC_RESET_EN);
1776	}
1777
1778	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1779	if (AR_SREV_9300_20_OR_LATER(ah))
1780		REG_WRITE(ah, AR_WA,
1781			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1782}
1783
1784/*
1785 * Notify Power Management is enabled in self-generating
1786 * frames. If request, set power mode of chip to
1787 * auto/normal.  Duration in units of 128us (1/8 TU).
1788 */
1789static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1790{
1791	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1792	if (setChip) {
1793		struct ath9k_hw_capabilities *pCap = &ah->caps;
1794
1795		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1796			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1797			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1798				  AR_RTC_FORCE_WAKE_ON_INT);
1799		} else {
1800			/*
1801			 * Clear the RTC force wake bit to allow the
1802			 * mac to go to sleep.
1803			 */
1804			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1805				    AR_RTC_FORCE_WAKE_EN);
1806		}
1807	}
1808
1809	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1810	if (AR_SREV_9300_20_OR_LATER(ah))
1811		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1812}
1813
1814static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1815{
1816	u32 val;
1817	int i;
1818
1819	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1820	if (AR_SREV_9300_20_OR_LATER(ah)) {
1821		REG_WRITE(ah, AR_WA, ah->WARegVal);
1822		udelay(10);
1823	}
1824
1825	if (setChip) {
1826		if ((REG_READ(ah, AR_RTC_STATUS) &
1827		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1828			if (ath9k_hw_set_reset_reg(ah,
1829					   ATH9K_RESET_POWER_ON) != true) {
1830				return false;
1831			}
1832			if (!AR_SREV_9300_20_OR_LATER(ah))
1833				ath9k_hw_init_pll(ah, NULL);
1834		}
1835		if (AR_SREV_9100(ah))
1836			REG_SET_BIT(ah, AR_RTC_RESET,
1837				    AR_RTC_RESET_EN);
1838
1839		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1840			    AR_RTC_FORCE_WAKE_EN);
1841		udelay(50);
1842
1843		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1844			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1845			if (val == AR_RTC_STATUS_ON)
1846				break;
1847			udelay(50);
1848			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1849				    AR_RTC_FORCE_WAKE_EN);
1850		}
1851		if (i == 0) {
1852			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1853				  "Failed to wakeup in %uus\n",
1854				  POWER_UP_TIME / 20);
1855			return false;
1856		}
1857	}
1858
1859	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1860
1861	return true;
1862}
1863
1864bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1865{
1866	struct ath_common *common = ath9k_hw_common(ah);
1867	int status = true, setChip = true;
1868	static const char *modes[] = {
1869		"AWAKE",
1870		"FULL-SLEEP",
1871		"NETWORK SLEEP",
1872		"UNDEFINED"
1873	};
1874
1875	if (ah->power_mode == mode)
1876		return status;
1877
1878	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1879		  modes[ah->power_mode], modes[mode]);
1880
1881	switch (mode) {
1882	case ATH9K_PM_AWAKE:
1883		status = ath9k_hw_set_power_awake(ah, setChip);
1884		break;
1885	case ATH9K_PM_FULL_SLEEP:
1886		ath9k_set_power_sleep(ah, setChip);
1887		ah->chip_fullsleep = true;
1888		break;
1889	case ATH9K_PM_NETWORK_SLEEP:
1890		ath9k_set_power_network_sleep(ah, setChip);
1891		break;
1892	default:
1893		ath_print(common, ATH_DBG_FATAL,
1894			  "Unknown power mode %u\n", mode);
1895		return false;
1896	}
1897	ah->power_mode = mode;
1898
1899	return status;
1900}
1901EXPORT_SYMBOL(ath9k_hw_setpower);
1902
1903/*******************/
1904/* Beacon Handling */
1905/*******************/
1906
1907void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1908{
1909	int flags = 0;
1910
1911	ah->beacon_interval = beacon_period;
1912
1913	ENABLE_REGWRITE_BUFFER(ah);
1914
1915	switch (ah->opmode) {
1916	case NL80211_IFTYPE_STATION:
1917	case NL80211_IFTYPE_MONITOR:
1918		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1919		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1920		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1921		flags |= AR_TBTT_TIMER_EN;
1922		break;
1923	case NL80211_IFTYPE_ADHOC:
1924	case NL80211_IFTYPE_MESH_POINT:
1925		REG_SET_BIT(ah, AR_TXCFG,
1926			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1927		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1928			  TU_TO_USEC(next_beacon +
1929				     (ah->atim_window ? ah->
1930				      atim_window : 1)));
1931		flags |= AR_NDP_TIMER_EN;
1932	case NL80211_IFTYPE_AP:
1933		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1934		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1935			  TU_TO_USEC(next_beacon -
1936				     ah->config.
