• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/irda/
1/*
2 * Alchemy Semi Au1000 IrDA driver
3 *
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 *         	ppopov@mvista.com or source@mvista.com
7 *
8 *  This program is free software; you can distribute it and/or modify it
9 *  under the terms of the GNU General Public License (Version 2) as
10 *  published by the Free Software Foundation.
11 *
12 *  This program is distributed in the hope it will be useful, but WITHOUT
13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 *  for more details.
16 *
17 *  You should have received a copy of the GNU General Public License along
18 *  with this program; if not, write to the Free Software Foundation, Inc.,
19 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
20 */
21#include <linux/module.h>
22#include <linux/types.h>
23#include <linux/init.h>
24#include <linux/errno.h>
25#include <linux/netdevice.h>
26#include <linux/slab.h>
27#include <linux/rtnetlink.h>
28#include <linux/interrupt.h>
29#include <linux/pm.h>
30#include <linux/bitops.h>
31
32#include <asm/irq.h>
33#include <asm/io.h>
34#include <asm/au1000.h>
35#if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
36#include <asm/pb1000.h>
37#elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
38#include <asm/db1x00.h>
39#include <asm/mach-db1x00/bcsr.h>
40#else
41#error au1k_ir: unsupported board
42#endif
43
44#include <net/irda/irda.h>
45#include <net/irda/irmod.h>
46#include <net/irda/wrapper.h>
47#include <net/irda/irda_device.h>
48#include "au1000_ircc.h"
49
50static int au1k_irda_net_init(struct net_device *);
51static int au1k_irda_start(struct net_device *);
52static int au1k_irda_stop(struct net_device *dev);
53static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
54static int au1k_irda_rx(struct net_device *);
55static void au1k_irda_interrupt(int, void *);
56static void au1k_tx_timeout(struct net_device *);
57static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
58static int au1k_irda_set_speed(struct net_device *dev, int speed);
59
60static void *dma_alloc(size_t, dma_addr_t *);
61static void dma_free(void *, size_t);
62
63static int qos_mtt_bits = 0x07;  /* 1 ms or more */
64static struct net_device *ir_devs[NUM_IR_IFF];
65static char version[] __devinitdata =
66    "au1k_ircc:1.2 ppopov@mvista.com\n";
67
68#define RUN_AT(x) (jiffies + (x))
69
70static DEFINE_SPINLOCK(ir_lock);
71
72/*
73 * IrDA peripheral bug. You have to read the register
74 * twice to get the right value.
75 */
76u32 read_ir_reg(u32 addr)
77{
78	readl(addr);
79	return readl(addr);
80}
81
82
83/*
84 * Buffer allocation/deallocation routines. The buffer descriptor returned
85 * has the virtual and dma address of a buffer suitable for
86 * both, receive and transmit operations.
87 */
88static db_dest_t *GetFreeDB(struct au1k_private *aup)
89{
90	db_dest_t *pDB;
91	pDB = aup->pDBfree;
92
93	if (pDB) {
94		aup->pDBfree = pDB->pnext;
95	}
96	return pDB;
97}
98
99static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
100{
101	db_dest_t *pDBfree = aup->pDBfree;
102	if (pDBfree)
103		pDBfree->pnext = pDB;
104	aup->pDBfree = pDB;
105}
106
107
108/*
109  DMA memory allocation, derived from pci_alloc_consistent.
110  However, the Au1000 data cache is coherent (when programmed
111  so), therefore we return KSEG0 address, not KSEG1.
