• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/sfc/
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
16#include <linux/i2c.h>
17#include <linux/mii.h>
18#include <linux/slab.h>
19#include "net_driver.h"
20#include "bitfield.h"
21#include "efx.h"
22#include "mac.h"
23#include "spi.h"
24#include "nic.h"
25#include "regs.h"
26#include "io.h"
27#include "mdio_10g.h"
28#include "phy.h"
29#include "workarounds.h"
30
31/* Hardware control for SFC4000 (aka Falcon). */
32
33static const unsigned int
34/* "Large" EEPROM device: Atmel AT25640 or similar
35 * 8 KB, 16-bit address, 32 B write block */
36large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
37		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
38		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
39/* Default flash device: Atmel AT25F1024
40 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
42		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
43		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
44		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
45		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
46
47/**************************************************************************
48 *
49 * I2C bus - this is a bit-bashing interface using GPIO pins
50 * Note that it uses the output enables to tristate the outputs
51 * SDA is the data pin and SCL is the clock
52 *
53 **************************************************************************
54 */
55static void falcon_setsda(void *data, int state)
56{
57	struct efx_nic *efx = (struct efx_nic *)data;
58	efx_oword_t reg;
59
60	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
61	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
62	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
63}
64
65static void falcon_setscl(void *data, int state)
66{
67	struct efx_nic *efx = (struct efx_nic *)data;
68	efx_oword_t reg;
69
70	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
71	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
72	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
73}
74
75static int falcon_getsda(void *data)
76{
77	struct efx_nic *efx = (struct efx_nic *)data;
78	efx_oword_t reg;
79
80	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
81	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
82}
83
84static int falcon_getscl(void *data)
85{
86	struct efx_nic *efx = (struct efx_nic *)data;
87	efx_oword_t reg;
88
89	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
90	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
91}
92
93static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
94	.setsda		= falcon_setsda,
95	.setscl		= falcon_setscl,
96	.getsda		= falcon_getsda,
97	.getscl		= falcon_getscl,
98	.udelay		= 5,
99	/* Wait up to 50 ms for slave to let us pull SCL high */
100	.timeout	= DIV_ROUND_UP(HZ, 20),
101};
102
103static void falcon_push_irq_moderation(struct efx_channel *channel)
104{
105	efx_dword_t timer_cmd;
106	struct efx_nic *efx = channel->efx;
107
108	/* Set timer register */
109	if (channel->irq_moderation) {
110		EFX_POPULATE_DWORD_2(timer_cmd,
111				     FRF_AB_TC_TIMER_MODE,
112				     FFE_BB_TIMER_MODE_INT_HLDOFF,
113				     FRF_AB_TC_TIMER_VAL,
114				     channel->irq_moderation - 1);
115	} else {
116		EFX_POPULATE_DWORD_2(timer_cmd,
117				     FRF_AB_TC_TIMER_MODE,
118				     FFE_BB_TIMER_MODE_DIS,
119				     FRF_AB_TC_TIMER_VAL, 0);
120	}
121	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
122	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
123			       channel->channel);
124}
125
126static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
127
128static void falcon_prepare_flush(struct efx_nic *efx)
129{
130	falcon_deconfigure_mac_wrapper(efx);
131
132	/* Wait for the tx and rx fifo's to get to the next packet boundary
133	 * (~1ms without back-pressure), then to drain the remainder of the
134	 * fifo's at data path speeds (negligible), with a healthy margin. */
135	msleep(10);
136}
137
138/* Acknowledge a legacy interrupt from Falcon
139 *
140 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
141 *
142 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143 * BIU. Interrupt acknowledge is read sensitive so must write instead
144 * (then read to ensure the BIU collector is flushed)
145 *
146 * NB most hardware supports MSI interrupts
147 */
148inline void falcon_irq_ack_a1(struct efx_nic *efx)
149{
150	efx_dword_t reg;
151
152	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
153	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
154	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
155}
156
157
158irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
159{
160	struct efx_nic *efx = dev_id;
161	efx_oword_t *int_ker = efx->irq_status.addr;
162	struct efx_channel *channel;
163	int syserr;
164	int queues;
165
166	/* Check to see if this is our interrupt.  If it isn't, we
167	 * exit without having touched the hardware.
168	 */
169	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170		netif_vdbg(efx, intr, efx->net_dev,
171			   "IRQ %d on CPU %d not for me\n", irq,
172			   raw_smp_processor_id());
173		return IRQ_NONE;
174	}
175	efx->last_irq_cpu = raw_smp_processor_id();
176	netif_vdbg(efx, intr, efx->net_dev,
177		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
179
180	/* Determine interrupting queues, clear interrupt status
181	 * register and acknowledge the device interrupt.
182	 */
183	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
184	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
185
186	/* Check to see if we have a serious error condition */
187	if (queues & (1U << efx->fatal_irq_level)) {
188		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
189		if (unlikely(syserr))
190			return efx_nic_fatal_interrupt(efx);
191	}
192
193	EFX_ZERO_OWORD(*int_ker);
194	wmb(); /* Ensure the vector is cleared before interrupt ack */
195	falcon_irq_ack_a1(efx);
196
197	/* Schedule processing of any interrupting queues */
198	channel = &efx->channel[0];
199	while (queues) {
200		if (queues & 0x01)
201			efx_schedule_channel(channel);
202		channel++;
203		queues >>= 1;
204	}
205
206	return IRQ_HANDLED;
207}
208/**************************************************************************
209 *
210 * EEPROM/flash
211 *
212 **************************************************************************
213 */
214
215#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
216
217static int falcon_spi_poll(struct efx_nic *efx)
218{
219	efx_oword_t reg;
220	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
221	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
222}
223
224/* Wait for SPI command completion */
225static int falcon_spi_wait(struct efx_nic *efx)
226{
227	/* Most commands will finish quickly, so we start polling at
228	 * very short intervals.  Sometimes the command may have to
229	 * wait for VPD or expansion ROM access outside of our
230	 * control, so we allow up to 100 ms. */
231	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
232	int i;
233
234	for (i = 0; i < 10; i++) {
235		if (!falcon_spi_poll(efx))
236			return 0;
237		udelay(10);
238	}
239
240	for (;;) {
241		if (!falcon_spi_poll(efx))
242			return 0;
243		if (time_after_eq(jiffies, timeout)) {
