• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/
1/*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18 *
19 *
20 * This driver is designed for the Broadcom SiByte SOC built-in
21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 *
23 * Updated to the driver model and the PHY abstraction layer
24 * by Maciej W. Rozycki.
25 */
26
27#include <linux/bug.h>
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/timer.h>
32#include <linux/errno.h>
33#include <linux/ioport.h>
34#include <linux/slab.h>
35#include <linux/interrupt.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/skbuff.h>
39#include <linux/init.h>
40#include <linux/bitops.h>
41#include <linux/err.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/phy.h>
45#include <linux/platform_device.h>
46
47#include <asm/cache.h>
48#include <asm/io.h>
49#include <asm/processor.h>	/* Processor type for cache alignment. */
50
51/* Operational parameters that usually are not changed. */
52
53#define CONFIG_SBMAC_COALESCE
54
55/* Time in jiffies before concluding the transmitter is hung. */
56#define TX_TIMEOUT  (2*HZ)
57
58
59MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
60MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
61
62/* A few user-configurable values which may be modified when a driver
63   module is loaded. */
64
65/* 1 normal messages, 0 quiet .. 7 verbose. */
66static int debug = 1;
67module_param(debug, int, S_IRUGO);
68MODULE_PARM_DESC(debug, "Debug messages");
69
70#ifdef CONFIG_SBMAC_COALESCE
71static int int_pktcnt_tx = 255;
72module_param(int_pktcnt_tx, int, S_IRUGO);
73MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
74
75static int int_timeout_tx = 255;
76module_param(int_timeout_tx, int, S_IRUGO);
77MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
78
79static int int_pktcnt_rx = 64;
80module_param(int_pktcnt_rx, int, S_IRUGO);
81MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
82
83static int int_timeout_rx = 64;
84module_param(int_timeout_rx, int, S_IRUGO);
85MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
86#endif
87
88#include <asm/sibyte/board.h>
89#include <asm/sibyte/sb1250.h>
90#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
91#include <asm/sibyte/bcm1480_regs.h>
92#include <asm/sibyte/bcm1480_int.h>
93#define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
94#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
95#include <asm/sibyte/sb1250_regs.h>
96#include <asm/sibyte/sb1250_int.h>
97#else
98#error invalid SiByte MAC configuation
99#endif
100#include <asm/sibyte/sb1250_scd.h>
101#include <asm/sibyte/sb1250_mac.h>
102#include <asm/sibyte/sb1250_dma.h>
103
104#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
105#define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
106#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
107#define UNIT_INT(n)		(K_INT_MAC_0 + (n))
108#else
109#error invalid SiByte MAC configuation
110#endif
111
112#ifdef K_INT_PHY
113#define SBMAC_PHY_INT			K_INT_PHY
114#else
115#define SBMAC_PHY_INT			PHY_POLL
116#endif
117
118/**********************************************************************
119 *  Simple types
120 ********************************************************************* */
121
122enum sbmac_speed {
123	sbmac_speed_none = 0,
124	sbmac_speed_10 = SPEED_10,
125	sbmac_speed_100 = SPEED_100,
126	sbmac_speed_1000 = SPEED_1000,
127};
128
129enum sbmac_duplex {
130	sbmac_duplex_none = -1,
131	sbmac_duplex_half = DUPLEX_HALF,
132	sbmac_duplex_full = DUPLEX_FULL,
133};
134
135enum sbmac_fc {
136	sbmac_fc_none,
137	sbmac_fc_disabled,
138	sbmac_fc_frame,
139	sbmac_fc_collision,
140	sbmac_fc_carrier,
141};
142
143enum sbmac_state {
144	sbmac_state_uninit,
145	sbmac_state_off,
146	sbmac_state_on,
147	sbmac_state_broken,
148};
149
150
151/**********************************************************************
152 *  Macros
153 ********************************************************************* */
154
155
156#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
157			  (d)->sbdma_dscrtable : (d)->f+1)
158
159
160#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
161
162#define SBMAC_MAX_TXDESCR	256
163#define SBMAC_MAX_RXDESCR	256
164
165#define ETHER_ADDR_LEN		6
166#define ENET_PACKET_SIZE	1518
167/*#define ENET_PACKET_SIZE	9216 */
168
169/**********************************************************************
170 *  DMA Descriptor structure
171 ********************************************************************* */
172
173struct sbdmadscr {
174	uint64_t  dscr_a;
175	uint64_t  dscr_b;
176};
177
178/**********************************************************************
179 *  DMA Controller structure
180 ********************************************************************* */
181
182struct sbmacdma {
183
184	/*
185	 * This stuff is used to identify the channel and the registers
186	 * associated with it.
187	 */
188	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
189						   MAC */
190	int			sbdma_channel;	/* channel number */
191	int			sbdma_txdir;	/* direction (1=transmit) */
192	int			sbdma_maxdescr;	/* total # of descriptors
193						   in ring */
194#ifdef CONFIG_SBMAC_COALESCE
195	int			sbdma_int_pktcnt;
196						/* # descriptors rx/tx
197						   before interrupt */
198	int			sbdma_int_timeout;
199						/* # usec rx/tx interrupt */
200#endif
201	void __iomem		*sbdma_config0;	/* DMA config register 0 */
202	void __iomem		*sbdma_config1;	/* DMA config register 1 */
203	void __iomem		*sbdma_dscrbase;
204						/* descriptor base address */
205	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
206	void __iomem		*sbdma_curdscr;	/* current descriptor
207						   address */
208	void __iomem		*sbdma_oodpktlost;
209						/* pkt drop (rx only) */
210
211	/*
212	 * This stuff is for maintenance of the ring
213	 */
214	void			*sbdma_dscrtable_unaligned;
215	struct sbdmadscr	*sbdma_dscrtable;
216						/* base of descriptor table */
217	struct sbdmadscr	*sbdma_dscrtable_end;
218						/* end of descriptor table */
219	struct sk_buff		**sbdma_ctxtable;
220						/* context table, one
221						   per descr */
222	dma_addr_t		sbdma_dscrtable_phys;
223						/* and also the phys addr */
224	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
225	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
226						   to remove */
227};
228
229
230/**********************************************************************
231 *  Ethernet softc structure
232 ********************************************************************* */
233
234struct sbmac_softc {
235
236	/*
237	 * Linux-specific things
238	 */
239	struct net_device	*sbm_dev;	/* pointer to linux device */
240	struct napi_struct	napi;
241	struct phy_device	*phy_dev;	/* the associated PHY device */
242	struct mii_bus		*mii_bus;	/* the MII bus */
243	int			phy_irq[PHY_MAX_ADDR];
244	spinlock_t		sbm_lock;	/* spin lock */
245	int			sbm_devflags;	/* current device flags */
246
247	/*
248	 * Controller-specific things
249	 */
250	void __iomem		*sbm_base;	/* MAC's base address */
251	enum sbmac_state	sbm_state;	/* current state */
252
253	void __iomem		*sbm_macenable;	/* MAC Enable Register */
254	void __iomem		*sbm_maccfg;	/* MAC Config Register */
255	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
256	void __iomem		*sbm_framecfg;	/* Frame Config Register */
257	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
258	void __iomem		*sbm_isr;	/* Interrupt Status Register */
259	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
260	void __iomem		*sbm_mdio;	/* MDIO Register */
261
262	enum sbmac_speed	sbm_speed;	/* current speed */
263	enum sbmac_duplex	sbm_duplex;	/* current duplex */
264	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
265	int			sbm_pause;	/* current pause setting */
266	int			sbm_link;	/* current link state */
267
268	unsigned char		sbm_hwaddr[ETHER_ADDR_LEN];
269
270	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
271	struct sbmacdma		sbm_rxdma;
272	int			rx_hw_checksum;
273	int			sbe_idx;
274};
275
276
277/**********************************************************************
278 *  Externs
279 ********************************************************************* */
280
281/**********************************************************************
282 *  Prototypes
283 ********************************************************************* */
284
285static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
286			  int txrx, int maxdescr);
287static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
288static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
289			       struct sk_buff *m);
290static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
291static void sbdma_emptyring(struct sbmacdma *d);
292static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
293static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
294			    int work_to_do, int poll);
295static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
296			     int poll);
297static int sbmac_initctx(struct sbmac_softc *s);
298static void sbmac_channel_start(struct sbmac_softc *s);
299static void sbmac_channel_stop(struct sbmac_softc *s);
300static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
301						enum sbmac_state);
302static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
303static uint64_t sbmac_addr2reg(unsigned char *ptr);
304static irqreturn_t sbmac_intr(int irq, void *dev_instance);
305static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
306static void sbmac_setmulti(struct sbmac_softc *sc);
307static int sbmac_init(struct platform_device *pldev, long long base);
308static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
309static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
310			    enum sbmac_fc fc);
311
312static int sbmac_open(struct net_device *dev);
313static void sbmac_tx_timeout (struct net_device *dev);
314static void sbmac_set_rx_mode(struct net_device *dev);
315static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
316static int sbmac_close(struct net_device *dev);
317static int sbmac_poll(struct napi_struct *napi, int budget);
318
319static void sbmac_mii_poll(struct net_device *dev);
320static int sbmac_mii_probe(struct net_device *dev);
321
322static void sbmac_mii_sync(void __iomem *sbm_mdio);
323static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
324			       int bitcnt);
325static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
326static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
327			   u16 val);
328
329
330/**********************************************************************
331 *  Globals
332 ********************************************************************* */
333
334static char sbmac_string[] = "sb1250-mac";
335
336static char sbmac_mdio_string[] = "sb1250-mac-mdio";
337
338
339/**********************************************************************
340 *  MDIO constants
341 ********************************************************************* */
342
343#define	MII_COMMAND_START	0x01
344#define	MII_COMMAND_READ	0x02
345#define	MII_COMMAND_WRITE	0x01
346#define	MII_COMMAND_ACK		0x02
347
348#define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
349
350#define ENABLE 		1
351#define DISABLE		0
352
353/**********************************************************************
354 *  SBMAC_MII_SYNC(sbm_mdio)
355 *
356 *  Synchronize with the MII - send a pattern of bits to the MII
357 *  that will guarantee that it is ready to accept a command.
