• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/igb/
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2009 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39
40#include "igb.h"
41
42struct igb_stats {
43	char stat_string[ETH_GSTRING_LEN];
44	int sizeof_stat;
45	int stat_offset;
46};
47
48#define IGB_STAT(_name, _stat) { \
49	.stat_string = _name, \
50	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51	.stat_offset = offsetof(struct igb_adapter, _stat) \
52}
53static const struct igb_stats igb_gstrings_stats[] = {
54	IGB_STAT("rx_packets", stats.gprc),
55	IGB_STAT("tx_packets", stats.gptc),
56	IGB_STAT("rx_bytes", stats.gorc),
57	IGB_STAT("tx_bytes", stats.gotc),
58	IGB_STAT("rx_broadcast", stats.bprc),
59	IGB_STAT("tx_broadcast", stats.bptc),
60	IGB_STAT("rx_multicast", stats.mprc),
61	IGB_STAT("tx_multicast", stats.mptc),
62	IGB_STAT("multicast", stats.mprc),
63	IGB_STAT("collisions", stats.colc),
64	IGB_STAT("rx_crc_errors", stats.crcerrs),
65	IGB_STAT("rx_no_buffer_count", stats.rnbc),
66	IGB_STAT("rx_missed_errors", stats.mpc),
67	IGB_STAT("tx_aborted_errors", stats.ecol),
68	IGB_STAT("tx_carrier_errors", stats.tncrs),
69	IGB_STAT("tx_window_errors", stats.latecol),
70	IGB_STAT("tx_abort_late_coll", stats.latecol),
71	IGB_STAT("tx_deferred_ok", stats.dc),
72	IGB_STAT("tx_single_coll_ok", stats.scc),
73	IGB_STAT("tx_multi_coll_ok", stats.mcc),
74	IGB_STAT("tx_timeout_count", tx_timeout_count),
75	IGB_STAT("rx_long_length_errors", stats.roc),
76	IGB_STAT("rx_short_length_errors", stats.ruc),
77	IGB_STAT("rx_align_errors", stats.algnerrc),
78	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82	IGB_STAT("tx_flow_control_xon", stats.xontxc),
83	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84	IGB_STAT("rx_long_byte_count", stats.gorc),
85	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86	IGB_STAT("tx_smbus", stats.mgptc),
87	IGB_STAT("rx_smbus", stats.mgprc),
88	IGB_STAT("dropped_smbus", stats.mgpdc),
89};
90
91#define IGB_NETDEV_STAT(_net_stat) { \
92	.stat_string = __stringify(_net_stat), \
93	.sizeof_stat = FIELD_SIZEOF(struct net_device_stats, _net_stat), \
94	.stat_offset = offsetof(struct net_device_stats, _net_stat) \
95}
96static const struct igb_stats igb_gstrings_net_stats[] = {
97	IGB_NETDEV_STAT(rx_errors),
98	IGB_NETDEV_STAT(tx_errors),
99	IGB_NETDEV_STAT(tx_dropped),
100	IGB_NETDEV_STAT(rx_length_errors),
101	IGB_NETDEV_STAT(rx_over_errors),
102	IGB_NETDEV_STAT(rx_frame_errors),
103	IGB_NETDEV_STAT(rx_fifo_errors),
104	IGB_NETDEV_STAT(tx_fifo_errors),
105	IGB_NETDEV_STAT(tx_heartbeat_errors)
106};
107
108#define IGB_GLOBAL_STATS_LEN	\
109	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
110#define IGB_NETDEV_STATS_LEN	\
111	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
112#define IGB_RX_QUEUE_STATS_LEN \
113	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
114#define IGB_TX_QUEUE_STATS_LEN \
115	(sizeof(struct igb_tx_queue_stats) / sizeof(u64))
116#define IGB_QUEUE_STATS_LEN \
117	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
118	  IGB_RX_QUEUE_STATS_LEN) + \
119	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
120	  IGB_TX_QUEUE_STATS_LEN))
121#define IGB_STATS_LEN \
122	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
123
124static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
125	"Register test  (offline)", "Eeprom test    (offline)",
126	"Interrupt test (offline)", "Loopback test  (offline)",
127	"Link test   (on/offline)"
128};
129#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
