• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/
1/**
2 * drivers/net/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/**
20 * Supports:
21 * KS8851 16bit MLL chip from Micrel Inc.
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/ethtool.h>
31#include <linux/cache.h>
32#include <linux/crc32.h>
33#include <linux/mii.h>
34#include <linux/platform_device.h>
35#include <linux/delay.h>
36#include <linux/slab.h>
37
38#define	DRV_NAME	"ks8851_mll"
39
40static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
41#define MAX_RECV_FRAMES			32
42#define MAX_BUF_SIZE			2048
43#define TX_BUF_SIZE			2000
44#define RX_BUF_SIZE			2000
45
46#define KS_CCR				0x08
47#define CCR_EEPROM			(1 << 9)
48#define CCR_SPI				(1 << 8)
49#define CCR_8BIT			(1 << 7)
50#define CCR_16BIT			(1 << 6)
51#define CCR_32BIT			(1 << 5)
52#define CCR_SHARED			(1 << 4)
53#define CCR_32PIN			(1 << 0)
54
55/* MAC address registers */
56#define KS_MARL				0x10
57#define KS_MARM				0x12
58#define KS_MARH				0x14
59
60#define KS_OBCR				0x20
61#define OBCR_ODS_16MA			(1 << 6)
62
63#define KS_EEPCR			0x22
64#define EEPCR_EESA			(1 << 4)
65#define EEPCR_EESB			(1 << 3)
66#define EEPCR_EEDO			(1 << 2)
67#define EEPCR_EESCK			(1 << 1)
68#define EEPCR_EECS			(1 << 0)
69
70#define KS_MBIR				0x24
71#define MBIR_TXMBF			(1 << 12)
72#define MBIR_TXMBFA			(1 << 11)
73#define MBIR_RXMBF			(1 << 4)
74#define MBIR_RXMBFA			(1 << 3)
75
76#define KS_GRR				0x26
77#define GRR_QMU				(1 << 1)
78#define GRR_GSR				(1 << 0)
79
80#define KS_WFCR				0x2A
81#define WFCR_MPRXE			(1 << 7)
82#define WFCR_WF3E			(1 << 3)
83#define WFCR_WF2E			(1 << 2)
84#define WFCR_WF1E			(1 << 1)
85#define WFCR_WF0E			(1 << 0)
86
87#define KS_WF0CRC0			0x30
88#define KS_WF0CRC1			0x32
89#define KS_WF0BM0			0x34
90#define KS_WF0BM1			0x36
91#define KS_WF0BM2			0x38
92#define KS_WF0BM3			0x3A
93
94#define KS_WF1CRC0			0x40
95#define KS_WF1CRC1			0x42
96#define KS_WF1BM0			0x44
97#define KS_WF1BM1			0x46
98#define KS_WF1BM2			0x48
99#define KS_WF1BM3			0x4A
100
101#define KS_WF2CRC0			0x50
102#define KS_WF2CRC1			0x52
103#define KS_WF2BM0			0x54
104#define KS_WF2BM1			0x56
105#define KS_WF2BM2			0x58
106#define KS_WF2BM3			0x5A
107
108#define KS_WF3CRC0			0x60
109#define KS_WF3CRC1			0x62
110#define KS_WF3BM0			0x64
111#define KS_WF3BM1			0x66
112#define KS_WF3BM2			0x68
113#define KS_WF3BM3			0x6A
114
115#define KS_TXCR				0x70
116#define TXCR_TCGICMP			(1 << 8)
117#define TXCR_TCGUDP			(1 << 7)
118#define TXCR_TCGTCP			(1 << 6)
119#define TXCR_TCGIP			(1 << 5)
120#define TXCR_FTXQ			(1 << 4)
121#define TXCR_TXFCE			(1 << 3)
122#define TXCR_TXPE			(1 << 2)
123#define TXCR_TXCRC			(1 << 1)
124#define TXCR_TXE			(1 << 0)
125
126#define KS_TXSR				0x72
127#define TXSR_TXLC			(1 << 13)
128#define TXSR_TXMC			(1 << 12)
129#define TXSR_TXFID_MASK			(0x3f << 0)
130#define TXSR_TXFID_SHIFT		(0)
131#define TXSR_TXFID_GET(_v)		(((_v) >> 0) & 0x3f)
132
133
134#define KS_RXCR1			0x74
135#define RXCR1_FRXQ			(1 << 15)
136#define RXCR1_RXUDPFCC			(1 << 14)
137#define RXCR1_RXTCPFCC			(1 << 13)
138#define RXCR1_RXIPFCC			(1 << 12)
139#define RXCR1_RXPAFMA			(1 << 11)
140#define RXCR1_RXFCE			(1 << 10)
141#define RXCR1_RXEFE			(1 << 9)
142#define RXCR1_RXMAFMA			(1 << 8)
143#define RXCR1_RXBE			(1 << 7)
144#define RXCR1_RXME			(1 << 6)
145#define RXCR1_RXUE			(1 << 5)
146#define RXCR1_RXAE			(1 << 4)
147#define RXCR1_RXINVF			(1 << 1)
148#define RXCR1_RXE			(1 << 0)
149#define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
150					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
151
152#define KS_RXCR2			0x76
153#define RXCR2_SRDBL_MASK		(0x7 << 5)
154#define RXCR2_SRDBL_SHIFT		(5)
155#define RXCR2_SRDBL_4B			(0x0 << 5)
156#define RXCR2_SRDBL_8B			(0x1 << 5)
157#define RXCR2_SRDBL_16B			(0x2 << 5)
158#define RXCR2_SRDBL_32B			(0x3 << 5)
159/* #define RXCR2_SRDBL_FRAME		(0x4 << 5) */
160#define RXCR2_IUFFP			(1 << 4)
161#define RXCR2_RXIUFCEZ			(1 << 3)
162#define RXCR2_UDPLFE			(1 << 2)
163#define RXCR2_RXICMPFCC			(1 << 1)
164#define RXCR2_RXSAF			(1 << 0)
165
166#define KS_TXMIR			0x78
167
168#define KS_RXFHSR			0x7C
169#define RXFSHR_RXFV			(1 << 15)
170#define RXFSHR_RXICMPFCS		(1 << 13)
171#define RXFSHR_RXIPFCS			(1 << 12)
172#define RXFSHR_RXTCPFCS			(1 << 11)
173#define RXFSHR_RXUDPFCS			(1 << 10)
174#define RXFSHR_RXBF			(1 << 7)
175#define RXFSHR_RXMF			(1 << 6)
176#define RXFSHR_RXUF			(1 << 5)
177#define RXFSHR_RXMR			(1 << 4)
178#define RXFSHR_RXFT			(1 << 3)
179#define RXFSHR_RXFTL			(1 << 2)
180#define RXFSHR_RXRF			(1 << 1)
181#define RXFSHR_RXCE			(1 << 0)
182#define	RXFSHR_ERR			(RXFSHR_RXCE | RXFSHR_RXRF |\
183					RXFSHR_RXFTL | RXFSHR_RXMR |\
184					RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