112*/
113static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
114{
115	void *ret;
116	int gfp = GFP_ATOMIC | GFP_DMA;
117
118	ret = (void *) __get_free_pages(gfp, get_order(size));
119
120	if (ret != NULL) {
121		memset(ret, 0, size);
122		*dma_handle = virt_to_bus(ret);
123		ret = (void *)KSEG0ADDR(ret);
124	}
125	return ret;
126}
127
128
129static void dma_free(void *vaddr, size_t size)
130{
131	vaddr = (void *)KSEG0ADDR(vaddr);
132	free_pages((unsigned long) vaddr, get_order(size));
133}
134
135
136static void
137setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
138{
139	int i;
140	for (i=0; i<NUM_IR_DESC; i++) {
141		aup->rx_ring[i] = (volatile ring_dest_t *)
142			(rx_base + sizeof(ring_dest_t)*i);
143	}
144	for (i=0; i<NUM_IR_DESC; i++) {
145		aup->tx_ring[i] = (volatile ring_dest_t *)
146			(tx_base + sizeof(ring_dest_t)*i);
147	}
148}
149
150static int au1k_irda_init(void)
151{
152	static unsigned version_printed = 0;
153	struct au1k_private *aup;
154	struct net_device *dev;
155	int err;
156
157	if (version_printed++ == 0) printk(version);
158
159	dev = alloc_irdadev(sizeof(struct au1k_private));
160	if (!dev)
161		return -ENOMEM;
162
163	dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
164	err = au1k_irda_net_init(dev);
165	if (err)
166		goto out;
167	err = register_netdev(dev);
168	if (err)
169		goto out1;
170	ir_devs[0] = dev;
171	printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
172	return 0;
173
174out1:
175	aup = netdev_priv(dev);
176	dma_free((void *)aup->db[0].vaddr,
177		MAX_BUF_SIZE * 2*NUM_IR_DESC);
178	dma_free((void *)aup->rx_ring[0],
179		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
180	kfree(aup->rx_buff.head);
181out:
182	free_netdev(dev);
183	return err;
184}
185
186static int au1k_irda_init_iobuf(iobuff_t *io, int size)
187{
188	io->head = kmalloc(size, GFP_KERNEL);
189	if (io->head != NULL) {
190		io->truesize = size;
191		io->in_frame = FALSE;
192		io->state    = OUTSIDE_FRAME;
193		io->data     = io->head;
194	}
195	return io->head ? 0 : -ENOMEM;
196}
197
198static const struct net_device_ops au1k_irda_netdev_ops = {
199	.ndo_open		= au1k_irda_start,
200	.ndo_stop		= au1k_irda_stop,
201	.ndo_start_xmit		= au1k_irda_hard_xmit,
202	.ndo_tx_timeout		= au1k_tx_timeout,
203	.ndo_do_ioctl		= au1k_irda_ioctl,
204};
205
206static int au1k_irda_net_init(struct net_device *dev)
207{
208	struct au1k_private *aup = netdev_priv(dev);
209	int i, retval = 0, err;
210	db_dest_t *pDB, *pDBfree;
211	dma_addr_t temp;
212
213	err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
214	if (err)
215		goto out1;
216
217	dev->netdev_ops = &au1k_irda_netdev_ops;
218
219	irda_init_max_qos_capabilies(&aup->qos);
220
221	/* The only value we must override it the baudrate */
222	aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
223		IR_115200|IR_576000 |(IR_4000000 << 8);
224
225	aup->qos.min_turn_time.bits = qos_mtt_bits;
226	irda_qos_bits_to_value(&aup->qos);
227
228	retval = -ENOMEM;
229
230	/* Tx ring follows rx ring + 512 bytes */
231	/* we need a 1k aligned buffer */
232	aup->rx_ring[0] = (ring_dest_t *)
233		dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
234	if (!aup->rx_ring[0])
235		goto out2;
236
237	/* allocate the data buffers */
238	aup->db[0].vaddr =
239		(void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
240	if (!aup->db[0].vaddr)
241		goto out3;
242
243	setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
244
245	pDBfree = NULL;
246	pDB = aup->db;
247	for (i=0; i<(2*NUM_IR_DESC); i++) {
248		pDB->pnext = pDBfree;
249		pDBfree = pDB;
250		pDB->vaddr =
251			(u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
252		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
253		pDB++;
254	}
255	aup->pDBfree = pDBfree;
256
257	/* attach a data buffer to each descriptor */
258	for (i=0; i<NUM_IR_DESC; i++) {
259		pDB = GetFreeDB(aup);
260		if (!pDB) goto out;
261		aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
262		aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
