• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/
1#define VERSION "0.23"
2//#define dprintk		printk
3#define dprintk(x...)		do { } while (0)
4
5#include <linux/module.h>
6#include <linux/moduleparam.h>
7#include <linux/types.h>
8#include <linux/pci.h>
9#include <linux/dma-mapping.h>
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/delay.h>
13#include <linux/workqueue.h>
14#include <linux/init.h>
15#include <linux/ip.h>	/* for iph */
16#include <linux/in.h>	/* for IPPROTO_... */
17#include <linux/compiler.h>
18#include <linux/prefetch.h>
19#include <linux/ethtool.h>
20#include <linux/sched.h>
21#include <linux/timer.h>
22#include <linux/if_vlan.h>
23#include <linux/rtnetlink.h>
24#include <linux/jiffies.h>
25#include <linux/slab.h>
26
27#include <asm/io.h>
28#include <asm/uaccess.h>
29#include <asm/system.h>
30
31#define DRV_NAME "ns83820"
32
33/* Global parameters.  See module_param near the bottom. */
34static int ihr = 2;
35static int reset_phy = 0;
36static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
37
38/* Dprintk is used for more interesting debug events */
39#undef Dprintk
40#define	Dprintk			dprintk
41
42/* tunables */
43#define RX_BUF_SIZE	1500	/* 8192 */
44#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
45#define NS83820_VLAN_ACCEL_SUPPORT
46#endif
47
48/* Must not exceed ~65000. */
49#define NR_RX_DESC	64
50#define NR_TX_DESC	128
51
52/* not tunable */
53#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
54
55#define MIN_TX_DESC_FREE	8
56
57/* register defines */
58#define CFGCS		0x04
59
60#define CR_TXE		0x00000001
61#define CR_TXD		0x00000002
62/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
63 * The Receive engine skips one descriptor and moves
64 * onto the next one!! */
65#define CR_RXE		0x00000004
66#define CR_RXD		0x00000008
67#define CR_TXR		0x00000010
68#define CR_RXR		0x00000020
69#define CR_SWI		0x00000080
70#define CR_RST		0x00000100
71
72#define PTSCR_EEBIST_FAIL       0x00000001
73#define PTSCR_EEBIST_EN         0x00000002
74#define PTSCR_EELOAD_EN         0x00000004
75#define PTSCR_RBIST_FAIL        0x000001b8
76#define PTSCR_RBIST_DONE        0x00000200
77#define PTSCR_RBIST_EN          0x00000400
78#define PTSCR_RBIST_RST         0x00002000
79
80#define MEAR_EEDI		0x00000001
81#define MEAR_EEDO		0x00000002
82#define MEAR_EECLK		0x00000004
83#define MEAR_EESEL		0x00000008
84#define MEAR_MDIO		0x00000010
85#define MEAR_MDDIR		0x00000020
86#define MEAR_MDC		0x00000040
87
88#define ISR_TXDESC3	0x40000000
89#define ISR_TXDESC2	0x20000000
90#define ISR_TXDESC1	0x10000000
91#define ISR_TXDESC0	0x08000000
92#define ISR_RXDESC3	0x04000000
93#define ISR_RXDESC2	0x02000000
94#define ISR_RXDESC1	0x01000000
95#define ISR_RXDESC0	0x00800000
96#define ISR_TXRCMP	0x00400000
97#define ISR_RXRCMP	0x00200000
98#define ISR_DPERR	0x00100000
99#define ISR_SSERR	0x00080000
100#define ISR_RMABT	0x00040000
101#define ISR_RTABT	0x00020000
102#define ISR_RXSOVR	0x00010000
103#define ISR_HIBINT	0x00008000
104#define ISR_PHY		0x00004000
105#define ISR_PME		0x00002000
106#define ISR_SWI		0x00001000
107#define ISR_MIB		0x00000800
108#define ISR_TXURN	0x00000400
109#define ISR_TXIDLE	0x00000200
110#define ISR_TXERR	0x00000100
111#define ISR_TXDESC	0x00000080
112#define ISR_TXOK	0x00000040
113#define ISR_RXORN	0x00000020
114#define ISR_RXIDLE	0x00000010
115#define ISR_RXEARLY	0x00000008
116#define ISR_RXERR	0x00000004
117#define ISR_RXDESC	0x00000002
118#define ISR_RXOK	0x00000001
119
120#define TXCFG_CSI	0x80000000
121#define TXCFG_HBI	0x40000000
122#define TXCFG_MLB	0x20000000
123#define TXCFG_ATP	0x10000000
124#define TXCFG_ECRETRY	0x00800000
125#define TXCFG_BRST_DIS	0x00080000
126#define TXCFG_MXDMA1024	0x00000000
127#define TXCFG_MXDMA512	0x00700000
128#define TXCFG_MXDMA256	0x00600000
129#define TXCFG_MXDMA128	0x00500000
130#define TXCFG_MXDMA64	0x00400000
131#define TXCFG_MXDMA32	0x00300000
132#define TXCFG_MXDMA16	0x00200000
133#define TXCFG_MXDMA8	0x00100000
134
135#define CFG_LNKSTS	0x80000000
136#define CFG_SPDSTS	0x60000000
137#define CFG_SPDSTS1	0x40000000
138#define CFG_SPDSTS0	0x20000000
139#define CFG_DUPSTS	0x10000000
140#define CFG_TBI_EN	0x01000000
141#define CFG_MODE_1000	0x00400000
142/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
143 * Read the Phy response and then configure the MAC accordingly */
144#define CFG_AUTO_1000	0x00200000
145#define CFG_PINT_CTL	0x001c0000
146#define CFG_PINT_DUPSTS	0x00100000
147#define CFG_PINT_LNKSTS	0x00080000
148#define CFG_PINT_SPDSTS	0x00040000
149#define CFG_TMRTEST	0x00020000
150#define CFG_MRM_DIS	0x00010000
151#define CFG_MWI_DIS	0x00008000
152#define CFG_T64ADDR	0x00004000
153#define CFG_PCI64_DET	0x00002000
154#define CFG_DATA64_EN	0x00001000
155#define CFG_M64ADDR	0x00000800
156#define CFG_PHY_RST	0x00000400
157#define CFG_PHY_DIS	0x00000200
158#define CFG_EXTSTS_EN	0x00000100
159#define CFG_REQALG	0x00000080
160#define CFG_SB		0x00000040
161#define CFG_POW		0x00000020
162#define CFG_EXD		0x00000010
163#define CFG_PESEL	0x00000008
164#define CFG_BROM_DIS	0x00000004
165#define CFG_EXT_125	0x00000002
166#define CFG_BEM		0x00000001
167
168#define EXTSTS_UDPPKT	0x00200000
169#define EXTSTS_TCPPKT	0x00080000
170#define EXTSTS_IPPKT	0x00020000
171#define EXTSTS_VPKT	0x00010000
172#define EXTSTS_VTG_MASK	0x0000ffff
173
174#define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
175
176#define MIBC_MIBS	0x00000008
177#define MIBC_ACLR	0x00000004
178#define MIBC_FRZ	0x00000002
179#define MIBC_WRN	0x00000001
180
181#define PCR_PSEN	(1 << 31)
182#define PCR_PS_MCAST	(1 << 30)
183#define PCR_PS_DA	(1 << 29)
184#define PCR_STHI_8	(3 << 23)
185#define PCR_STLO_4	(1 << 23)
186#define PCR_FFHI_8K	(3 << 21)
187#define PCR_FFLO_4K	(1 << 21)
188#define PCR_PAUSE_CNT	0xFFFE
189
190#define RXCFG_AEP	0x80000000
191#define RXCFG_ARP	0x40000000
192#define RXCFG_STRIPCRC	0x20000000
193#define RXCFG_RX_FD	0x10000000
194#define RXCFG_ALP	0x08000000
195#define RXCFG_AIRL	0x04000000
196#define RXCFG_MXDMA512	0x00700000
197#define RXCFG_DRTH	0x0000003e
198#define RXCFG_DRTH0	0x00000002
199
200#define RFCR_RFEN	0x80000000
201#define RFCR_AAB	0x40000000