185					RXFSHR_RXTCPFCS)
186#define KS_RXFHBCR			0x7E
187#define RXFHBCR_CNT_MASK		0x0FFF
188
189#define KS_TXQCR			0x80
190#define TXQCR_AETFE			(1 << 2)
191#define TXQCR_TXQMAM			(1 << 1)
192#define TXQCR_METFE			(1 << 0)
193
194#define KS_RXQCR			0x82
195#define RXQCR_RXDTTS			(1 << 12)
196#define RXQCR_RXDBCTS			(1 << 11)
197#define RXQCR_RXFCTS			(1 << 10)
198#define RXQCR_RXIPHTOE			(1 << 9)
199#define RXQCR_RXDTTE			(1 << 7)
200#define RXQCR_RXDBCTE			(1 << 6)
201#define RXQCR_RXFCTE			(1 << 5)
202#define RXQCR_ADRFE			(1 << 4)
203#define RXQCR_SDA			(1 << 3)
204#define RXQCR_RRXEF			(1 << 0)
205#define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)
206
207#define KS_TXFDPR			0x84
208#define TXFDPR_TXFPAI			(1 << 14)
209#define TXFDPR_TXFP_MASK		(0x7ff << 0)
210#define TXFDPR_TXFP_SHIFT		(0)
211
212#define KS_RXFDPR			0x86
213#define RXFDPR_RXFPAI			(1 << 14)
214
215#define KS_RXDTTR			0x8C
216#define KS_RXDBCTR			0x8E
217
218#define KS_IER				0x90
219#define KS_ISR				0x92
220#define IRQ_LCI				(1 << 15)
221#define IRQ_TXI				(1 << 14)
222#define IRQ_RXI				(1 << 13)
223#define IRQ_RXOI			(1 << 11)
224#define IRQ_TXPSI			(1 << 9)
225#define IRQ_RXPSI			(1 << 8)
226#define IRQ_TXSAI			(1 << 6)
227#define IRQ_RXWFDI			(1 << 5)
228#define IRQ_RXMPDI			(1 << 4)
229#define IRQ_LDI				(1 << 3)
230#define IRQ_EDI				(1 << 2)
231#define IRQ_SPIBEI			(1 << 1)
232#define IRQ_DEDI			(1 << 0)
233
234#define KS_RXFCTR			0x9C
235#define RXFCTR_THRESHOLD_MASK     	0x00FF
236
237#define KS_RXFC				0x9D
238#define RXFCTR_RXFC_MASK		(0xff << 8)
239#define RXFCTR_RXFC_SHIFT		(8)
240#define RXFCTR_RXFC_GET(_v)		(((_v) >> 8) & 0xff)
241#define RXFCTR_RXFCT_MASK		(0xff << 0)
242#define RXFCTR_RXFCT_SHIFT		(0)
243
244#define KS_TXNTFSR			0x9E
245
246#define KS_MAHTR0			0xA0
247#define KS_MAHTR1			0xA2
248#define KS_MAHTR2			0xA4
249#define KS_MAHTR3			0xA6
250
251#define KS_FCLWR			0xB0
252#define KS_FCHWR			0xB2
253#define KS_FCOWR			0xB4
254
255#define KS_CIDER			0xC0
256#define CIDER_ID			0x8870
257#define CIDER_REV_MASK			(0x7 << 1)
258#define CIDER_REV_SHIFT			(1)
259#define CIDER_REV_GET(_v)		(((_v) >> 1) & 0x7)
260
261#define KS_CGCR				0xC6
262#define KS_IACR				0xC8
263#define IACR_RDEN			(1 << 12)
264#define IACR_TSEL_MASK			(0x3 << 10)
265#define IACR_TSEL_SHIFT			(10)
266#define IACR_TSEL_MIB			(0x3 << 10)
267#define IACR_ADDR_MASK			(0x1f << 0)
268#define IACR_ADDR_SHIFT			(0)
269
270#define KS_IADLR			0xD0
271#define KS_IAHDR			0xD2
272
273#define KS_PMECR			0xD4
274#define PMECR_PME_DELAY			(1 << 14)
275#define PMECR_PME_POL			(1 << 12)
276#define PMECR_WOL_WAKEUP		(1 << 11)
277#define PMECR_WOL_MAGICPKT		(1 << 10)
278#define PMECR_WOL_LINKUP		(1 << 9)
279#define PMECR_WOL_ENERGY		(1 << 8)
280#define PMECR_AUTO_WAKE_EN		(1 << 7)
281#define PMECR_WAKEUP_NORMAL		(1 << 6)
282#define PMECR_WKEVT_MASK		(0xf << 2)
283#define PMECR_WKEVT_SHIFT		(2)
284#define PMECR_WKEVT_GET(_v)		(((_v) >> 2) & 0xf)
285#define PMECR_WKEVT_ENERGY		(0x1 << 2)
286#define PMECR_WKEVT_LINK		(0x2 << 2)
287#define PMECR_WKEVT_MAGICPKT		(0x4 << 2)
288#define PMECR_WKEVT_FRAME		(0x8 << 2)
289#define PMECR_PM_MASK			(0x3 << 0)
290#define PMECR_PM_SHIFT			(0)
291#define PMECR_PM_NORMAL			(0x0 << 0)
292#define PMECR_PM_ENERGY			(0x1 << 0)
293#define PMECR_PM_SOFTDOWN		(0x2 << 0)
294#define PMECR_PM_POWERSAVE		(0x3 << 0)
295
296/* Standard MII PHY data */
297#define KS_P1MBCR			0xE4
298#define P1MBCR_FORCE_FDX		(1 << 8)
299
300#define KS_P1MBSR			0xE6
301#define P1MBSR_AN_COMPLETE		(1 << 5)
302#define P1MBSR_AN_CAPABLE		(1 << 3)
303#define P1MBSR_LINK_UP			(1 << 2)
304
305#define KS_PHY1ILR			0xE8
306#define KS_PHY1IHR			0xEA
307#define KS_P1ANAR			0xEC
308#define KS_P1ANLPR			0xEE
309
310#define KS_P1SCLMD			0xF4
311#define P1SCLMD_LEDOFF			(1 << 15)
312#define P1SCLMD_TXIDS			(1 << 14)
313#define P1SCLMD_RESTARTAN		(1 << 13)
314#define P1SCLMD_DISAUTOMDIX		(1 << 10)
315#define P1SCLMD_FORCEMDIX		(1 << 9)
316#define P1SCLMD_AUTONEGEN		(1 << 7)
317#define P1SCLMD_FORCE100		(1 << 6)
318#define P1SCLMD_FORCEFDX		(1 << 5)
319#define P1SCLMD_ADV_FLOW		(1 << 4)
320#define P1SCLMD_ADV_100BT_FDX		(1 << 3)
321#define P1SCLMD_ADV_100BT_HDX		(1 << 2)
322#define P1SCLMD_ADV_10BT_FDX		(1 << 1)
323#define P1SCLMD_ADV_10BT_HDX		(1 << 0)
324
325#define KS_P1CR				0xF6
326#define P1CR_HP_MDIX			(1 << 15)
327#define P1CR_REV_POL			(1 << 13)
328#define P1CR_OP_100M			(1 << 10)
329#define P1CR_OP_FDX			(1 << 9)
330#define P1CR_OP_MDI			(1 << 7)
331#define P1CR_AN_DONE			(1 << 6)
332#define P1CR_LINK_GOOD			(1 << 5)
333#define P1CR_PNTR_FLOW			(1 << 4)
334#define P1CR_PNTR_100BT_FDX		(1 << 3)
335#define P1CR_PNTR_100BT_HDX		(1 << 2)
336#define P1CR_PNTR_10BT_FDX		(1 << 1)
337#define P1CR_PNTR_10BT_HDX		(1 << 0)