1937				     dma_beacon_response_time));
1938		REG_WRITE(ah, AR_NEXT_SWBA,
1939			  TU_TO_USEC(next_beacon -
1940				     ah->config.
1941				     sw_beacon_response_time));
1942		flags |=
1943			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1944		break;
1945	default:
1946		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1947			  "%s: unsupported opmode: %d\n",
1948			  __func__, ah->opmode);
1949		return;
1950		break;
1951	}
1952
1953	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1954	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1955	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1956	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1957
1958	REGWRITE_BUFFER_FLUSH(ah);
1959	DISABLE_REGWRITE_BUFFER(ah);
1960
1961	beacon_period &= ~ATH9K_BEACON_ENA;
1962	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1963		ath9k_hw_reset_tsf(ah);
1964	}
1965
1966	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1967}
1968EXPORT_SYMBOL(ath9k_hw_beaconinit);
1969
1970void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1971				    const struct ath9k_beacon_state *bs)
1972{
1973	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1974	struct ath9k_hw_capabilities *pCap = &ah->caps;
1975	struct ath_common *common = ath9k_hw_common(ah);
1976
1977	ENABLE_REGWRITE_BUFFER(ah);
1978
1979	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1980
1981	REG_WRITE(ah, AR_BEACON_PERIOD,
1982		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1983	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1984		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1985
1986	REGWRITE_BUFFER_FLUSH(ah);
1987	DISABLE_REGWRITE_BUFFER(ah);
1988
1989	REG_RMW_FIELD(ah, AR_RSSI_THR,
1990		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1991
1992	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1993
1994	if (bs->bs_sleepduration > beaconintval)
1995		beaconintval = bs->bs_sleepduration;
1996
1997	dtimperiod = bs->bs_dtimperiod;
1998	if (bs->bs_sleepduration > dtimperiod)
1999		dtimperiod = bs->bs_sleepduration;
2000
2001	if (beaconintval == dtimperiod)
2002		nextTbtt = bs->bs_nextdtim;
2003	else
2004		nextTbtt = bs->bs_nexttbtt;
2005
2006	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2007	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2008	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2009	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2010
2011	ENABLE_REGWRITE_BUFFER(ah);
2012
2013	REG_WRITE(ah, AR_NEXT_DTIM,
2014		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2015	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2016
2017	REG_WRITE(ah, AR_SLEEP1,
2018		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2019		  | AR_SLEEP1_ASSUME_DTIM);
2020
2021	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2022		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2023	else
2024		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2025
2026	REG_WRITE(ah, AR_SLEEP2,
2027		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2028
2029	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2030	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2031
2032	REGWRITE_BUFFER_FLUSH(ah);
2033	DISABLE_REGWRITE_BUFFER(ah);
2034
2035	REG_SET_BIT(ah, AR_TIMER_MODE,
2036		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2037		    AR_DTIM_TIMER_EN);
2038
2039	/* TSF Out of Range Threshold */
2040	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2041}
2042EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2043
2044/*******************/
2045/* HW Capabilities */
2046/*******************/
2047
2048int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2049{
2050	struct ath9k_hw_capabilities *pCap = &ah->caps;
2051	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2052	struct ath_common *common = ath9k_hw_common(ah);
2053	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2054
2055	u16 capField = 0, eeval;
2056
2057	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2058	regulatory->current_rd = eeval;
2059
2060	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2061	if (AR_SREV_9285_10_OR_LATER(ah))
2062		eeval |= AR9285_RDEXT_DEFAULT;
2063	regulatory->current_rd_ext = eeval;
2064
2065	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2066
2067	if (ah->opmode != NL80211_IFTYPE_AP &&
2068	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2069		if (regulatory->current_rd == 0x64 ||
2070		    regulatory->current_rd == 0x65)
2071			regulatory->current_rd += 5;
2072		else if (regulatory->current_rd == 0x41)
2073			regulatory->current_rd = 0x43;
2074		ath_print(common, ATH_DBG_REGULATORY,
2075			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
2076	}
2077
2078	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2079	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2080		ath_print(common, ATH_DBG_FATAL,
2081			  "no band has been marked as supported in EEPROM.\n");
2082		return -EINVAL;
2083	}
2084
2085	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2086
2087	if (eeval & AR5416_OPFLAGS_11A) {