263		aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
264		aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
265		aup->rx_db_inuse[i] = pDB;
266	}
267	for (i=0; i<NUM_IR_DESC; i++) {
268		pDB = GetFreeDB(aup);
269		if (!pDB) goto out;
270		aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
271		aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
272		aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
273		aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
274		aup->tx_ring[i]->count_0 = 0;
275		aup->tx_ring[i]->count_1 = 0;
276		aup->tx_ring[i]->flags = 0;
277		aup->tx_db_inuse[i] = pDB;
278	}
279
280#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
281	/* power on */
282	bcsr_mod(BCSR_RESETS, BCSR_RESETS_IRDA_MODE_MASK,
283			      BCSR_RESETS_IRDA_MODE_FULL);
284#endif
285
286	return 0;
287
288out3:
289	dma_free((void *)aup->rx_ring[0],
290		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
291out2:
292	kfree(aup->rx_buff.head);
293out1:
294	printk(KERN_ERR "au1k_init_module failed.  Returns %d\n", retval);
295	return retval;
296}
297
298
299static int au1k_init(struct net_device *dev)
300{
301	struct au1k_private *aup = netdev_priv(dev);
302	int i;
303	u32 control;
304	u32 ring_address;
305
306	/* bring the device out of reset */
307	control = 0xe; /* coherent, clock enable, one half system clock */
308
309#ifndef CONFIG_CPU_LITTLE_ENDIAN
310	control |= 1;
311#endif
312	aup->tx_head = 0;
313	aup->tx_tail = 0;
314	aup->rx_head = 0;
315
316	for (i=0; i<NUM_IR_DESC; i++) {
317		aup->rx_ring[i]->flags = AU_OWN;
318	}
319
320	writel(control, IR_INTERFACE_CONFIG);
321	au_sync_delay(10);
322
323	writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
324	au_sync_delay(1);
325
326	writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
327
328	ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
329	writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
330	writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
331
332	writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
333
334	writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
335	writel(0, IR_RING_ADDR_CMPR);
336
337	au1k_irda_set_speed(dev, 9600);
338	return 0;
339}
340
341static int au1k_irda_start(struct net_device *dev)
342{
343	int retval;
344	char hwname[32];
345	struct au1k_private *aup = netdev_priv(dev);
346
347	if ((retval = au1k_init(dev))) {
348		printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
349		return retval;
350	}
351
352	if ((retval = request_irq(AU1000_IRDA_TX_INT, au1k_irda_interrupt,
353					0, dev->name, dev))) {
354		printk(KERN_ERR "%s: unable to get IRQ %d\n",
355				dev->name, dev->irq);
356		return retval;
357	}
358	if ((retval = request_irq(AU1000_IRDA_RX_INT, au1k_irda_interrupt,
359					0, dev->name, dev))) {
360		free_irq(AU1000_IRDA_TX_INT, dev);
361		printk(KERN_ERR "%s: unable to get IRQ %d\n",
362				dev->name, dev->irq);
363		return retval;
364	}
365
366	/* Give self a hardware name */
367	sprintf(hwname, "Au1000 SIR/FIR");
368	aup->irlap = irlap_open(dev, &aup->qos, hwname);
369	netif_start_queue(dev);
370
371	writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
372
373	aup->timer.expires = RUN_AT((3*HZ));
374	aup->timer.data = (unsigned long)dev;
375	return 0;
376}
377
378static int au1k_irda_stop(struct net_device *dev)
379{
380	struct au1k_private *aup = netdev_priv(dev);
381
382	/* disable interrupts */
383	writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
384	writel(0, IR_CONFIG_1);
385	writel(0, IR_INTERFACE_CONFIG); /* disable clock */
386	au_sync();
387
388	if (aup->irlap) {
389		irlap_close(aup->irlap);
390		aup->irlap = NULL;
391	}
392
393	netif_stop_queue(dev);
394	del_timer(&aup->timer);
395
396	/* disable the interrupt */
397	free_irq(AU1000_IRDA_TX_INT, dev);
398	free_irq(AU1000_IRDA_RX_INT, dev);
399	return 0;
400}
401
402static void __exit au1k_irda_exit(void)
403{
404	struct net_device *dev = ir_devs[0];
405	struct au1k_private *aup = netdev_priv(dev);
406