202#define RFCR_AAM	0x20000000
203#define RFCR_AAU	0x10000000
204#define RFCR_APM	0x08000000
205#define RFCR_APAT	0x07800000
206#define RFCR_APAT3	0x04000000
207#define RFCR_APAT2	0x02000000
208#define RFCR_APAT1	0x01000000
209#define RFCR_APAT0	0x00800000
210#define RFCR_AARP	0x00400000
211#define RFCR_MHEN	0x00200000
212#define RFCR_UHEN	0x00100000
213#define RFCR_ULM	0x00080000
214
215#define VRCR_RUDPE	0x00000080
216#define VRCR_RTCPE	0x00000040
217#define VRCR_RIPE	0x00000020
218#define VRCR_IPEN	0x00000010
219#define VRCR_DUTF	0x00000008
220#define VRCR_DVTF	0x00000004
221#define VRCR_VTREN	0x00000002
222#define VRCR_VTDEN	0x00000001
223
224#define VTCR_PPCHK	0x00000008
225#define VTCR_GCHK	0x00000004
226#define VTCR_VPPTI	0x00000002
227#define VTCR_VGTI	0x00000001
228
229#define CR		0x00
230#define CFG		0x04
231#define MEAR		0x08
232#define PTSCR		0x0c
233#define	ISR		0x10
234#define	IMR		0x14
235#define	IER		0x18
236#define	IHR		0x1c
237#define TXDP		0x20
238#define TXDP_HI		0x24
239#define TXCFG		0x28
240#define GPIOR		0x2c
241#define RXDP		0x30
242#define RXDP_HI		0x34
243#define RXCFG		0x38
244#define PQCR		0x3c
245#define WCSR		0x40
246#define PCR		0x44
247#define RFCR		0x48
248#define RFDR		0x4c
249
250#define SRR		0x58
251
252#define VRCR		0xbc
253#define VTCR		0xc0
254#define VDR		0xc4
255#define CCSR		0xcc
256
257#define TBICR		0xe0
258#define TBISR		0xe4
259#define TANAR		0xe8
260#define TANLPAR		0xec
261#define TANER		0xf0
262#define TESR		0xf4
263
264#define TBICR_MR_AN_ENABLE	0x00001000
265#define TBICR_MR_RESTART_AN	0x00000200
266
267#define TBISR_MR_LINK_STATUS	0x00000020
268#define TBISR_MR_AN_COMPLETE	0x00000004
269
270#define TANAR_PS2 		0x00000100
271#define TANAR_PS1 		0x00000080
272#define TANAR_HALF_DUP 		0x00000040
273#define TANAR_FULL_DUP 		0x00000020
274
275#define GPIOR_GP5_OE		0x00000200
276#define GPIOR_GP4_OE		0x00000100
277#define GPIOR_GP3_OE		0x00000080
278#define GPIOR_GP2_OE		0x00000040
279#define GPIOR_GP1_OE		0x00000020
280#define GPIOR_GP3_OUT		0x00000004
281#define GPIOR_GP1_OUT		0x00000001
282
283#define LINK_AUTONEGOTIATE	0x01
284#define LINK_DOWN		0x02
285#define LINK_UP			0x04
286
287#define HW_ADDR_LEN	sizeof(dma_addr_t)
288#define desc_addr_set(desc, addr)				\
289	do {							\
290		((desc)[0] = cpu_to_le32(addr));		\
291		if (HW_ADDR_LEN == 8)		 		\
292			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
293	} while(0)
294#define desc_addr_get(desc)					\
295	(le32_to_cpu((desc)[0]) | \
296	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
297
298#define DESC_LINK		0
299#define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
300#define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
301#define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
302
303#define CMDSTS_OWN	0x80000000
304#define CMDSTS_MORE	0x40000000
305#define CMDSTS_INTR	0x20000000
306#define CMDSTS_ERR	0x10000000
307#define CMDSTS_OK	0x08000000
308#define CMDSTS_RUNT	0x00200000
309#define CMDSTS_LEN_MASK	0x0000ffff
310
311#define CMDSTS_DEST_MASK	0x01800000
312#define CMDSTS_DEST_SELF	0x00800000
313#define CMDSTS_DEST_MULTI	0x01000000
314
315#define DESC_SIZE	8		/* Should be cache line sized */
316
317struct rx_info {
318	spinlock_t	lock;
319	int		up;
320	unsigned long	idle;
321
322	struct sk_buff	*skbs[NR_RX_DESC];
323
324	__le32		*next_rx_desc;
325	u16		next_rx, next_empty;
326
327	__le32		*descs;
328	dma_addr_t	phy_descs;
329};
330
331
332struct ns83820 {
333	u8			__iomem *base;
334
335	struct pci_dev		*pci_dev;
336	struct net_device	*ndev;
337
338#ifdef NS83820_VLAN_ACCEL_SUPPORT
339	struct vlan_group	*vlgrp;
340#endif
341
342	struct rx_info		rx_info;
343	struct tasklet_struct	rx_tasklet;
344
345	unsigned		ihr;
346	struct work_struct	tq_refill;
347
348	/* protects everything below.  irqsave when using. */
349	spinlock_t		misc_lock;
350
351	u32			CFG_cache;
352
353	u32			MEAR_cache;
354	u32			IMR_cache;
355
356	unsigned		linkstate;
357
358	spinlock_t	tx_lock;
359
360	u16		tx_done_idx;
361	u16		tx_idx;
362	volatile u16	tx_free_idx;	/* idx of free desc chain */
363	u16		tx_intr_idx;
364
365	atomic_t	nr_tx_skbs;
366	struct sk_buff	*tx_skbs[NR_TX_DESC];
367
368	char		pad[16] __attribute__((aligned(16)));
369	__le32		*tx_descs;
370	dma_addr_t	tx_phy_descs;
371
372	struct timer_list	tx_watchdog;
373};
374
375static inline struct ns83820 *PRIV(struct net_device *dev)
376{
377	return netdev_priv(dev);
378}
379
380#define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
381
382static inline void kick_rx(struct net_device *ndev)
383{
384	struct ns83820 *dev = PRIV(ndev);
385	dprintk("kick_rx: maybe kicking\n");
386	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
387		dprintk("actually kicking\n");
388		writel(dev->rx_info.phy_descs +
389			(4 * DESC_SIZE * dev->rx_info.next_rx),
390		       dev->base + RXDP);
391		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
392			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
393				ndev->name);
394		__kick_rx(dev);
395	}
396}
397
398//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
399#define start_tx_okay(dev)	\
400	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
401
402
403#ifdef NS83820_VLAN_ACCEL_SUPPORT
404static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
405{
406	struct ns83820 *dev = PRIV(ndev);
407
408	spin_lock_irq(&dev->misc_lock);
409	spin_lock(&dev->tx_lock);
410
411	dev->vlgrp = grp;
412
413	spin_unlock(&dev->tx_lock);
414	spin_unlock_irq(&dev->misc_lock);
415}
416#endif
417
418/* Packet Receiver
419 *
420 * The hardware supports linked lists of receive descriptors for
421 * which ownership is transfered back and forth by means of an
422 * ownership bit.  While the hardware does support the use of a
423 * ring for receive descriptors, we only make use of a chain in
424 * an attempt to reduce bus traffic under heavy load scenarios.
425 * This will also make bugs a bit more obvious.  The current code
426 * only makes use of a single rx chain; I hope to implement
427 * priority based rx for version 1.0.  Goal: even under overload
428 * conditions, still route realtime traffic with as low jitter as
429 * possible.