244			netif_err(efx, hw, efx->net_dev,
245				  "timed out waiting for SPI\n");
246			return -ETIMEDOUT;
247		}
248		schedule_timeout_uninterruptible(1);
249	}
250}
251
252int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
253		   unsigned int command, int address,
254		   const void *in, void *out, size_t len)
255{
256	bool addressed = (address >= 0);
257	bool reading = (out != NULL);
258	efx_oword_t reg;
259	int rc;
260
261	/* Input validation */
262	if (len > FALCON_SPI_MAX_LEN)
263		return -EINVAL;
264	BUG_ON(!mutex_is_locked(&efx->spi_lock));
265
266	/* Check that previous command is not still running */
267	rc = falcon_spi_poll(efx);
268	if (rc)
269		return rc;
270
271	/* Program address register, if we have an address */
272	if (addressed) {
273		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
274		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
275	}
276
277	/* Program data register, if we have data */
278	if (in != NULL) {
279		memcpy(&reg, in, len);
280		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
281	}
282
283	/* Issue read/write command */
284	EFX_POPULATE_OWORD_7(reg,
285			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
286			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
287			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
288			     FRF_AB_EE_SPI_HCMD_READ, reading,
289			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
290			     FRF_AB_EE_SPI_HCMD_ADBCNT,
291			     (addressed ? spi->addr_len : 0),
292			     FRF_AB_EE_SPI_HCMD_ENC, command);
293	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
294
295	/* Wait for read/write to complete */
296	rc = falcon_spi_wait(efx);
297	if (rc)
298		return rc;
299
300	/* Read data */
301	if (out != NULL) {
302		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
303		memcpy(out, &reg, len);
304	}
305
306	return 0;
307}
308
309static size_t
310falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
311{
312	return min(FALCON_SPI_MAX_LEN,
313		   (spi->block_size - (start & (spi->block_size - 1))));
314}
315
316static inline u8
317efx_spi_munge_command(const struct efx_spi_device *spi,
318		      const u8 command, const unsigned int address)
319{
320	return command | (((address >> 8) & spi->munge_address) << 3);
321}
322
323/* Wait up to 10 ms for buffered write completion */
324int
325falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
326{
327	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
328	u8 status;
329	int rc;
330
331	for (;;) {
332		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
333				    &status, sizeof(status));
334		if (rc)
335			return rc;
336		if (!(status & SPI_STATUS_NRDY))
337			return 0;
338		if (time_after_eq(jiffies, timeout)) {
339			netif_err(efx, hw, efx->net_dev,
340				  "SPI write timeout on device %d"
341				  " last status=0x%02x\n",
342				  spi->device_id, status);
343			return -ETIMEDOUT;
344		}
345		schedule_timeout_uninterruptible(1);
346	}
347}
348
349int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
350		    loff_t start, size_t len, size_t *retlen, u8 *buffer)
351{
352	size_t block_len, pos = 0;
353	unsigned int command;
354	int rc = 0;
355
356	while (pos < len) {
357		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
358
359		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
360		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
361				    buffer + pos, block_len);
362		if (rc)
363			break;
364		pos += block_len;
365
366		/* Avoid locking up the system */
367		cond_resched();
368		if (signal_pending(current)) {
369			rc = -EINTR;
370			break;
371		}
372	}
373
374	if (retlen)
375		*retlen = pos;
376	return rc;
377}
378
379int
380falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
381		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
382{
383	u8 verify_buffer[FALCON_SPI_MAX_LEN];
384	size_t block_len, pos = 0;
385	unsigned int command;
386	int rc = 0;
387
388	while (pos < len) {
389		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
390		if (rc)
391			break;
392
393		block_len = min(len - pos,
394				falcon_spi_write_limit(spi, start + pos));
395		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
396		rc = falcon_spi_cmd(efx, spi, command, start + pos,
397				    buffer + pos, NULL, block_len);
398		if (rc)
399			break;
400
401		rc = falcon_spi_wait_write(efx, spi);
402		if (rc)
403			break;
404
405		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
406		rc = falcon_spi_cmd(efx, spi, command, start + pos,
407				    NULL, verify_buffer, block_len);
408		if (memcmp(verify_buffer, buffer + pos, block_len)) {
409			rc = -EIO;
410			break;
411		}
412
413		pos += block_len;
414
415		/* Avoid locking up the system */
416		cond_resched();
417		if (signal_pending(current)) {
418			rc = -EINTR;
419			break;
420		}
421	}
422
423	if (retlen)
424		*retlen = pos;
425	return rc;
426}
427
428/**************************************************************************
429 *
430 * MAC wrapper
431 *
432 **************************************************************************
433 */
434
435static void falcon_push_multicast_hash(struct efx_nic *efx)
436{
437	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
438
439	WARN_ON(!mutex_is_locked(&efx->mac_lock));
440
441	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
442	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
443}
444
445static void falcon_reset_macs(struct efx_nic *efx)
446{
447	struct falcon_nic_data *nic_data = efx->nic_data;
448	efx_oword_t reg, mac_ctrl;
449	int count;
450
451	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
452		/* It's not safe to use GLB_CTL_REG to reset the
453		 * macs, so instead use the internal MAC resets
454		 */
455		if (!EFX_IS10G(efx)) {
456			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
457			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
458			udelay(1000);
459
460			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
461			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
462			udelay(1000);
463			return;
464		} else {
465			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
466			efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
467
468			for (count = 0; count < 10000; count++) {
469				efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
470				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
471				    0)
472					return;
473				udelay(10);
474			}
475
476			netif_err(efx, hw, efx->net_dev,
477				  "timed out waiting for XMAC core reset\n");
478		}
479	}
480
481	/* Mac stats will fail whist the TX fifo is draining */
482	WARN_ON(nic_data->stats_disable_count == 0);
483
484	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
485	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
486	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
487
488	efx_reado(efx, &reg, FR_AB_GLB_CTL);
489	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
490	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
491	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
492	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
493
494	count = 0;
495	while (1) {
496		efx_reado(efx, &reg, FR_AB_GLB_CTL);
497		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
498		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