2088		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2089		if (ah->config.ht_enable) {
2090			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2091				set_bit(ATH9K_MODE_11NA_HT20,
2092					pCap->wireless_modes);
2093			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2094				set_bit(ATH9K_MODE_11NA_HT40PLUS,
2095					pCap->wireless_modes);
2096				set_bit(ATH9K_MODE_11NA_HT40MINUS,
2097					pCap->wireless_modes);
2098			}
2099		}
2100	}
2101
2102	if (eeval & AR5416_OPFLAGS_11G) {
2103		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2104		if (ah->config.ht_enable) {
2105			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2106				set_bit(ATH9K_MODE_11NG_HT20,
2107					pCap->wireless_modes);
2108			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2109				set_bit(ATH9K_MODE_11NG_HT40PLUS,
2110					pCap->wireless_modes);
2111				set_bit(ATH9K_MODE_11NG_HT40MINUS,
2112					pCap->wireless_modes);
2113			}
2114		}
2115	}
2116
2117	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2118	/*
2119	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2120	 * the EEPROM.
2121	 */
2122	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2123	    !(eeval & AR5416_OPFLAGS_11A) &&
2124	    !(AR_SREV_9271(ah)))
2125		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2126		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2127	else
2128		/* Use rx_chainmask from EEPROM. */
2129		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2130
2131	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2132		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2133
2134	pCap->low_2ghz_chan = 2312;
2135	pCap->high_2ghz_chan = 2732;
2136
2137	pCap->low_5ghz_chan = 4920;
2138	pCap->high_5ghz_chan = 6100;
2139
2140	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2141	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2142	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2143
2144	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2145	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2146	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2147
2148	if (ah->config.ht_enable)
2149		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2150	else
2151		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2152
2153	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2154	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2155	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2156	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2157
2158	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2159		pCap->total_queues =
2160			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2161	else
2162		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2163
2164	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2165		pCap->keycache_size =
2166			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2167	else
2168		pCap->keycache_size = AR_KEYTABLE_SIZE;
2169
2170	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2171
2172	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2173		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2174	else
2175		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2176
2177	if (AR_SREV_9271(ah))
2178		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2179	else if (AR_DEVID_7010(ah))
2180		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2181	else if (AR_SREV_9285_10_OR_LATER(ah))
2182		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2183	else if (AR_SREV_9280_10_OR_LATER(ah))
2184		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2185	else
2186		pCap->num_gpio_pins = AR_NUM_GPIO;
2187
2188	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2189		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2190		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2191	} else {
2192		pCap->rts_aggr_limit = (8 * 1024);
2193	}
2194
2195	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2196
2197#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2198	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2199	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2200		ah->rfkill_gpio =
2201			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2202		ah->rfkill_polarity =
2203			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2204
2205		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2206	}
2207#endif
2208	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2209		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2210	else
2211		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2212
2213	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2214		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2215	else
2216		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2217
2218	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2219		pCap->reg_cap =
2220			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2221			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2222			AR_EEPROM_EEREGCAP_EN_KK_U2 |
2223			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2224	} else {