430 */
431static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
432{
433	desc_addr_set(desc + DESC_LINK, link);
434	desc_addr_set(desc + DESC_BUFPTR, buf);
435	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
436	mb();
437	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
438}
439
440#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
441static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
442{
443	unsigned next_empty;
444	u32 cmdsts;
445	__le32 *sg;
446	dma_addr_t buf;
447
448	next_empty = dev->rx_info.next_empty;
449
450	/* don't overrun last rx marker */
451	if (unlikely(nr_rx_empty(dev) <= 2)) {
452		kfree_skb(skb);
453		return 1;
454	}
455
456
457	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
458	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
459	dev->rx_info.skbs[next_empty] = skb;
460
461	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
462	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
463	buf = pci_map_single(dev->pci_dev, skb->data,
464			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
465	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
466	/* update link of previous rx */
467	if (likely(next_empty != dev->rx_info.next_rx))
468		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
469
470	return 0;
471}
472
473static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
474{
475	struct ns83820 *dev = PRIV(ndev);
476	unsigned i;
477	unsigned long flags = 0;
478
479	if (unlikely(nr_rx_empty(dev) <= 2))
480		return 0;
481
482	dprintk("rx_refill(%p)\n", ndev);
483	if (gfp == GFP_ATOMIC)
484		spin_lock_irqsave(&dev->rx_info.lock, flags);
485	for (i=0; i<NR_RX_DESC; i++) {
486		struct sk_buff *skb;
487		long res;
488
489		/* extra 16 bytes for alignment */
490		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
491		if (unlikely(!skb))
492			break;
493
494		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
495		if (gfp != GFP_ATOMIC)
496			spin_lock_irqsave(&dev->rx_info.lock, flags);
497		res = ns83820_add_rx_skb(dev, skb);
498		if (gfp != GFP_ATOMIC)
499			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
500		if (res) {
501			i = 1;
502			break;
503		}
504	}
505	if (gfp == GFP_ATOMIC)
506		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
507
508	return i ? 0 : -ENOMEM;
509}
510
511static void rx_refill_atomic(struct net_device *ndev)
512{
513	rx_refill(ndev, GFP_ATOMIC);
514}
515
516/* REFILL */
517static inline void queue_refill(struct work_struct *work)
518{
519	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
520	struct net_device *ndev = dev->ndev;
521
522	rx_refill(ndev, GFP_KERNEL);
523	if (dev->rx_info.up)
524		kick_rx(ndev);
525}
526
527static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
528{
529	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
530}
531
532static void phy_intr(struct net_device *ndev)
533{
534	struct ns83820 *dev = PRIV(ndev);
535	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
536	u32 cfg, new_cfg;
537	u32 tbisr, tanar, tanlpar;
538	int speed, fullduplex, newlinkstate;
539
540	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
541
542	if (dev->CFG_cache & CFG_TBI_EN) {
543		/* we have an optical transceiver */
544		tbisr = readl(dev->base + TBISR);
545		tanar = readl(dev->base + TANAR);
546		tanlpar = readl(dev->base + TANLPAR);
547		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
548			tbisr, tanar, tanlpar);
549
550		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
551		      (tanar & TANAR_FULL_DUP)) ) {
552
553			/* both of us are full duplex */
554			writel(readl(dev->base + TXCFG)
555			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
556			       dev->base + TXCFG);
557			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
558			       dev->base + RXCFG);
559			/* Light up full duplex LED */
560			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
561			       dev->base + GPIOR);
562
563		} else if (((tanlpar & TANAR_HALF_DUP) &&
564			    (tanar & TANAR_HALF_DUP)) ||
565			   ((tanlpar & TANAR_FULL_DUP) &&
566			    (tanar & TANAR_HALF_DUP)) ||
567			   ((tanlpar & TANAR_HALF_DUP) &&
568			    (tanar & TANAR_FULL_DUP))) {
569
570			/* one or both of us are half duplex */
571			writel((readl(dev->base + TXCFG)
572				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
573			       dev->base + TXCFG);
574			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
575			       dev->base + RXCFG);
576			/* Turn off full duplex LED */
577			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
578			       dev->base + GPIOR);
579		}
580
581		speed = 4; /* 1000F */
582
583	} else {
584		/* we have a copper transceiver */
585		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
586
587		if (cfg & CFG_SPDSTS1)
588			new_cfg |= CFG_MODE_1000;
589		else
590			new_cfg &= ~CFG_MODE_1000;
591
592		speed = ((cfg / CFG_SPDSTS0) & 3);
593		fullduplex = (cfg & CFG_DUPSTS);
594
595		if (fullduplex) {
596			new_cfg |= CFG_SB;
597			writel(readl(dev->base + TXCFG)
598					| TXCFG_CSI | TXCFG_HBI,
599			       dev->base + TXCFG);
600			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
601			       dev->base + RXCFG);
602		} else {
603			writel(readl(dev->base + TXCFG)
604					& ~(TXCFG_CSI | TXCFG_HBI),
605			       dev->base + TXCFG);
606			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
607			       dev->base + RXCFG);
608		}
609
610		if ((cfg & CFG_LNKSTS) &&
611		    ((new_cfg ^ dev->CFG_cache) != 0)) {
612			writel(new_cfg, dev->base + CFG);
613			dev->CFG_cache = new_cfg;
614		}
615
616		dev->CFG_cache &= ~CFG_SPDSTS;
617		dev->CFG_cache |= cfg & CFG_SPDSTS;
618	}
619
620	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
621
622	if (newlinkstate & LINK_UP &&
623	    dev->linkstate != newlinkstate) {
624		netif_start_queue(ndev);
625		netif_wake_queue(ndev);
626		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
627			ndev->name,
628			speeds[speed],
629			fullduplex ? "full" : "half");
630	} else if (newlinkstate & LINK_DOWN &&
631		   dev->linkstate != newlinkstate) {
632		netif_stop_queue(ndev);
633		printk(KERN_INFO "%s: link now down.\n", ndev->name);
634	}
635
636	dev->linkstate = newlinkstate;
637}
638
639static int ns83820_setup_rx(struct net_device *ndev)
640{
641	struct ns83820 *dev = PRIV(ndev);
642	unsigned i;
643	int ret;
644
645	dprintk("ns83820_setup_rx(%p)\n", ndev);
646
647	dev->rx_info.idle = 1;
648	dev->rx_info.next_rx = 0;
649	dev->rx_info.next_rx_desc = dev->rx_info.descs;
650	dev->rx_info.next_empty = 0;
651
652	for (i=0; i<NR_RX_DESC; i++)
653		clear_rx_desc(dev, i);
654
655	writel(0, dev->base + RXDP_HI);
656	writel(dev->rx_info.phy_descs, dev->base + RXDP);
657
658	ret = rx_refill(ndev, GFP_KERNEL);
659	if (!ret) {
660		dprintk("starting receiver\n");
661		/* prevent the interrupt handler from stomping on us */
662		spin_lock_irq(&dev->rx_info.lock);
663
664		writel(0x0001, dev->base + CCSR);
665		writel(0, dev->base + RFCR);
666		writel(0x7fc00000, dev->base + RFCR);
667		writel(0xffc00000, dev->base + RFCR);
668
669		dev->rx_info.up = 1;
670
671		phy_intr(ndev);
672
673		/* Okay, let it rip */
674		spin_lock_irq(&dev->misc_lock);
675		dev->IMR_cache |= ISR_PHY;
676		dev->IMR_cache |= ISR_RXRCMP;
677		//dev->IMR_cache |= ISR_RXERR;
678		//dev->IMR_cache |= ISR_RXOK;
679		dev->IMR_cache |= ISR_RXORN;
680		dev->IMR_cache |= ISR_RXSOVR;
681		dev->IMR_cache |= ISR_RXDESC;
682		dev->IMR_cache |= ISR_RXIDLE;
683		dev->IMR_cache |= ISR_TXDESC;
684		dev->IMR_cache |= ISR_TXIDLE;
685
686		writel(dev->IMR_cache, dev->base + IMR);
687		writel(1, dev->base + IER);
688		spin_unlock(&dev->misc_lock);
689
690		kick_rx(ndev);
691
692		spin_unlock_irq(&dev->rx_info.lock);
693	}
694	return ret;
695}
696
697static void ns83820_cleanup_rx(struct ns83820 *dev)
698{
699	unsigned i;
700	unsigned long flags;
701
702	dprintk("ns83820_cleanup_rx(%p)\n", dev);
703
704	/* disable receive interrupts */
705	spin_lock_irqsave(&dev->misc_lock, flags);
706	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
707	writel(dev->IMR_cache, dev->base + IMR);
708	spin_unlock_irqrestore(&dev->misc_lock, flags);
709
710	/* synchronize with the interrupt handler and kill it */
711	dev->rx_info.up = 0;
712	synchronize_irq(dev->pci_dev->irq);
713
714	/* touch the pci bus... */
715	readl(dev->base + IMR);
716
717	/* assumes the transmitter is already disabled and reset */
718	writel(0, dev->base + RXDP_HI);
719	writel(0, dev->base + RXDP);
720
721	for (i=0; i<NR_RX_DESC; i++) {
722		struct sk_buff *skb = dev->rx_info.skbs[i];
723		dev->rx_info.skbs[i] = NULL;
724		clear_rx_desc(dev, i);
725		kfree_skb(skb);
726	}
727}
728
729static void ns83820_rx_kick(struct net_device *ndev)
730{
731	struct ns83820 *dev = PRIV(ndev);
732	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
733		if (dev->rx_info.up) {
734			rx_refill_atomic(ndev);
735			kick_rx(ndev);
736		}
737	}
738
739	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
740		schedule_work(&dev->tq_refill);
741	else
742		kick_rx(ndev);
743	if (dev->rx_info.idle)
744		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
745}
746
747/* rx_irq
748 *
749 */
750static void rx_irq(struct net_device *ndev)
751{
752	struct ns83820 *dev = PRIV(ndev);
753	struct rx_info *info = &dev->rx_info;
754	unsigned next_rx;
755	int rx_rc, len;
756	u32 cmdsts;
757	__le32 *desc;
758	unsigned long flags;
759	int nr = 0;
760
761	dprintk("rx_irq(%p)\n", ndev);
762	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
763		readl(dev->base + RXDP),
764		(long)(dev->rx_info.phy_descs),
765		(int)dev->rx_info.next_rx,
766		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
767		(int)dev->rx_info.next_empty,
768		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
769		);
770
771	spin_lock_irqsave(&info->lock, flags);
772	if (!info->up)
773		goto out;
774
775	dprintk("walking descs\n");
776	next_rx = info->next_rx;
777	desc = info->next_rx_desc;
778	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
779	       (cmdsts != CMDSTS_OWN)) {
780		struct sk_buff *skb;
781		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
782		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
783
784		dprintk("cmdsts: %08x\n", cmdsts);
785		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
786		dprintk("extsts: %08x\n", extsts);
787
788		skb = info->skbs[next_rx];
789		info->skbs[next_rx] = NULL;
790		info->next_rx = (next_rx + 1) % NR_RX_DESC;
791
792		mb();
793		clear_rx_desc(dev, next_rx);
794
795		pci_unmap_single(dev->pci_dev, bufptr,
796				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
797		len = cmdsts & CMDSTS_LEN_MASK;
798#ifdef NS83820_VLAN_ACCEL_SUPPORT
799		/* NH: As was mentioned below, this chip is kinda
800		 * brain dead about vlan tag stripping.  Frames
801		 * that are 64 bytes with a vlan header appended
802		 * like arp frames, or pings, are flagged as Runts
803		 * when the tag is stripped and hardware.  This
804		 * also means that the OK bit in the descriptor
805		 * is cleared when the frame comes in so we have
806		 * to do a specific length check here to make sure
807		 * the frame would have been ok, had we not stripped
808		 * the tag.