338
339/* TX Frame control */
340
341#define TXFR_TXIC			(1 << 15)
342#define TXFR_TXFID_MASK			(0x3f << 0)
343#define TXFR_TXFID_SHIFT		(0)
344
345#define KS_P1SR				0xF8
346#define P1SR_HP_MDIX			(1 << 15)
347#define P1SR_REV_POL			(1 << 13)
348#define P1SR_OP_100M			(1 << 10)
349#define P1SR_OP_FDX			(1 << 9)
350#define P1SR_OP_MDI			(1 << 7)
351#define P1SR_AN_DONE			(1 << 6)
352#define P1SR_LINK_GOOD			(1 << 5)
353#define P1SR_PNTR_FLOW			(1 << 4)
354#define P1SR_PNTR_100BT_FDX		(1 << 3)
355#define P1SR_PNTR_100BT_HDX		(1 << 2)
356#define P1SR_PNTR_10BT_FDX		(1 << 1)
357#define P1SR_PNTR_10BT_HDX		(1 << 0)
358
359#define	ENUM_BUS_NONE			0
360#define	ENUM_BUS_8BIT			1
361#define	ENUM_BUS_16BIT			2
362#define	ENUM_BUS_32BIT			3
363
364#define MAX_MCAST_LST			32
365#define HW_MCAST_SIZE			8
366
367/**
368 * union ks_tx_hdr - tx header data
369 * @txb: The header as bytes
370 * @txw: The header as 16bit, little-endian words
371 *
372 * A dual representation of the tx header data to allow
373 * access to individual bytes, and to allow 16bit accesses
374 * with 16bit alignment.
375 */
376union ks_tx_hdr {
377	u8      txb[4];
378	__le16  txw[2];
379};
380
381/**
382 * struct ks_net - KS8851 driver private data
383 * @net_device 	: The network device we're bound to
384 * @hw_addr	: start address of data register.
385 * @hw_addr_cmd	: start address of command register.
386 * @txh    	: temporaly buffer to save status/length.
387 * @lock	: Lock to ensure that the device is not accessed when busy.
388 * @pdev	: Pointer to platform device.
389 * @mii		: The MII state information for the mii calls.
390 * @frame_head_info   	: frame header information for multi-pkt rx.
391 * @statelock	: Lock on this structure for tx list.
392 * @msg_enable	: The message flags controlling driver output (see ethtool).
393 * @frame_cnt  	: number of frames received.
394 * @bus_width  	: i/o bus width.
395 * @irq    	: irq number assigned to this device.
396 * @rc_rxqcr	: Cached copy of KS_RXQCR.
397 * @rc_txcr	: Cached copy of KS_TXCR.
398 * @rc_ier	: Cached copy of KS_IER.
399 * @sharedbus  	: Multipex(addr and data bus) mode indicator.
400 * @cmd_reg_cache	: command register cached.
401 * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
402 * @promiscuous	: promiscuous mode indicator.
403 * @all_mcast  	: mutlicast indicator.
404 * @mcast_lst_size   	: size of multicast list.
405 * @mcast_lst    	: multicast list.
406 * @mcast_bits    	: multicast enabed.
407 * @mac_addr   		: MAC address assigned to this device.
408 * @fid    		: frame id.
409 * @extra_byte    	: number of extra byte prepended rx pkt.
410 * @enabled    		: indicator this device works.
411 *
412 * The @lock ensures that the chip is protected when certain operations are
413 * in progress. When the read or write packet transfer is in progress, most
414 * of the chip registers are not accessible until the transfer is finished and
415 * the DMA has been de-asserted.
416 *
417 * The @statelock is used to protect information in the structure which may
418 * need to be accessed via several sources, such as the network driver layer
419 * or one of the work queues.
420 *
421 */
422
423/* Receive multiplex framer header info */
424struct type_frame_head {
425	u16	sts;         /* Frame status */
426	u16	len;         /* Byte count */
427};
428
429struct ks_net {
430	struct net_device	*netdev;
431	void __iomem    	*hw_addr;
432	void __iomem    	*hw_addr_cmd;
433	union ks_tx_hdr		txh ____cacheline_aligned;
434	struct mutex      	lock; /* spinlock to be interrupt safe */
435	struct platform_device *pdev;
436	struct mii_if_info	mii;
437	struct type_frame_head	*frame_head_info;
438	spinlock_t		statelock;
439	u32			msg_enable;
440	u32			frame_cnt;
441	int			bus_width;
442	int             	irq;
443
444	u16			rc_rxqcr;
445	u16			rc_txcr;
446	u16			rc_ier;
447	u16			sharedbus;
448	u16			cmd_reg_cache;
449	u16			cmd_reg_cache_int;
450	u16			promiscuous;
451	u16			all_mcast;
452	u16			mcast_lst_size;
453	u8			mcast_lst[MAX_MCAST_LST][ETH_ALEN];
454	u8			mcast_bits[HW_MCAST_SIZE];
455	u8			mac_addr[6];
456	u8                      fid;
457	u8			extra_byte;
458	u8			enabled;
459};
460
461static int msg_enable;
462
463#define BE3             0x8000      /* Byte Enable 3 */
464#define BE2             0x4000      /* Byte Enable 2 */
465#define BE1             0x2000      /* Byte Enable 1 */
466#define BE0             0x1000      /* Byte Enable 0 */
467
468/**
469 * register read/write calls.
470 *
471 * All these calls issue transactions to access the chip's registers. They
472 * all require that the necessary lock is held to prevent accesses when the
473 * chip is busy transfering packet data (RX/TX FIFO accesses).