130
131static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
132{
133	struct igb_adapter *adapter = netdev_priv(netdev);
134	struct e1000_hw *hw = &adapter->hw;
135	u32 status;
136
137	if (hw->phy.media_type == e1000_media_type_copper) {
138
139		ecmd->supported = (SUPPORTED_10baseT_Half |
140				   SUPPORTED_10baseT_Full |
141				   SUPPORTED_100baseT_Half |
142				   SUPPORTED_100baseT_Full |
143				   SUPPORTED_1000baseT_Full|
144				   SUPPORTED_Autoneg |
145				   SUPPORTED_TP);
146		ecmd->advertising = ADVERTISED_TP;
147
148		if (hw->mac.autoneg == 1) {
149			ecmd->advertising |= ADVERTISED_Autoneg;
150			/* the e1000 autoneg seems to match ethtool nicely */
151			ecmd->advertising |= hw->phy.autoneg_advertised;
152		}
153
154		ecmd->port = PORT_TP;
155		ecmd->phy_address = hw->phy.addr;
156	} else {
157		ecmd->supported   = (SUPPORTED_1000baseT_Full |
158				     SUPPORTED_FIBRE |
159				     SUPPORTED_Autoneg);
160
161		ecmd->advertising = (ADVERTISED_1000baseT_Full |
162				     ADVERTISED_FIBRE |
163				     ADVERTISED_Autoneg);
164
165		ecmd->port = PORT_FIBRE;
166	}
167
168	ecmd->transceiver = XCVR_INTERNAL;
169
170	status = rd32(E1000_STATUS);
171
172	if (status & E1000_STATUS_LU) {
173
174		if ((status & E1000_STATUS_SPEED_1000) ||
175		    hw->phy.media_type != e1000_media_type_copper)
176			ecmd->speed = SPEED_1000;
177		else if (status & E1000_STATUS_SPEED_100)
178			ecmd->speed = SPEED_100;
179		else
180			ecmd->speed = SPEED_10;
181
182		if ((status & E1000_STATUS_FD) ||
183		    hw->phy.media_type != e1000_media_type_copper)
184			ecmd->duplex = DUPLEX_FULL;
185		else
186			ecmd->duplex = DUPLEX_HALF;
187	} else {
188		ecmd->speed = -1;
189		ecmd->duplex = -1;
190	}
191
192	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193	return 0;
194}
195
196static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
197{
198	struct igb_adapter *adapter = netdev_priv(netdev);
199	struct e1000_hw *hw = &adapter->hw;
200
201	/* When SoL/IDER sessions are active, autoneg/speed/duplex
202	 * cannot be changed */
203	if (igb_check_reset_block(hw)) {
204		dev_err(&adapter->pdev->dev, "Cannot change link "
205			"characteristics when SoL/IDER is active.\n");
206		return -EINVAL;
207	}
208
209	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
210		msleep(1);
211
212	if (ecmd->autoneg == AUTONEG_ENABLE) {
213		hw->mac.autoneg = 1;
214		hw->phy.autoneg_advertised = ecmd->advertising |
215					     ADVERTISED_TP |
216					     ADVERTISED_Autoneg;
217		ecmd->advertising = hw->phy.autoneg_advertised;
218		if (adapter->fc_autoneg)
219			hw->fc.requested_mode = e1000_fc_default;
220	} else {
221		if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
222			clear_bit(__IGB_RESETTING, &adapter->state);
223			return -EINVAL;
224		}
225	}
226
227	/* reset the link */
228	if (netif_running(adapter->netdev)) {
229		igb_down(adapter);
230		igb_up(adapter);
231	} else
232		igb_reset(adapter);
233
234	clear_bit(__IGB_RESETTING, &adapter->state);
235	return 0;
236}
237
238static u32 igb_get_link(struct net_device *netdev)
239{
240	struct igb_adapter *adapter = netdev_priv(netdev);
241	struct e1000_mac_info *mac = &adapter->hw.mac;
242
243	/*
244	 * If the link is not reported up to netdev, interrupts are disabled,
245	 * and so the physical link state may have changed since we last
246	 * looked. Set get_link_status to make sure that the true link
247	 * state is interrogated, rather than pulling a cached and possibly
248	 * stale link state from the driver.