358 *
359 *  Input parameters:
360 *  	   sbm_mdio - address of the MAC's MDIO register
361 *
362 *  Return value:
363 *  	   nothing
364 ********************************************************************* */
365
366static void sbmac_mii_sync(void __iomem *sbm_mdio)
367{
368	int cnt;
369	uint64_t bits;
370	int mac_mdio_genc;
371
372	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
373
374	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
375
376	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
377
378	for (cnt = 0; cnt < 32; cnt++) {
379		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
380		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
381	}
382}
383
384/**********************************************************************
385 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
386 *
387 *  Send some bits to the MII.  The bits to be sent are right-
388 *  justified in the 'data' parameter.
389 *
390 *  Input parameters:
391 *  	   sbm_mdio - address of the MAC's MDIO register
392 *  	   data     - data to send
393 *  	   bitcnt   - number of bits to send
394 ********************************************************************* */
395
396static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
397			       int bitcnt)
398{
399	int i;
400	uint64_t bits;
401	unsigned int curmask;
402	int mac_mdio_genc;
403
404	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
405
406	bits = M_MAC_MDIO_DIR_OUTPUT;
407	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
408
409	curmask = 1 << (bitcnt - 1);
410
411	for (i = 0; i < bitcnt; i++) {
412		if (data & curmask)
413			bits |= M_MAC_MDIO_OUT;
414		else bits &= ~M_MAC_MDIO_OUT;
415		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
416		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
417		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
418		curmask >>= 1;
419	}
420}
421
422
423
424/**********************************************************************
425 *  SBMAC_MII_READ(bus, phyaddr, regidx)
426 *  Read a PHY register.
427 *
428 *  Input parameters:
429 *  	   bus     - MDIO bus handle
430 *  	   phyaddr - PHY's address
431 *  	   regnum  - index of register to read
432 *
433 *  Return value:
434 *  	   value read, or 0xffff if an error occurred.
435 ********************************************************************* */
436
437static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
438{
439	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
440	void __iomem *sbm_mdio = sc->sbm_mdio;
441	int idx;
442	int error;
443	int regval;
444	int mac_mdio_genc;
445
446	/*
447	 * Synchronize ourselves so that the PHY knows the next
448	 * thing coming down is a command
449	 */
450	sbmac_mii_sync(sbm_mdio);
451
452	/*
453	 * Send the data to the PHY.  The sequence is
454	 * a "start" command (2 bits)
455	 * a "read" command (2 bits)
456	 * the PHY addr (5 bits)
457	 * the register index (5 bits)
458	 */
459	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
460	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
461	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
462	sbmac_mii_senddata(sbm_mdio, regidx, 5);
463
464	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
465
466	/*
467	 * Switch the port around without a clock transition.
468	 */
469	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
470
471	/*
472	 * Send out a clock pulse to signal we want the status
473	 */
474	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
475		     sbm_mdio);
476	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
477
478	/*
479	 * If an error occurred, the PHY will signal '1' back
480	 */
481	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
482
483	/*
484	 * Issue an 'idle' clock pulse, but keep the direction
485	 * the same.
486	 */
487	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
488		     sbm_mdio);
489	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
490
491	regval = 0;
492
493	for (idx = 0; idx < 16; idx++) {
494		regval <<= 1;
495
496		if (error == 0) {
497			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
498				regval |= 1;
499		}
500
501		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
502			     sbm_mdio);
503		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
504	}
505
506	/* Switch back to output */
507	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
508
509	if (error == 0)
510		return regval;
511	return 0xffff;
512}
513
514
515/**********************************************************************
516 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
517 *
518 *  Write a value to a PHY register.
519 *
520 *  Input parameters:
521 *  	   bus     - MDIO bus handle
522 *  	   phyaddr - PHY to use
523 *  	   regidx  - register within the PHY
524 *  	   regval  - data to write to register
525 *
526 *  Return value:
527 *  	   0 for success
528 ********************************************************************* */
529
530static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
531			   u16 regval)
532{
533	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
534	void __iomem *sbm_mdio = sc->sbm_mdio;
535	int mac_mdio_genc;
536
537	sbmac_mii_sync(sbm_mdio);
538
539	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
540	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
541	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
542	sbmac_mii_senddata(sbm_mdio, regidx, 5);
543	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
544	sbmac_mii_senddata(sbm_mdio, regval, 16);
545
546	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
547
548	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
549
550	return 0;
551}
552
553
554
555/**********************************************************************
556 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
557 *
558 *  Initialize a DMA channel context.  Since there are potentially
559 *  eight DMA channels per MAC, it's nice to do this in a standard
560 *  way.
561 *
562 *  Input parameters:
563 *  	   d - struct sbmacdma (DMA channel context)
564 *  	   s - struct sbmac_softc (pointer to a MAC)
565 *  	   chan - channel number (0..1 right now)
566 *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
567 *      maxdescr - number of descriptors
568 *
569 *  Return value:
570 *  	   nothing
571 ********************************************************************* */
572
573static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
574			  int txrx, int maxdescr)
575{
576#ifdef CONFIG_SBMAC_COALESCE
577	int int_pktcnt, int_timeout;
578#endif
579
580	/*
581	 * Save away interesting stuff in the structure
582	 */
583
584	d->sbdma_eth       = s;
585	d->sbdma_channel   = chan;
586	d->sbdma_txdir     = txrx;
587
588
589	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
590	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
591	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
592	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
593	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
594	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
595	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
596	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
597	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
598	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
599	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
600	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
601	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
602	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
603	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
604	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
605	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
606	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
607	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
608	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
609	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
610
611	/*
612	 * initialize register pointers
613	 */
614
615	d->sbdma_config0 =
616		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
617	d->sbdma_config1 =
618		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
619	d->sbdma_dscrbase =
620		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
621	d->sbdma_dscrcnt =
622		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
623	d->sbdma_curdscr =
624		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
625	if (d->sbdma_txdir)
626		d->sbdma_oodpktlost = NULL;
627	else
628		d->sbdma_oodpktlost =
629			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
630
631	/*
632	 * Allocate memory for the ring
633	 */
634
635	d->sbdma_maxdescr = maxdescr;
636
637	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
638					       sizeof(*d->sbdma_dscrtable),
639					       GFP_KERNEL);
640
641	/*
642	 * The descriptor table must be aligned to at least 16 bytes or the
643	 * MAC will corrupt it.
644	 */
645	d->sbdma_dscrtable = (struct sbdmadscr *)
646			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
647				   sizeof(*d->sbdma_dscrtable));
648
649	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
650
651	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
652
653	/*
654	 * And context table
655	 */
656
657	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
658				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
659
660#ifdef CONFIG_SBMAC_COALESCE
661	/*
662	 * Setup Rx/Tx DMA coalescing defaults
663	 */
664
665	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
666	if ( int_pktcnt ) {
667		d->sbdma_int_pktcnt = int_pktcnt;
668	} else {
669		d->sbdma_int_pktcnt = 1;
670	}
671
672	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
673	if ( int_timeout ) {
674		d->sbdma_int_timeout = int_timeout;
675	} else {
676		d->sbdma_int_timeout = 0;
677	}
678#endif
679
680}
681
682/**********************************************************************
683 *  SBDMA_CHANNEL_START(d)
684 *
685 *  Initialize the hardware registers for a DMA channel.
686 *
687 *  Input parameters:
688 *  	   d - DMA channel to init (context must be previously init'd
689 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
690 *
691 *  Return value:
692 *  	   nothing
693 ********************************************************************* */
694
695static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
696{
697	/*
698	 * Turn on the DMA channel
699	 */
700
701#ifdef CONFIG_SBMAC_COALESCE
702	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
703		       0, d->sbdma_config1);
704	__raw_writeq(M_DMA_EOP_INT_EN |
705		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
706		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
707		       0, d->sbdma_config0);
708#else
709	__raw_writeq(0, d->sbdma_config1);
710	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
711		       0, d->sbdma_config0);
712#endif
713
714	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
715
716	/*
717	 * Initialize ring pointers
718	 */
719
720	d->sbdma_addptr = d->sbdma_dscrtable;
721	d->sbdma_remptr = d->sbdma_dscrtable;
722}
723
724/**********************************************************************
725 *  SBDMA_CHANNEL_STOP(d)
726 *
727 *  Initialize the hardware registers for a DMA channel.