474 */
475
476/**
477 * ks_rdreg8 - read 8 bit register from device
478 * @ks	  : The chip information
479 * @offset: The register address
480 *
481 * Read a 8bit register from the chip, returning the result
482 */
483static u8 ks_rdreg8(struct ks_net *ks, int offset)
484{
485	u16 data;
486	u8 shift_bit = offset & 0x03;
487	u8 shift_data = (offset & 1) << 3;
488	ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
489	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
490	data  = ioread16(ks->hw_addr);
491	return (u8)(data >> shift_data);
492}
493
494/**
495 * ks_rdreg16 - read 16 bit register from device
496 * @ks	  : The chip information
497 * @offset: The register address
498 *
499 * Read a 16bit register from the chip, returning the result
500 */
501
502static u16 ks_rdreg16(struct ks_net *ks, int offset)
503{
504	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
505	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
506	return ioread16(ks->hw_addr);
507}
508
509/**
510 * ks_wrreg8 - write 8bit register value to chip
511 * @ks: The chip information
512 * @offset: The register address
513 * @value: The value to write
514 *
515 */
516static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
517{
518	u8  shift_bit = (offset & 0x03);
519	u16 value_write = (u16)(value << ((offset & 1) << 3));
520	ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
521	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
522	iowrite16(value_write, ks->hw_addr);
523}
524
525/**
526 * ks_wrreg16 - write 16bit register value to chip
527 * @ks: The chip information
528 * @offset: The register address
529 * @value: The value to write
530 *
531 */
532
533static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
534{
535	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
536	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
537	iowrite16(value, ks->hw_addr);
538}
539
540/**
541 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
542 * @ks: The chip state
543 * @wptr: buffer address to save data
544 * @len: length in byte to read
545 *
546 */
547static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
548{
549	len >>= 1;
550	while (len--)
551		*wptr++ = (u16)ioread16(ks->hw_addr);
552}
553
554/**
555 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
556 * @ks: The chip information
557 * @wptr: buffer address
558 * @len: length in byte to write
559 *
560 */
561static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
562{
563	len >>= 1;
564	while (len--)
565		iowrite16(*wptr++, ks->hw_addr);
566}
567
568static void ks_disable_int(struct ks_net *ks)
569{
570	ks_wrreg16(ks, KS_IER, 0x0000);
571}  /* ks_disable_int */
572
573static void ks_enable_int(struct ks_net *ks)
574{
575	ks_wrreg16(ks, KS_IER, ks->rc_ier);
576}  /* ks_enable_int */
577
578/**
579 * ks_tx_fifo_space - return the available hardware buffer size.
580 * @ks: The chip information
581 *
582 */
583static inline u16 ks_tx_fifo_space(struct ks_net *ks)
584{
585	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
586}
587
588/**
589 * ks_save_cmd_reg - save the command register from the cache.
590 * @ks: The chip information
591 *
592 */
593static inline void ks_save_cmd_reg(struct ks_net *ks)
594{
595	/*ks8851 MLL has a bug to read back the command register.
596	* So rely on software to save the content of command register.
597	*/
598	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
599}
600
601/**
602 * ks_restore_cmd_reg - restore the command register from the cache and
603 * 	write to hardware register.
604 * @ks: The chip information
605 *
606 */
607static inline void ks_restore_cmd_reg(struct ks_net *ks)
608{
609	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
610	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
611}
612
613/**
614 * ks_set_powermode - set power mode of the device
615 * @ks: The chip information
616 * @pwrmode: The power mode value to write to KS_PMECR.
617 *
618 * Change the power mode of the chip.
619 */
620static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
621{
622	unsigned pmecr;
623
624	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
625
626	ks_rdreg16(ks, KS_GRR);
627	pmecr = ks_rdreg16(ks, KS_PMECR);
628	pmecr &= ~PMECR_PM_MASK;
629	pmecr |= pwrmode;
630
631	ks_wrreg16(ks, KS_PMECR, pmecr);
632}
633
634/**
635 * ks_read_config - read chip configuration of bus width.
636 * @ks: The chip information
637 *
638 */
639static void ks_read_config(struct ks_net *ks)
640{
641	u16 reg_data = 0;
642
643	/* Regardless of bus width, 8 bit read should always work.*/
644	reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
645	reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
646
647	/* addr/data bus are multiplexed */
648	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
649
650	/* There are garbage data when reading data from QMU,
651	depending on bus-width.
652	*/
653
654	if (reg_data & CCR_8BIT) {
655		ks->bus_width = ENUM_BUS_8BIT;
656		ks->extra_byte = 1;
657	} else if (reg_data & CCR_16BIT) {
658		ks->bus_width = ENUM_BUS_16BIT;
659		ks->extra_byte = 2;
660	} else {
661		ks->bus_width = ENUM_BUS_32BIT;
662		ks->extra_byte = 4;
663	}
664}
665
666/**
667 * ks_soft_reset - issue one of the soft reset to the device
668 * @ks: The device state.
669 * @op: The bit(s) to set in the GRR
670 *
671 * Issue the relevant soft-reset command to the device's GRR register
672 * specified by @op.
673 *
674 * Note, the delays are in there as a caution to ensure that the reset
675 * has time to take effect and then complete. Since the datasheet does
676 * not currently specify the exact sequence, we have chosen something
677 * that seems to work with our device.
678 */
679static void ks_soft_reset(struct ks_net *ks, unsigned op)
680{
681	/* Disable interrupt first */
682	ks_wrreg16(ks, KS_IER, 0x0000);
683	ks_wrreg16(ks, KS_GRR, op);
684	mdelay(10);	/* wait a short time to effect reset */
685	ks_wrreg16(ks, KS_GRR, 0);
686	mdelay(1);	/* wait for condition to clear */
687}
688
689
690void ks_enable_qmu(struct ks_net *ks)
691{
692	u16 w;
693
694	w = ks_rdreg16(ks, KS_TXCR);
695	/* Enables QMU Transmit (TXCR). */
696	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
697
698	/*
699	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
700	 * Enable
701	 */
702
703	w = ks_rdreg16(ks, KS_RXQCR);
704	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
705
706	/* Enables QMU Receive (RXCR1). */
707	w = ks_rdreg16(ks, KS_RXCR1);
708	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
709	ks->enabled = true;
710}  /* ks_enable_qmu */
711
712static void ks_disable_qmu(struct ks_net *ks)
713{
714	u16	w;
715
716	w = ks_rdreg16(ks, KS_TXCR);
717
718	/* Disables QMU Transmit (TXCR). */
719	w  &= ~TXCR_TXE;
720	ks_wrreg16(ks, KS_TXCR, w);
721
722	/* Disables QMU Receive (RXCR1). */
723	w = ks_rdreg16(ks, KS_RXCR1);
724	w &= ~RXCR1_RXE ;
725	ks_wrreg16(ks, KS_RXCR1, w);
726
727	ks->enabled = false;
728
729}  /* ks_disable_qmu */
730
731/**
732 * ks_read_qmu - read 1 pkt data from the QMU.
733 * @ks: The chip information
734 * @buf: buffer address to save 1 pkt
735 * @len: Pkt length
736 * Here is the sequence to read 1 pkt:
737 *	1. set sudo DMA mode
738 *	2. read prepend data
739 *	3. read pkt data
740 *	4. reset sudo DMA Mode
741 */
742static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
743{
744	u32 r =  ks->extra_byte & 0x1 ;
745	u32 w = ks->extra_byte - r;
746
747	/* 1. set sudo DMA mode */
748	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
749	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
750
751	/* 2. read prepend data */
752	/**
753	 * read 4 + extra bytes and discard them.