2225		pCap->reg_cap =
2226			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2227			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2228	}
2229
2230	/* Advertise midband for AR5416 with FCC midband set in eeprom */
2231	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2232	    AR_SREV_5416(ah))
2233		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2234
2235	pCap->num_antcfg_5ghz =
2236		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2237	pCap->num_antcfg_2ghz =
2238		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2239
2240	if (AR_SREV_9280_10_OR_LATER(ah) &&
2241	    ath9k_hw_btcoex_supported(ah)) {
2242		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2243		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2244
2245		if (AR_SREV_9285(ah)) {
2246			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2247			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2248		} else {
2249			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2250		}
2251	} else {
2252		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2253	}
2254
2255	if (AR_SREV_9300_20_OR_LATER(ah)) {
2256		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2257				 ATH9K_HW_CAP_FASTCLOCK;
2258		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2259		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2260		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2261		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2262		pCap->txs_len = sizeof(struct ar9003_txs);
2263		if (!ah->config.paprd_disable &&
2264		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2265			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2266	} else {
2267		pCap->tx_desc_len = sizeof(struct ath_desc);
2268		if (AR_SREV_9280_20(ah) &&
2269		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2270		      AR5416_EEP_MINOR_VER_16) ||
2271		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2272			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2273	}
2274
2275	if (AR_SREV_9300_20_OR_LATER(ah))
2276		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2277
2278	if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2279		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2280
2281	return 0;
2282}
2283
2284/****************************/
2285/* GPIO / RFKILL / Antennae */
2286/****************************/
2287
2288static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2289					 u32 gpio, u32 type)
2290{
2291	int addr;
2292	u32 gpio_shift, tmp;
2293
2294	if (gpio > 11)
2295		addr = AR_GPIO_OUTPUT_MUX3;
2296	else if (gpio > 5)
2297		addr = AR_GPIO_OUTPUT_MUX2;
2298	else
2299		addr = AR_GPIO_OUTPUT_MUX1;
2300
2301	gpio_shift = (gpio % 6) * 5;
2302
2303	if (AR_SREV_9280_20_OR_LATER(ah)
2304	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2305		REG_RMW(ah, addr, (type << gpio_shift),
2306			(0x1f << gpio_shift));
2307	} else {
2308		tmp = REG_READ(ah, addr);
2309		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2310		tmp &= ~(0x1f << gpio_shift);
2311		tmp |= (type << gpio_shift);
2312		REG_WRITE(ah, addr, tmp);
2313	}
2314}
2315
2316void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2317{
2318	u32 gpio_shift;
2319
2320	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2321
2322	if (AR_DEVID_7010(ah)) {
2323		gpio_shift = gpio;
2324		REG_RMW(ah, AR7010_GPIO_OE,
2325			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2326			(AR7010_GPIO_OE_MASK << gpio_shift));
2327		return;
2328	}
2329
2330	gpio_shift = gpio << 1;
2331	REG_RMW(ah,
2332		AR_GPIO_OE_OUT,
2333		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2334		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2335}
2336EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2337
2338u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2339{
2340#define MS_REG_READ(x, y) \
2341	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2342
2343	if (gpio >= ah->caps.num_gpio_pins)
2344		return 0xffffffff;
2345
2346	if (AR_DEVID_7010(ah)) {
2347		u32 val;
2348		val = REG_READ(ah, AR7010_GPIO_IN);
2349		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2350	} else if (AR_SREV_9300_20_OR_LATER(ah))
2351		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2352			AR_GPIO_BIT(gpio)) != 0;
2353	else if (AR_SREV_9271(ah))
2354		return MS_REG_READ(AR9271, gpio) != 0;
2355	else if (AR_SREV_9287_10_OR_LATER(ah))
2356		return MS_REG_READ(AR9287, gpio) != 0;
2357	else if (AR_SREV_9285_10_OR_LATER(ah))
2358		return MS_REG_READ(AR9285, gpio) != 0;
2359	else if (AR_SREV_9280_10_OR_LATER(ah))
2360		return MS_REG_READ(AR928X, gpio) != 0;
2361	else
2362		return MS_REG_READ(AR, gpio) != 0;
2363}
2364EXPORT_SYMBOL(ath9k_hw_gpio_get);
2365
2366void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2367			 u32 ah_signal_type)
2368{
2369	u32 gpio_shift;
2370
2371	if (AR_DEVID_7010(ah)) {
2372		gpio_shift = gpio;
2373		REG_RMW(ah, AR7010_GPIO_OE,
2374			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2375			(AR7010_GPIO_OE_MASK << gpio_shift));
2376		return;
2377	}
2378