499		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
500			netif_dbg(efx, hw, efx->net_dev,
501				  "Completed MAC reset after %d loops\n",
502				  count);
503			break;
504		}
505		if (count > 20) {
506			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
507			break;
508		}
509		count++;
510		udelay(10);
511	}
512
513	/* Ensure the correct MAC is selected before statistics
514	 * are re-enabled by the caller */
515	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
516
517	/* This can run even when the GMAC is selected */
518	falcon_setup_xaui(efx);
519}
520
521void falcon_drain_tx_fifo(struct efx_nic *efx)
522{
523	efx_oword_t reg;
524
525	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
526	    (efx->loopback_mode != LOOPBACK_NONE))
527		return;
528
529	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
530	/* There is no point in draining more than once */
531	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
532		return;
533
534	falcon_reset_macs(efx);
535}
536
537static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
538{
539	efx_oword_t reg;
540
541	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
542		return;
543
544	/* Isolate the MAC -> RX */
545	efx_reado(efx, &reg, FR_AZ_RX_CFG);
546	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
547	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
548
549	/* Isolate TX -> MAC */
550	falcon_drain_tx_fifo(efx);
551}
552
553void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
554{
555	struct efx_link_state *link_state = &efx->link_state;
556	efx_oword_t reg;
557	int link_speed, isolate;
558
559	isolate = (efx->reset_pending != RESET_TYPE_NONE);
560
561	switch (link_state->speed) {
562	case 10000: link_speed = 3; break;
563	case 1000:  link_speed = 2; break;
564	case 100:   link_speed = 1; break;
565	default:    link_speed = 0; break;
566	}
567	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
568	 * as advertised.  Disable to ensure packets are not
569	 * indefinitely held and TX queue can be flushed at any point
570	 * while the link is down. */
571	EFX_POPULATE_OWORD_5(reg,
572			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
573			     FRF_AB_MAC_BCAD_ACPT, 1,
574			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
575			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
576			     FRF_AB_MAC_SPEED, link_speed);
577	/* On B0, MAC backpressure can be disabled and packets get
578	 * discarded. */
579	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
580		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
581				    !link_state->up || isolate);
582	}
583
584	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
585
586	/* Restore the multicast hash registers. */
587	falcon_push_multicast_hash(efx);
588
589	efx_reado(efx, &reg, FR_AZ_RX_CFG);
590	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
591	 * initialisation but it may read back as 0) */
592	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
593	/* Unisolate the MAC -> RX */
594	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
595		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
596	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
597}
598
599static void falcon_stats_request(struct efx_nic *efx)
600{
601	struct falcon_nic_data *nic_data = efx->nic_data;
602	efx_oword_t reg;
603
604	WARN_ON(nic_data->stats_pending);
605	WARN_ON(nic_data->stats_disable_count);
606
607	if (nic_data->stats_dma_done == NULL)
608		return;	/* no mac selected */
609
610	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
611	nic_data->stats_pending = true;
612	wmb(); /* ensure done flag is clear */
613
614	/* Initiate DMA transfer of stats */
615	EFX_POPULATE_OWORD_2(reg,
616			     FRF_AB_MAC_STAT_DMA_CMD, 1,
617			     FRF_AB_MAC_STAT_DMA_ADR,
618			     efx->stats_buffer.dma_addr);
619	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
620
621	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
622}
623
624static void falcon_stats_complete(struct efx_nic *efx)
625{
626	struct falcon_nic_data *nic_data = efx->nic_data;
627
628	if (!nic_data->stats_pending)
629		return;
630
631	nic_data->stats_pending = 0;
632	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
633		rmb(); /* read the done flag before the stats */
634		efx->mac_op->update_stats(efx);
635	} else {
636		netif_err(efx, hw, efx->net_dev,
637			  "timed out waiting for statistics\n");
638	}
639}
640
641static void falcon_stats_timer_func(unsigned long context)
642{
643	struct efx_nic *efx = (struct efx_nic *)context;
644	struct falcon_nic_data *nic_data = efx->nic_data;
645
646	spin_lock(&efx->stats_lock);
647
648	falcon_stats_complete(efx);
649	if (nic_data->stats_disable_count == 0)
650		falcon_stats_request(efx);
651
652	spin_unlock(&efx->stats_lock);
653}
654
655static void falcon_switch_mac(struct efx_nic *efx);
656
657static bool falcon_loopback_link_poll(struct efx_nic *efx)
658{
659	struct efx_link_state old_state = efx->link_state;
660
661	WARN_ON(!mutex_is_locked(&efx->mac_lock));
662	WARN_ON(!LOOPBACK_INTERNAL(efx));
663
664	efx->link_state.fd = true;
665	efx->link_state.fc = efx->wanted_fc;
666	efx->link_state.up = true;
667
668	if (efx->loopback_mode == LOOPBACK_GMAC)
669		efx->link_state.speed = 1000;
670	else
671		efx->link_state.speed = 10000;
672
673	return !efx_link_state_equal(&efx->link_state, &old_state);
674}
675
676static int falcon_reconfigure_port(struct efx_nic *efx)
677{
678	int rc;
679
680	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
681
682	/* Poll the PHY link state *before* reconfiguring it. This means we
683	 * will pick up the correct speed (in loopback) to select the correct
684	 * MAC.
685	 */
686	if (LOOPBACK_INTERNAL(efx))
687		falcon_loopback_link_poll(efx);
688	else
689		efx->phy_op->poll(efx);
690
691	falcon_stop_nic_stats(efx);
692	falcon_deconfigure_mac_wrapper(efx);
693
694	falcon_switch_mac(efx);
695
696	efx->phy_op->reconfigure(efx);
697	rc = efx->mac_op->reconfigure(efx);
698	BUG_ON(rc);
699
700	falcon_start_nic_stats(efx);
701
702	/* Synchronise efx->link_state with the kernel */
703	efx_link_status_changed(efx);
704
705	return 0;
706}
707
708/**************************************************************************
709 *
710 * PHY access via GMII
711 *
712 **************************************************************************
713 */
714
715/* Wait for GMII access to complete */
716static int falcon_gmii_wait(struct efx_nic *efx)
717{
718	efx_oword_t md_stat;
719	int count;
720
721	/* wait upto 50ms - taken max from datasheet */
722	for (count = 0; count < 5000; count++) {
723		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
724		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
725			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
726			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
727				netif_err(efx, hw, efx->net_dev,
728					  "error from GMII access "
729					  EFX_OWORD_FMT"\n",
730					  EFX_OWORD_VAL(md_stat));
731				return -EIO;
732			}
733			return 0;
734		}
735		udelay(10);
736	}
737	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
738	return -ETIMEDOUT;
739}
740
741/* Write an MDIO register of a PHY connected to Falcon. */
742static int falcon_mdio_write(struct net_device *net_dev,