249	 */
250	if (!netif_carrier_ok(netdev))
251		mac->get_link_status = 1;
252
253	return igb_has_link(adapter);
254}
255
256static void igb_get_pauseparam(struct net_device *netdev,
257			       struct ethtool_pauseparam *pause)
258{
259	struct igb_adapter *adapter = netdev_priv(netdev);
260	struct e1000_hw *hw = &adapter->hw;
261
262	pause->autoneg =
263		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
264
265	if (hw->fc.current_mode == e1000_fc_rx_pause)
266		pause->rx_pause = 1;
267	else if (hw->fc.current_mode == e1000_fc_tx_pause)
268		pause->tx_pause = 1;
269	else if (hw->fc.current_mode == e1000_fc_full) {
270		pause->rx_pause = 1;
271		pause->tx_pause = 1;
272	}
273}
274
275static int igb_set_pauseparam(struct net_device *netdev,
276			      struct ethtool_pauseparam *pause)
277{
278	struct igb_adapter *adapter = netdev_priv(netdev);
279	struct e1000_hw *hw = &adapter->hw;
280	int retval = 0;
281
282	adapter->fc_autoneg = pause->autoneg;
283
284	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
285		msleep(1);
286
287	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
288		hw->fc.requested_mode = e1000_fc_default;
289		if (netif_running(adapter->netdev)) {
290			igb_down(adapter);
291			igb_up(adapter);
292		} else {
293			igb_reset(adapter);
294		}
295	} else {
296		if (pause->rx_pause && pause->tx_pause)
297			hw->fc.requested_mode = e1000_fc_full;
298		else if (pause->rx_pause && !pause->tx_pause)
299			hw->fc.requested_mode = e1000_fc_rx_pause;
300		else if (!pause->rx_pause && pause->tx_pause)
301			hw->fc.requested_mode = e1000_fc_tx_pause;
302		else if (!pause->rx_pause && !pause->tx_pause)
303			hw->fc.requested_mode = e1000_fc_none;
304
305		hw->fc.current_mode = hw->fc.requested_mode;
306
307		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
308			  igb_force_mac_fc(hw) : igb_setup_link(hw));
309	}
310
311	clear_bit(__IGB_RESETTING, &adapter->state);
312	return retval;
313}
314
315static u32 igb_get_rx_csum(struct net_device *netdev)
316{
317	struct igb_adapter *adapter = netdev_priv(netdev);
318	return !!(adapter->rx_ring[0]->flags & IGB_RING_FLAG_RX_CSUM);
319}
320
321static int igb_set_rx_csum(struct net_device *netdev, u32 data)
322{
323	struct igb_adapter *adapter = netdev_priv(netdev);
324	int i;
325
326	for (i = 0; i < adapter->num_rx_queues; i++) {
327		if (data)
328			adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
329		else
330			adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
331	}
332
333	return 0;
334}
335
336static u32 igb_get_tx_csum(struct net_device *netdev)
337{
338	return (netdev->features & NETIF_F_IP_CSUM) != 0;
339}
340
341static int igb_set_tx_csum(struct net_device *netdev, u32 data)
342{
343	struct igb_adapter *adapter = netdev_priv(netdev);
344
345	if (data) {
346		netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
347		if (adapter->hw.mac.type >= e1000_82576)
348			netdev->features |= NETIF_F_SCTP_CSUM;
349	} else {