809		 */
810		if (likely((CMDSTS_OK & cmdsts) ||
811			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
812#else
813		if (likely(CMDSTS_OK & cmdsts)) {
814#endif
815			skb_put(skb, len);
816			if (unlikely(!skb))
817				goto netdev_mangle_me_harder_failed;
818			if (cmdsts & CMDSTS_DEST_MULTI)
819				ndev->stats.multicast++;
820			ndev->stats.rx_packets++;
821			ndev->stats.rx_bytes += len;
822			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
823				skb->ip_summed = CHECKSUM_UNNECESSARY;
824			} else {
825				skb->ip_summed = CHECKSUM_NONE;
826			}
827			skb->protocol = eth_type_trans(skb, ndev);
828#ifdef NS83820_VLAN_ACCEL_SUPPORT
829			if(extsts & EXTSTS_VPKT) {
830				unsigned short tag;
831				tag = ntohs(extsts & EXTSTS_VTG_MASK);
832				rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
833			} else {
834				rx_rc = netif_rx(skb);
835			}
836#else
837			rx_rc = netif_rx(skb);
838#endif
839			if (NET_RX_DROP == rx_rc) {
840netdev_mangle_me_harder_failed:
841				ndev->stats.rx_dropped++;
842			}
843		} else {
844			kfree_skb(skb);
845		}
846
847		nr++;
848		next_rx = info->next_rx;
849		desc = info->descs + (DESC_SIZE * next_rx);
850	}
851	info->next_rx = next_rx;
852	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
853
854out:
855	if (0 && !nr) {
856		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
857	}
858
859	spin_unlock_irqrestore(&info->lock, flags);
860}
861
862static void rx_action(unsigned long _dev)
863{
864	struct net_device *ndev = (void *)_dev;
865	struct ns83820 *dev = PRIV(ndev);
866	rx_irq(ndev);
867	writel(ihr, dev->base + IHR);
868
869	spin_lock_irq(&dev->misc_lock);
870	dev->IMR_cache |= ISR_RXDESC;
871	writel(dev->IMR_cache, dev->base + IMR);
872	spin_unlock_irq(&dev->misc_lock);
873
874	rx_irq(ndev);
875	ns83820_rx_kick(ndev);
876}
877
878/* Packet Transmit code
879 */
880static inline void kick_tx(struct ns83820 *dev)
881{
882	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
883		dev, dev->tx_idx, dev->tx_free_idx);
884	writel(CR_TXE, dev->base + CR);
885}
886
887/* No spinlock needed on the transmit irq path as the interrupt handler is
888 * serialized.
889 */
890static void do_tx_done(struct net_device *ndev)
891{
892	struct ns83820 *dev = PRIV(ndev);
893	u32 cmdsts, tx_done_idx;
894	__le32 *desc;
895
896	dprintk("do_tx_done(%p)\n", ndev);
897	tx_done_idx = dev->tx_done_idx;
898	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
899
900	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
901		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
902	while ((tx_done_idx != dev->tx_free_idx) &&
903	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
904		struct sk_buff *skb;
905		unsigned len;
906		dma_addr_t addr;
907
908		if (cmdsts & CMDSTS_ERR)
909			ndev->stats.tx_errors++;
910		if (cmdsts & CMDSTS_OK)
911			ndev->stats.tx_packets++;
912		if (cmdsts & CMDSTS_OK)
913			ndev->stats.tx_bytes += cmdsts & 0xffff;
914
915		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
916			tx_done_idx, dev->tx_free_idx, cmdsts);
917		skb = dev->tx_skbs[tx_done_idx];
918		dev->tx_skbs[tx_done_idx] = NULL;
919		dprintk("done(%p)\n", skb);
920
921		len = cmdsts & CMDSTS_LEN_MASK;
922		addr = desc_addr_get(desc + DESC_BUFPTR);
923		if (skb) {
924			pci_unmap_single(dev->pci_dev,
925					addr,
926					len,
927					PCI_DMA_TODEVICE);
928			dev_kfree_skb_irq(skb);
929			atomic_dec(&dev->nr_tx_skbs);
930		} else
931			pci_unmap_page(dev->pci_dev,
932					addr,
933					len,
934					PCI_DMA_TODEVICE);
935
936		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
937		dev->tx_done_idx = tx_done_idx;
938		desc[DESC_CMDSTS] = cpu_to_le32(0);
939		mb();
940		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
941	}
942
943	/* Allow network stack to resume queueing packets after we've
944	 * finished transmitting at least 1/4 of the packets in the queue.
945	 */
946	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
947		dprintk("start_queue(%p)\n", ndev);
948		netif_start_queue(ndev);
949		netif_wake_queue(ndev);
950	}
951}
952
953static void ns83820_cleanup_tx(struct ns83820 *dev)
954{
955	unsigned i;
956
957	for (i=0; i<NR_TX_DESC; i++) {
958		struct sk_buff *skb = dev->tx_skbs[i];
959		dev->tx_skbs[i] = NULL;
960		if (skb) {
961			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
962			pci_unmap_single(dev->pci_dev,
963					desc_addr_get(desc + DESC_BUFPTR),
964					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
965					PCI_DMA_TODEVICE);
966			dev_kfree_skb_irq(skb);
967			atomic_dec(&dev->nr_tx_skbs);
968		}
969	}
970
971	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
972}
973
974/* transmit routine.  This code relies on the network layer serializing
975 * its calls in, but will run happily in parallel with the interrupt
976 * handler.  This code currently has provisions for fragmenting tx buffers
977 * while trying to track down a bug in either the zero copy code or
978 * the tx fifo (hence the MAX_FRAG_LEN).