743			     int prtad, int devad, u16 addr, u16 value)
744{
745	struct efx_nic *efx = netdev_priv(net_dev);
746	efx_oword_t reg;
747	int rc;
748
749	netif_vdbg(efx, hw, efx->net_dev,
750		   "writing MDIO %d register %d.%d with 0x%04x\n",
751		    prtad, devad, addr, value);
752
753	mutex_lock(&efx->mdio_lock);
754
755	/* Check MDIO not currently being accessed */
756	rc = falcon_gmii_wait(efx);
757	if (rc)
758		goto out;
759
760	/* Write the address/ID register */
761	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
762	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
763
764	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
765			     FRF_AB_MD_DEV_ADR, devad);
766	efx_writeo(efx, &reg, FR_AB_MD_ID);
767
768	/* Write data */
769	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
770	efx_writeo(efx, &reg, FR_AB_MD_TXD);
771
772	EFX_POPULATE_OWORD_2(reg,
773			     FRF_AB_MD_WRC, 1,
774			     FRF_AB_MD_GC, 0);
775	efx_writeo(efx, &reg, FR_AB_MD_CS);
776
777	/* Wait for data to be written */
778	rc = falcon_gmii_wait(efx);
779	if (rc) {
780		/* Abort the write operation */
781		EFX_POPULATE_OWORD_2(reg,
782				     FRF_AB_MD_WRC, 0,
783				     FRF_AB_MD_GC, 1);
784		efx_writeo(efx, &reg, FR_AB_MD_CS);
785		udelay(10);
786	}
787
788out:
789	mutex_unlock(&efx->mdio_lock);
790	return rc;
791}
792
793/* Read an MDIO register of a PHY connected to Falcon. */
794static int falcon_mdio_read(struct net_device *net_dev,
795			    int prtad, int devad, u16 addr)
796{
797	struct efx_nic *efx = netdev_priv(net_dev);
798	efx_oword_t reg;
799	int rc;
800
801	mutex_lock(&efx->mdio_lock);
802
803	/* Check MDIO not currently being accessed */
804	rc = falcon_gmii_wait(efx);
805	if (rc)
806		goto out;
807
808	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
809	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
810
811	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
812			     FRF_AB_MD_DEV_ADR, devad);
813	efx_writeo(efx, &reg, FR_AB_MD_ID);
814
815	/* Request data to be read */
816	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
817	efx_writeo(efx, &reg, FR_AB_MD_CS);
818
819	/* Wait for data to become available */
820	rc = falcon_gmii_wait(efx);
821	if (rc == 0) {
822		efx_reado(efx, &reg, FR_AB_MD_RXD);
823		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
824		netif_vdbg(efx, hw, efx->net_dev,
825			   "read from MDIO %d register %d.%d, got %04x\n",
826			   prtad, devad, addr, rc);
827	} else {
828		/* Abort the read operation */
829		EFX_POPULATE_OWORD_2(reg,
830				     FRF_AB_MD_RIC, 0,
831				     FRF_AB_MD_GC, 1);
832		efx_writeo(efx, &reg, FR_AB_MD_CS);
833
834		netif_dbg(efx, hw, efx->net_dev,
835			  "read from MDIO %d register %d.%d, got error %d\n",
836			  prtad, devad, addr, rc);
837	}
838
839out:
840	mutex_unlock(&efx->mdio_lock);
841	return rc;
842}
843
844static void falcon_clock_mac(struct efx_nic *efx)
845{
846	unsigned strap_val;
847	efx_oword_t nic_stat;
848
849	/* Configure the NIC generated MAC clock correctly */
850	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
851	strap_val = EFX_IS10G(efx) ? 5 : 3;
852	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
853		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
854		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
855		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
856	} else {
857		/* Falcon A1 does not support 1G/10G speed switching
858		 * and must not be used with a PHY that does. */
859		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
860		       strap_val);
861	}
862}
863
864static void falcon_switch_mac(struct efx_nic *efx)
865{
866	struct efx_mac_operations *old_mac_op = efx->mac_op;
867	struct falcon_nic_data *nic_data = efx->nic_data;
868	unsigned int stats_done_offset;
869
870	WARN_ON(!mutex_is_locked(&efx->mac_lock));
871	WARN_ON(nic_data->stats_disable_count == 0);
872
873	efx->mac_op = (EFX_IS10G(efx) ?
874		       &falcon_xmac_operations : &falcon_gmac_operations);
875
876	if (EFX_IS10G(efx))
877		stats_done_offset = XgDmaDone_offset;
878	else
879		stats_done_offset = GDmaDone_offset;
880	nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
881
882	if (old_mac_op == efx->mac_op)
883		return;
884
885	falcon_clock_mac(efx);
886
887	netif_dbg(efx, hw, efx->net_dev, "selected %cMAC\n",
888		  EFX_IS10G(efx) ? 'X' : 'G');
889	/* Not all macs support a mac-level link state */
890	efx->xmac_poll_required = false;
891	falcon_reset_macs(efx);
892}
893
894/* This call is responsible for hooking in the MAC and PHY operations */
895static int falcon_probe_port(struct efx_nic *efx)
896{
897	int rc;
898
899	switch (efx->phy_type) {
900	case PHY_TYPE_SFX7101:
901		efx->phy_op = &falcon_sfx7101_phy_ops;
902		break;
903	case PHY_TYPE_SFT9001A:
904	case PHY_TYPE_SFT9001B:
905		efx->phy_op = &falcon_sft9001_phy_ops;
906		break;
907	case PHY_TYPE_QT2022C2:
908	case PHY_TYPE_QT2025C:
909		efx->phy_op = &falcon_qt202x_phy_ops;
910		break;
911	default:
912		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
913			  efx->phy_type);
914		return -ENODEV;
915	}
916
917	/* Fill out MDIO structure and loopback modes */
918	efx->mdio.mdio_read = falcon_mdio_read;
919	efx->mdio.mdio_write = falcon_mdio_write;
920	rc = efx->phy_op->probe(efx);
921	if (rc != 0)
922		return rc;
923
924	/* Initial assumption */
925	efx->link_state.speed = 10000;
926	efx->link_state.fd = true;
927
928	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
929	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
930		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
931	else
932		efx->wanted_fc = EFX_FC_RX;
933	if (efx->mdio.mmds & MDIO_DEVS_AN)
934		efx->wanted_fc |= EFX_FC_AUTO;
935
936	/* Allocate buffer for stats */
937	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
938				  FALCON_MAC_STATS_SIZE);
939	if (rc)
940		return rc;
941	netif_dbg(efx, probe, efx->net_dev,
942		  "stats buffer at %llx (virt %p phys %llx)\n",
943		  (u64)efx->stats_buffer.dma_addr,
944		  efx->stats_buffer.addr,
945		  (u64)virt_to_phys(efx->stats_buffer.addr));
946
947	return 0;
948}
949
950static void falcon_remove_port(struct efx_nic *efx)
951{
952	efx->phy_op->remove(efx);
953	efx_nic_free_buffer(efx, &efx->stats_buffer);
954}
955
956/**************************************************************************
957 *
958 * Falcon test code
959 *
960 **************************************************************************/
961
962static int
963falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
964{
965	struct falcon_nvconfig *nvconfig;
966	struct efx_spi_device *spi;
967	void *region;
968	int rc, magic_num, struct_ver;
969	__le16 *word, *limit;
970	u32 csum;
971
972	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
973	if (!spi)
974		return -EINVAL;
975
976	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
977	if (!region)
978		return -ENOMEM;
979	nvconfig = region + FALCON_NVCONFIG_OFFSET;
980
981	mutex_lock(&efx->spi_lock);
982	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
983	mutex_unlock(&efx->spi_lock);
984	if (rc) {
985		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
986			  efx->spi_flash ? "flash" : "EEPROM");
987		rc = -EIO;
988		goto out;
989	}
990
991	magic_num = le16_to_cpu(nvconfig->board_magic_num);