754	 * extra bytes for dummy, 2 for status, 2 for len
755	 */
756
757	/* use likely(r) for 8 bit access for performance */
758	if (unlikely(r))
759		ioread8(ks->hw_addr);
760	ks_inblk(ks, buf, w + 2 + 2);
761
762	/* 3. read pkt data */
763	ks_inblk(ks, buf, ALIGN(len, 4));
764
765	/* 4. reset sudo DMA Mode */
766	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
767}
768
769/**
770 * ks_rcv - read multiple pkts data from the QMU.
771 * @ks: The chip information
772 * @netdev: The network device being opened.
773 *
774 * Read all of header information before reading pkt content.
775 * It is not allowed only port of pkts in QMU after issuing
776 * interrupt ack.
777 */
778static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
779{
780	u32	i;
781	struct type_frame_head *frame_hdr = ks->frame_head_info;
782	struct sk_buff *skb;
783
784	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
785
786	/* read all header information */
787	for (i = 0; i < ks->frame_cnt; i++) {
788		/* Checking Received packet status */
789		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
790		/* Get packet len from hardware */
791		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
792		frame_hdr++;
793	}
794
795	frame_hdr = ks->frame_head_info;
796	while (ks->frame_cnt--) {
797		skb = dev_alloc_skb(frame_hdr->len + 16);
798		if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
799			(frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
800			skb_reserve(skb, 2);
801			/* read data block including CRC 4 bytes */
802			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
803			skb_put(skb, frame_hdr->len);
804			skb->protocol = eth_type_trans(skb, netdev);
805			netif_rx(skb);
806		} else {
807			pr_err("%s: err:skb alloc\n", __func__);
808			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
809			if (skb)
810				dev_kfree_skb_irq(skb);
811		}
812		frame_hdr++;
813	}
814}
815
816/**
817 * ks_update_link_status - link status update.
818 * @netdev: The network device being opened.
819 * @ks: The chip information
820 *
821 */
822
823static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
824{
825	/* check the status of the link */
826	u32 link_up_status;
827	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
828		netif_carrier_on(netdev);
829		link_up_status = true;
830	} else {
831		netif_carrier_off(netdev);
832		link_up_status = false;
833	}
834	netif_dbg(ks, link, ks->netdev,
835		  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
836}
837
838/**
839 * ks_irq - device interrupt handler
840 * @irq: Interrupt number passed from the IRQ hnalder.
841 * @pw: The private word passed to register_irq(), our struct ks_net.
842 *
843 * This is the handler invoked to find out what happened
844 *
845 * Read the interrupt status, work out what needs to be done and then clear
846 * any of the interrupts that are not needed.
847 */
848
849static irqreturn_t ks_irq(int irq, void *pw)
850{
851	struct net_device *netdev = pw;
852	struct ks_net *ks = netdev_priv(netdev);
853	u16 status;
854
855	/*this should be the first in IRQ handler */
856	ks_save_cmd_reg(ks);
857
858	status = ks_rdreg16(ks, KS_ISR);
859	if (unlikely(!status)) {
860		ks_restore_cmd_reg(ks);
861		return IRQ_NONE;
862	}
863
864	ks_wrreg16(ks, KS_ISR, status);
865
866	if (likely(status & IRQ_RXI))
867		ks_rcv(ks, netdev);
868
869	if (unlikely(status & IRQ_LCI))
870		ks_update_link_status(netdev, ks);
871
872	if (unlikely(status & IRQ_TXI))
873		netif_wake_queue(netdev);
874
875	if (unlikely(status & IRQ_LDI)) {
876
877		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
878		pmecr &= ~PMECR_WKEVT_MASK;
879		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
880	}
881
882	/* this should be the last in IRQ handler*/
883	ks_restore_cmd_reg(ks);
884	return IRQ_HANDLED;
885}
886
887
888/**
889 * ks_net_open - open network device
890 * @netdev: The network device being opened.
891 *
892 * Called when the network device is marked active, such as a user executing
893 * 'ifconfig up' on the device.
894 */
895static int ks_net_open(struct net_device *netdev)
896{
897	struct ks_net *ks = netdev_priv(netdev);
898	int err;
899
900#define	KS_INT_FLAGS	(IRQF_DISABLED|IRQF_TRIGGER_LOW)
901	/* lock the card, even if we may not actually do anything
902	 * else at the moment.
903	 */
904
905	netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
906
907	/* reset the HW */
908	err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
909
910	if (err) {
911		pr_err("Failed to request IRQ: %d: %d\n", ks->irq, err);
912		return err;
913	}
914
915	/* wake up powermode to normal mode */
916	ks_set_powermode(ks, PMECR_PM_NORMAL);
917	mdelay(1);	/* wait for normal mode to take effect */
918
919	ks_wrreg16(ks, KS_ISR, 0xffff);
920	ks_enable_int(ks);
921	ks_enable_qmu(ks);
922	netif_start_queue(ks->netdev);
923
924	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
925
926	return 0;
927}
928
929/**
930 * ks_net_stop - close network device
931 * @netdev: The device being closed.
932 *
933 * Called to close down a network device which has been active. Cancell any
934 * work, shutdown the RX and TX process and then place the chip into a low
935 * power state whilst it is not being used.
936 */
937static int ks_net_stop(struct net_device *netdev)
938{
939	struct ks_net *ks = netdev_priv(netdev);
940
941	netif_info(ks, ifdown, netdev, "shutting down\n");
942
943	netif_stop_queue(netdev);
944
945	mutex_lock(&ks->lock);
946
947	/* turn off the IRQs and ack any outstanding */
948	ks_wrreg16(ks, KS_IER, 0x0000);
949	ks_wrreg16(ks, KS_ISR, 0xffff);
950
951	/* shutdown RX/TX QMU */
952	ks_disable_qmu(ks);
953
954	/* set powermode to soft power down to save power */
955	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
956	free_irq(ks->irq, netdev);
957	mutex_unlock(&ks->lock);
958	return 0;
959}
960
961
962/**
963 * ks_write_qmu - write 1 pkt data to the QMU.
964 * @ks: The chip information
965 * @pdata: buffer address to save 1 pkt
966 * @len: Pkt length in byte
967 * Here is the sequence to write 1 pkt:
968 *	1. set sudo DMA mode
969 *	2. write status/length
970 *	3. write pkt data
971 *	4. reset sudo DMA Mode
972 *	5. reset sudo DMA mode
973 *	6. Wait until pkt is out
974 */
975static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
976{
977	/* start header at txb[0] to align txw entries */
978	ks->txh.txw[0] = 0;
979	ks->txh.txw[1] = cpu_to_le16(len);
980
981	/* 1. set sudo-DMA mode */
982	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
983	/* 2. write status/lenth info */
984	ks_outblk(ks, ks->txh.txw, 4);
985	/* 3. write pkt data */
986	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
987	/* 4. reset sudo-DMA mode */
988	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
989	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
990	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
991	/* 6. wait until TXQCR_METFE is auto-cleared */
992	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
993		;
994}
995
996/**
997 * ks_start_xmit - transmit packet
998 * @skb		: The buffer to transmit
999 * @netdev	: The device used to transmit the packet.