979 */
980static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
981					   struct net_device *ndev)
982{
983	struct ns83820 *dev = PRIV(ndev);
984	u32 free_idx, cmdsts, extsts;
985	int nr_free, nr_frags;
986	unsigned tx_done_idx, last_idx;
987	dma_addr_t buf;
988	unsigned len;
989	skb_frag_t *frag;
990	int stopped = 0;
991	int do_intr = 0;
992	volatile __le32 *first_desc;
993
994	dprintk("ns83820_hard_start_xmit\n");
995
996	nr_frags =  skb_shinfo(skb)->nr_frags;
997again:
998	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
999		netif_stop_queue(ndev);
1000		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1001			return NETDEV_TX_BUSY;
1002		netif_start_queue(ndev);
1003	}
1004
1005	last_idx = free_idx = dev->tx_free_idx;
1006	tx_done_idx = dev->tx_done_idx;
1007	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1008	nr_free -= 1;
1009	if (nr_free <= nr_frags) {
1010		dprintk("stop_queue - not enough(%p)\n", ndev);
1011		netif_stop_queue(ndev);
1012
1013		/* Check again: we may have raced with a tx done irq */
1014		if (dev->tx_done_idx != tx_done_idx) {
1015			dprintk("restart queue(%p)\n", ndev);
1016			netif_start_queue(ndev);
1017			goto again;
1018		}
1019		return NETDEV_TX_BUSY;
1020	}
1021
1022	if (free_idx == dev->tx_intr_idx) {
1023		do_intr = 1;
1024		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1025	}
1026
1027	nr_free -= nr_frags;
1028	if (nr_free < MIN_TX_DESC_FREE) {
1029		dprintk("stop_queue - last entry(%p)\n", ndev);
1030		netif_stop_queue(ndev);
1031		stopped = 1;
1032	}
1033
1034	frag = skb_shinfo(skb)->frags;
1035	if (!nr_frags)
1036		frag = NULL;
1037	extsts = 0;
1038	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1039		extsts |= EXTSTS_IPPKT;
1040		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1041			extsts |= EXTSTS_TCPPKT;
1042		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1043			extsts |= EXTSTS_UDPPKT;
1044	}
1045
1046#ifdef NS83820_VLAN_ACCEL_SUPPORT
1047	if(vlan_tx_tag_present(skb)) {
1048		/* fetch the vlan tag info out of the
1049		 * ancilliary data if the vlan code
1050		 * is using hw vlan acceleration
1051		 */
1052		short tag = vlan_tx_tag_get(skb);
1053		extsts |= (EXTSTS_VPKT | htons(tag));
1054	}
1055#endif
1056
1057	len = skb->len;
1058	if (nr_frags)
1059		len -= skb->data_len;
1060	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1061
1062	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1063
1064	for (;;) {
1065		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1066
1067		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1068			(unsigned long long)buf);
1069		last_idx = free_idx;
1070		free_idx = (free_idx + 1) % NR_TX_DESC;
1071		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1072		desc_addr_set(desc + DESC_BUFPTR, buf);
1073		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1074
1075		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1076		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1077		cmdsts |= len;
1078		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1079
1080		if (!nr_frags)
1081			break;
1082
1083		buf = pci_map_page(dev->pci_dev, frag->page,
1084				   frag->page_offset,
1085				   frag->size, PCI_DMA_TODEVICE);
1086		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1087			(long long)buf, (long) page_to_pfn(frag->page),
1088			frag->page_offset);
1089		len = frag->size;
1090		frag++;
1091		nr_frags--;
1092	}
1093	dprintk("done pkt\n");
1094
1095	spin_lock_irq(&dev->tx_lock);
1096	dev->tx_skbs[last_idx] = skb;
1097	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1098	dev->tx_free_idx = free_idx;
1099	atomic_inc(&dev->nr_tx_skbs);
1100	spin_unlock_irq(&dev->tx_lock);
1101
1102	kick_tx(dev);
1103
1104	/* Check again: we may have raced with a tx done irq */
1105	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1106		netif_start_queue(ndev);
1107
1108	return NETDEV_TX_OK;
1109}
1110
1111static void ns83820_update_stats(struct ns83820 *dev)
1112{
1113	struct net_device *ndev = dev->ndev;
1114	u8 __iomem *base = dev->base;
1115
1116	/* the DP83820 will freeze counters, so we need to read all of them */
1117	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1118	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1119	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1120	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1121	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1122	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1123	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1124	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1125	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1126	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1127	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1128}
1129
1130static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1131{
1132	struct ns83820 *dev = PRIV(ndev);
1133
1134	/* somewhat overkill */
1135	spin_lock_irq(&dev->misc_lock);
1136	ns83820_update_stats(dev);
1137	spin_unlock_irq(&dev->misc_lock);
1138
1139	return &ndev->stats;
1140}
1141
1142/* Let ethtool retrieve info */
1143static int ns83820_get_settings(struct net_device *ndev,
1144				struct ethtool_cmd *cmd)
1145{
1146	struct ns83820 *dev = PRIV(ndev);
1147	u32 cfg, tanar, tbicr;
1148	int have_optical = 0;
1149	int fullduplex   = 0;
1150
1151	/*
1152	 * Here's the list of available ethtool commands from other drivers:
1153	 *	cmd->advertising =
1154	 *	cmd->speed =
1155	 *	cmd->duplex =
1156	 *	cmd->port = 0;
1157	 *	cmd->phy_address =
1158	 *	cmd->transceiver = 0;
1159	 *	cmd->autoneg =
1160	 *	cmd->maxtxpkt = 0;
1161	 *	cmd->maxrxpkt = 0;
1162	 */
1163
1164	/* read current configuration */
1165	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1166	tanar = readl(dev->base + TANAR);
1167	tbicr = readl(dev->base + TBICR);
1168
1169	if (dev->CFG_cache & CFG_TBI_EN) {
1170		/* we have an optical interface */
1171		have_optical = 1;
1172		fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1173
1174	} else {
1175		/* We have copper */
1176		fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1177        }
1178
1179	cmd->supported = SUPPORTED_Autoneg;
1180
1181	/* we have optical interface */
1182	if (dev->CFG_cache & CFG_TBI_EN) {
1183		cmd->supported |= SUPPORTED_1000baseT_Half |
1184					SUPPORTED_1000baseT_Full |
1185					SUPPORTED_FIBRE;
1186		cmd->port       = PORT_FIBRE;
1187	} /* TODO: else copper related  support */
1188
1189	cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1190	switch (cfg / CFG_SPDSTS0 & 3) {
1191	case 2:
1192		cmd->speed = SPEED_1000;
1193		break;
1194	case 1:
1195		cmd->speed = SPEED_100;
1196		break;
1197	default:
1198		cmd->speed = SPEED_10;
1199		break;
1200	}
1201	cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1202	return 0;
1203}
1204
1205/* Let ethool change settings*/
1206static int ns83820_set_settings(struct net_device *ndev,
1207				struct ethtool_cmd *cmd)
1208{
1209	struct ns83820 *dev = PRIV(ndev);
1210	u32 cfg, tanar;
1211	int have_optical = 0;
1212	int fullduplex   = 0;
1213
1214	/* read current configuration */
1215	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1216	tanar = readl(dev->base + TANAR);
1217
1218	if (dev->CFG_cache & CFG_TBI_EN) {
1219		/* we have optical */
1220		have_optical = 1;
1221		fullduplex   = (tanar & TANAR_FULL_DUP);
1222
1223	} else {
1224		/* we have copper */
1225		fullduplex = cfg & CFG_DUPSTS;
1226	}
1227
1228	spin_lock_irq(&dev->misc_lock);
1229	spin_lock(&dev->tx_lock);
1230
1231	/* Set duplex */
1232	if (cmd->duplex != fullduplex) {
1233		if (have_optical) {
1234			/*set full duplex*/
1235			if (cmd->duplex == DUPLEX_FULL) {
1236				/* force full duplex */
1237				writel(readl(dev->base + TXCFG)
1238					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1239					dev->base + TXCFG);
1240				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1241					dev->base + RXCFG);
1242				/* Light up full duplex LED */
1243				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1244					dev->base + GPIOR);
1245			} else {
1246				/*TODO: set half duplex */
1247			}
1248
1249		} else {
1250			/*we have copper*/
1251			/* TODO: Set duplex for copper cards */
1252		}
1253		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1254		ndev->name);
1255	}
1256
1257	/* Set autonegotiation */
1258	if (1) {
1259		if (cmd->autoneg == AUTONEG_ENABLE) {
1260			/* restart auto negotiation */
1261			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1262				dev->base + TBICR);
1263			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1264				dev->linkstate = LINK_AUTONEGOTIATE;
1265
1266			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1267				ndev->name);
1268		} else {
1269			/* disable auto negotiation */
1270			writel(0x00000000, dev->base + TBICR);
1271		}
1272
1273		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1274				cmd->autoneg ? "ENABLED" : "DISABLED");
1275	}
1276
1277	phy_intr(ndev);
1278	spin_unlock(&dev->tx_lock);
1279	spin_unlock_irq(&dev->misc_lock);
1280
1281	return 0;
1282}
1283/* end ethtool get/set support -df */
1284
1285static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1286{
1287	struct ns83820 *dev = PRIV(ndev);
1288	strcpy(info->driver, "ns83820");
1289	strcpy(info->version, VERSION);
1290	strcpy(info->bus_info, pci_name(dev->pci_dev));
1291}
1292
1293static u32 ns83820_get_link(struct net_device *ndev)
1294{
1295	struct ns83820 *dev = PRIV(ndev);
1296	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1297	return cfg & CFG_LNKSTS ? 1 : 0;
1298}
1299
1300static const struct ethtool_ops ops = {
1301	.get_settings    = ns83820_get_settings,
1302	.set_settings    = ns83820_set_settings,
1303	.get_drvinfo     = ns83820_get_drvinfo,
1304	.get_link        = ns83820_get_link
1305};
1306
1307/* this function is called in irq context from the ISR */
1308static void ns83820_mib_isr(struct ns83820 *dev)
1309{
1310	unsigned long flags;
1311	spin_lock_irqsave(&dev->misc_lock, flags);
1312	ns83820_update_stats(dev);
1313	spin_unlock_irqrestore(&dev->misc_lock, flags);
1314}
1315
1316static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1317static irqreturn_t ns83820_irq(int foo, void *data)
1318{
1319	struct net_device *ndev = data;
1320	struct ns83820 *dev = PRIV(ndev);
1321	u32 isr;
1322	dprintk("ns83820_irq(%p)\n", ndev);
1323
1324	dev->ihr = 0;
1325
1326	isr = readl(dev->base + ISR);
1327	dprintk("irq: %08x\n", isr);
1328	ns83820_do_isr(ndev, isr);
1329	return IRQ_HANDLED;
1330}
1331
1332static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1333{
1334	struct ns83820 *dev = PRIV(ndev);
1335	unsigned long flags;
1336
1337#ifdef DEBUG
1338	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1339		Dprintk("odd isr? 0x%08x\n", isr);
1340#endif
1341
1342	if (ISR_RXIDLE & isr) {
1343		dev->rx_info.idle = 1;
1344		Dprintk("oh dear, we are idle\n");
1345		ns83820_rx_kick(ndev);
1346	}
1347
1348	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1349		prefetch(dev->rx_info.next_rx_desc);
1350
1351		spin_lock_irqsave(&dev->misc_lock, flags);
1352		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1353		writel(dev->IMR_cache, dev->base + IMR);
1354		spin_unlock_irqrestore(&dev->misc_lock, flags);
1355
1356		tasklet_schedule(&dev->rx_tasklet);
1357		//rx_irq(ndev);
1358		//writel(4, dev->base + IHR);
1359	}
1360
1361	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1362		ns83820_rx_kick(ndev);
1363
1364	if (unlikely(ISR_RXSOVR & isr)) {
1365		//printk("overrun: rxsovr\n");
1366		ndev->stats.rx_fifo_errors++;
1367	}
1368
1369	if (unlikely(ISR_RXORN & isr)) {
1370		//printk("overrun: rxorn\n");
1371		ndev->stats.rx_fifo_errors++;
1372	}
1373
1374	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1375		writel(CR_RXE, dev->base + CR);
1376
1377	if (ISR_TXIDLE & isr) {
1378		u32 txdp;
1379		txdp = readl(dev->base + TXDP);
1380		dprintk("txdp: %08x\n", txdp);
1381		txdp -= dev->tx_phy_descs;
1382		dev->tx_idx = txdp / (DESC_SIZE * 4);
1383		if (dev->tx_idx >= NR_TX_DESC) {
1384			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1385			dev->tx_idx = 0;
1386		}
1387		/* The may have been a race between a pci originated read
1388		 * and the descriptor update from the cpu.  Just in case,
1389		 * kick the transmitter if the hardware thinks it is on a
1390		 * different descriptor than we are.