992	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
993
994	rc = -EINVAL;
995	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
996		netif_err(efx, hw, efx->net_dev,
997			  "NVRAM bad magic 0x%x\n", magic_num);
998		goto out;
999	}
1000	if (struct_ver < 2) {
1001		netif_err(efx, hw, efx->net_dev,
1002			  "NVRAM has ancient version 0x%x\n", struct_ver);
1003		goto out;
1004	} else if (struct_ver < 4) {
1005		word = &nvconfig->board_magic_num;
1006		limit = (__le16 *) (nvconfig + 1);
1007	} else {
1008		word = region;
1009		limit = region + FALCON_NVCONFIG_END;
1010	}
1011	for (csum = 0; word < limit; ++word)
1012		csum += le16_to_cpu(*word);
1013
1014	if (~csum & 0xffff) {
1015		netif_err(efx, hw, efx->net_dev,
1016			  "NVRAM has incorrect checksum\n");
1017		goto out;
1018	}
1019
1020	rc = 0;
1021	if (nvconfig_out)
1022		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1023
1024 out:
1025	kfree(region);
1026	return rc;
1027}
1028
1029static int falcon_test_nvram(struct efx_nic *efx)
1030{
1031	return falcon_read_nvram(efx, NULL);
1032}
1033
1034static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1035	{ FR_AZ_ADR_REGION,
1036	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1037	{ FR_AZ_RX_CFG,
1038	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1039	{ FR_AZ_TX_CFG,
1040	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1041	{ FR_AZ_TX_RESERVED,
1042	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1043	{ FR_AB_MAC_CTRL,
1044	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1045	{ FR_AZ_SRM_TX_DC_CFG,
1046	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1047	{ FR_AZ_RX_DC_CFG,
1048	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1049	{ FR_AZ_RX_DC_PF_WM,
1050	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1051	{ FR_BZ_DP_CTRL,
1052	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1053	{ FR_AB_GM_CFG2,
1054	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1055	{ FR_AB_GMF_CFG0,
1056	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1057	{ FR_AB_XM_GLB_CFG,
1058	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1059	{ FR_AB_XM_TX_CFG,
1060	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1061	{ FR_AB_XM_RX_CFG,
1062	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1063	{ FR_AB_XM_RX_PARAM,
1064	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1065	{ FR_AB_XM_FC,
1066	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1067	{ FR_AB_XM_ADR_LO,
1068	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1069	{ FR_AB_XX_SD_CTL,
1070	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1071};
1072
1073static int falcon_b0_test_registers(struct efx_nic *efx)
1074{
1075	return efx_nic_test_registers(efx, falcon_b0_register_tests,
1076				      ARRAY_SIZE(falcon_b0_register_tests));
1077}
1078
1079/**************************************************************************
1080 *
1081 * Device reset
1082 *
1083 **************************************************************************
1084 */
1085
1086/* Resets NIC to known state.  This routine must be called in process
1087 * context and is allowed to sleep. */
1088static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1089{
1090	struct falcon_nic_data *nic_data = efx->nic_data;
1091	efx_oword_t glb_ctl_reg_ker;
1092	int rc;
1093
1094	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1095		  RESET_TYPE(method));
1096
1097	/* Initiate device reset */
1098	if (method == RESET_TYPE_WORLD) {
1099		rc = pci_save_state(efx->pci_dev);
1100		if (rc) {
1101			netif_err(efx, drv, efx->net_dev,
1102				  "failed to backup PCI state of primary "
1103				  "function prior to hardware reset\n");
1104			goto fail1;
1105		}
1106		if (efx_nic_is_dual_func(efx)) {
1107			rc = pci_save_state(nic_data->pci_dev2);
1108			if (rc) {
1109				netif_err(efx, drv, efx->net_dev,
1110					  "failed to backup PCI state of "
1111					  "secondary function prior to "
1112					  "hardware reset\n");
1113				goto fail2;
1114			}
1115		}
1116
1117		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1118				     FRF_AB_EXT_PHY_RST_DUR,
1119				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1120				     FRF_AB_SWRST, 1);
1121	} else {
1122		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1123				     /* exclude PHY from "invisible" reset */
1124				     FRF_AB_EXT_PHY_RST_CTL,
1125				     method == RESET_TYPE_INVISIBLE,
1126				     /* exclude EEPROM/flash and PCIe */
1127				     FRF_AB_PCIE_CORE_RST_CTL, 1,
1128				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1129				     FRF_AB_PCIE_SD_RST_CTL, 1,
1130				     FRF_AB_EE_RST_CTL, 1,
1131				     FRF_AB_EXT_PHY_RST_DUR,
1132				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1133				     FRF_AB_SWRST, 1);
1134	}
1135	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1136
1137	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1138	schedule_timeout_uninterruptible(HZ / 20);
1139
1140	/* Restore PCI configuration if needed */
1141	if (method == RESET_TYPE_WORLD) {
1142		if (efx_nic_is_dual_func(efx)) {
1143			rc = pci_restore_state(nic_data->pci_dev2);
1144			if (rc) {
1145				netif_err(efx, drv, efx->net_dev,
1146					  "failed to restore PCI config for "
1147					  "the secondary function\n");
1148				goto fail3;
1149			}
1150		}
1151		rc = pci_restore_state(efx->pci_dev);
1152		if (rc) {
1153			netif_err(efx, drv, efx->net_dev,
1154				  "failed to restore PCI config for the "
1155				  "primary function\n");
1156			goto fail4;
1157		}
1158		netif_dbg(efx, drv, efx->net_dev,
1159			  "successfully restored PCI config\n");
1160	}
1161
1162	/* Assert that reset complete */
1163	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1164	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1165		rc = -ETIMEDOUT;
1166		netif_err(efx, hw, efx->net_dev,
1167			  "timed out waiting for hardware reset\n");
1168		goto fail5;
1169	}
1170	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1171
1172	return 0;
1173
1174	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
1175fail2:
1176fail3:
1177	pci_restore_state(efx->pci_dev);
1178fail1:
1179fail4:
1180fail5:
1181	return rc;
1182}
1183
1184static void falcon_monitor(struct efx_nic *efx)
1185{
1186	bool link_changed;
1187	int rc;
1188
1189	BUG_ON(!mutex_is_locked(&efx->mac_lock));
1190
1191	rc = falcon_board(efx)->type->monitor(efx);
1192	if (rc) {
1193		netif_err(efx, hw, efx->net_dev,
1194			  "Board sensor %s; shutting down PHY\n",
1195			  (rc == -ERANGE) ? "reported fault" : "failed");
1196		efx->phy_mode |= PHY_MODE_LOW_POWER;
1197		rc = __efx_reconfigure_port(efx);
1198		WARN_ON(rc);
1199	}
1200
1201	if (LOOPBACK_INTERNAL(efx))
1202		link_changed = falcon_loopback_link_poll(efx);
1203	else
1204		link_changed = efx->phy_op->poll(efx);
1205
1206	if (link_changed) {
1207		falcon_stop_nic_stats(efx);
1208		falcon_deconfigure_mac_wrapper(efx);
1209
1210		falcon_switch_mac(efx);
1211		rc = efx->mac_op->reconfigure(efx);
1212		BUG_ON(rc);
1213
1214		falcon_start_nic_stats(efx);
1215
1216		efx_link_status_changed(efx);
1217	}
1218
1219	if (EFX_IS10G(efx))
1220		falcon_poll_xmac(efx);
1221}
1222
1223/* Zeroes out the SRAM contents.  This routine must be called in
1224 * process context and is allowed to sleep.