728 *
729 *  Input parameters:
730 *  	   d - DMA channel to init (context must be previously init'd
731 *
732 *  Return value:
733 *  	   nothing
734 ********************************************************************* */
735
736static void sbdma_channel_stop(struct sbmacdma *d)
737{
738	/*
739	 * Turn off the DMA channel
740	 */
741
742	__raw_writeq(0, d->sbdma_config1);
743
744	__raw_writeq(0, d->sbdma_dscrbase);
745
746	__raw_writeq(0, d->sbdma_config0);
747
748	/*
749	 * Zero ring pointers
750	 */
751
752	d->sbdma_addptr = NULL;
753	d->sbdma_remptr = NULL;
754}
755
756static inline void sbdma_align_skb(struct sk_buff *skb,
757				   unsigned int power2, unsigned int offset)
758{
759	unsigned char *addr = skb->data;
760	unsigned char *newaddr = PTR_ALIGN(addr, power2);
761
762	skb_reserve(skb, newaddr - addr + offset);
763}
764
765
766/**********************************************************************
767 *  SBDMA_ADD_RCVBUFFER(d,sb)
768 *
769 *  Add a buffer to the specified DMA channel.   For receive channels,
770 *  this queues a buffer for inbound packets.
771 *
772 *  Input parameters:
773 *	   sc - softc structure
774 *  	    d - DMA channel descriptor
775 * 	   sb - sk_buff to add, or NULL if we should allocate one
776 *
777 *  Return value:
778 *  	   0 if buffer could not be added (ring is full)
779 *  	   1 if buffer added successfully
780 ********************************************************************* */
781
782
783static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
784			       struct sk_buff *sb)
785{
786	struct net_device *dev = sc->sbm_dev;
787	struct sbdmadscr *dsc;
788	struct sbdmadscr *nextdsc;
789	struct sk_buff *sb_new = NULL;
790	int pktsize = ENET_PACKET_SIZE;
791
792	/* get pointer to our current place in the ring */
793
794	dsc = d->sbdma_addptr;
795	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
796
797	/*
798	 * figure out if the ring is full - if the next descriptor
799	 * is the same as the one that we're going to remove from
800	 * the ring, the ring is full
801	 */
802
803	if (nextdsc == d->sbdma_remptr) {
804		return -ENOSPC;
805	}
806
807	/*
808	 * Allocate a sk_buff if we don't already have one.
809	 * If we do have an sk_buff, reset it so that it's empty.
810	 *
811	 * Note: sk_buffs don't seem to be guaranteed to have any sort
812	 * of alignment when they are allocated.  Therefore, allocate enough
813	 * extra space to make sure that:
814	 *
815	 *    1. the data does not start in the middle of a cache line.
816	 *    2. The data does not end in the middle of a cache line
817	 *    3. The buffer can be aligned such that the IP addresses are
818	 *       naturally aligned.
819	 *
820	 *  Remember, the SOCs MAC writes whole cache lines at a time,
821	 *  without reading the old contents first.  So, if the sk_buff's
822	 *  data portion starts in the middle of a cache line, the SOC
823	 *  DMA will trash the beginning (and ending) portions.
824	 */
825
826	if (sb == NULL) {
827		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
828					       SMP_CACHE_BYTES * 2 +
829					       NET_IP_ALIGN);
830		if (sb_new == NULL) {
831			pr_info("%s: sk_buff allocation failed\n",
832			       d->sbdma_eth->sbm_dev->name);
833			return -ENOBUFS;
834		}
835
836		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
837	}
838	else {
839		sb_new = sb;
840		/*
841		 * nothing special to reinit buffer, it's already aligned
842		 * and sb->data already points to a good place.
843		 */
844	}
845
846	/*
847	 * fill in the descriptor
848	 */
849
850#ifdef CONFIG_SBMAC_COALESCE
851	/*
852	 * Do not interrupt per DMA transfer.
853	 */
854	dsc->dscr_a = virt_to_phys(sb_new->data) |
855		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
856#else
857	dsc->dscr_a = virt_to_phys(sb_new->data) |
858		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
859		M_DMA_DSCRA_INTERRUPT;
860#endif
861
862	/* receiving: no options */
863	dsc->dscr_b = 0;
864
865	/*
866	 * fill in the context
867	 */
868
869	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
870
871	/*
872	 * point at next packet
873	 */
874
875	d->sbdma_addptr = nextdsc;
876
877	/*
878	 * Give the buffer to the DMA engine.
879	 */
880
881	__raw_writeq(1, d->sbdma_dscrcnt);
882
883	return 0;					/* we did it */
884}
885
886/**********************************************************************
887 *  SBDMA_ADD_TXBUFFER(d,sb)
888 *
889 *  Add a transmit buffer to the specified DMA channel, causing a
890 *  transmit to start.
891 *
892 *  Input parameters:
893 *  	   d - DMA channel descriptor
894 * 	   sb - sk_buff to add
895 *
896 *  Return value:
897 *  	   0 transmit queued successfully
898 *  	   otherwise error code
899 ********************************************************************* */
900
901
902static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
903{
904	struct sbdmadscr *dsc;
905	struct sbdmadscr *nextdsc;
906	uint64_t phys;
907	uint64_t ncb;
908	int length;
909
910	/* get pointer to our current place in the ring */
911
912	dsc = d->sbdma_addptr;
913	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
914
915	/*
916	 * figure out if the ring is full - if the next descriptor
917	 * is the same as the one that we're going to remove from
918	 * the ring, the ring is full
919	 */
920
921	if (nextdsc == d->sbdma_remptr) {
922		return -ENOSPC;
923	}
924
925	/*
926	 * Under Linux, it's not necessary to copy/coalesce buffers
927	 * like it is on NetBSD.  We think they're all contiguous,
928	 * but that may not be true for GBE.
929	 */
930
931	length = sb->len;
932
933	/*
934	 * fill in the descriptor.  Note that the number of cache
935	 * blocks in the descriptor is the number of blocks
936	 * *spanned*, so we need to add in the offset (if any)
937	 * while doing the calculation.
938	 */
939
940	phys = virt_to_phys(sb->data);
941	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
942
943	dsc->dscr_a = phys |
944		V_DMA_DSCRA_A_SIZE(ncb) |
945#ifndef CONFIG_SBMAC_COALESCE
946		M_DMA_DSCRA_INTERRUPT |
947#endif
948		M_DMA_ETHTX_SOP;
949
950	/* transmitting: set outbound options and length */
951
952	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
953		V_DMA_DSCRB_PKT_SIZE(length);
954
955	/*
956	 * fill in the context
957	 */
958
959	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
960
961	/*
962	 * point at next packet
963	 */
964
965	d->sbdma_addptr = nextdsc;
966
967	/*
968	 * Give the buffer to the DMA engine.
969	 */
970
971	__raw_writeq(1, d->sbdma_dscrcnt);
972
973	return 0;					/* we did it */
974}
975
976
977
978
979/**********************************************************************
980 *  SBDMA_EMPTYRING(d)
981 *
982 *  Free all allocated sk_buffs on the specified DMA channel;
983 *
984 *  Input parameters:
985 *  	   d  - DMA channel
986 *
987 *  Return value:
988 *  	   nothing
989 ********************************************************************* */
990
991static void sbdma_emptyring(struct sbmacdma *d)
992{
993	int idx;
994	struct sk_buff *sb;
995
996	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
997		sb = d->sbdma_ctxtable[idx];
998		if (sb) {
999			dev_kfree_skb(sb);
1000			d->sbdma_ctxtable[idx] = NULL;
1001		}
1002	}
1003}
1004
1005
1006/**********************************************************************
1007 *  SBDMA_FILLRING(d)
1008 *
1009 *  Fill the specified DMA channel (must be receive channel)
1010 *  with sk_buffs
1011 *
1012 *  Input parameters:
1013 *	   sc - softc structure
1014 *  	    d - DMA channel
1015 *
1016 *  Return value:
1017 *  	   nothing
1018 ********************************************************************* */
1019
1020static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1021{
1022	int idx;
1023
1024	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1025		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1026			break;
1027	}
1028}
1029
1030#ifdef CONFIG_NET_POLL_CONTROLLER
1031static void sbmac_netpoll(struct net_device *netdev)
1032{
1033	struct sbmac_softc *sc = netdev_priv(netdev);
1034	int irq = sc->sbm_dev->irq;
1035
1036	__raw_writeq(0, sc->sbm_imr);
1037
1038	sbmac_intr(irq, netdev);
1039
1040#ifdef CONFIG_SBMAC_COALESCE
1041	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1042	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1043	sc->sbm_imr);
1044#else
1045	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1046	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1047#endif
1048}
1049#endif
1050
1051/**********************************************************************
1052 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1053 *
1054 *  Process "completed" receive buffers on the specified DMA channel.
