• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wimax/i2400m/
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * USB RX handling
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 *   * Redistributions of source code must retain the above copyright
13 *     notice, this list of conditions and the following disclaimer.
14 *   * Redistributions in binary form must reproduce the above copyright
15 *     notice, this list of conditions and the following disclaimer in
16 *     the documentation and/or other materials provided with the
17 *     distribution.
18 *   * Neither the name of Intel Corporation nor the names of its
19 *     contributors may be used to endorse or promote products derived
20 *     from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 *  - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 *  - Use skb_clone(), break up processing in chunks
40 *  - Split transport/device specific
41 *  - Make buffer size dynamic to exert less memory pressure
42 *
43 *
44 * This handles the RX path on USB.
45 *
46 * When a notification is received that says 'there is RX data ready',
47 * we call i2400mu_rx_kick(); that wakes up the RX kthread, which
48 * reads a buffer from USB and passes it to i2400m_rx() in the generic
49 * handling code. The RX buffer has an specific format that is
50 * described in rx.c.
51 *
52 * We use a kernel thread in a loop because:
53 *
54 *  - we want to be able to call the USB power management get/put
55 *    functions (blocking) before each transaction.
56 *
57 *  - We might get a lot of notifications and we don't want to submit
58 *    a zillion reads; by serializing, we are throttling.
59 *
60 *  - RX data processing can get heavy enough so that it is not
61 *    appropiate for doing it in the USB callback; thus we run it in a
62 *    process context.
63 *
64 * We provide a read buffer of an arbitrary size (short of a page); if
65 * the callback reports -EOVERFLOW, it means it was too small, so we
66 * just double the size and retry (being careful to append, as
67 * sometimes the device provided some data). Every now and then we
68 * check if the average packet size is smaller than the current packet
69 * size and if so, we halve it. At the end, the size of the
70 * preallocated buffer should be following the average received
71 * transaction size, adapting dynamically to it.
72 *
73 * ROADMAP
74 *
75 * i2400mu_rx_kick()		   Called from notif.c when we get a
76 *   			           'data ready' notification
77 * i2400mu_rxd()                   Kernel RX daemon
78 *   i2400mu_rx()                  Receive USB data
79 *   i2400m_rx()                   Send data to generic i2400m RX handling
80 *
81 * i2400mu_rx_setup()              called from i2400mu_bus_dev_start()
82 *
83 * i2400mu_rx_release()            called from i2400mu_bus_dev_stop()
84 */
85#include <linux/workqueue.h>
86#include <linux/slab.h>
87#include <linux/usb.h>
88#include "i2400m-usb.h"
89
90
91#define D_SUBMODULE rx
92#include "usb-debug-levels.h"
93
94/*
95 * Dynamic RX size
96 *
97 * We can't let the rx_size be a multiple of 512 bytes (the RX
98 * endpoint's max packet size). On some USB host controllers (we
99 * haven't been able to fully characterize which), if the device is
100 * about to send (for example) X bytes and we only post a buffer to
101 * receive n*512, it will fail to mark that as babble (so that
102 * i2400mu_rx() [case -EOVERFLOW] can resize the buffer and get the
103 * rest).
104 *
105 * So on growing or shrinking, if it is a multiple of the
106 * maxpacketsize, we remove some (instead of incresing some, so in a
107 * buddy allocator we try to waste less space).
108 *
109 * Note we also need a hook for this on i2400mu_rx() -- when we do the
110 * first read, we are sure we won't hit this spot because
111 * i240mm->rx_size has been set properly. However, if we have to
112 * double because of -EOVERFLOW, when we launch the read to get the
113 * rest of the data, we *have* to make sure that also is not a
114 * multiple of the max_pkt_size.