1391		 */
1392		if (dev->tx_idx != dev->tx_free_idx)
1393			kick_tx(dev);
1394	}
1395
1396	/* Defer tx ring processing until more than a minimum amount of
1397	 * work has accumulated
1398	 */
1399	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1400		spin_lock_irqsave(&dev->tx_lock, flags);
1401		do_tx_done(ndev);
1402		spin_unlock_irqrestore(&dev->tx_lock, flags);
1403
1404		/* Disable TxOk if there are no outstanding tx packets.
1405		 */
1406		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1407		    (dev->IMR_cache & ISR_TXOK)) {
1408			spin_lock_irqsave(&dev->misc_lock, flags);
1409			dev->IMR_cache &= ~ISR_TXOK;
1410			writel(dev->IMR_cache, dev->base + IMR);
1411			spin_unlock_irqrestore(&dev->misc_lock, flags);
1412		}
1413	}
1414
1415	/* The TxIdle interrupt can come in before the transmit has
1416	 * completed.  Normally we reap packets off of the combination
1417	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1418	 * occurs on every packet), but when no further irqs of this
1419	 * nature are expected, we must enable TxOk.
1420	 */
1421	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1422		spin_lock_irqsave(&dev->misc_lock, flags);
1423		dev->IMR_cache |= ISR_TXOK;
1424		writel(dev->IMR_cache, dev->base + IMR);
1425		spin_unlock_irqrestore(&dev->misc_lock, flags);
1426	}
1427
1428	/* MIB interrupt: one of the statistics counters is about to overflow */
1429	if (unlikely(ISR_MIB & isr))
1430		ns83820_mib_isr(dev);
1431
1432	/* PHY: Link up/down/negotiation state change */
1433	if (unlikely(ISR_PHY & isr))
1434		phy_intr(ndev);
1435
1436}
1437
1438static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1439{
1440	Dprintk("resetting chip...\n");
1441	writel(which, dev->base + CR);
1442	do {
1443		schedule();
1444	} while (readl(dev->base + CR) & which);
1445	Dprintk("okay!\n");
1446}
1447
1448static int ns83820_stop(struct net_device *ndev)
1449{
1450	struct ns83820 *dev = PRIV(ndev);
1451
1452	del_timer_sync(&dev->tx_watchdog);
1453
1454	/* disable interrupts */
1455	writel(0, dev->base + IMR);
1456	writel(0, dev->base + IER);
1457	readl(dev->base + IER);
1458
1459	dev->rx_info.up = 0;
1460	synchronize_irq(dev->pci_dev->irq);
1461
1462	ns83820_do_reset(dev, CR_RST);
1463
1464	synchronize_irq(dev->pci_dev->irq);
1465
1466	spin_lock_irq(&dev->misc_lock);
1467	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1468	spin_unlock_irq(&dev->misc_lock);
1469
1470	ns83820_cleanup_rx(dev);
1471	ns83820_cleanup_tx(dev);
1472
1473	return 0;
1474}
1475
1476static void ns83820_tx_timeout(struct net_device *ndev)
1477{
1478	struct ns83820 *dev = PRIV(ndev);
1479        u32 tx_done_idx;
1480	__le32 *desc;
1481	unsigned long flags;
1482
1483	spin_lock_irqsave(&dev->tx_lock, flags);
1484
1485	tx_done_idx = dev->tx_done_idx;
1486	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1487
1488	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1489		ndev->name,
1490		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1491
1492#if defined(DEBUG)
1493	{
1494		u32 isr;
1495		isr = readl(dev->base + ISR);
1496		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1497		ns83820_do_isr(ndev, isr);
1498	}
1499#endif
1500
1501	do_tx_done(ndev);
1502
1503	tx_done_idx = dev->tx_done_idx;
1504	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1505
1506	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1507		ndev->name,
1508		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1509
1510	spin_unlock_irqrestore(&dev->tx_lock, flags);
1511}
1512
1513static void ns83820_tx_watch(unsigned long data)
1514{
1515	struct net_device *ndev = (void *)data;
1516	struct ns83820 *dev = PRIV(ndev);
1517
1518#if defined(DEBUG)
1519	printk("ns83820_tx_watch: %u %u %d\n",
1520		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1521		);
1522#endif
1523
1524	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1525	    dev->tx_done_idx != dev->tx_free_idx) {
1526		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1527			ndev->name,
1528			dev->tx_done_idx, dev->tx_free_idx,
1529			atomic_read(&dev->nr_tx_skbs));
1530		ns83820_tx_timeout(ndev);
1531	}
1532
1533	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1534}
1535
1536static int ns83820_open(struct net_device *ndev)
1537{
1538	struct ns83820 *dev = PRIV(ndev);
1539	unsigned i;
1540	u32 desc;
1541	int ret;
1542
1543	dprintk("ns83820_open\n");
1544
1545	writel(0, dev->base + PQCR);
1546
1547	ret = ns83820_setup_rx(ndev);
1548	if (ret)
1549		goto failed;
1550
1551	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1552	for (i=0; i<NR_TX_DESC; i++) {
1553		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1554				= cpu_to_le32(
1555				  dev->tx_phy_descs
1556				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1557	}
1558
1559	dev->tx_idx = 0;
1560	dev->tx_done_idx = 0;
1561	desc = dev->tx_phy_descs;
1562	writel(0, dev->base + TXDP_HI);
1563	writel(desc, dev->base + TXDP);
1564
1565	init_timer(&dev->tx_watchdog);
1566	dev->tx_watchdog.data = (unsigned long)ndev;
1567	dev->tx_watchdog.function = ns83820_tx_watch;
1568	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1569
1570	netif_start_queue(ndev);
1571
1572	return 0;
1573
1574failed:
1575	ns83820_stop(ndev);
1576	return ret;
1577}
1578
1579static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1580{
1581	unsigned i;
1582	for (i=0; i<3; i++) {
1583		u32 data;
1584
1585		/* Read from the perfect match memory: this is loaded by
1586		 * the chip from the EEPROM via the EELOAD self test.