1225 */
1226static int falcon_reset_sram(struct efx_nic *efx)
1227{
1228	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1229	int count;
1230
1231	/* Set the SRAM wake/sleep GPIO appropriately. */
1232	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1233	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1234	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1235	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1236
1237	/* Initiate SRAM reset */
1238	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1239			     FRF_AZ_SRM_INIT_EN, 1,
1240			     FRF_AZ_SRM_NB_SZ, 0);
1241	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1242
1243	/* Wait for SRAM reset to complete */
1244	count = 0;
1245	do {
1246		netif_dbg(efx, hw, efx->net_dev,
1247			  "waiting for SRAM reset (attempt %d)...\n", count);
1248
1249		/* SRAM reset is slow; expect around 16ms */
1250		schedule_timeout_uninterruptible(HZ / 50);
1251
1252		/* Check for reset complete */
1253		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1254		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1255			netif_dbg(efx, hw, efx->net_dev,
1256				  "SRAM reset complete\n");
1257
1258			return 0;
1259		}
1260	} while (++count < 20);	/* wait upto 0.4 sec */
1261
1262	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1263	return -ETIMEDOUT;
1264}
1265
1266static int falcon_spi_device_init(struct efx_nic *efx,
1267				  struct efx_spi_device **spi_device_ret,
1268				  unsigned int device_id, u32 device_type)
1269{
1270	struct efx_spi_device *spi_device;
1271
1272	if (device_type != 0) {
1273		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1274		if (!spi_device)
1275			return -ENOMEM;
1276		spi_device->device_id = device_id;
1277		spi_device->size =
1278			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1279		spi_device->addr_len =
1280			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1281		spi_device->munge_address = (spi_device->size == 1 << 9 &&
1282					     spi_device->addr_len == 1);
1283		spi_device->erase_command =
1284			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1285		spi_device->erase_size =
1286			1 << SPI_DEV_TYPE_FIELD(device_type,
1287						SPI_DEV_TYPE_ERASE_SIZE);
1288		spi_device->block_size =
1289			1 << SPI_DEV_TYPE_FIELD(device_type,
1290						SPI_DEV_TYPE_BLOCK_SIZE);
1291	} else {
1292		spi_device = NULL;
1293	}
1294
1295	kfree(*spi_device_ret);
1296	*spi_device_ret = spi_device;
1297	return 0;
1298}
1299
1300static void falcon_remove_spi_devices(struct efx_nic *efx)
1301{
1302	kfree(efx->spi_eeprom);
1303	efx->spi_eeprom = NULL;
1304	kfree(efx->spi_flash);
1305	efx->spi_flash = NULL;
1306}
1307
1308/* Extract non-volatile configuration */
1309static int falcon_probe_nvconfig(struct efx_nic *efx)
1310{
1311	struct falcon_nvconfig *nvconfig;
1312	int board_rev;
1313	int rc;
1314
1315	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1316	if (!nvconfig)
1317		return -ENOMEM;
1318
1319	rc = falcon_read_nvram(efx, nvconfig);
1320	if (rc == -EINVAL) {
1321		netif_err(efx, probe, efx->net_dev,
1322			  "NVRAM is invalid therefore using defaults\n");
1323		efx->phy_type = PHY_TYPE_NONE;
1324		efx->mdio.prtad = MDIO_PRTAD_NONE;
1325		board_rev = 0;
1326		rc = 0;
1327	} else if (rc) {
1328		goto fail1;
1329	} else {
1330		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
1331		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
1332
1333		efx->phy_type = v2->port0_phy_type;
1334		efx->mdio.prtad = v2->port0_phy_addr;
1335		board_rev = le16_to_cpu(v2->board_revision);
1336
1337		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1338			rc = falcon_spi_device_init(
1339				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1340				le32_to_cpu(v3->spi_device_type
1341					    [FFE_AB_SPI_DEVICE_FLASH]));
1342			if (rc)
1343				goto fail2;
1344			rc = falcon_spi_device_init(
1345				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1346				le32_to_cpu(v3->spi_device_type
1347					    [FFE_AB_SPI_DEVICE_EEPROM]));
1348			if (rc)
1349				goto fail2;
1350		}
1351	}
1352
1353	/* Read the MAC addresses */
1354	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1355
1356	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1357		  efx->phy_type, efx->mdio.prtad);
1358
1359	rc = falcon_probe_board(efx, board_rev);
1360	if (rc)
1361		goto fail2;
1362
1363	kfree(nvconfig);
1364	return 0;
1365
1366 fail2:
1367	falcon_remove_spi_devices(efx);
1368 fail1:
1369	kfree(nvconfig);
1370	return rc;
1371}
1372
1373/* Probe all SPI devices on the NIC */
1374static void falcon_probe_spi_devices(struct efx_nic *efx)
1375{
1376	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1377	int boot_dev;
1378
1379	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1380	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1381	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1382
1383	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1384		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1385			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1386		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1387			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1388			  "flash" : "EEPROM");
1389	} else {
1390		/* Disable VPD and set clock dividers to safe
1391		 * values for initial programming. */
1392		boot_dev = -1;
1393		netif_dbg(efx, probe, efx->net_dev,
1394			  "Booted from internal ASIC settings;"
1395			  " setting SPI config\n");
1396		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1397				     /* 125 MHz / 7 ~= 20 MHz */
1398				     FRF_AB_EE_SF_CLOCK_DIV, 7,
1399				     /* 125 MHz / 63 ~= 2 MHz */
1400				     FRF_AB_EE_EE_CLOCK_DIV, 63);
1401		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1402	}
1403
1404	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1405		falcon_spi_device_init(efx, &efx->spi_flash,
1406				       FFE_AB_SPI_DEVICE_FLASH,
1407				       default_flash_type);
1408	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1409		falcon_spi_device_init(efx, &efx->spi_eeprom,
1410				       FFE_AB_SPI_DEVICE_EEPROM,
1411				       large_eeprom_type);
1412}
1413
1414static int falcon_probe_nic(struct efx_nic *efx)
1415{
1416	struct falcon_nic_data *nic_data;
1417	struct falcon_board *board;
1418	int rc;
1419
1420	/* Allocate storage for hardware specific data */
1421	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1422	if (!nic_data)
1423		return -ENOMEM;
1424	efx->nic_data = nic_data;
1425
1426	rc = -ENODEV;
1427
1428	if (efx_nic_fpga_ver(efx) != 0) {
1429		netif_err(efx, probe, efx->net_dev,
1430			  "Falcon FPGA not supported\n");
1431		goto fail1;
1432	}
1433
1434	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1435		efx_oword_t nic_stat;
1436		struct pci_dev *dev;
1437		u8 pci_rev = efx->pci_dev->revision;
1438
1439		if ((pci_rev == 0xff) || (pci_rev == 0)) {
1440			netif_err(efx, probe, efx->net_dev,
1441				  "Falcon rev A0 not supported\n");
1442			goto fail1;
1443		}
1444		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1445		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1446			netif_err(efx, probe, efx->net_dev,
1447				  "Falcon rev A1 1G not supported\n");
1448			goto fail1;
1449		}
1450		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1451			netif_err(efx, probe, efx->net_dev,
1452				  "Falcon rev A1 PCI-X not supported\n");