350		netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
351		                      NETIF_F_SCTP_CSUM);
352	}
353
354	return 0;
355}
356
357static int igb_set_tso(struct net_device *netdev, u32 data)
358{
359	struct igb_adapter *adapter = netdev_priv(netdev);
360
361	if (data) {
362		netdev->features |= NETIF_F_TSO;
363		netdev->features |= NETIF_F_TSO6;
364	} else {
365		netdev->features &= ~NETIF_F_TSO;
366		netdev->features &= ~NETIF_F_TSO6;
367	}
368
369	dev_info(&adapter->pdev->dev, "TSO is %s\n",
370		 data ? "Enabled" : "Disabled");
371	return 0;
372}
373
374static u32 igb_get_msglevel(struct net_device *netdev)
375{
376	struct igb_adapter *adapter = netdev_priv(netdev);
377	return adapter->msg_enable;
378}
379
380static void igb_set_msglevel(struct net_device *netdev, u32 data)
381{
382	struct igb_adapter *adapter = netdev_priv(netdev);
383	adapter->msg_enable = data;
384}
385
386static int igb_get_regs_len(struct net_device *netdev)
387{
388#define IGB_REGS_LEN 551
389	return IGB_REGS_LEN * sizeof(u32);
390}
391
392static void igb_get_regs(struct net_device *netdev,
393			 struct ethtool_regs *regs, void *p)
394{
395	struct igb_adapter *adapter = netdev_priv(netdev);
396	struct e1000_hw *hw = &adapter->hw;
397	u32 *regs_buff = p;
398	u8 i;
399
400	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
401
402	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
403
404	/* General Registers */
405	regs_buff[0] = rd32(E1000_CTRL);
406	regs_buff[1] = rd32(E1000_STATUS);
407	regs_buff[2] = rd32(E1000_CTRL_EXT);
408	regs_buff[3] = rd32(E1000_MDIC);
409	regs_buff[4] = rd32(E1000_SCTL);
410	regs_buff[5] = rd32(E1000_CONNSW);
411	regs_buff[6] = rd32(E1000_VET);
412	regs_buff[7] = rd32(E1000_LEDCTL);
413	regs_buff[8] = rd32(E1000_PBA);
414	regs_buff[9] = rd32(E1000_PBS);
415	regs_buff[10] = rd32(E1000_FRTIMER);
416	regs_buff[11] = rd32(E1000_TCPTIMER);
417
418	/* NVM Register */
419	regs_buff[12] = rd32(E1000_EECD);
420
421	/* Interrupt */
422	/* Reading EICS for EICR because they read the
423	 * same but EICS does not clear on read */
424	regs_buff[13] = rd32(E1000_EICS);
425	regs_buff[14] = rd32(E1000_EICS);
426	regs_buff[15] = rd32(E1000_EIMS);
427	regs_buff[16] = rd32(E1000_EIMC);
428	regs_buff[17] = rd32(E1000_EIAC);
429	regs_buff[18] = rd32(E1000_EIAM);
430	/* Reading ICS for ICR because they read the
431	 * same but ICS does not clear on read */
432	regs_buff[19] = rd32(E1000_ICS);
433	regs_buff[20] = rd32(E1000_ICS);
434	regs_buff[21] = rd32(E1000_IMS);
435	regs_buff[22] = rd32(E1000_IMC);
436	regs_buff[23] = rd32(E1000_IAC);
437	regs_buff[24] = rd32(E1000_IAM);
438	regs_buff[25] = rd32(E1000_IMIRVP);
439
440	/* Flow Control */
441	regs_buff[26] = rd32(E1000_FCAL);
442	regs_buff[27] = rd32(E1000_FCAH);
443	regs_buff[28] = rd32(E1000_FCTTV);
444	regs_buff[29] = rd32(E1000_FCRTL);
445	regs_buff[30] = rd32(E1000_FCRTH);
446	regs_buff[31] = rd32(E1000_FCRTV);
447
448	/* Receive */
449	regs_buff[32] = rd32(E1000_RCTL);
450	regs_buff[33] = rd32(E1000_RXCSUM);