1055 *
1056 *  Input parameters:
1057 *            sc - softc structure
1058 *  	       d - DMA channel context
1059 *    work_to_do - no. of packets to process before enabling interrupt
1060 *                 again (for NAPI)
1061 *          poll - 1: using polling (for NAPI)
1062 *
1063 *  Return value:
1064 *  	   nothing
1065 ********************************************************************* */
1066
1067static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1068			    int work_to_do, int poll)
1069{
1070	struct net_device *dev = sc->sbm_dev;
1071	int curidx;
1072	int hwidx;
1073	struct sbdmadscr *dsc;
1074	struct sk_buff *sb;
1075	int len;
1076	int work_done = 0;
1077	int dropped = 0;
1078
1079	prefetch(d);
1080
1081again:
1082	/* Check if the HW dropped any frames */
1083	dev->stats.rx_fifo_errors
1084	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1085	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1086
1087	while (work_to_do-- > 0) {
1088		/*
1089		 * figure out where we are (as an index) and where
1090		 * the hardware is (also as an index)
1091		 *
1092		 * This could be done faster if (for example) the
1093		 * descriptor table was page-aligned and contiguous in
1094		 * both virtual and physical memory -- you could then
1095		 * just compare the low-order bits of the virtual address
1096		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1097		 */
1098
1099		dsc = d->sbdma_remptr;
1100		curidx = dsc - d->sbdma_dscrtable;
1101
1102		prefetch(dsc);
1103		prefetch(&d->sbdma_ctxtable[curidx]);
1104
1105		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1106			 d->sbdma_dscrtable_phys) /
1107			sizeof(*d->sbdma_dscrtable);
1108
1109		/*
1110		 * If they're the same, that means we've processed all
1111		 * of the descriptors up to (but not including) the one that
1112		 * the hardware is working on right now.
1113		 */
1114
1115		if (curidx == hwidx)
1116			goto done;
1117
1118		/*
1119		 * Otherwise, get the packet's sk_buff ptr back
1120		 */
1121
1122		sb = d->sbdma_ctxtable[curidx];
1123		d->sbdma_ctxtable[curidx] = NULL;
1124
1125		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1126
1127		/*
1128		 * Check packet status.  If good, process it.
1129		 * If not, silently drop it and put it back on the
1130		 * receive ring.
1131		 */
1132
1133		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1134
1135			/*
1136			 * Add a new buffer to replace the old one.  If we fail
1137			 * to allocate a buffer, we're going to drop this
1138			 * packet and put it right back on the receive ring.
1139			 */
1140
1141			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1142				     -ENOBUFS)) {
1143				dev->stats.rx_dropped++;
1144				/* Re-add old buffer */
1145				sbdma_add_rcvbuffer(sc, d, sb);
1146				/* No point in continuing at the moment */
1147				printk(KERN_ERR "dropped packet (1)\n");
1148				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1149				goto done;
1150			} else {
1151				/*
1152				 * Set length into the packet
1153				 */
1154				skb_put(sb,len);
1155
1156				/*
1157				 * Buffer has been replaced on the
1158				 * receive ring.  Pass the buffer to
1159				 * the kernel
1160				 */
1161				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1162				/* Check hw IPv4/TCP checksum if supported */
1163				if (sc->rx_hw_checksum == ENABLE) {
1164					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1165					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1166						sb->ip_summed = CHECKSUM_UNNECESSARY;
1167						/* don't need to set sb->csum */
1168					} else {
1169						sb->ip_summed = CHECKSUM_NONE;
1170					}
1171				}
1172				prefetch(sb->data);
1173				prefetch((const void *)(((char *)sb->data)+32));
1174				if (poll)
1175					dropped = netif_receive_skb(sb);
1176				else
1177					dropped = netif_rx(sb);
1178
1179				if (dropped == NET_RX_DROP) {
1180					dev->stats.rx_dropped++;
1181					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1182					goto done;
1183				}
1184				else {
1185					dev->stats.rx_bytes += len;
1186					dev->stats.rx_packets++;
1187				}
1188			}
1189		} else {
1190			/*
1191			 * Packet was mangled somehow.  Just drop it and
1192			 * put it back on the receive ring.
1193			 */
1194			dev->stats.rx_errors++;
1195			sbdma_add_rcvbuffer(sc, d, sb);
1196		}
1197
1198
1199		/*
1200		 * .. and advance to the next buffer.
1201		 */
1202
1203		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1204		work_done++;
1205	}
1206	if (!poll) {
1207		work_to_do = 32;
1208		goto again; /* collect fifo drop statistics again */
1209	}
1210done:
1211	return work_done;
1212}
1213
1214/**********************************************************************
1215 *  SBDMA_TX_PROCESS(sc,d)
1216 *
1217 *  Process "completed" transmit buffers on the specified DMA channel.
1218 *  This is normally called within the interrupt service routine.
1219 *  Note that this isn't really ideal for priority channels, since
1220 *  it processes all of the packets on a given channel before
1221 *  returning.
1222 *
1223 *  Input parameters:
1224 *      sc - softc structure
1225 *  	 d - DMA channel context
1226 *    poll - 1: using polling (for NAPI)
1227 *
1228 *  Return value:
1229 *  	   nothing
1230 ********************************************************************* */
1231
1232static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1233			     int poll)
1234{
1235	struct net_device *dev = sc->sbm_dev;
1236	int curidx;
1237	int hwidx;
1238	struct sbdmadscr *dsc;
1239	struct sk_buff *sb;
1240	unsigned long flags;
1241	int packets_handled = 0;
1242
1243	spin_lock_irqsave(&(sc->sbm_lock), flags);
1244
1245	if (d->sbdma_remptr == d->sbdma_addptr)
1246	  goto end_unlock;
1247
1248	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1249		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1250
1251	for (;;) {
1252		/*
1253		 * figure out where we are (as an index) and where
1254		 * the hardware is (also as an index)
1255		 *
1256		 * This could be done faster if (for example) the
1257		 * descriptor table was page-aligned and contiguous in
1258		 * both virtual and physical memory -- you could then
1259		 * just compare the low-order bits of the virtual address
1260		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1261		 */
1262
1263		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1264
1265		/*
1266		 * If they're the same, that means we've processed all
1267		 * of the descriptors up to (but not including) the one that
1268		 * the hardware is working on right now.
1269		 */
1270
1271		if (curidx == hwidx)
1272			break;
1273
1274		/*
1275		 * Otherwise, get the packet's sk_buff ptr back
1276		 */
1277
1278		dsc = &(d->sbdma_dscrtable[curidx]);
1279		sb = d->sbdma_ctxtable[curidx];
1280		d->sbdma_ctxtable[curidx] = NULL;
1281
1282		/*
1283		 * Stats
1284		 */
1285
1286		dev->stats.tx_bytes += sb->len;
1287		dev->stats.tx_packets++;
1288
1289		/*
1290		 * for transmits, we just free buffers.
1291		 */
1292
1293		dev_kfree_skb_irq(sb);
1294
1295		/*
1296		 * .. and advance to the next buffer.
1297		 */
1298
1299		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1300
1301		packets_handled++;
1302
1303	}
1304
1305	/*
1306	 * Decide if we should wake up the protocol or not.
1307	 * Other drivers seem to do this when we reach a low
1308	 * watermark on the transmit queue.
1309	 */
1310
1311	if (packets_handled)
1312		netif_wake_queue(d->sbdma_eth->sbm_dev);
1313
1314end_unlock:
1315	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1316
1317}
1318
1319
1320
1321/**********************************************************************
1322 *  SBMAC_INITCTX(s)
1323 *
1324 *  Initialize an Ethernet context structure - this is called
1325 *  once per MAC on the 1250.  Memory is allocated here, so don't
1326 *  call it again from inside the ioctl routines that bring the
1327 *  interface up/down
1328 *
1329 *  Input parameters:
1330 *  	   s - sbmac context structure
1331 *
1332 *  Return value:
1333 *  	   0
1334 ********************************************************************* */
1335
1336static int sbmac_initctx(struct sbmac_softc *s)
1337{
1338
1339	/*
1340	 * figure out the addresses of some ports
1341	 */
1342
1343	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1344	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1345	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1346	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1347	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1348	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1349	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1350	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1351
1352	/*
1353	 * Initialize the DMA channels.  Right now, only one per MAC is used
1354	 * Note: Only do this _once_, as it allocates memory from the kernel!
1355	 */
1356
1357	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1358	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1359
1360	/*
1361	 * initial state is OFF
1362	 */
1363
1364	s->sbm_state = sbmac_state_off;
1365
1366	return 0;
1367}
1368
1369
1370static void sbdma_uninitctx(struct sbmacdma *d)
1371{
1372	if (d->sbdma_dscrtable_unaligned) {
1373		kfree(d->sbdma_dscrtable_unaligned);
1374		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1375	}
1376
1377	if (d->sbdma_ctxtable) {
1378		kfree(d->sbdma_ctxtable);
1379		d->sbdma_ctxtable = NULL;
1380	}
1381}
1382
1383
1384static void sbmac_uninitctx(struct sbmac_softc *sc)
1385{
1386	sbdma_uninitctx(&(sc->sbm_txdma));
1387	sbdma_uninitctx(&(sc->sbm_rxdma));
1388}
1389
1390
1391/**********************************************************************
1392 *  SBMAC_CHANNEL_START(s)
1393 *
1394 *  Start packet processing on this MAC.