1453			goto fail1;
1454		}
1455
1456		dev = pci_dev_get(efx->pci_dev);
1457		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1458					     dev))) {
1459			if (dev->bus == efx->pci_dev->bus &&
1460			    dev->devfn == efx->pci_dev->devfn + 1) {
1461				nic_data->pci_dev2 = dev;
1462				break;
1463			}
1464		}
1465		if (!nic_data->pci_dev2) {
1466			netif_err(efx, probe, efx->net_dev,
1467				  "failed to find secondary function\n");
1468			rc = -ENODEV;
1469			goto fail2;
1470		}
1471	}
1472
1473	/* Now we can reset the NIC */
1474	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1475	if (rc) {
1476		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1477		goto fail3;
1478	}
1479
1480	/* Allocate memory for INT_KER */
1481	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1482	if (rc)
1483		goto fail4;
1484	BUG_ON(efx->irq_status.dma_addr & 0x0f);
1485
1486	netif_dbg(efx, probe, efx->net_dev,
1487		  "INT_KER at %llx (virt %p phys %llx)\n",
1488		  (u64)efx->irq_status.dma_addr,
1489		  efx->irq_status.addr,
1490		  (u64)virt_to_phys(efx->irq_status.addr));
1491
1492	falcon_probe_spi_devices(efx);
1493
1494	/* Read in the non-volatile configuration */
1495	rc = falcon_probe_nvconfig(efx);
1496	if (rc)
1497		goto fail5;
1498
1499	/* Initialise I2C adapter */
1500	board = falcon_board(efx);
1501	board->i2c_adap.owner = THIS_MODULE;
1502	board->i2c_data = falcon_i2c_bit_operations;
1503	board->i2c_data.data = efx;
1504	board->i2c_adap.algo_data = &board->i2c_data;
1505	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1506	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1507		sizeof(board->i2c_adap.name));
1508	rc = i2c_bit_add_bus(&board->i2c_adap);
1509	if (rc)
1510		goto fail5;
1511
1512	rc = falcon_board(efx)->type->init(efx);
1513	if (rc) {
1514		netif_err(efx, probe, efx->net_dev,
1515			  "failed to initialise board\n");
1516		goto fail6;
1517	}
1518
1519	nic_data->stats_disable_count = 1;
1520	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1521		    (unsigned long)efx);
1522
1523	return 0;
1524
1525 fail6:
1526	BUG_ON(i2c_del_adapter(&board->i2c_adap));
1527	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1528 fail5:
1529	falcon_remove_spi_devices(efx);
1530	efx_nic_free_buffer(efx, &efx->irq_status);
1531 fail4:
1532 fail3:
1533	if (nic_data->pci_dev2) {
1534		pci_dev_put(nic_data->pci_dev2);
1535		nic_data->pci_dev2 = NULL;
1536	}
1537 fail2:
1538 fail1:
1539	kfree(efx->nic_data);
1540	return rc;
1541}
1542
1543static void falcon_init_rx_cfg(struct efx_nic *efx)
1544{
1545	/* Prior to Siena the RX DMA engine will split each frame at
1546	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1547	 * be so large that that never happens. */
1548	const unsigned huge_buf_size = (3 * 4096) >> 5;
1549	/* RX control FIFO thresholds (32 entries) */
1550	const unsigned ctrl_xon_thr = 20;
1551	const unsigned ctrl_xoff_thr = 25;
1552	/* RX data FIFO thresholds (256-byte units; size varies) */
1553	int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1554	int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1555	efx_oword_t reg;
1556
1557	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1558	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1559		/* Data FIFO size is 5.5K */
1560		if (data_xon_thr < 0)
1561			data_xon_thr = 512 >> 8;
1562		if (data_xoff_thr < 0)
1563			data_xoff_thr = 2048 >> 8;
1564		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1565		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1566				    huge_buf_size);
1567		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1568		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1569		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1570		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1571	} else {
1572		/* Data FIFO size is 80K; register fields moved */
1573		if (data_xon_thr < 0)
1574			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1575		if (data_xoff_thr < 0)
1576			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1577		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1578		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1579				    huge_buf_size);
1580		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1581		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1582		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1583		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1584		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1585
1586		/* Enable hash insertion. This is broken for the
1587		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1588		 * IPv4 hashes. */
1589		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1590		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1591		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1592	}
1593	/* Always enable XOFF signal from RX FIFO.  We enable
1594	 * or disable transmission of pause frames at the MAC. */
1595	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1596	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1597}
1598
1599/* This call performs hardware-specific global initialisation, such as
1600 * defining the descriptor cache sizes and number of RSS channels.
1601 * It does not set up any buffers, descriptor rings or event queues.
1602 */
1603static int falcon_init_nic(struct efx_nic *efx)
1604{
1605	efx_oword_t temp;
1606	int rc;
1607
1608	/* Use on-chip SRAM */
1609	efx_reado(efx, &temp, FR_AB_NIC_STAT);
1610	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1611	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1612
1613	/* Set the source of the GMAC clock */
1614	if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
1615		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
1616		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
1617		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
1618	}
1619
1620	/* Select the correct MAC */
1621	falcon_clock_mac(efx);
1622
1623	rc = falcon_reset_sram(efx);
1624	if (rc)
1625		return rc;
1626
1627	/* Clear the parity enables on the TX data fifos as
1628	 * they produce false parity errors because of timing issues
1629	 */
1630	if (EFX_WORKAROUND_5129(efx)) {
1631		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1632		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1633		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1634	}
1635
1636	if (EFX_WORKAROUND_7244(efx)) {
1637		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1638		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1639		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1640		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1641		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1642		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1643	}
1644
1645	/* Setup RX.  Wait for descriptor is broken and must
1646	 * be disabled.  RXDP recovery shouldn't be needed, but is.
1647	 */
1648	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1649	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1650	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1651	if (EFX_WORKAROUND_5583(efx))
1652		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1653	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1654
1655	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1656	 * descriptors (which is bad).