451	regs_buff[34] = rd32(E1000_RLPML);
452	regs_buff[35] = rd32(E1000_RFCTL);
453	regs_buff[36] = rd32(E1000_MRQC);
454	regs_buff[37] = rd32(E1000_VT_CTL);
455
456	/* Transmit */
457	regs_buff[38] = rd32(E1000_TCTL);
458	regs_buff[39] = rd32(E1000_TCTL_EXT);
459	regs_buff[40] = rd32(E1000_TIPG);
460	regs_buff[41] = rd32(E1000_DTXCTL);
461
462	/* Wake Up */
463	regs_buff[42] = rd32(E1000_WUC);
464	regs_buff[43] = rd32(E1000_WUFC);
465	regs_buff[44] = rd32(E1000_WUS);
466	regs_buff[45] = rd32(E1000_IPAV);
467	regs_buff[46] = rd32(E1000_WUPL);
468
469	/* MAC */
470	regs_buff[47] = rd32(E1000_PCS_CFG0);
471	regs_buff[48] = rd32(E1000_PCS_LCTL);
472	regs_buff[49] = rd32(E1000_PCS_LSTAT);
473	regs_buff[50] = rd32(E1000_PCS_ANADV);
474	regs_buff[51] = rd32(E1000_PCS_LPAB);
475	regs_buff[52] = rd32(E1000_PCS_NPTX);
476	regs_buff[53] = rd32(E1000_PCS_LPABNP);
477
478	/* Statistics */
479	regs_buff[54] = adapter->stats.crcerrs;
480	regs_buff[55] = adapter->stats.algnerrc;
481	regs_buff[56] = adapter->stats.symerrs;
482	regs_buff[57] = adapter->stats.rxerrc;
483	regs_buff[58] = adapter->stats.mpc;
484	regs_buff[59] = adapter->stats.scc;
485	regs_buff[60] = adapter->stats.ecol;
486	regs_buff[61] = adapter->stats.mcc;
487	regs_buff[62] = adapter->stats.latecol;
488	regs_buff[63] = adapter->stats.colc;
489	regs_buff[64] = adapter->stats.dc;
490	regs_buff[65] = adapter->stats.tncrs;
491	regs_buff[66] = adapter->stats.sec;
492	regs_buff[67] = adapter->stats.htdpmc;
493	regs_buff[68] = adapter->stats.rlec;
494	regs_buff[69] = adapter->stats.xonrxc;
495	regs_buff[70] = adapter->stats.xontxc;
496	regs_buff[71] = adapter->stats.xoffrxc;
497	regs_buff[72] = adapter->stats.xofftxc;
498	regs_buff[73] = adapter->stats.fcruc;
499	regs_buff[74] = adapter->stats.prc64;
500	regs_buff[75] = adapter->stats.prc127;
501	regs_buff[76] = adapter->stats.prc255;
502	regs_buff[77] = adapter->stats.prc511;
503	regs_buff[78] = adapter->stats.prc1023;
504	regs_buff[79] = adapter->stats.prc1522;
505	regs_buff[80] = adapter->stats.gprc;
506	regs_buff[81] = adapter->stats.bprc;
507	regs_buff[82] = adapter->stats.mprc;
508	regs_buff[83] = adapter->stats.gptc;
509	regs_buff[84] = adapter->stats.gorc;
510	regs_buff[86] = adapter->stats.gotc;
511	regs_buff[88] = adapter->stats.rnbc;
512	regs_buff[89] = adapter->stats.ruc;
513	regs_buff[90] = adapter->stats.rfc;
514	regs_buff[91] = adapter->stats.roc;
515	regs_buff[92] = adapter->stats.rjc;
516	regs_buff[93] = adapter->stats.mgprc;
517	regs_buff[94] = adapter->stats.mgpdc;
518	regs_buff[95] = adapter->stats.mgptc;
519	regs_buff[96] = adapter->stats.tor;
520	regs_buff[98] = adapter->stats.tot;
521	regs_buff[100] = adapter->stats.tpr;
522	regs_buff[101] = adapter->stats.tpt;
523	regs_buff[102] = adapter->stats.ptc64;
524	regs_buff[103] = adapter->stats.ptc127;
525	regs_buff[104] = adapter->stats.ptc255;
526	regs_buff[105] = adapter->stats.ptc511;
527	regs_buff[106] = adapter->stats.ptc1023;