2379	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2380	gpio_shift = 2 * gpio;
2381	REG_RMW(ah,
2382		AR_GPIO_OE_OUT,
2383		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2384		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2385}
2386EXPORT_SYMBOL(ath9k_hw_cfg_output);
2387
2388void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2389{
2390	if (AR_DEVID_7010(ah)) {
2391		val = val ? 0 : 1;
2392		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2393			AR_GPIO_BIT(gpio));
2394		return;
2395	}
2396
2397	if (AR_SREV_9271(ah))
2398		val = ~val;
2399
2400	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2401		AR_GPIO_BIT(gpio));
2402}
2403EXPORT_SYMBOL(ath9k_hw_set_gpio);
2404
2405u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2406{
2407	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2408}
2409EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2410
2411void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2412{
2413	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2414}
2415EXPORT_SYMBOL(ath9k_hw_setantenna);
2416
2417/*********************/
2418/* General Operation */
2419/*********************/
2420
2421u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2422{
2423	u32 bits = REG_READ(ah, AR_RX_FILTER);
2424	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2425
2426	if (phybits & AR_PHY_ERR_RADAR)
2427		bits |= ATH9K_RX_FILTER_PHYRADAR;
2428	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2429		bits |= ATH9K_RX_FILTER_PHYERR;
2430
2431	return bits;
2432}
2433EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2434
2435void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2436{
2437	u32 phybits;
2438
2439	ENABLE_REGWRITE_BUFFER(ah);
2440
2441	REG_WRITE(ah, AR_RX_FILTER, bits);
2442
2443	phybits = 0;
2444	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2445		phybits |= AR_PHY_ERR_RADAR;
2446	if (bits & ATH9K_RX_FILTER_PHYERR)
2447		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2448	REG_WRITE(ah, AR_PHY_ERR, phybits);
2449
2450	if (phybits)
2451		REG_WRITE(ah, AR_RXCFG,
2452			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2453	else
2454		REG_WRITE(ah, AR_RXCFG,
2455			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2456
2457	REGWRITE_BUFFER_FLUSH(ah);
2458	DISABLE_REGWRITE_BUFFER(ah);
2459}
2460EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2461
2462bool ath9k_hw_phy_disable(struct ath_hw *ah)
2463{
2464	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2465		return false;
2466
2467	ath9k_hw_init_pll(ah, NULL);
2468	return true;
2469}
2470EXPORT_SYMBOL(ath9k_hw_phy_disable);
2471
2472bool ath9k_hw_disable(struct ath_hw *ah)
2473{
2474	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2475		return false;
2476
2477	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2478		return false;
2479
2480	ath9k_hw_init_pll(ah, NULL);
2481	return true;
2482}
2483EXPORT_SYMBOL(ath9k_hw_disable);
2484
2485void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2486{
2487	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488	struct ath9k_channel *chan = ah->curchan;
2489	struct ieee80211_channel *channel = chan->chan;
2490
2491	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2492
2493	ah->eep_ops->set_txpower(ah, chan,
2494				 ath9k_regd_get_ctl(regulatory, chan),
2495				 channel->max_antenna_gain * 2,
2496				 channel->max_power * 2,
2497				 min((u32) MAX_RATE_POWER,
2498				 (u32) regulatory->power_limit));
2499}
2500EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2501
2502void ath9k_hw_setopmode(struct ath_hw *ah)
2503{
2504	ath9k_hw_set_operating_mode(ah, ah->opmode);
2505}
2506EXPORT_SYMBOL(ath9k_hw_setopmode);
2507
2508void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2509{
2510	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2511	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2512}
2513EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2514
2515void ath9k_hw_write_associd(struct ath_hw *ah)
2516{
2517	struct ath_common *common = ath9k_hw_common(ah);
2518
2519	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2520	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2521		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2522}
2523EXPORT_SYMBOL(ath9k_hw_write_associd);
2524
2525#define ATH9K_MAX_TSF_READ 10
2526
2527u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2528{
2529	u32 tsf_lower, tsf_upper1, tsf_upper2;
2530	int i;
2531
2532	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2533	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2534		tsf_lower = REG_READ(ah, AR_TSF_L32);
2535		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2536		if (tsf_upper2 == tsf_upper1)
2537			break;
2538		tsf_upper1 = tsf_upper2;
2539	}
2540
2541	WARN_ON( i == ATH9K_MAX_TSF_READ );
2542
2543	return (((u64)tsf_upper1 << 32) | tsf_lower);
2544}
2545EXPORT_SYMBOL(ath9k_hw_gettsf64);
2546
2547void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2548{
2549	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2550	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2551}