1657	 */
1658	efx_reado(efx, &temp, FR_AZ_TX_CFG);
1659	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1660	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1661
1662	falcon_init_rx_cfg(efx);
1663
1664	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1665		/* Set hash key for IPv4 */
1666		memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1667		efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1668
1669		/* Set destination of both TX and RX Flush events */
1670		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1671		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1672	}
1673
1674	efx_nic_init_common(efx);
1675
1676	return 0;
1677}
1678
1679static void falcon_remove_nic(struct efx_nic *efx)
1680{
1681	struct falcon_nic_data *nic_data = efx->nic_data;
1682	struct falcon_board *board = falcon_board(efx);
1683	int rc;
1684
1685	board->type->fini(efx);
1686
1687	/* Remove I2C adapter and clear it in preparation for a retry */
1688	rc = i2c_del_adapter(&board->i2c_adap);
1689	BUG_ON(rc);
1690	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1691
1692	falcon_remove_spi_devices(efx);
1693	efx_nic_free_buffer(efx, &efx->irq_status);
1694
1695	falcon_reset_hw(efx, RESET_TYPE_ALL);
1696
1697	/* Release the second function after the reset */
1698	if (nic_data->pci_dev2) {
1699		pci_dev_put(nic_data->pci_dev2);
1700		nic_data->pci_dev2 = NULL;
1701	}
1702
1703	/* Tear down the private nic state */
1704	kfree(efx->nic_data);
1705	efx->nic_data = NULL;
1706}
1707
1708static void falcon_update_nic_stats(struct efx_nic *efx)
1709{
1710	struct falcon_nic_data *nic_data = efx->nic_data;
1711	efx_oword_t cnt;
1712
1713	if (nic_data->stats_disable_count)
1714		return;
1715
1716	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1717	efx->n_rx_nodesc_drop_cnt +=
1718		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1719
1720	if (nic_data->stats_pending &&
1721	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1722		nic_data->stats_pending = false;
1723		rmb(); /* read the done flag before the stats */
1724		efx->mac_op->update_stats(efx);
1725	}
1726}
1727
1728void falcon_start_nic_stats(struct efx_nic *efx)
1729{
1730	struct falcon_nic_data *nic_data = efx->nic_data;
1731
1732	spin_lock_bh(&efx->stats_lock);
1733	if (--nic_data->stats_disable_count == 0)
1734		falcon_stats_request(efx);
1735	spin_unlock_bh(&efx->stats_lock);
1736}
1737
1738void falcon_stop_nic_stats(struct efx_nic *efx)
1739{
1740	struct falcon_nic_data *nic_data = efx->nic_data;
1741	int i;
1742
1743	might_sleep();
1744
1745	spin_lock_bh(&efx->stats_lock);
1746	++nic_data->stats_disable_count;
1747	spin_unlock_bh(&efx->stats_lock);
1748
1749	del_timer_sync(&nic_data->stats_timer);
1750
1751	/* Wait enough time for the most recent transfer to
1752	 * complete. */
1753	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1754		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1755			break;
1756		msleep(1);
1757	}
1758
1759	spin_lock_bh(&efx->stats_lock);
1760	falcon_stats_complete(efx);
1761	spin_unlock_bh(&efx->stats_lock);
1762}
1763
1764static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1765{
1766	falcon_board(efx)->type->set_id_led(efx, mode);
1767}
1768
1769/**************************************************************************
1770 *
1771 * Wake on LAN
1772 *
1773 **************************************************************************
1774 */
1775
1776static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1777{
1778	wol->supported = 0;
1779	wol->wolopts = 0;
1780	memset(&wol->sopass, 0, sizeof(wol->sopass));
1781}
1782
1783static int falcon_set_wol(struct efx_nic *efx, u32 type)
1784{
1785	if (type != 0)
1786		return -EINVAL;
1787	return 0;
1788}
1789
1790/**************************************************************************
1791 *
1792 * Revision-dependent attributes used by efx.c and nic.c
1793 *
1794 **************************************************************************
1795 */
1796
1797struct efx_nic_type falcon_a1_nic_type = {
1798	.probe = falcon_probe_nic,
1799	.remove = falcon_remove_nic,
1800	.init = falcon_init_nic,
1801	.fini = efx_port_dummy_op_void,
1802	.monitor = falcon_monitor,
1803	.reset = falcon_reset_hw,
1804	.probe_port = falcon_probe_port,
1805	.remove_port = falcon_remove_port,
1806	.prepare_flush = falcon_prepare_flush,
1807	.update_stats = falcon_update_nic_stats,
1808	.start_stats = falcon_start_nic_stats,
1809	.stop_stats = falcon_stop_nic_stats,
1810	.set_id_led = falcon_set_id_led,
1811	.push_irq_moderation = falcon_push_irq_moderation,
1812	.push_multicast_hash = falcon_push_multicast_hash,
1813	.reconfigure_port = falcon_reconfigure_port,
1814	.get_wol = falcon_get_wol,
1815	.set_wol = falcon_set_wol,
1816	.resume_wol = efx_port_dummy_op_void,
1817	.test_nvram = falcon_test_nvram,
1818	.default_mac_ops = &falcon_xmac_operations,
1819
1820	.revision = EFX_REV_FALCON_A1,
1821	.mem_map_size = 0x20000,
1822	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1823	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1824	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1825	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1826	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1827	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1828	.rx_buffer_padding = 0x24,
1829	.max_interrupt_mode = EFX_INT_MODE_MSI,
1830	.phys_addr_channels = 4,
1831	.tx_dc_base = 0x130000,
1832	.rx_dc_base = 0x100000,
1833	.offload_features = NETIF_F_IP_CSUM,
1834	.reset_world_flags = ETH_RESET_IRQ,
1835};
1836
1837struct efx_nic_type falcon_b0_nic_type = {
1838	.probe = falcon_probe_nic,
1839	.remove = falcon_remove_nic,
1840	.init = falcon_init_nic,
1841	.fini = efx_port_dummy_op_void,
1842	.monitor = falcon_monitor,
1843	.reset = falcon_reset_hw,
1844	.probe_port = falcon_probe_port,
1845	.remove_port = falcon_remove_port,
1846	.prepare_flush = falcon_prepare_flush,
1847	.update_stats = falcon_update_nic_stats,
1848	.start_stats = falcon_start_nic_stats,
1849	.stop_stats = falcon_stop_nic_stats,
1850	.set_id_led = falcon_set_id_led,
1851	.push_irq_moderation = falcon_push_irq_moderation,
1852	.push_multicast_hash = falcon_push_multicast_hash,
1853	.reconfigure_port = falcon_reconfigure_port,
1854	.get_wol = falcon_get_wol,
1855	.set_wol = falcon_set_wol,
1856	.resume_wol = efx_port_dummy_op_void,
1857	.test_registers = falcon_b0_test_registers,
1858	.test_nvram = falcon_test_nvram,
1859	.default_mac_ops = &falcon_xmac_operations,
1860
1861	.revision = EFX_REV_FALCON_B0,
1862	/* Map everything up to and including the RSS indirection
1863	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
1864	 * requires that they not be mapped.  */
1865	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1866			 FR_BZ_RX_INDIRECTION_TBL_STEP *
1867			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1868	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1869	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1870	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1871	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1872	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1873	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1874	.rx_buffer_hash_size = 0x10,
1875	.rx_buffer_padding = 0,
1876	.max_interrupt_mode = EFX_INT_MODE_MSIX,
1877	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1878				   * interrupt handler only supports 32
1879				   * channels */
1880	.tx_dc_base = 0x130000,
1881	.rx_dc_base = 0x100000,
1882	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH,
1883	.reset_world_flags = ETH_RESET_IRQ,
1884};
1885