1000 *
1001 * Called by the network layer to transmit the @skb.
1002 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1003 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1004 */
1005static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1006{
1007	int retv = NETDEV_TX_OK;
1008	struct ks_net *ks = netdev_priv(netdev);
1009
1010	disable_irq(netdev->irq);
1011	ks_disable_int(ks);
1012	spin_lock(&ks->statelock);
1013
1014	/* Extra space are required:
1015	*  4 byte for alignment, 4 for status/length, 4 for CRC
1016	*/
1017
1018	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1019		ks_write_qmu(ks, skb->data, skb->len);
1020		dev_kfree_skb(skb);
1021	} else
1022		retv = NETDEV_TX_BUSY;
1023	spin_unlock(&ks->statelock);
1024	ks_enable_int(ks);
1025	enable_irq(netdev->irq);
1026	return retv;
1027}
1028
1029/**
1030 * ks_start_rx - ready to serve pkts
1031 * @ks		: The chip information
1032 *
1033 */
1034static void ks_start_rx(struct ks_net *ks)
1035{
1036	u16 cntl;
1037
1038	/* Enables QMU Receive (RXCR1). */
1039	cntl = ks_rdreg16(ks, KS_RXCR1);
1040	cntl |= RXCR1_RXE ;
1041	ks_wrreg16(ks, KS_RXCR1, cntl);
1042}  /* ks_start_rx */
1043
1044/**
1045 * ks_stop_rx - stop to serve pkts
1046 * @ks		: The chip information
1047 *
1048 */
1049static void ks_stop_rx(struct ks_net *ks)
1050{
1051	u16 cntl;
1052
1053	/* Disables QMU Receive (RXCR1). */
1054	cntl = ks_rdreg16(ks, KS_RXCR1);
1055	cntl &= ~RXCR1_RXE ;
1056	ks_wrreg16(ks, KS_RXCR1, cntl);
1057
1058}  /* ks_stop_rx */
1059
1060static unsigned long const ethernet_polynomial = 0x04c11db7U;
1061
1062static unsigned long ether_gen_crc(int length, u8 *data)
1063{
1064	long crc = -1;
1065	while (--length >= 0) {
1066		u8 current_octet = *data++;
1067		int bit;
1068
1069		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1070			crc = (crc << 1) ^
1071				((crc < 0) ^ (current_octet & 1) ?
1072			ethernet_polynomial : 0);
1073		}
1074	}
1075	return (unsigned long)crc;
1076}  /* ether_gen_crc */
1077
1078/**
1079* ks_set_grpaddr - set multicast information
1080* @ks : The chip information
1081*/
1082
1083static void ks_set_grpaddr(struct ks_net *ks)
1084{
1085	u8	i;
1086	u32	index, position, value;
1087
1088	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1089
1090	for (i = 0; i < ks->mcast_lst_size; i++) {
1091		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1092		index = position >> 3;
1093		value = 1 << (position & 7);
1094		ks->mcast_bits[index] |= (u8)value;
1095	}
1096
1097	for (i  = 0; i < HW_MCAST_SIZE; i++) {
1098		if (i & 1) {
1099			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1100				(ks->mcast_bits[i] << 8) |
1101				ks->mcast_bits[i - 1]);
1102		}
1103	}
1104}  /* ks_set_grpaddr */
1105
1106/*
1107* ks_clear_mcast - clear multicast information
1108*
1109* @ks : The chip information
1110* This routine removes all mcast addresses set in the hardware.
1111*/
1112
1113static void ks_clear_mcast(struct ks_net *ks)
1114{
1115	u16	i, mcast_size;
1116	for (i = 0; i < HW_MCAST_SIZE; i++)
1117		ks->mcast_bits[i] = 0;
1118
1119	mcast_size = HW_MCAST_SIZE >> 2;
1120	for (i = 0; i < mcast_size; i++)
1121		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1122}
1123
1124static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1125{
1126	u16		cntl;
1127	ks->promiscuous = promiscuous_mode;
1128	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1129	cntl = ks_rdreg16(ks, KS_RXCR1);
1130
1131	cntl &= ~RXCR1_FILTER_MASK;
1132	if (promiscuous_mode)
1133		/* Enable Promiscuous mode */
1134		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1135	else
1136		/* Disable Promiscuous mode (default normal mode) */
1137		cntl |= RXCR1_RXPAFMA;
1138
1139	ks_wrreg16(ks, KS_RXCR1, cntl);
1140
1141	if (ks->enabled)
1142		ks_start_rx(ks);
1143
1144}  /* ks_set_promis */
1145
1146static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1147{
1148	u16	cntl;
1149
1150	ks->all_mcast = mcast;
1151	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1152	cntl = ks_rdreg16(ks, KS_RXCR1);
1153	cntl &= ~RXCR1_FILTER_MASK;
1154	if (mcast)
1155		/* Enable "Perfect with Multicast address passed mode" */
1156		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1157	else
1158		/**
1159		 * Disable "Perfect with Multicast address passed
1160		 * mode" (normal mode).
1161		 */
1162		cntl |= RXCR1_RXPAFMA;
1163
1164	ks_wrreg16(ks, KS_RXCR1, cntl);
1165
1166	if (ks->enabled)
1167		ks_start_rx(ks);
1168}  /* ks_set_mcast */
1169
1170static void ks_set_rx_mode(struct net_device *netdev)
1171{
1172	struct ks_net *ks = netdev_priv(netdev);
1173	struct netdev_hw_addr *ha;
1174
1175	/* Turn on/off promiscuous mode. */
1176	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1177		ks_set_promis(ks,
1178			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1179	/* Turn on/off all mcast mode. */
1180	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1181		ks_set_mcast(ks,
1182			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1183	else
1184		ks_set_promis(ks, false);
1185
1186	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1187		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1188			int i = 0;
1189
1190			netdev_for_each_mc_addr(ha, netdev) {
1191				if (!(*ha->addr & 1))
1192					continue;
1193				if (i >= MAX_MCAST_LST)
1194					break;
1195				memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1196			}
1197			ks->mcast_lst_size = (u8)i;
1198			ks_set_grpaddr(ks);
1199		} else {
1200			/**
1201			 * List too big to support so
1202			 * turn on all mcast mode.