1395 *
1396 *  Input parameters:
1397 *  	   s - sbmac structure
1398 *
1399 *  Return value:
1400 *  	   nothing
1401 ********************************************************************* */
1402
1403static void sbmac_channel_start(struct sbmac_softc *s)
1404{
1405	uint64_t reg;
1406	void __iomem *port;
1407	uint64_t cfg,fifo,framecfg;
1408	int idx, th_value;
1409
1410	/*
1411	 * Don't do this if running
1412	 */
1413
1414	if (s->sbm_state == sbmac_state_on)
1415		return;
1416
1417	/*
1418	 * Bring the controller out of reset, but leave it off.
1419	 */
1420
1421	__raw_writeq(0, s->sbm_macenable);
1422
1423	/*
1424	 * Ignore all received packets
1425	 */
1426
1427	__raw_writeq(0, s->sbm_rxfilter);
1428
1429	/*
1430	 * Calculate values for various control registers.
1431	 */
1432
1433	cfg = M_MAC_RETRY_EN |
1434		M_MAC_TX_HOLD_SOP_EN |
1435		V_MAC_TX_PAUSE_CNT_16K |
1436		M_MAC_AP_STAT_EN |
1437		M_MAC_FAST_SYNC |
1438		M_MAC_SS_EN |
1439		0;
1440
1441	/*
1442	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1443	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1444	 * Use a larger RD_THRSH for gigabit
1445	 */
1446	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1447		th_value = 28;
1448	else
1449		th_value = 64;
1450
1451	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1452		((s->sbm_speed == sbmac_speed_1000)
1453		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1454		V_MAC_TX_RL_THRSH(4) |
1455		V_MAC_RX_PL_THRSH(4) |
1456		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1457		V_MAC_RX_RL_THRSH(8) |
1458		0;
1459
1460	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1461		V_MAC_MAX_FRAMESZ_DEFAULT |
1462		V_MAC_BACKOFF_SEL(1);
1463
1464	/*
1465	 * Clear out the hash address map
1466	 */
1467
1468	port = s->sbm_base + R_MAC_HASH_BASE;
1469	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1470		__raw_writeq(0, port);
1471		port += sizeof(uint64_t);
1472	}
1473
1474	/*
1475	 * Clear out the exact-match table
1476	 */
1477
1478	port = s->sbm_base + R_MAC_ADDR_BASE;
1479	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1480		__raw_writeq(0, port);
1481		port += sizeof(uint64_t);
1482	}
1483
1484	/*
1485	 * Clear out the DMA Channel mapping table registers
1486	 */
1487
1488	port = s->sbm_base + R_MAC_CHUP0_BASE;
1489	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1490		__raw_writeq(0, port);
1491		port += sizeof(uint64_t);
1492	}
1493
1494
1495	port = s->sbm_base + R_MAC_CHLO0_BASE;
1496	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1497		__raw_writeq(0, port);
1498		port += sizeof(uint64_t);
1499	}
1500
1501	/*
1502	 * Program the hardware address.  It goes into the hardware-address
1503	 * register as well as the first filter register.
1504	 */
1505
1506	reg = sbmac_addr2reg(s->sbm_hwaddr);
1507
1508	port = s->sbm_base + R_MAC_ADDR_BASE;
1509	__raw_writeq(reg, port);
1510	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1511
1512#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1513	/*
1514	 * Pass1 SOCs do not receive packets addressed to the
1515	 * destination address in the R_MAC_ETHERNET_ADDR register.
1516	 * Set the value to zero.
1517	 */
1518	__raw_writeq(0, port);
1519#else
1520	__raw_writeq(reg, port);
1521#endif
1522
1523	/*
1524	 * Set the receive filter for no packets, and write values
1525	 * to the various config registers
1526	 */
1527
1528	__raw_writeq(0, s->sbm_rxfilter);
1529	__raw_writeq(0, s->sbm_imr);
1530	__raw_writeq(framecfg, s->sbm_framecfg);
1531	__raw_writeq(fifo, s->sbm_fifocfg);
1532	__raw_writeq(cfg, s->sbm_maccfg);
1533
1534	/*
1535	 * Initialize DMA channels (rings should be ok now)
1536	 */
1537
1538	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1539	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1540
1541	/*
1542	 * Configure the speed, duplex, and flow control
1543	 */
1544
1545	sbmac_set_speed(s,s->sbm_speed);
1546	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1547
1548	/*
1549	 * Fill the receive ring
1550	 */
1551
1552	sbdma_fillring(s, &(s->sbm_rxdma));
1553
1554	/*
1555	 * Turn on the rest of the bits in the enable register
1556	 */
1557
1558#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1559	__raw_writeq(M_MAC_RXDMA_EN0 |
1560		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1561#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1562	__raw_writeq(M_MAC_RXDMA_EN0 |
1563		       M_MAC_TXDMA_EN0 |
1564		       M_MAC_RX_ENABLE |
1565		       M_MAC_TX_ENABLE, s->sbm_macenable);
1566#else
1567#error invalid SiByte MAC configuation
1568#endif
1569
1570#ifdef CONFIG_SBMAC_COALESCE
1571	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1572		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1573#else
1574	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1575		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1576#endif
1577
1578	/*
1579	 * Enable receiving unicasts and broadcasts
1580	 */
1581
1582	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1583
1584	/*
1585	 * we're running now.
1586	 */
1587
1588	s->sbm_state = sbmac_state_on;
1589
1590	/*
1591	 * Program multicast addresses
1592	 */
1593
1594	sbmac_setmulti(s);
1595
1596	/*
1597	 * If channel was in promiscuous mode before, turn that on
1598	 */
1599
1600	if (s->sbm_devflags & IFF_PROMISC) {
1601		sbmac_promiscuous_mode(s,1);
1602	}
1603
1604}
1605
1606
1607/**********************************************************************
1608 *  SBMAC_CHANNEL_STOP(s)
1609 *
1610 *  Stop packet processing on this MAC.
1611 *
1612 *  Input parameters:
1613 *  	   s - sbmac structure
1614 *
1615 *  Return value:
1616 *  	   nothing
1617 ********************************************************************* */
1618
1619static void sbmac_channel_stop(struct sbmac_softc *s)
1620{
1621	/* don't do this if already stopped */
1622
1623	if (s->sbm_state == sbmac_state_off)
1624		return;
1625
1626	/* don't accept any packets, disable all interrupts */
1627
1628	__raw_writeq(0, s->sbm_rxfilter);
1629	__raw_writeq(0, s->sbm_imr);
1630
1631	/* Turn off ticker */
1632
1633
1634	/* turn off receiver and transmitter */
1635
1636	__raw_writeq(0, s->sbm_macenable);
1637
1638	/* We're stopped now. */
1639
1640	s->sbm_state = sbmac_state_off;
1641
1642	/*
1643	 * Stop DMA channels (rings should be ok now)
1644	 */
1645
1646	sbdma_channel_stop(&(s->sbm_rxdma));
1647	sbdma_channel_stop(&(s->sbm_txdma));
1648
1649	/* Empty the receive and transmit rings */
1650
1651	sbdma_emptyring(&(s->sbm_rxdma));
1652	sbdma_emptyring(&(s->sbm_txdma));
1653
1654}
1655
1656/**********************************************************************
1657 *  SBMAC_SET_CHANNEL_STATE(state)
1658 *
1659 *  Set the channel's state ON or OFF
1660 *
1661 *  Input parameters:
1662 *  	   state - new state
1663 *
1664 *  Return value:
1665 *  	   old state
1666 ********************************************************************* */
1667static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1668						enum sbmac_state state)
1669{
1670	enum sbmac_state oldstate = sc->sbm_state;
1671
1672	/*
1673	 * If same as previous state, return
1674	 */
1675
1676	if (state == oldstate) {
1677		return oldstate;
1678	}
1679
1680	/*
1681	 * If new state is ON, turn channel on
1682	 */
1683
1684	if (state == sbmac_state_on) {
1685		sbmac_channel_start(sc);
1686	}
1687	else {
1688		sbmac_channel_stop(sc);
1689	}
1690
1691	/*
1692	 * Return previous state
1693	 */
1694
1695	return oldstate;
1696}
1697
1698
1699/**********************************************************************
1700 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1701 *
1702 *  Turn on or off promiscuous mode
1703 *
1704 *  Input parameters:
1705 *  	   sc - softc
1706 *      onoff - 1 to turn on, 0 to turn off
1707 *
1708 *  Return value:
1709 *  	   nothing
1710 ********************************************************************* */
1711
1712static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1713{
1714	uint64_t reg;
1715
1716	if (sc->sbm_state != sbmac_state_on)
1717		return;
1718
1719	if (onoff) {
1720		reg = __raw_readq(sc->sbm_rxfilter);
1721		reg |= M_MAC_ALLPKT_EN;
1722		__raw_writeq(reg, sc->sbm_rxfilter);
1723	}
1724	else {
1725		reg = __raw_readq(sc->sbm_rxfilter);
1726		reg &= ~M_MAC_ALLPKT_EN;
1727		__raw_writeq(reg, sc->sbm_rxfilter);
1728	}
1729}
1730
1731/**********************************************************************
1732 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1733 *
1734 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1735 *
1736 *  Input parameters:
1737 *  	   sc - softc
1738 *
1739 *  Return value:
1740 *  	   nothing
1741 ********************************************************************* */
1742
1743static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1744{
1745	uint64_t reg;
1746
1747	/* Hard code the off set to 15 for now */
1748	reg = __raw_readq(sc->sbm_rxfilter);
1749	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1750	__raw_writeq(reg, sc->sbm_rxfilter);
1751
1752	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1753	   later does.  */
1754	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1755		sc->rx_hw_checksum = DISABLE;
1756	} else {
1757		sc->rx_hw_checksum = ENABLE;
1758	}
1759}
1760
1761
1762/**********************************************************************
1763 *  SBMAC_ADDR2REG(ptr)
1764 *
1765 *  Convert six bytes into the 64-bit register value that
1766 *  we typically write into the SBMAC's address/mcast registers
1767 *
1768 *  Input parameters:
1769 *  	   ptr - pointer to 6 bytes
1770 *
1771 *  Return value:
1772 *  	   register value
1773 ********************************************************************* */
1774
1775static uint64_t sbmac_addr2reg(unsigned char *ptr)
1776{
1777	uint64_t reg = 0;
1778
1779	ptr += 6;
1780
1781	reg |= (uint64_t) *(--ptr);
1782	reg <<= 8;
1783	reg |= (uint64_t) *(--ptr);
1784	reg <<= 8;
1785	reg |= (uint64_t) *(--ptr);
1786	reg <<= 8;
1787	reg |= (uint64_t) *(--ptr);
1788	reg <<= 8;
1789	reg |= (uint64_t) *(--ptr);
1790	reg <<= 8;
1791	reg |= (uint64_t) *(--ptr);
1792
1793	return reg;
1794}
1795
1796
1797/**********************************************************************
1798 *  SBMAC_SET_SPEED(s,speed)
1799 *
1800 *  Configure LAN speed for the specified MAC.