115 */
116
117static
118size_t i2400mu_rx_size_grow(struct i2400mu *i2400mu)
119{
120	struct device *dev = &i2400mu->usb_iface->dev;
121	size_t rx_size;
122	const size_t max_pkt_size = 512;
123
124	rx_size = 2 * i2400mu->rx_size;
125	if (rx_size % max_pkt_size == 0) {
126		rx_size -= 8;
127		d_printf(1, dev,
128			 "RX: expected size grew to %zu [adjusted -8] "
129			 "from %zu\n",
130			 rx_size, i2400mu->rx_size);
131	} else
132		d_printf(1, dev,
133			 "RX: expected size grew to %zu from %zu\n",
134			 rx_size, i2400mu->rx_size);
135	return rx_size;
136}
137
138
139static
140void i2400mu_rx_size_maybe_shrink(struct i2400mu *i2400mu)
141{
142	const size_t max_pkt_size = 512;
143	struct device *dev = &i2400mu->usb_iface->dev;
144
145	if (unlikely(i2400mu->rx_size_cnt >= 100
146		     && i2400mu->rx_size_auto_shrink)) {
147		size_t avg_rx_size =
148			i2400mu->rx_size_acc / i2400mu->rx_size_cnt;
149		size_t new_rx_size = i2400mu->rx_size / 2;
150		if (avg_rx_size < new_rx_size) {
151			if (new_rx_size % max_pkt_size == 0) {
152				new_rx_size -= 8;
153				d_printf(1, dev,
154					 "RX: expected size shrank to %zu "
155					 "[adjusted -8] from %zu\n",
156					 new_rx_size, i2400mu->rx_size);
157			} else
158				d_printf(1, dev,
159					 "RX: expected size shrank to %zu "
160					 "from %zu\n",
161					 new_rx_size, i2400mu->rx_size);
162			i2400mu->rx_size = new_rx_size;
163			i2400mu->rx_size_cnt = 0;
164			i2400mu->rx_size_acc = i2400mu->rx_size;
165		}
166	}
167}
168
169/*
170 * Receive a message with payloads from the USB bus into an skb
171 *
172 * @i2400mu: USB device descriptor
173 * @rx_skb: skb where to place the received message
174 *
175 * Deals with all the USB-specifics of receiving, dynamically
176 * increasing the buffer size if so needed. Returns the payload in the
177 * skb, ready to process. On a zero-length packet, we retry.
178 *
179 * On soft USB errors, we retry (until they become too frequent and
180 * then are promoted to hard); on hard USB errors, we reset the
181 * device. On other errors (skb realloacation, we just drop it and
182 * hope for the next invocation to solve it).
183 *
184 * Returns: pointer to the skb if ok, ERR_PTR on error.
185 *   NOTE: this function might realloc the skb (if it is too small),
186 *   so always update with the one returned.
187 *   ERR_PTR() is < 0 on error.
188 *   Will return NULL if it cannot reallocate -- this can be
189 *   considered a transient retryable error.
190 */
191static
192struct sk_buff *i2400mu_rx(struct i2400mu *i2400mu, struct sk_buff *rx_skb)
193{
194	int result = 0;
195	struct device *dev = &i2400mu->usb_iface->dev;
196	int usb_pipe, read_size, rx_size, do_autopm;
197	struct usb_endpoint_descriptor *epd;
198	const size_t max_pkt_size = 512;
199
200	d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
201	do_autopm = atomic_read(&i2400mu->do_autopm);
202	result = do_autopm ?
203		usb_autopm_get_interface(i2400mu->usb_iface) : 0;
204	if (result < 0) {
205		dev_err(dev, "RX: can't get autopm: %d\n", result);
206		do_autopm = 0;
207	}
208	epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_in);
209	usb_pipe = usb_rcvbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
210retry:
211	rx_size = skb_end_pointer(rx_skb) - rx_skb->data - rx_skb->len;
212	if (unlikely(rx_size % max_pkt_size == 0)) {
213		rx_size -= 8;
214		d_printf(1, dev, "RX: rx_size adapted to %d [-8]\n", rx_size);
215	}
216	result = usb_bulk_msg(
217		i2400mu->usb_dev, usb_pipe, rx_skb->data + rx_skb->len,
218		rx_size, &read_size, 200);
219	usb_mark_last_busy(i2400mu->usb_dev);
220	switch (result) {
221	case 0:
222		if (read_size == 0)
223			goto retry;	/* ZLP, just resubmit */
224		skb_put(rx_skb, read_size);
225		break;
226	case -EPIPE:
227		/*
228		 * Stall -- maybe the device is choking with our
229		 * requests. Clear it and give it some time. If they
230		 * happen to often, it might be another symptom, so we
231		 * reset.
232		 *
233		 * No error handling for usb_clear_halt(0; if it
234		 * works, the retry works; if it fails, this switch
235		 * does the error handling for us.