1203			 */
1204			ks->mcast_lst_size = MAX_MCAST_LST;
1205			ks_set_mcast(ks, true);
1206		}
1207	} else {
1208		ks->mcast_lst_size = 0;
1209		ks_clear_mcast(ks);
1210	}
1211} /* ks_set_rx_mode */
1212
1213static void ks_set_mac(struct ks_net *ks, u8 *data)
1214{
1215	u16 *pw = (u16 *)data;
1216	u16 w, u;
1217
1218	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1219
1220	u = *pw++;
1221	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1222	ks_wrreg16(ks, KS_MARH, w);
1223
1224	u = *pw++;
1225	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1226	ks_wrreg16(ks, KS_MARM, w);
1227
1228	u = *pw;
1229	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1230	ks_wrreg16(ks, KS_MARL, w);
1231
1232	memcpy(ks->mac_addr, data, 6);
1233
1234	if (ks->enabled)
1235		ks_start_rx(ks);
1236}
1237
1238static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1239{
1240	struct ks_net *ks = netdev_priv(netdev);
1241	struct sockaddr *addr = paddr;
1242	u8 *da;
1243
1244	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1245
1246	da = (u8 *)netdev->dev_addr;
1247
1248	ks_set_mac(ks, da);
1249	return 0;
1250}
1251
1252static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1253{
1254	struct ks_net *ks = netdev_priv(netdev);
1255
1256	if (!netif_running(netdev))
1257		return -EINVAL;
1258
1259	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1260}
1261
1262static const struct net_device_ops ks_netdev_ops = {
1263	.ndo_open		= ks_net_open,
1264	.ndo_stop		= ks_net_stop,
1265	.ndo_do_ioctl		= ks_net_ioctl,
1266	.ndo_start_xmit		= ks_start_xmit,
1267	.ndo_set_mac_address	= ks_set_mac_address,
1268	.ndo_set_rx_mode	= ks_set_rx_mode,
1269	.ndo_change_mtu		= eth_change_mtu,
1270	.ndo_validate_addr	= eth_validate_addr,
1271};
1272
1273/* ethtool support */
1274
1275static void ks_get_drvinfo(struct net_device *netdev,
1276			       struct ethtool_drvinfo *di)
1277{
1278	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1279	strlcpy(di->version, "1.00", sizeof(di->version));
1280	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1281		sizeof(di->bus_info));
1282}
1283
1284static u32 ks_get_msglevel(struct net_device *netdev)
1285{
1286	struct ks_net *ks = netdev_priv(netdev);
1287	return ks->msg_enable;
1288}
1289
1290static void ks_set_msglevel(struct net_device *netdev, u32 to)
1291{
1292	struct ks_net *ks = netdev_priv(netdev);
1293	ks->msg_enable = to;
1294}
1295
1296static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1297{
1298	struct ks_net *ks = netdev_priv(netdev);
1299	return mii_ethtool_gset(&ks->mii, cmd);
1300}
1301
1302static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1303{
1304	struct ks_net *ks = netdev_priv(netdev);
1305	return mii_ethtool_sset(&ks->mii, cmd);
1306}
1307
1308static u32 ks_get_link(struct net_device *netdev)
1309{
1310	struct ks_net *ks = netdev_priv(netdev);
1311	return mii_link_ok(&ks->mii);
1312}
1313
1314static int ks_nway_reset(struct net_device *netdev)
1315{
1316	struct ks_net *ks = netdev_priv(netdev);
1317	return mii_nway_restart(&ks->mii);
1318}
1319
1320static const struct ethtool_ops ks_ethtool_ops = {
1321	.get_drvinfo	= ks_get_drvinfo,
1322	.get_msglevel	= ks_get_msglevel,
1323	.set_msglevel	= ks_set_msglevel,
1324	.get_settings	= ks_get_settings,
1325	.set_settings	= ks_set_settings,
1326	.get_link	= ks_get_link,
1327	.nway_reset	= ks_nway_reset,
1328};
1329
1330/* MII interface controls */
1331
1332/**
1333 * ks_phy_reg - convert MII register into a KS8851 register
1334 * @reg: MII register number.
1335 *
1336 * Return the KS8851 register number for the corresponding MII PHY register
1337 * if possible. Return zero if the MII register has no direct mapping to the
1338 * KS8851 register set.
1339 */
1340static int ks_phy_reg(int reg)
1341{
1342	switch (reg) {
1343	case MII_BMCR:
1344		return KS_P1MBCR;
1345	case MII_BMSR:
1346		return KS_P1MBSR;
1347	case MII_PHYSID1:
1348		return KS_PHY1ILR;
1349	case MII_PHYSID2:
1350		return KS_PHY1IHR;
1351	case MII_ADVERTISE:
1352		return KS_P1ANAR;
1353	case MII_LPA:
1354		return KS_P1ANLPR;
1355	}
1356
1357	return 0x0;
1358}
1359
1360/**
1361 * ks_phy_read - MII interface PHY register read.
1362 * @netdev: The network device the PHY is on.
1363 * @phy_addr: Address of PHY (ignored as we only have one)
1364 * @reg: The register to read.
1365 *
1366 * This call reads data from the PHY register specified in @reg. Since the
1367 * device does not support all the MII registers, the non-existant values
1368 * are always returned as zero.
1369 *
1370 * We return zero for unsupported registers as the MII code does not check
1371 * the value returned for any error status, and simply returns it to the
1372 * caller. The mii-tool that the driver was tested with takes any -ve error
1373 * as real PHY capabilities, thus displaying incorrect data to the user.
1374 */
1375static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1376{
1377	struct ks_net *ks = netdev_priv(netdev);
1378	int ksreg;
1379	int result;
1380
1381	ksreg = ks_phy_reg(reg);
1382	if (!ksreg)
1383		return 0x0;	/* no error return allowed, so use zero */
1384
1385	mutex_lock(&ks->lock);
1386	result = ks_rdreg16(ks, ksreg);
1387	mutex_unlock(&ks->lock);
1388
1389	return result;
1390}
1391
1392static void ks_phy_write(struct net_device *netdev,
1393			     int phy, int reg, int value)
1394{
1395	struct ks_net *ks = netdev_priv(netdev);
1396	int ksreg;
1397
1398	ksreg = ks_phy_reg(reg);
1399	if (ksreg) {
1400		mutex_lock(&ks->lock);
1401		ks_wrreg16(ks, ksreg, value);
1402		mutex_unlock(&ks->lock);
1403	}
1404}
1405
1406/**
1407 * ks_read_selftest - read the selftest memory info.
1408 * @ks: The device state
1409 *
1410 * Read and check the TX/RX memory selftest information.
1411 */
1412static int ks_read_selftest(struct ks_net *ks)
1413{
1414	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1415	int ret = 0;
1416	unsigned rd;
1417
1418	rd = ks_rdreg16(ks, KS_MBIR);
1419
1420	if ((rd & both_done) != both_done) {
1421		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1422		return 0;
1423	}
1424
1425	if (rd & MBIR_TXMBFA) {
1426		netdev_err(ks->netdev, "TX memory selftest fails\n");
1427		ret |= 1;
1428	}
1429
1430	if (rd & MBIR_RXMBFA) {
1431		netdev_err(ks->netdev, "RX memory selftest fails\n");
1432		ret |= 2;
1433	}
1434
1435	netdev_info(ks->netdev, "the selftest passes\n");
1436	return ret;
1437}
1438
1439static void ks_setup(struct ks_net *ks)
1440{
1441	u16	w;
1442
1443	/**
1444	 * Configure QMU Transmit
1445	 */
1446
1447	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1448	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1449
1450	/* Setup Receive Frame Data Pointer Auto-Increment */
1451	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1452
1453	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1454	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1455
1456	/* Setup RxQ Command Control (RXQCR) */
1457	ks->rc_rxqcr = RXQCR_CMD_CNTL;
1458	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1459
1460	/**
1461	 * set the force mode to half duplex, default is full duplex
1462	 *  because if the auto-negotiation fails, most switch uses
1463	 *  half-duplex.