1801 *  Warning: must be called when MAC is off!
1802 *
1803 *  Input parameters:
1804 *  	   s - sbmac structure
1805 *  	   speed - speed to set MAC to (see enum sbmac_speed)
1806 *
1807 *  Return value:
1808 *  	   1 if successful
1809 *      0 indicates invalid parameters
1810 ********************************************************************* */
1811
1812static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1813{
1814	uint64_t cfg;
1815	uint64_t framecfg;
1816
1817	/*
1818	 * Save new current values
1819	 */
1820
1821	s->sbm_speed = speed;
1822
1823	if (s->sbm_state == sbmac_state_on)
1824		return 0;	/* save for next restart */
1825
1826	/*
1827	 * Read current register values
1828	 */
1829
1830	cfg = __raw_readq(s->sbm_maccfg);
1831	framecfg = __raw_readq(s->sbm_framecfg);
1832
1833	/*
1834	 * Mask out the stuff we want to change
1835	 */
1836
1837	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1838	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1839		      M_MAC_SLOT_SIZE);
1840
1841	/*
1842	 * Now add in the new bits
1843	 */
1844
1845	switch (speed) {
1846	case sbmac_speed_10:
1847		framecfg |= V_MAC_IFG_RX_10 |
1848			V_MAC_IFG_TX_10 |
1849			K_MAC_IFG_THRSH_10 |
1850			V_MAC_SLOT_SIZE_10;
1851		cfg |= V_MAC_SPEED_SEL_10MBPS;
1852		break;
1853
1854	case sbmac_speed_100:
1855		framecfg |= V_MAC_IFG_RX_100 |
1856			V_MAC_IFG_TX_100 |
1857			V_MAC_IFG_THRSH_100 |
1858			V_MAC_SLOT_SIZE_100;
1859		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1860		break;
1861
1862	case sbmac_speed_1000:
1863		framecfg |= V_MAC_IFG_RX_1000 |
1864			V_MAC_IFG_TX_1000 |
1865			V_MAC_IFG_THRSH_1000 |
1866			V_MAC_SLOT_SIZE_1000;
1867		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1868		break;
1869
1870	default:
1871		return 0;
1872	}
1873
1874	/*
1875	 * Send the bits back to the hardware
1876	 */
1877
1878	__raw_writeq(framecfg, s->sbm_framecfg);
1879	__raw_writeq(cfg, s->sbm_maccfg);
1880
1881	return 1;
1882}
1883
1884/**********************************************************************
1885 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1886 *
1887 *  Set Ethernet duplex and flow control options for this MAC
1888 *  Warning: must be called when MAC is off!
1889 *
1890 *  Input parameters:
1891 *  	   s - sbmac structure
1892 *  	   duplex - duplex setting (see enum sbmac_duplex)
1893 *  	   fc - flow control setting (see enum sbmac_fc)
1894 *
1895 *  Return value:
1896 *  	   1 if ok
1897 *  	   0 if an invalid parameter combination was specified
1898 ********************************************************************* */
1899
1900static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1901			    enum sbmac_fc fc)
1902{
1903	uint64_t cfg;
1904
1905	/*
1906	 * Save new current values
1907	 */
1908
1909	s->sbm_duplex = duplex;
1910	s->sbm_fc = fc;
1911
1912	if (s->sbm_state == sbmac_state_on)
1913		return 0;	/* save for next restart */
1914
1915	/*
1916	 * Read current register values
1917	 */
1918
1919	cfg = __raw_readq(s->sbm_maccfg);
1920
1921	/*
1922	 * Mask off the stuff we're about to change
1923	 */
1924
1925	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1926
1927
1928	switch (duplex) {
1929	case sbmac_duplex_half:
1930		switch (fc) {
1931		case sbmac_fc_disabled:
1932			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1933			break;
1934
1935		case sbmac_fc_collision:
1936			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1937			break;
1938
1939		case sbmac_fc_carrier:
1940			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1941			break;
1942
1943		case sbmac_fc_frame:		/* not valid in half duplex */
1944		default:			/* invalid selection */
1945			return 0;
1946		}
1947		break;
1948
1949	case sbmac_duplex_full:
1950		switch (fc) {
1951		case sbmac_fc_disabled:
1952			cfg |= V_MAC_FC_CMD_DISABLED;
1953			break;
1954
1955		case sbmac_fc_frame:
1956			cfg |= V_MAC_FC_CMD_ENABLED;
1957			break;
1958
1959		case sbmac_fc_collision:	/* not valid in full duplex */
1960		case sbmac_fc_carrier:		/* not valid in full duplex */
1961		default:
1962			return 0;
1963		}
1964		break;
1965	default:
1966		return 0;
1967	}
1968
1969	/*
1970	 * Send the bits back to the hardware
1971	 */
1972
1973	__raw_writeq(cfg, s->sbm_maccfg);
1974
1975	return 1;
1976}
1977
1978
1979
1980
1981/**********************************************************************
1982 *  SBMAC_INTR()
1983 *
1984 *  Interrupt handler for MAC interrupts
1985 *
1986 *  Input parameters:
1987 *  	   MAC structure
1988 *
1989 *  Return value:
1990 *  	   nothing
1991 ********************************************************************* */
1992static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1993{
1994	struct net_device *dev = (struct net_device *) dev_instance;
1995	struct sbmac_softc *sc = netdev_priv(dev);
1996	uint64_t isr;
1997	int handled = 0;
1998
1999	/*
2000	 * Read the ISR (this clears the bits in the real
2001	 * register, except for counter addr)
2002	 */
2003
2004	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2005
2006	if (isr == 0)
2007		return IRQ_RETVAL(0);
2008	handled = 1;
2009
2010	/*
2011	 * Transmits on channel 0
2012	 */
2013
2014	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2015		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2016
2017	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2018		if (napi_schedule_prep(&sc->napi)) {
2019			__raw_writeq(0, sc->sbm_imr);
2020			__napi_schedule(&sc->napi);
2021			/* Depend on the exit from poll to reenable intr */
2022		}
2023		else {
2024			/* may leave some packets behind */
2025			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2026					 SBMAC_MAX_RXDESCR * 2, 0);
2027		}
2028	}
2029	return IRQ_RETVAL(handled);
2030}
2031
2032/**********************************************************************
2033 *  SBMAC_START_TX(skb,dev)
2034 *
2035 *  Start output on the specified interface.  Basically, we
2036 *  queue as many buffers as we can until the ring fills up, or
2037 *  we run off the end of the queue, whichever comes first.
2038 *
2039 *  Input parameters:
2040 *
2041 *
2042 *  Return value:
2043 *  	   nothing
2044 ********************************************************************* */
2045static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2046{
2047	struct sbmac_softc *sc = netdev_priv(dev);
2048	unsigned long flags;
2049
2050	/* lock eth irq */
2051	spin_lock_irqsave(&sc->sbm_lock, flags);
2052
2053	/*
2054	 * Put the buffer on the transmit ring.  If we
2055	 * don't have room, stop the queue.