236		 */
237		if (edc_inc(&i2400mu->urb_edc,
238			    10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
239			dev_err(dev, "BM-CMD: too many stalls in "
240				"URB; resetting device\n");
241			goto do_reset;
242		}
243		usb_clear_halt(i2400mu->usb_dev, usb_pipe);
244		msleep(10);	/* give the device some time */
245		goto retry;
246	case -EINVAL:			/* while removing driver */
247	case -ENODEV:			/* dev disconnect ... */
248	case -ENOENT:			/* just ignore it */
249	case -ESHUTDOWN:
250	case -ECONNRESET:
251		break;
252	case -EOVERFLOW: {		/* too small, reallocate */
253		struct sk_buff *new_skb;
254		rx_size = i2400mu_rx_size_grow(i2400mu);
255		if (rx_size <= (1 << 16))	/* cap it */
256			i2400mu->rx_size = rx_size;
257		else if (printk_ratelimit()) {
258			dev_err(dev, "BUG? rx_size up to %d\n", rx_size);
259			result = -EINVAL;
260			goto out;
261		}
262		skb_put(rx_skb, read_size);
263		new_skb = skb_copy_expand(rx_skb, 0, rx_size - rx_skb->len,
264					  GFP_KERNEL);
265		if (new_skb == NULL) {
266			if (printk_ratelimit())
267				dev_err(dev, "RX: Can't reallocate skb to %d; "
268					"RX dropped\n", rx_size);
269			kfree_skb(rx_skb);
270			rx_skb = NULL;
271			goto out;	/* drop it...*/
272		}
273		kfree_skb(rx_skb);
274		rx_skb = new_skb;
275		i2400mu->rx_size_cnt = 0;
276		i2400mu->rx_size_acc = i2400mu->rx_size;
277		d_printf(1, dev, "RX: size changed to %d, received %d, "
278			 "copied %d, capacity %ld\n",
279			 rx_size, read_size, rx_skb->len,
280			 (long) (skb_end_pointer(new_skb) - new_skb->head));
281		goto retry;
282	}
283		/* In most cases, it happens due to the hardware scheduling a
284		 * read when there was no data - unfortunately, we have no way
285		 * to tell this timeout from a USB timeout. So we just ignore
286		 * it. */
287	case -ETIMEDOUT:
288		dev_err(dev, "RX: timeout: %d\n", result);
289		result = 0;
290		break;
291	default:			/* Any error */
292		if (edc_inc(&i2400mu->urb_edc,
293			    EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME))
294			goto error_reset;
295		dev_err(dev, "RX: error receiving URB: %d, retrying\n", result);
296		goto retry;
297	}
298out:
299	if (do_autopm)
300		usb_autopm_put_interface(i2400mu->usb_iface);
301	d_fnend(4, dev, "(i2400mu %p) = %p\n", i2400mu, rx_skb);
302	return rx_skb;
303
304error_reset:
305	dev_err(dev, "RX: maximum errors in URB exceeded; "
306		"resetting device\n");
307do_reset:
308	usb_queue_reset_device(i2400mu->usb_iface);
309	rx_skb = ERR_PTR(result);
310	goto out;
311}
312
313
314/*
315 * Kernel thread for USB reception of data
316 *
317 * This thread waits for a kick; once kicked, it will allocate an skb
318 * and receive a single message to it from USB (using
319 * i2400mu_rx()). Once received, it is passed to the generic i2400m RX
320 * code for processing.
321 *
322 * When done processing, it runs some dirty statistics to verify if
323 * the last 100 messages received were smaller than half of the
324 * current RX buffer size. In that case, the RX buffer size is
325 * halved. This will helps lowering the pressure on the memory
326 * allocator.
327 *
328 * Hard errors force the thread to exit.