1587		 */
1588		writel(i*2, dev->base + RFCR);
1589		data = readl(dev->base + RFDR);
1590
1591		*mac++ = data;
1592		*mac++ = data >> 8;
1593	}
1594}
1595
1596static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1597{
1598	if (new_mtu > RX_BUF_SIZE)
1599		return -EINVAL;
1600	ndev->mtu = new_mtu;
1601	return 0;
1602}
1603
1604static void ns83820_set_multicast(struct net_device *ndev)
1605{
1606	struct ns83820 *dev = PRIV(ndev);
1607	u8 __iomem *rfcr = dev->base + RFCR;
1608	u32 and_mask = 0xffffffff;
1609	u32 or_mask = 0;
1610	u32 val;
1611
1612	if (ndev->flags & IFF_PROMISC)
1613		or_mask |= RFCR_AAU | RFCR_AAM;
1614	else
1615		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1616
1617	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1618		or_mask |= RFCR_AAM;
1619	else
1620		and_mask &= ~RFCR_AAM;
1621
1622	spin_lock_irq(&dev->misc_lock);
1623	val = (readl(rfcr) & and_mask) | or_mask;
1624	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1625	writel(val & ~RFCR_RFEN, rfcr);
1626	writel(val, rfcr);
1627	spin_unlock_irq(&dev->misc_lock);
1628}
1629
1630static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1631{
1632	struct ns83820 *dev = PRIV(ndev);
1633	int timed_out = 0;
1634	unsigned long start;
1635	u32 status;
1636	int loops = 0;
1637
1638	dprintk("%s: start %s\n", ndev->name, name);
1639
1640	start = jiffies;
1641
1642	writel(enable, dev->base + PTSCR);
1643	for (;;) {
1644		loops++;
1645		status = readl(dev->base + PTSCR);
1646		if (!(status & enable))
1647			break;
1648		if (status & done)
1649			break;
1650		if (status & fail)
1651			break;
1652		if (time_after_eq(jiffies, start + HZ)) {
1653			timed_out = 1;
1654			break;
1655		}
1656		schedule_timeout_uninterruptible(1);
1657	}
1658
1659	if (status & fail)
1660		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1661			ndev->name, name, status, fail);
1662	else if (timed_out)
1663		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1664			ndev->name, name, status);
1665
1666	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1667}
1668
1669#ifdef PHY_CODE_IS_FINISHED
1670static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1671{
1672	/* drive MDC low */
1673	dev->MEAR_cache &= ~MEAR_MDC;
1674	writel(dev->MEAR_cache, dev->base + MEAR);
1675	readl(dev->base + MEAR);
1676
1677	/* enable output, set bit */
1678	dev->MEAR_cache |= MEAR_MDDIR;
1679	if (bit)
1680		dev->MEAR_cache |= MEAR_MDIO;
1681	else
1682		dev->MEAR_cache &= ~MEAR_MDIO;
1683
1684	/* set the output bit */
1685	writel(dev->MEAR_cache, dev->base + MEAR);
1686	readl(dev->base + MEAR);
1687
1688	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1689	udelay(1);
1690
1691	/* drive MDC high causing the data bit to be latched */
1692	dev->MEAR_cache |= MEAR_MDC;
1693	writel(dev->MEAR_cache, dev->base + MEAR);
1694	readl(dev->base + MEAR);
1695
1696	/* Wait again... */
1697	udelay(1);
1698}
1699
1700static int ns83820_mii_read_bit(struct ns83820 *dev)
1701{
1702	int bit;
1703
1704	/* drive MDC low, disable output */
1705	dev->MEAR_cache &= ~MEAR_MDC;
1706	dev->MEAR_cache &= ~MEAR_MDDIR;
1707	writel(dev->MEAR_cache, dev->base + MEAR);
1708	readl(dev->base + MEAR);
1709
1710	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1711	udelay(1);
1712
1713	/* drive MDC high causing the data bit to be latched */
1714	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1715	dev->MEAR_cache |= MEAR_MDC;
1716	writel(dev->MEAR_cache, dev->base + MEAR);
1717
1718	/* Wait again... */
1719	udelay(1);
1720
1721	return bit;
1722}
1723
1724static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1725{
1726	unsigned data = 0;
1727	int i;
1728
1729	/* read some garbage so that we eventually sync up */
1730	for (i=0; i<64; i++)
1731		ns83820_mii_read_bit(dev);
1732
1733	ns83820_mii_write_bit(dev, 0);	/* start */
1734	ns83820_mii_write_bit(dev, 1);
1735	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1736	ns83820_mii_write_bit(dev, 0);
1737
1738	/* write out the phy address: 5 bits, msb first */
1739	for (i=0; i<5; i++)
1740		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1741
1742	/* write out the register address, 5 bits, msb first */
1743	for (i=0; i<5; i++)
1744		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1745
1746	ns83820_mii_read_bit(dev);	/* turn around cycles */
1747	ns83820_mii_read_bit(dev);
1748
1749	/* read in the register data, 16 bits msb first */
1750	for (i=0; i<16; i++) {
1751		data <<= 1;
1752		data |= ns83820_mii_read_bit(dev);
1753	}
1754
1755	return data;
1756}
1757
1758static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1759{
1760	int i;
1761
1762	/* read some garbage so that we eventually sync up */
1763	for (i=0; i<64; i++)
1764		ns83820_mii_read_bit(dev);
1765
1766	ns83820_mii_write_bit(dev, 0);	/* start */
1767	ns83820_mii_write_bit(dev, 1);
1768	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1769	ns83820_mii_write_bit(dev, 1);
1770
1771	/* write out the phy address: 5 bits, msb first */
1772	for (i=0; i<5; i++)
1773		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1774
1775	/* write out the register address, 5 bits, msb first */
1776	for (i=0; i<5; i++)
1777		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1778
1779	ns83820_mii_read_bit(dev);	/* turn around cycles */
1780	ns83820_mii_read_bit(dev);
1781
1782	/* read in the register data, 16 bits msb first */
1783	for (i=0; i<16; i++)
1784		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1785
1786	return data;
1787}
1788
1789static void ns83820_probe_phy(struct net_device *ndev)
1790{
1791	struct ns83820 *dev = PRIV(ndev);
1792	static int first;
1793	int i;
1794#define MII_PHYIDR1	0x02
1795#define MII_PHYIDR2	0x03
1796
1797	first = 1;
1798
1799	for (i=1; i<2; i++) {
1800		int j;
1801		unsigned a, b;
1802		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1803		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1804
1805		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1806		//	ndev->name, i, a, b);
1807
1808		for (j=0; j<0x16; j+=4) {
1809			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1810				ndev->name, j,
1811				ns83820_mii_read_reg(dev, i, 0 + j),
1812				ns83820_mii_read_reg(dev, i, 1 + j),
1813				ns83820_mii_read_reg(dev, i, 2 + j),
1814				ns83820_mii_read_reg(dev, i, 3 + j)
1815				);
1816		}
1817	}
1818	{
1819		unsigned a, b;
1820		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1821		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1822		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1823		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1824
1825		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1826		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1827		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1828		dprintk("version: 0x%04x 0x%04x\n", a, b);
1829	}
1830}
1831#endif
1832
1833static const struct net_device_ops netdev_ops = {
1834	.ndo_open		= ns83820_open,
1835	.ndo_stop		= ns83820_stop,
1836	.ndo_start_xmit		= ns83820_hard_start_xmit,
1837	.ndo_get_stats		= ns83820_get_stats,
1838	.ndo_change_mtu		= ns83820_change_mtu,
1839	.ndo_set_multicast_list = ns83820_set_multicast,
1840	.ndo_validate_addr	= eth_validate_addr,
1841	.ndo_set_mac_address 	= eth_mac_addr,
1842	.ndo_tx_timeout		= ns83820_tx_timeout,
1843#ifdef NS83820_VLAN_ACCEL_SUPPORT
1844	.ndo_vlan_rx_register	= ns83820_vlan_rx_register,
1845#endif
1846};
1847
1848static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1849				      const struct pci_device_id *id)
1850{
1851	struct net_device *ndev;
1852	struct ns83820 *dev;
1853	long addr;
1854	int err;
1855	int using_dac = 0;
1856
1857	/* See if we can set the dma mask early on; failure is fatal. */
1858	if (sizeof(dma_addr_t) == 8 &&
1859		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1860		using_dac = 1;
1861	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1862		using_dac = 0;
1863	} else {
1864		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1865		return -ENODEV;
1866	}
1867
1868	ndev = alloc_etherdev(sizeof(struct ns83820));
1869	dev = PRIV(ndev);
1870
1871	err = -ENOMEM;
1872	if (!dev)
1873		goto out;
1874
1875	dev->ndev = ndev;
1876
1877	spin_lock_init(&dev->rx_info.lock);
1878	spin_lock_init(&dev->tx_lock);
1879	spin_lock_init(&dev->misc_lock);
1880	dev->pci_dev = pci_dev;
1881
1882	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1883
1884	INIT_WORK(&dev->tq_refill, queue_refill);
1885	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1886
1887	err = pci_enable_device(pci_dev);
1888	if (err) {
1889		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1890		goto out_free;
1891	}
1892
1893	pci_set_master(pci_dev);
1894	addr = pci_resource_start(pci_dev, 1);
1895	dev->base = ioremap_nocache(addr, PAGE_SIZE);
1896	dev->tx_descs = pci_alloc_consistent(pci_dev,
1897			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1898	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1899			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1900	err = -ENOMEM;
1901	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1902		goto out_disable;
1903
1904	dprintk("%p: %08lx  %p: %08lx\n",
1905		dev->tx_descs, (long)dev->tx_phy_descs,
1906		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1907
1908	/* disable interrupts */
1909	writel(0, dev->base + IMR);
1910	writel(0, dev->base + IER);
1911	readl(dev->base + IER);
1912
1913	dev->IMR_cache = 0;
1914
1915	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1916			  DRV_NAME, ndev);
1917	if (err) {
1918		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1919			pci_dev->irq, err);
1920		goto out_disable;
1921	}
1922
1923	rtnl_lock();
1924	err = dev_alloc_name(ndev, ndev->name);
1925	if (err < 0) {
1926		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1927		goto out_free_irq;
1928	}
1929
1930	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1931		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1932		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1933
1934	ndev->netdev_ops = &netdev_ops;
1935	SET_ETHTOOL_OPS(ndev, &ops);
1936	ndev->watchdog_timeo = 5 * HZ;
1937	pci_set_drvdata(pci_dev, ndev);
1938
1939	ns83820_do_reset(dev, CR_RST);
1940
1941	/* Must reset the ram bist before running it */
1942	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1943	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1944			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1945	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1946			 PTSCR_EEBIST_FAIL);
1947	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1948
1949	/* I love config registers */
1950	dev->CFG_cache = readl(dev->base + CFG);
1951
1952	if ((dev->CFG_cache & CFG_PCI64_DET)) {
1953		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
1954			ndev->name);
1955		/*dev->CFG_cache |= CFG_DATA64_EN;*/
1956		if (!(dev->CFG_cache & CFG_DATA64_EN))
1957			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
1958				ndev->name);
1959	} else
1960		dev->CFG_cache &= ~(CFG_DATA64_EN);
1961
1962	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
1963			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
1964			   CFG_M64ADDR);
1965	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
1966			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
1967	dev->CFG_cache |= CFG_REQALG;
1968	dev->CFG_cache |= CFG_POW;
1969	dev->CFG_cache |= CFG_TMRTEST;
1970
1971	/* When compiled with 64 bit addressing, we must always enable
1972	 * the 64 bit descriptor format.