2056	 */
2057
2058	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2059		netif_stop_queue(dev);
2060		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2061
2062		return NETDEV_TX_BUSY;
2063	}
2064
2065	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2066
2067	return NETDEV_TX_OK;
2068}
2069
2070/**********************************************************************
2071 *  SBMAC_SETMULTI(sc)
2072 *
2073 *  Reprogram the multicast table into the hardware, given
2074 *  the list of multicasts associated with the interface
2075 *  structure.
2076 *
2077 *  Input parameters:
2078 *  	   sc - softc
2079 *
2080 *  Return value:
2081 *  	   nothing
2082 ********************************************************************* */
2083
2084static void sbmac_setmulti(struct sbmac_softc *sc)
2085{
2086	uint64_t reg;
2087	void __iomem *port;
2088	int idx;
2089	struct netdev_hw_addr *ha;
2090	struct net_device *dev = sc->sbm_dev;
2091
2092	/*
2093	 * Clear out entire multicast table.  We do this by nuking
2094	 * the entire hash table and all the direct matches except
2095	 * the first one, which is used for our station address
2096	 */
2097
2098	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2099		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2100		__raw_writeq(0, port);
2101	}
2102
2103	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2104		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2105		__raw_writeq(0, port);
2106	}
2107
2108	/*
2109	 * Clear the filter to say we don't want any multicasts.
2110	 */
2111
2112	reg = __raw_readq(sc->sbm_rxfilter);
2113	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2114	__raw_writeq(reg, sc->sbm_rxfilter);
2115
2116	if (dev->flags & IFF_ALLMULTI) {
2117		/*
2118		 * Enable ALL multicasts.  Do this by inverting the
2119		 * multicast enable bit.
2120		 */
2121		reg = __raw_readq(sc->sbm_rxfilter);
2122		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2123		__raw_writeq(reg, sc->sbm_rxfilter);
2124		return;
2125	}
2126
2127
2128	/*
2129	 * Progam new multicast entries.  For now, only use the
2130	 * perfect filter.  In the future we'll need to use the
2131	 * hash filter if the perfect filter overflows
2132	 */
2133
2134
2135	idx = 1;		/* skip station address */
2136	netdev_for_each_mc_addr(ha, dev) {
2137		if (idx == MAC_ADDR_COUNT)
2138			break;
2139		reg = sbmac_addr2reg(ha->addr);
2140		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2141		__raw_writeq(reg, port);
2142		idx++;
2143	}
2144
2145	/*
2146	 * Enable the "accept multicast bits" if we programmed at least one
2147	 * multicast.
2148	 */
2149
2150	if (idx > 1) {
2151		reg = __raw_readq(sc->sbm_rxfilter);
2152		reg |= M_MAC_MCAST_EN;
2153		__raw_writeq(reg, sc->sbm_rxfilter);
2154	}
2155}
2156
2157static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2158{
2159	if (new_mtu >  ENET_PACKET_SIZE)
2160		return -EINVAL;
2161	_dev->mtu = new_mtu;
2162	pr_info("changing the mtu to %d\n", new_mtu);
2163	return 0;
2164}
2165
2166static const struct net_device_ops sbmac_netdev_ops = {
2167	.ndo_open		= sbmac_open,
2168	.ndo_stop		= sbmac_close,
2169	.ndo_start_xmit		= sbmac_start_tx,
2170	.ndo_set_multicast_list	= sbmac_set_rx_mode,
2171	.ndo_tx_timeout		= sbmac_tx_timeout,
2172	.ndo_do_ioctl		= sbmac_mii_ioctl,
2173	.ndo_change_mtu		= sb1250_change_mtu,
2174	.ndo_validate_addr	= eth_validate_addr,
2175	.ndo_set_mac_address	= eth_mac_addr,
2176#ifdef CONFIG_NET_POLL_CONTROLLER
2177	.ndo_poll_controller	= sbmac_netpoll,
2178#endif
2179};
2180
2181/**********************************************************************
2182 *  SBMAC_INIT(dev)
2183 *
2184 *  Attach routine - init hardware and hook ourselves into linux
2185 *
2186 *  Input parameters:
2187 *  	   dev - net_device structure
2188 *
2189 *  Return value:
2190 *  	   status
2191 ********************************************************************* */
2192
2193static int sbmac_init(struct platform_device *pldev, long long base)
2194{
2195	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2196	int idx = pldev->id;
2197	struct sbmac_softc *sc = netdev_priv(dev);
2198	unsigned char *eaddr;
2199	uint64_t ea_reg;
2200	int i;
2201	int err;
2202
2203	sc->sbm_dev = dev;
2204	sc->sbe_idx = idx;
2205
2206	eaddr = sc->sbm_hwaddr;
2207
2208	/*
2209	 * Read the ethernet address.  The firmware left this programmed
2210	 * for us in the ethernet address register for each mac.
2211	 */
2212
2213	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2214	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2215	for (i = 0; i < 6; i++) {
2216		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2217		ea_reg >>= 8;
2218	}
2219
2220	for (i = 0; i < 6; i++) {
2221		dev->dev_addr[i] = eaddr[i];
2222	}
2223
2224	/*
2225	 * Initialize context (get pointers to registers and stuff), then
2226	 * allocate the memory for the descriptor tables.
2227	 */
2228
2229	sbmac_initctx(sc);
2230
2231	/*
2232	 * Set up Linux device callins
2233	 */
2234
2235	spin_lock_init(&(sc->sbm_lock));
2236
2237	dev->netdev_ops = &sbmac_netdev_ops;
2238	dev->watchdog_timeo = TX_TIMEOUT;
2239
2240	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2241
2242	dev->irq		= UNIT_INT(idx);
2243
2244	/* This is needed for PASS2 for Rx H/W checksum feature */
2245	sbmac_set_iphdr_offset(sc);
2246
2247	sc->mii_bus = mdiobus_alloc();
2248	if (sc->mii_bus == NULL) {
2249		err = -ENOMEM;
2250		goto uninit_ctx;
2251	}
2252
2253	sc->mii_bus->name = sbmac_mdio_string;
2254	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2255	sc->mii_bus->priv = sc;
2256	sc->mii_bus->read = sbmac_mii_read;
2257	sc->mii_bus->write = sbmac_mii_write;
2258	sc->mii_bus->irq = sc->phy_irq;
2259	for (i = 0; i < PHY_MAX_ADDR; ++i)
2260		sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2261
2262	sc->mii_bus->parent = &pldev->dev;
2263	/*
2264	 * Probe PHY address
2265	 */
2266	err = mdiobus_register(sc->mii_bus);
2267	if (err) {
2268		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2269		       dev->name);
2270		goto free_mdio;
2271	}
2272	dev_set_drvdata(&pldev->dev, sc->mii_bus);
2273
2274	err = register_netdev(dev);
2275	if (err) {
2276		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2277		       sbmac_string, idx);
2278		goto unreg_mdio;
2279	}
2280
2281	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2282
2283	if (sc->rx_hw_checksum == ENABLE)
2284		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2285
2286	/*
2287	 * Display Ethernet address (this is called during the config
2288	 * process so we need to finish off the config message that
2289	 * was being displayed)
2290	 */
2291	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2292	       dev->name, base, eaddr);
2293
2294	return 0;
2295unreg_mdio:
2296	mdiobus_unregister(sc->mii_bus);
2297	dev_set_drvdata(&pldev->dev, NULL);
2298free_mdio:
2299	mdiobus_free(sc->mii_bus);
2300uninit_ctx:
2301	sbmac_uninitctx(sc);
2302	return err;
2303}
2304
2305
2306static int sbmac_open(struct net_device *dev)
2307{
2308	struct sbmac_softc *sc = netdev_priv(dev);
2309	int err;
2310
2311	if (debug > 1)
2312		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2313
2314	/*
2315	 * map/route interrupt (clear status first, in case something
2316	 * weird is pending; we haven't initialized the mac registers
2317	 * yet)
2318	 */
2319
2320	__raw_readq(sc->sbm_isr);
2321	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2322	if (err) {
2323		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2324		       dev->irq);
2325		goto out_err;
2326	}
2327
2328	sc->sbm_speed = sbmac_speed_none;
2329	sc->sbm_duplex = sbmac_duplex_none;
2330	sc->sbm_fc = sbmac_fc_none;
2331	sc->sbm_pause = -1;
2332	sc->sbm_link = 0;
2333
2334	/*
2335	 * Attach to the PHY
2336	 */
2337	err = sbmac_mii_probe(dev);
2338	if (err)
2339		goto out_unregister;
2340
2341	/*
2342	 * Turn on the channel
2343	 */
2344
2345	sbmac_set_channel_state(sc,sbmac_state_on);
2346
2347	netif_start_queue(dev);
2348
2349	sbmac_set_rx_mode(dev);
2350
2351	phy_start(sc->phy_dev);
2352
2353	napi_enable(&sc->napi);
2354
2355	return 0;
2356
2357out_unregister:
2358	free_irq(dev->irq, dev);
2359out_err:
2360	return err;
2361}
2362
2363static int sbmac_mii_probe(struct net_device *dev)
2364{
2365	struct sbmac_softc *sc = netdev_priv(dev);