329 */
330static
331int i2400mu_rxd(void *_i2400mu)
332{
333	int result = 0;
334	struct i2400mu *i2400mu = _i2400mu;
335	struct i2400m *i2400m = &i2400mu->i2400m;
336	struct device *dev = &i2400mu->usb_iface->dev;
337	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
338	size_t pending;
339	int rx_size;
340	struct sk_buff *rx_skb;
341	unsigned long flags;
342
343	d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
344	spin_lock_irqsave(&i2400m->rx_lock, flags);
345	BUG_ON(i2400mu->rx_kthread != NULL);
346	i2400mu->rx_kthread = current;
347	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
348	while (1) {
349		d_printf(2, dev, "RX: waiting for messages\n");
350		pending = 0;
351		wait_event_interruptible(
352			i2400mu->rx_wq,
353			(kthread_should_stop()	/* check this first! */
354			 || (pending = atomic_read(&i2400mu->rx_pending_count)))
355			);
356		if (kthread_should_stop())
357			break;
358		if (pending == 0)
359			continue;
360		rx_size = i2400mu->rx_size;
361		d_printf(2, dev, "RX: reading up to %d bytes\n", rx_size);
362		rx_skb = __netdev_alloc_skb(net_dev, rx_size, GFP_KERNEL);
363		if (rx_skb == NULL) {
364			dev_err(dev, "RX: can't allocate skb [%d bytes]\n",
365				rx_size);
366			msleep(50);	/* give it some time? */
367			continue;
368		}
369
370		/* Receive the message with the payloads */
371		rx_skb = i2400mu_rx(i2400mu, rx_skb);
372		result = PTR_ERR(rx_skb);
373		if (IS_ERR(rx_skb))
374			goto out;
375		atomic_dec(&i2400mu->rx_pending_count);
376		if (rx_skb == NULL || rx_skb->len == 0) {
377			/* some "ignorable" condition */
378			kfree_skb(rx_skb);
379			continue;
380		}
381
382		/* Deliver the message to the generic i2400m code */
383		i2400mu->rx_size_cnt++;
384		i2400mu->rx_size_acc += rx_skb->len;
385		result = i2400m_rx(i2400m, rx_skb);
386		if (result == -EIO
387		    && edc_inc(&i2400mu->urb_edc,
388			       EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
389			goto error_reset;
390		}
391
392		/* Maybe adjust RX buffer size */
393		i2400mu_rx_size_maybe_shrink(i2400mu);
394	}
395	result = 0;
396out:
397	spin_lock_irqsave(&i2400m->rx_lock, flags);
398	i2400mu->rx_kthread = NULL;
399	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
400	d_fnend(4, dev, "(i2400mu %p) = %d\n", i2400mu, result);
401	return result;
402
403error_reset:
404	dev_err(dev, "RX: maximum errors in received buffer exceeded; "
405		"resetting device\n");
406	usb_queue_reset_device(i2400mu->usb_iface);
407	goto out;
408}
409
410
411/*
412 * Start reading from the device
413 *
414 * @i2400m: device instance
415 *
416 * Notify the RX thread that there is data pending.
417 */
418void i2400mu_rx_kick(struct i2400mu *i2400mu)
419{
420	struct i2400m *i2400m = &i2400mu->i2400m;
421	struct device *dev = &i2400mu->usb_iface->dev;
422
423	d_fnstart(3, dev, "(i2400mu %p)\n", i2400m);
424	atomic_inc(&i2400mu->rx_pending_count);
425	wake_up_all(&i2400mu->rx_wq);
426	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
427}
428
429
430int i2400mu_rx_setup(struct i2400mu *i2400mu)
431{
432	int result = 0;
433	struct i2400m *i2400m = &i2400mu->i2400m;
434	struct device *dev = &i2400mu->usb_iface->dev;
435	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
436	struct task_struct *kthread;
437
438	kthread = kthread_run(i2400mu_rxd, i2400mu, "%s-rx",
439			      wimax_dev->name);
440	/* the kthread function sets i2400mu->rx_thread */
441	if (IS_ERR(kthread)) {
442		result = PTR_ERR(kthread);
443		dev_err(dev, "RX: cannot start thread: %d\n", result);
444	}
445	return result;
446}
447
448
449void i2400mu_rx_release(struct i2400mu *i2400mu)
450{
451	unsigned long flags;
452	struct i2400m *i2400m = &i2400mu->i2400m;
453	struct device *dev = i2400m_dev(i2400m);
454	struct task_struct *kthread;
455
456	spin_lock_irqsave(&i2400m->rx_lock, flags);
457	kthread = i2400mu->rx_kthread;
458	i2400mu->rx_kthread = NULL;
459	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
460	if (kthread)
461		kthread_stop(kthread);
462	else
463		d_printf(1, dev, "RX: kthread had already exited\n");
464}
465