1973	 */
1974	if (sizeof(dma_addr_t) == 8)
1975		dev->CFG_cache |= CFG_M64ADDR;
1976	if (using_dac)
1977		dev->CFG_cache |= CFG_T64ADDR;
1978
1979	/* Big endian mode does not seem to do what the docs suggest */
1980	dev->CFG_cache &= ~CFG_BEM;
1981
1982	/* setup optical transceiver if we have one */
1983	if (dev->CFG_cache & CFG_TBI_EN) {
1984		printk(KERN_INFO "%s: enabling optical transceiver\n",
1985			ndev->name);
1986		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
1987
1988		/* setup auto negotiation feature advertisement */
1989		writel(readl(dev->base + TANAR)
1990		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
1991		       dev->base + TANAR);
1992
1993		/* start auto negotiation */
1994		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1995		       dev->base + TBICR);
1996		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1997		dev->linkstate = LINK_AUTONEGOTIATE;
1998
1999		dev->CFG_cache |= CFG_MODE_1000;
2000	}
2001
2002	writel(dev->CFG_cache, dev->base + CFG);
2003	dprintk("CFG: %08x\n", dev->CFG_cache);
2004
2005	if (reset_phy) {
2006		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2007		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2008		msleep(10);
2009		writel(dev->CFG_cache, dev->base + CFG);
2010	}
2011
2012
2013	/* Note!  The DMA burst size interacts with packet
2014	 * transmission, such that the largest packet that
2015	 * can be transmitted is 8192 - FLTH - burst size.
2016	 * If only the transmit fifo was larger...
2017	 */
2018	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2019	 * some DELL and COMPAQ SMP systems */
2020	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2021		| ((1600 / 32) * 0x100),
2022		dev->base + TXCFG);
2023
2024	/* Flush the interrupt holdoff timer */
2025	writel(0x000, dev->base + IHR);
2026	writel(0x100, dev->base + IHR);
2027	writel(0x000, dev->base + IHR);
2028
2029	/* Set Rx to full duplex, don't accept runt, errored, long or length
2030	 * range errored packets.  Use 512 byte DMA.
2031	 */
2032	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2033	 * some DELL and COMPAQ SMP systems
2034	 * Turn on ALP, only we are accpeting Jumbo Packets */
2035	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2036		| RXCFG_STRIPCRC
2037		//| RXCFG_ALP
2038		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2039
2040	/* Disable priority queueing */
2041	writel(0, dev->base + PQCR);
2042
2043	/* Enable IP checksum validation and detetion of VLAN headers.
2044	 * Note: do not set the reject options as at least the 0x102
2045	 * revision of the chip does not properly accept IP fragments
2046	 * at least for UDP.
2047	 */
2048	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2049	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2050	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2051	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2052	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2053	 * it discrards it!.  These guys......
2054	 * also turn on tag stripping if hardware acceleration is enabled
2055	 */
2056#ifdef NS83820_VLAN_ACCEL_SUPPORT
2057#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2058#else
2059#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2060#endif
2061	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2062
2063	/* Enable per-packet TCP/UDP/IP checksumming
2064	 * and per packet vlan tag insertion if
2065	 * vlan hardware acceleration is enabled
2066	 */
2067#ifdef NS83820_VLAN_ACCEL_SUPPORT
2068#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2069#else
2070#define VTCR_INIT_VALUE VTCR_PPCHK
2071#endif
2072	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2073
2074	/* Ramit : Enable async and sync pause frames */
2075	/* writel(0, dev->base + PCR); */
2076	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2077		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2078		dev->base + PCR);
2079
2080	/* Disable Wake On Lan */
2081	writel(0, dev->base + WCSR);
2082
2083	ns83820_getmac(dev, ndev->dev_addr);
2084
2085	/* Yes, we support dumb IP checksum on transmit */
2086	ndev->features |= NETIF_F_SG;
2087	ndev->features |= NETIF_F_IP_CSUM;
2088
2089#ifdef NS83820_VLAN_ACCEL_SUPPORT
2090	/* We also support hardware vlan acceleration */
2091	ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2092#endif
2093
2094	if (using_dac) {
2095		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2096			ndev->name);
2097		ndev->features |= NETIF_F_HIGHDMA;
2098	}
2099
2100	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2101		ndev->name,
2102		(unsigned)readl(dev->base + SRR) >> 8,
2103		(unsigned)readl(dev->base + SRR) & 0xff,
2104		ndev->dev_addr, addr, pci_dev->irq,
2105		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2106		);
2107
2108#ifdef PHY_CODE_IS_FINISHED
2109	ns83820_probe_phy(ndev);
2110#endif
2111
2112	err = register_netdevice(ndev);
2113	if (err) {
2114		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2115		goto out_cleanup;
2116	}
2117	rtnl_unlock();
2118
2119	return 0;
2120
2121out_cleanup:
2122	writel(0, dev->base + IMR);	/* paranoia */
2123	writel(0, dev->base + IER);
2124	readl(dev->base + IER);
2125out_free_irq:
2126	rtnl_unlock();
2127	free_irq(pci_dev->irq, ndev);
2128out_disable:
2129	if (dev->base)
2130		iounmap(dev->base);
2131	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2132	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2133	pci_disable_device(pci_dev);
2134out_free:
2135	free_netdev(ndev);
2136	pci_set_drvdata(pci_dev, NULL);
2137out:
2138	return err;
2139}
2140
2141static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2142{
2143	struct net_device *ndev = pci_get_drvdata(pci_dev);
2144	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2145
2146	if (!ndev)			/* paranoia */
2147		return;
2148
2149	writel(0, dev->base + IMR);	/* paranoia */
2150	writel(0, dev->base + IER);
2151	readl(dev->base + IER);
2152
2153	unregister_netdev(ndev);
2154	free_irq(dev->pci_dev->irq, ndev);
2155	iounmap(dev->base);
2156	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2157			dev->tx_descs, dev->tx_phy_descs);
2158	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2159			dev->rx_info.descs, dev->rx_info.phy_descs);
2160	pci_disable_device(dev->pci_dev);
2161	free_netdev(ndev);
2162	pci_set_drvdata(pci_dev, NULL);
2163}
2164
2165static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2166	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2167	{ 0, },
2168};
2169
2170static struct pci_driver driver = {
2171	.name		= "ns83820",
2172	.id_table	= ns83820_pci_tbl,
2173	.probe		= ns83820_init_one,
2174	.remove		= __devexit_p(ns83820_remove_one),
2175};
2176
2177
2178static int __init ns83820_init(void)
2179{
2180	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2181	return pci_register_driver(&driver);
2182}
2183
2184static void __exit ns83820_exit(void)
2185{
2186	pci_unregister_driver(&driver);
2187}
2188
2189MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2190MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2191MODULE_LICENSE("GPL");
2192
2193MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2194
2195module_param(lnksts, int, 0);
2196MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2197
2198module_param(ihr, int, 0);
2199MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2200
2201module_param(reset_phy, int, 0);
2202MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2203
2204module_init(ns83820_init);
2205module_exit(ns83820_exit);
2206