2366	struct phy_device *phy_dev;
2367	int i;
2368
2369	for (i = 0; i < PHY_MAX_ADDR; i++) {
2370		phy_dev = sc->mii_bus->phy_map[i];
2371		if (phy_dev)
2372			break;
2373	}
2374	if (!phy_dev) {
2375		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2376		return -ENXIO;
2377	}
2378
2379	phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2380			      PHY_INTERFACE_MODE_GMII);
2381	if (IS_ERR(phy_dev)) {
2382		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2383		return PTR_ERR(phy_dev);
2384	}
2385
2386	/* Remove any features not supported by the controller */
2387	phy_dev->supported &= SUPPORTED_10baseT_Half |
2388			      SUPPORTED_10baseT_Full |
2389			      SUPPORTED_100baseT_Half |
2390			      SUPPORTED_100baseT_Full |
2391			      SUPPORTED_1000baseT_Half |
2392			      SUPPORTED_1000baseT_Full |
2393			      SUPPORTED_Autoneg |
2394			      SUPPORTED_MII |
2395			      SUPPORTED_Pause |
2396			      SUPPORTED_Asym_Pause;
2397	phy_dev->advertising = phy_dev->supported;
2398
2399	pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2400		dev->name, phy_dev->drv->name,
2401		dev_name(&phy_dev->dev), phy_dev->irq);
2402
2403	sc->phy_dev = phy_dev;
2404
2405	return 0;
2406}
2407
2408
2409static void sbmac_mii_poll(struct net_device *dev)
2410{
2411	struct sbmac_softc *sc = netdev_priv(dev);
2412	struct phy_device *phy_dev = sc->phy_dev;
2413	unsigned long flags;
2414	enum sbmac_fc fc;
2415	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2416
2417	link_chg = (sc->sbm_link != phy_dev->link);
2418	speed_chg = (sc->sbm_speed != phy_dev->speed);
2419	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2420	pause_chg = (sc->sbm_pause != phy_dev->pause);
2421
2422	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2423		return;					/* Hmmm... */
2424
2425	if (!phy_dev->link) {
2426		if (link_chg) {
2427			sc->sbm_link = phy_dev->link;
2428			sc->sbm_speed = sbmac_speed_none;
2429			sc->sbm_duplex = sbmac_duplex_none;
2430			sc->sbm_fc = sbmac_fc_disabled;
2431			sc->sbm_pause = -1;
2432			pr_info("%s: link unavailable\n", dev->name);
2433		}
2434		return;
2435	}
2436
2437	if (phy_dev->duplex == DUPLEX_FULL) {
2438		if (phy_dev->pause)
2439			fc = sbmac_fc_frame;
2440		else
2441			fc = sbmac_fc_disabled;
2442	} else
2443		fc = sbmac_fc_collision;
2444	fc_chg = (sc->sbm_fc != fc);
2445
2446	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2447		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2448
2449	spin_lock_irqsave(&sc->sbm_lock, flags);
2450
2451	sc->sbm_speed = phy_dev->speed;
2452	sc->sbm_duplex = phy_dev->duplex;
2453	sc->sbm_fc = fc;
2454	sc->sbm_pause = phy_dev->pause;
2455	sc->sbm_link = phy_dev->link;
2456
2457	if ((speed_chg || duplex_chg || fc_chg) &&
2458	    sc->sbm_state != sbmac_state_off) {
2459		/*
2460		 * something changed, restart the channel
2461		 */
2462		if (debug > 1)
2463			pr_debug("%s: restarting channel "
2464				 "because PHY state changed\n", dev->name);
2465		sbmac_channel_stop(sc);
2466		sbmac_channel_start(sc);
2467	}
2468
2469	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2470}
2471
2472
2473static void sbmac_tx_timeout (struct net_device *dev)
2474{
2475	struct sbmac_softc *sc = netdev_priv(dev);
2476	unsigned long flags;
2477
2478	spin_lock_irqsave(&sc->sbm_lock, flags);
2479
2480
2481	dev->trans_start = jiffies; /* prevent tx timeout */
2482	dev->stats.tx_errors++;
2483
2484	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2485
2486	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2487}
2488
2489
2490
2491
2492static void sbmac_set_rx_mode(struct net_device *dev)
2493{
2494	unsigned long flags;
2495	struct sbmac_softc *sc = netdev_priv(dev);
2496
2497	spin_lock_irqsave(&sc->sbm_lock, flags);
2498	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2499		/*
2500		 * Promiscuous changed.
2501		 */
2502
2503		if (dev->flags & IFF_PROMISC) {
2504			sbmac_promiscuous_mode(sc,1);
2505		}
2506		else {
2507			sbmac_promiscuous_mode(sc,0);
2508		}
2509	}
2510	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2511
2512	/*
2513	 * Program the multicasts.  Do this every time.
2514	 */
2515
2516	sbmac_setmulti(sc);
2517
2518}
2519
2520static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2521{
2522	struct sbmac_softc *sc = netdev_priv(dev);
2523
2524	if (!netif_running(dev) || !sc->phy_dev)
2525		return -EINVAL;
2526
2527	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2528}
2529
2530static int sbmac_close(struct net_device *dev)
2531{
2532	struct sbmac_softc *sc = netdev_priv(dev);
2533
2534	napi_disable(&sc->napi);
2535
2536	phy_stop(sc->phy_dev);
2537
2538	sbmac_set_channel_state(sc, sbmac_state_off);
2539
2540	netif_stop_queue(dev);
2541
2542	if (debug > 1)
2543		pr_debug("%s: Shutting down ethercard\n", dev->name);
2544
2545	phy_disconnect(sc->phy_dev);
2546	sc->phy_dev = NULL;
2547	free_irq(dev->irq, dev);
2548
2549	sbdma_emptyring(&(sc->sbm_txdma));
2550	sbdma_emptyring(&(sc->sbm_rxdma));
2551
2552	return 0;
2553}
2554
2555static int sbmac_poll(struct napi_struct *napi, int budget)
2556{
2557	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2558	int work_done;
2559
2560	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2561	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2562
2563	if (work_done < budget) {
2564		napi_complete(napi);
2565
2566#ifdef CONFIG_SBMAC_COALESCE
2567		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2568			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2569			     sc->sbm_imr);
2570#else
2571		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2572			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2573#endif
2574	}
2575
2576	return work_done;
2577}
2578
2579
2580static int __devinit sbmac_probe(struct platform_device *pldev)
2581{
2582	struct net_device *dev;
2583	struct sbmac_softc *sc;
2584	void __iomem *sbm_base;
2585	struct resource *res;
2586	u64 sbmac_orig_hwaddr;
2587	int err;
2588
2589	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2590	BUG_ON(!res);
2591	sbm_base = ioremap_nocache(res->start, res->end - res->start + 1);
2592	if (!sbm_base) {
2593		printk(KERN_ERR "%s: unable to map device registers\n",
2594		       dev_name(&pldev->dev));
2595		err = -ENOMEM;
2596		goto out_out;
2597	}
2598
2599	/*
2600	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2601	 * value for us by the firmware if we're going to use this MAC.
2602	 * If we find a zero, skip this MAC.
2603	 */
2604	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2605	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2606		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2607	if (sbmac_orig_hwaddr == 0) {
2608		err = 0;
2609		goto out_unmap;
2610	}
2611
2612	/*
2613	 * Okay, cool.  Initialize this MAC.
2614	 */
2615	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2616	if (!dev) {
2617		printk(KERN_ERR "%s: unable to allocate etherdev\n",
2618		       dev_name(&pldev->dev));
2619		err = -ENOMEM;
2620		goto out_unmap;
2621	}
2622
2623	dev_set_drvdata(&pldev->dev, dev);
2624	SET_NETDEV_DEV(dev, &pldev->dev);
2625
2626	sc = netdev_priv(dev);
2627	sc->sbm_base = sbm_base;
2628
2629	err = sbmac_init(pldev, res->start);
2630	if (err)
2631		goto out_kfree;
2632
2633	return 0;
2634
2635out_kfree:
2636	free_netdev(dev);
2637	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2638
2639out_unmap:
2640	iounmap(sbm_base);
2641
2642out_out:
2643	return err;
2644}
2645
2646static int __exit sbmac_remove(struct platform_device *pldev)
2647{
2648	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2649	struct sbmac_softc *sc = netdev_priv(dev);
2650
2651	unregister_netdev(dev);
2652	sbmac_uninitctx(sc);
2653	mdiobus_unregister(sc->mii_bus);
2654	mdiobus_free(sc->mii_bus);
2655	iounmap(sc->sbm_base);
2656	free_netdev(dev);
2657
2658	return 0;
2659}
2660
2661static struct platform_driver sbmac_driver = {
2662	.probe = sbmac_probe,
2663	.remove = __exit_p(sbmac_remove),
2664	.driver = {
2665		.name = sbmac_string,
2666		.owner  = THIS_MODULE,
2667	},
2668};
2669
2670static int __init sbmac_init_module(void)
2671{
2672	return platform_driver_register(&sbmac_driver);
2673}
2674
2675static void __exit sbmac_cleanup_module(void)
2676{
2677	platform_driver_unregister(&sbmac_driver);
2678}
2679
2680module_init(sbmac_init_module);
2681module_exit(sbmac_cleanup_module);
2682