407	unregister_netdev(dev);
408
409	dma_free((void *)aup->db[0].vaddr,
410		MAX_BUF_SIZE * 2*NUM_IR_DESC);
411	dma_free((void *)aup->rx_ring[0],
412		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
413	kfree(aup->rx_buff.head);
414	free_netdev(dev);
415}
416
417
418static inline void
419update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
420{
421	struct au1k_private *aup = netdev_priv(dev);
422	struct net_device_stats *ps = &aup->stats;
423
424	ps->tx_packets++;
425	ps->tx_bytes += pkt_len;
426
427	if (status & IR_TX_ERROR) {
428		ps->tx_errors++;
429		ps->tx_aborted_errors++;
430	}
431}
432
433
434static void au1k_tx_ack(struct net_device *dev)
435{
436	struct au1k_private *aup = netdev_priv(dev);
437	volatile ring_dest_t *ptxd;
438
439	ptxd = aup->tx_ring[aup->tx_tail];
440	while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
441		update_tx_stats(dev, ptxd->flags,
442				ptxd->count_1<<8 | ptxd->count_0);
443		ptxd->count_0 = 0;
444		ptxd->count_1 = 0;
445		au_sync();
446
447		aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
448		ptxd = aup->tx_ring[aup->tx_tail];
449
450		if (aup->tx_full) {
451			aup->tx_full = 0;
452			netif_wake_queue(dev);
453		}
454	}
455
456	if (aup->tx_tail == aup->tx_head) {
457		if (aup->newspeed) {
458			au1k_irda_set_speed(dev, aup->newspeed);
459			aup->newspeed = 0;
460		}
461		else {
462			writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
463					IR_CONFIG_1);
464			au_sync();
465			writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
466					IR_CONFIG_1);
467			writel(0, IR_RING_PROMPT);
468			au_sync();
469		}
470	}
471}
472
473
474/*
475 * Au1000 transmit routine.
476 */
477static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
478{
479	struct au1k_private *aup = netdev_priv(dev);
480	int speed = irda_get_next_speed(skb);
481	volatile ring_dest_t *ptxd;
482	u32 len;
483
484	u32 flags;
485	db_dest_t *pDB;
486
487	if (speed != aup->speed && speed != -1) {
488		aup->newspeed = speed;
489	}
490
491	if ((skb->len == 0) && (aup->newspeed)) {
492		if (aup->tx_tail == aup->tx_head) {
493			au1k_irda_set_speed(dev, speed);
494			aup->newspeed = 0;
495		}
496		dev_kfree_skb(skb);
497		return NETDEV_TX_OK;
498	}
499
500	ptxd = aup->tx_ring[aup->tx_head];
501	flags = ptxd->flags;
502
503	if (flags & AU_OWN) {
504		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
505		netif_stop_queue(dev);
506		aup->tx_full = 1;
507		return NETDEV_TX_BUSY;
508	}
509	else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
510		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
511		netif_stop_queue(dev);
512		aup->tx_full = 1;
513		return NETDEV_TX_BUSY;
514	}
515
516	pDB = aup->tx_db_inuse[aup->tx_head];
517
518
519	if (aup->speed == 4000000) {
520		/* FIR */
521		skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
522		ptxd->count_0 = skb->len & 0xff;
523		ptxd->count_1 = (skb->len >> 8) & 0xff;
524
525	}
526	else {
527		/* SIR */
528		len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
529		ptxd->count_0 = len & 0xff;
530		ptxd->count_1 = (len >> 8) & 0xff;
531		ptxd->flags |= IR_DIS_CRC;
532		au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
533	}
534	ptxd->flags |= AU_OWN;
535	au_sync();
536
537	writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
538	writel(0, IR_RING_PROMPT);
539	au_sync();
540
541	dev_kfree_skb(skb);
542	aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
543	return NETDEV_TX_OK;
544}
545
546
547static inline void
548update_rx_stats(struct net_device *dev, u32 status, u32 count)
549{
550	struct au1k_private *aup = netdev_priv(dev);
551	struct net_device_stats *ps = &aup->stats;
552
553	ps->rx_packets++;
554
555	if (status & IR_RX_ERROR) {
556		ps->rx_errors++;
557		if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
558			ps->rx_missed_errors++;
559		if (status & IR_MAX_LEN)
560			ps->rx_length_errors++;
561		if (status & IR_CRC_ERROR)
562			ps->rx_crc_errors++;
563	}
564	else
565		ps->rx_bytes += count;
566}
567
568/*
569 * Au1000 receive routine.