2552EXPORT_SYMBOL(ath9k_hw_settsf64);
2553
2554void ath9k_hw_reset_tsf(struct ath_hw *ah)
2555{
2556	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2557			   AH_TSF_WRITE_TIMEOUT))
2558		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2559			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2560
2561	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2562}
2563EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2564
2565void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2566{
2567	if (setting)
2568		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2569	else
2570		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2571}
2572EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2573
2574void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2575{
2576	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2577	u32 macmode;
2578
2579	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2580		macmode = AR_2040_JOINED_RX_CLEAR;
2581	else
2582		macmode = 0;
2583
2584	REG_WRITE(ah, AR_2040_MODE, macmode);
2585}
2586
2587/* HW Generic timers configuration */
2588
2589static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2590{
2591	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2592	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2593	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2594	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2595	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2596	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2597	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2598	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2599	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2600	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2601				AR_NDP2_TIMER_MODE, 0x0002},
2602	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2603				AR_NDP2_TIMER_MODE, 0x0004},
2604	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2605				AR_NDP2_TIMER_MODE, 0x0008},
2606	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2607				AR_NDP2_TIMER_MODE, 0x0010},
2608	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2609				AR_NDP2_TIMER_MODE, 0x0020},
2610	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2611				AR_NDP2_TIMER_MODE, 0x0040},
2612	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2613				AR_NDP2_TIMER_MODE, 0x0080}
2614};
2615
2616/* HW generic timer primitives */
2617
2618/* compute and clear index of rightmost 1 */
2619static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2620{
2621	u32 b;
2622
2623	b = *mask;
2624	b &= (0-b);
2625	*mask &= ~b;
2626	b *= debruijn32;
2627	b >>= 27;
2628
2629	return timer_table->gen_timer_index[b];
2630}
2631
2632u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2633{
2634	return REG_READ(ah, AR_TSF_L32);
2635}
2636EXPORT_SYMBOL(ath9k_hw_gettsf32);
2637
2638struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2639					  void (*trigger)(void *),
2640					  void (*overflow)(void *),
2641					  void *arg,
2642					  u8 timer_index)
2643{
2644	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2645	struct ath_gen_timer *timer;
2646
2647	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2648
2649	if (timer == NULL) {
2650		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2651			  "Failed to allocate memory"
2652			  "for hw timer[%d]\n", timer_index);
2653		return NULL;
2654	}
2655
2656	/* allocate a hardware generic timer slot */
2657	timer_table->timers[timer_index] = timer;
2658	timer->index = timer_index;
2659	timer->trigger = trigger;
2660	timer->overflow = overflow;
2661	timer->arg = arg;
2662
2663	return timer;
2664}
2665EXPORT_SYMBOL(ath_gen_timer_alloc);
2666
2667void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2668			      struct ath_gen_timer *timer,
2669			      u32 timer_next,
2670			      u32 timer_period)
2671{
2672	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2673	u32 tsf;
2674
2675	BUG_ON(!timer_period);
2676
2677	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2678
2679	tsf = ath9k_hw_gettsf32(ah);
2680
2681	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2682		  "curent tsf %x period %x"
2683		  "timer_next %x\n", tsf, timer_period, timer_next);
2684
2685	/*
2686	 * Pull timer_next forward if the current TSF already passed it
2687	 * because of software latency
2688	 */
2689	if (timer_next < tsf)
2690		timer_next = tsf + timer_period;
2691
2692	/*
2693	 * Program generic timer registers
2694	 */
2695	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2696		 timer_next);
2697	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2698		  timer_period);
2699	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2700		    gen_tmr_configuration[timer->index].mode_mask);
2701
2702	/* Enable both trigger and thresh interrupt masks */
2703	REG_SET_BIT(ah, AR_IMR_S5,
2704		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2705		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2706}
2707EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2708