1464	 */
1465
1466	w = ks_rdreg16(ks, KS_P1MBCR);
1467	w &= ~P1MBCR_FORCE_FDX;
1468	ks_wrreg16(ks, KS_P1MBCR, w);
1469
1470	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1471	ks_wrreg16(ks, KS_TXCR, w);
1472
1473	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1474
1475	if (ks->promiscuous)         /* bPromiscuous */
1476		w |= (RXCR1_RXAE | RXCR1_RXINVF);
1477	else if (ks->all_mcast) /* Multicast address passed mode */
1478		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1479	else                                   /* Normal mode */
1480		w |= RXCR1_RXPAFMA;
1481
1482	ks_wrreg16(ks, KS_RXCR1, w);
1483}  /*ks_setup */
1484
1485
1486static void ks_setup_int(struct ks_net *ks)
1487{
1488	ks->rc_ier = 0x00;
1489	/* Clear the interrupts status of the hardware. */
1490	ks_wrreg16(ks, KS_ISR, 0xffff);
1491
1492	/* Enables the interrupts of the hardware. */
1493	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1494}  /* ks_setup_int */
1495
1496static int ks_hw_init(struct ks_net *ks)
1497{
1498#define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1499	ks->promiscuous = 0;
1500	ks->all_mcast = 0;
1501	ks->mcast_lst_size = 0;
1502
1503	ks->frame_head_info = (struct type_frame_head *) \
1504		kmalloc(MHEADER_SIZE, GFP_KERNEL);
1505	if (!ks->frame_head_info) {
1506		pr_err("Error: Fail to allocate frame memory\n");
1507		return false;
1508	}
1509
1510	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1511	return true;
1512}
1513
1514
1515static int __devinit ks8851_probe(struct platform_device *pdev)
1516{
1517	int err = -ENOMEM;
1518	struct resource *io_d, *io_c;
1519	struct net_device *netdev;
1520	struct ks_net *ks;
1521	u16 id, data;
1522
1523	io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1524	io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1525
1526	if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
1527		goto err_mem_region;
1528
1529	if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
1530		goto err_mem_region1;
1531
1532	netdev = alloc_etherdev(sizeof(struct ks_net));
1533	if (!netdev)
1534		goto err_alloc_etherdev;
1535
1536	SET_NETDEV_DEV(netdev, &pdev->dev);
1537
1538	ks = netdev_priv(netdev);
1539	ks->netdev = netdev;
1540	ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
1541
1542	if (!ks->hw_addr)
1543		goto err_ioremap;
1544
1545	ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
1546	if (!ks->hw_addr_cmd)
1547		goto err_ioremap1;
1548
1549	ks->irq = platform_get_irq(pdev, 0);
1550
1551	if (ks->irq < 0) {
1552		err = ks->irq;
1553		goto err_get_irq;
1554	}
1555
1556	ks->pdev = pdev;
1557
1558	mutex_init(&ks->lock);
1559	spin_lock_init(&ks->statelock);
1560
1561	netdev->netdev_ops = &ks_netdev_ops;
1562	netdev->ethtool_ops = &ks_ethtool_ops;
1563
1564	/* setup mii state */
1565	ks->mii.dev             = netdev;
1566	ks->mii.phy_id          = 1,
1567	ks->mii.phy_id_mask     = 1;
1568	ks->mii.reg_num_mask    = 0xf;
1569	ks->mii.mdio_read       = ks_phy_read;
1570	ks->mii.mdio_write      = ks_phy_write;
1571
1572	netdev_info(netdev, "message enable is %d\n", msg_enable);
1573	/* set the default message enable */
1574	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1575						     NETIF_MSG_PROBE |
1576						     NETIF_MSG_LINK));
1577	ks_read_config(ks);
1578
1579	/* simple check for a valid chip being connected to the bus */
1580	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1581		netdev_err(netdev, "failed to read device ID\n");
1582		err = -ENODEV;
1583		goto err_register;
1584	}
1585
1586	if (ks_read_selftest(ks)) {
1587		netdev_err(netdev, "failed to read device ID\n");
1588		err = -ENODEV;
1589		goto err_register;
1590	}
1591
1592	err = register_netdev(netdev);
1593	if (err)
1594		goto err_register;
1595
1596	platform_set_drvdata(pdev, netdev);
1597
1598	ks_soft_reset(ks, GRR_GSR);
1599	ks_hw_init(ks);
1600	ks_disable_qmu(ks);
1601	ks_setup(ks);
1602	ks_setup_int(ks);
1603	memcpy(netdev->dev_addr, ks->mac_addr, 6);
1604
1605	data = ks_rdreg16(ks, KS_OBCR);
1606	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1607
1608	/**
1609	 * If you want to use the default MAC addr,
1610	 * comment out the 2 functions below.
1611	 */
1612
1613	random_ether_addr(netdev->dev_addr);
1614	ks_set_mac(ks, netdev->dev_addr);
1615
1616	id = ks_rdreg16(ks, KS_CIDER);
1617
1618	netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1619		    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1620	return 0;
1621
1622err_register:
1623err_get_irq:
1624	iounmap(ks->hw_addr_cmd);
1625err_ioremap1:
1626	iounmap(ks->hw_addr);
1627err_ioremap:
1628	free_netdev(netdev);
1629err_alloc_etherdev:
1630	release_mem_region(io_c->start, resource_size(io_c));
1631err_mem_region1:
1632	release_mem_region(io_d->start, resource_size(io_d));
1633err_mem_region:
1634	return err;
1635}
1636
1637static int __devexit ks8851_remove(struct platform_device *pdev)
1638{
1639	struct net_device *netdev = platform_get_drvdata(pdev);
1640	struct ks_net *ks = netdev_priv(netdev);
1641	struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1642
1643	kfree(ks->frame_head_info);
1644	unregister_netdev(netdev);
1645	iounmap(ks->hw_addr);
1646	free_netdev(netdev);
1647	release_mem_region(iomem->start, resource_size(iomem));
1648	platform_set_drvdata(pdev, NULL);
1649	return 0;
1650
1651}
1652
1653static struct platform_driver ks8851_platform_driver = {
1654	.driver = {
1655		.name = DRV_NAME,
1656		.owner = THIS_MODULE,
1657	},
1658	.probe = ks8851_probe,
1659	.remove = __devexit_p(ks8851_remove),
1660};
1661
1662static int __init ks8851_init(void)
1663{
1664	return platform_driver_register(&ks8851_platform_driver);
1665}
1666
1667static void __exit ks8851_exit(void)
1668{
1669	platform_driver_unregister(&ks8851_platform_driver);
1670}
1671
1672module_init(ks8851_init);
1673module_exit(ks8851_exit);
1674
1675MODULE_DESCRIPTION("KS8851 MLL Network driver");
1676MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1677MODULE_LICENSE("GPL");
1678module_param_named(message, msg_enable, int, 0);
1679MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1680