570 */
571static int au1k_irda_rx(struct net_device *dev)
572{
573	struct au1k_private *aup = netdev_priv(dev);
574	struct sk_buff *skb;
575	volatile ring_dest_t *prxd;
576	u32 flags, count;
577	db_dest_t *pDB;
578
579	prxd = aup->rx_ring[aup->rx_head];
580	flags = prxd->flags;
581
582	while (!(flags & AU_OWN))  {
583		pDB = aup->rx_db_inuse[aup->rx_head];
584		count = prxd->count_1<<8 | prxd->count_0;
585		if (!(flags & IR_RX_ERROR))  {
586			/* good frame */
587			update_rx_stats(dev, flags, count);
588			skb=alloc_skb(count+1,GFP_ATOMIC);
589			if (skb == NULL) {
590				aup->netdev->stats.rx_dropped++;
591				continue;
592			}
593			skb_reserve(skb, 1);
594			if (aup->speed == 4000000)
595				skb_put(skb, count);
596			else
597				skb_put(skb, count-2);
598			skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
599			skb->dev = dev;
600			skb_reset_mac_header(skb);
601			skb->protocol = htons(ETH_P_IRDA);
602			netif_rx(skb);
603			prxd->count_0 = 0;
604			prxd->count_1 = 0;
605		}
606		prxd->flags |= AU_OWN;
607		aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
608		writel(0, IR_RING_PROMPT);
609		au_sync();
610
611		/* next descriptor */
612		prxd = aup->rx_ring[aup->rx_head];
613		flags = prxd->flags;
614
615	}
616	return 0;
617}
618
619
620static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
621{
622	struct net_device *dev = dev_id;
623
624	writel(0, IR_INT_CLEAR); /* ack irda interrupts */
625
626	au1k_irda_rx(dev);
627	au1k_tx_ack(dev);
628
629	return IRQ_HANDLED;
630}
631
632
633/*
634 * The Tx ring has been full longer than the watchdog timeout
635 * value. The transmitter must be hung?
636 */
637static void au1k_tx_timeout(struct net_device *dev)
638{
639	u32 speed;
640	struct au1k_private *aup = netdev_priv(dev);
641
642	printk(KERN_ERR "%s: tx timeout\n", dev->name);
643	speed = aup->speed;
644	aup->speed = 0;
645	au1k_irda_set_speed(dev, speed);
646	aup->tx_full = 0;
647	netif_wake_queue(dev);
648}
649
650
651/*
652 * Set the IrDA communications speed.
653 */
654static int
655au1k_irda_set_speed(struct net_device *dev, int speed)
656{
657	unsigned long flags;
658	struct au1k_private *aup = netdev_priv(dev);
659	u32 control;
660	int ret = 0, timeout = 10, i;
661	volatile ring_dest_t *ptxd;
662#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
663	unsigned long irda_resets;
664#endif
665
666	if (speed == aup->speed)
667		return ret;
668
669	spin_lock_irqsave(&ir_lock, flags);
670
671	/* disable PHY first */
672	writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
673
674	/* disable RX/TX */
675	writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
676			IR_CONFIG_1);
677	au_sync_delay(1);
678	while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
679		mdelay(1);
680		if (!timeout--) {
681			printk(KERN_ERR "%s: rx/tx disable timeout\n",
682					dev->name);
683			break;
684		}
685	}
686
687	/* disable DMA */
688	writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
689	au_sync_delay(1);
690
691	/*
692	 *  After we disable tx/rx. the index pointers
693 	 * go back to zero.