2709void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2710{
2711	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2712
2713	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2714		(timer->index >= ATH_MAX_GEN_TIMER)) {
2715		return;
2716	}
2717
2718	/* Clear generic timer enable bits. */
2719	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2720			gen_tmr_configuration[timer->index].mode_mask);
2721
2722	/* Disable both trigger and thresh interrupt masks */
2723	REG_CLR_BIT(ah, AR_IMR_S5,
2724		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2725		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2726
2727	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2728}
2729EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2730
2731void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2732{
2733	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2734
2735	/* free the hardware generic timer slot */
2736	timer_table->timers[timer->index] = NULL;
2737	kfree(timer);
2738}
2739EXPORT_SYMBOL(ath_gen_timer_free);
2740
2741/*
2742 * Generic Timer Interrupts handling
2743 */
2744void ath_gen_timer_isr(struct ath_hw *ah)
2745{
2746	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2747	struct ath_gen_timer *timer;
2748	struct ath_common *common = ath9k_hw_common(ah);
2749	u32 trigger_mask, thresh_mask, index;
2750
2751	/* get hardware generic timer interrupt status */
2752	trigger_mask = ah->intr_gen_timer_trigger;
2753	thresh_mask = ah->intr_gen_timer_thresh;
2754	trigger_mask &= timer_table->timer_mask.val;
2755	thresh_mask &= timer_table->timer_mask.val;
2756
2757	trigger_mask &= ~thresh_mask;
2758
2759	while (thresh_mask) {
2760		index = rightmost_index(timer_table, &thresh_mask);
2761		timer = timer_table->timers[index];
2762		BUG_ON(!timer);
2763		ath_print(common, ATH_DBG_HWTIMER,
2764			  "TSF overflow for Gen timer %d\n", index);
2765		timer->overflow(timer->arg);
2766	}
2767
2768	while (trigger_mask) {
2769		index = rightmost_index(timer_table, &trigger_mask);
2770		timer = timer_table->timers[index];
2771		BUG_ON(!timer);
2772		ath_print(common, ATH_DBG_HWTIMER,
2773			  "Gen timer[%d] trigger\n", index);
2774		timer->trigger(timer->arg);
2775	}
2776}
2777EXPORT_SYMBOL(ath_gen_timer_isr);
2778
2779/********/
2780/* HTC  */
2781/********/
2782
2783void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2784{
2785	ah->htc_reset_init = true;
2786}
2787EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2788
2789static struct {
2790	u32 version;
2791	const char * name;
2792} ath_mac_bb_names[] = {
2793	/* Devices with external radios */
2794	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2795	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2796	{ AR_SREV_VERSION_9100,		"9100" },
2797	{ AR_SREV_VERSION_9160,		"9160" },
2798	/* Single-chip solutions */
2799	{ AR_SREV_VERSION_9280,		"9280" },
2800	{ AR_SREV_VERSION_9285,		"9285" },
2801	{ AR_SREV_VERSION_9287,         "9287" },
2802	{ AR_SREV_VERSION_9271,         "9271" },
2803	{ AR_SREV_VERSION_9300,         "9300" },
2804};
2805
2806/* For devices with external radios */
2807static struct {
2808	u16 version;
2809	const char * name;
2810} ath_rf_names[] = {
2811	{ 0,				"5133" },
2812	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2813	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2814	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2815	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2816};
2817
2818/*
2819 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2820 */
2821static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2822{
2823	int i;
2824
2825	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2826		if (ath_mac_bb_names[i].version == mac_bb_version) {
2827			return ath_mac_bb_names[i].name;
2828		}
2829	}
2830
2831	return "????";
2832}
2833
2834/*
2835 * Return the RF name. "????" is returned if the RF is unknown.
2836 * Used for devices with external radios.
2837 */
2838static const char *ath9k_hw_rf_name(u16 rf_version)
2839{
2840	int i;
2841
2842	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2843		if (ath_rf_names[i].version == rf_version) {
2844			return ath_rf_names[i].name;
2845		}
2846	}
2847
2848	return "????";
2849}
2850
2851void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2852{
2853	int used;
2854
2855	/* chipsets >= AR9280 are single-chip */
2856	if (AR_SREV_9280_10_OR_LATER(ah)) {
2857		used = snprintf(hw_name, len,
2858			       "Atheros AR%s Rev:%x",
2859			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2860			       ah->hw_version.macRev);
2861	}
2862	else {
2863		used = snprintf(hw_name, len,
2864			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2865			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2866			       ah->hw_version.macRev,
2867			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2868						AR_RADIO_SREV_MAJOR)),
2869			       ah->hw_version.phyRev);
2870	}
2871
2872	hw_name[used] = '\0';
2873}
2874EXPORT_SYMBOL(ath9k_hw_name);
2875