694	 */
695	aup->tx_head = aup->tx_tail = aup->rx_head = 0;
696	for (i=0; i<NUM_IR_DESC; i++) {
697		ptxd = aup->tx_ring[i];
698		ptxd->flags = 0;
699		ptxd->count_0 = 0;
700		ptxd->count_1 = 0;
701	}
702
703	for (i=0; i<NUM_IR_DESC; i++) {
704		ptxd = aup->rx_ring[i];
705		ptxd->count_0 = 0;
706		ptxd->count_1 = 0;
707		ptxd->flags = AU_OWN;
708	}
709
710	if (speed == 4000000) {
711#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
712		bcsr_mod(BCSR_RESETS, 0, BCSR_RESETS_FIR_SEL);
713#else /* Pb1000 and Pb1100 */
714		writel(1<<13, CPLD_AUX1);
715#endif
716	}
717	else {
718#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
719		bcsr_mod(BCSR_RESETS, BCSR_RESETS_FIR_SEL, 0);
720#else /* Pb1000 and Pb1100 */
721		writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
722#endif
723	}
724
725	switch (speed) {
726	case 9600:
727		writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
728		writel(IR_SIR_MODE, IR_CONFIG_1);
729		break;
730	case 19200:
731		writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
732		writel(IR_SIR_MODE, IR_CONFIG_1);
733		break;
734	case 38400:
735		writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
736		writel(IR_SIR_MODE, IR_CONFIG_1);
737		break;
738	case 57600:
739		writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
740		writel(IR_SIR_MODE, IR_CONFIG_1);
741		break;
742	case 115200:
743		writel(12<<5, IR_WRITE_PHY_CONFIG);
744		writel(IR_SIR_MODE, IR_CONFIG_1);
745		break;
746	case 4000000:
747		writel(0xF, IR_WRITE_PHY_CONFIG);
748		writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
749		break;
750	default:
751		printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
752		ret = -EINVAL;
753		break;
754	}
755
756	aup->speed = speed;
757	writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
758	au_sync();
759
760	control = read_ir_reg(IR_ENABLE);
761	writel(0, IR_RING_PROMPT);
762	au_sync();
763
764	if (control & (1<<14)) {
765		printk(KERN_ERR "%s: configuration error\n", dev->name);
766	}
767	else {
768		if (control & (1<<11))
769			printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
770		if (control & (1<<12))
771			printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
772		if (control & (1<<13))
773			printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
774		if (control & (1<<10))
775			printk(KERN_DEBUG "%s TX enabled\n", dev->name);
776		if (control & (1<<9))
777			printk(KERN_DEBUG "%s RX enabled\n", dev->name);
778	}
779
780	spin_unlock_irqrestore(&ir_lock, flags);
781	return ret;
782}
783
784static int
785au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
786{
787	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
788	struct au1k_private *aup = netdev_priv(dev);
789	int ret = -EOPNOTSUPP;
790
791	switch (cmd) {
792	case SIOCSBANDWIDTH:
793		if (capable(CAP_NET_ADMIN)) {
794			/*
795			 * We are unable to set the speed if the
796			 * device is not running.
797			 */
798			if (aup->open)
799				ret = au1k_irda_set_speed(dev,
800						rq->ifr_baudrate);
801			else {
802				printk(KERN_ERR "%s ioctl: !netif_running\n",
803						dev->name);
804				ret = 0;
805			}
806		}
807		break;
808
809	case SIOCSMEDIABUSY:
810		ret = -EPERM;
811		if (capable(CAP_NET_ADMIN)) {
812			irda_device_set_media_busy(dev, TRUE);
813			ret = 0;
814		}
815		break;
816
817	case SIOCGRECEIVING:
818		rq->ifr_receiving = 0;
819		break;
820	default:
821		break;
822	}
823	return ret;
824}
825
826MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
827MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
828
829module_init(au1k_irda_init);
830module_exit(au1k_irda_exit);
831