528	regs_buff[107] = adapter->stats.ptc1522;
529	regs_buff[108] = adapter->stats.mptc;
530	regs_buff[109] = adapter->stats.bptc;
531	regs_buff[110] = adapter->stats.tsctc;
532	regs_buff[111] = adapter->stats.iac;
533	regs_buff[112] = adapter->stats.rpthc;
534	regs_buff[113] = adapter->stats.hgptc;
535	regs_buff[114] = adapter->stats.hgorc;
536	regs_buff[116] = adapter->stats.hgotc;
537	regs_buff[118] = adapter->stats.lenerrs;
538	regs_buff[119] = adapter->stats.scvpc;
539	regs_buff[120] = adapter->stats.hrmpc;
540
541	for (i = 0; i < 4; i++)
542		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
543	for (i = 0; i < 4; i++)
544		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
545	for (i = 0; i < 4; i++)
546		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
547	for (i = 0; i < 4; i++)
548		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
549	for (i = 0; i < 4; i++)
550		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
551	for (i = 0; i < 4; i++)
552		regs_buff[141 + i] = rd32(E1000_RDH(i));
553	for (i = 0; i < 4; i++)
554		regs_buff[145 + i] = rd32(E1000_RDT(i));
555	for (i = 0; i < 4; i++)
556		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
557
558	for (i = 0; i < 10; i++)
559		regs_buff[153 + i] = rd32(E1000_EITR(i));
560	for (i = 0; i < 8; i++)
561		regs_buff[163 + i] = rd32(E1000_IMIR(i));
562	for (i = 0; i < 8; i++)
563		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
564	for (i = 0; i < 16; i++)
565		regs_buff[179 + i] = rd32(E1000_RAL(i));
566	for (i = 0; i < 16; i++)
567		regs_buff[195 + i] = rd32(E1000_RAH(i));
568
569	for (i = 0; i < 4; i++)
570		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
571	for (i = 0; i < 4; i++)
572		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
573	for (i = 0; i < 4; i++)
574		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
575	for (i = 0; i < 4; i++)
576		regs_buff[223 + i] = rd32(E1000_TDH(i));
577	for (i = 0; i < 4; i++)
578		regs_buff[227 + i] = rd32(E1000_TDT(i));
579	for (i = 0; i < 4; i++)
580		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
581	for (i = 0; i < 4; i++)
582		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
583	for (i = 0; i < 4; i++)
584		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
585	for (i = 0; i < 4; i++)
586		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
587
588	for (i = 0; i < 4; i++)
589		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
590	for (i = 0; i < 4; i++)
591		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
592	for (i = 0; i < 32; i++)
593		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
594	for (i = 0; i < 128; i++)
595		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
596	for (i = 0; i < 128; i++)
597		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
598	for (i = 0; i < 4; i++)
599		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
600
601	regs_buff[547] = rd32(E1000_TDFH);
602	regs_buff[548] = rd32(E1000_TDFT);
603	regs_buff[549] = rd32(E1000_TDFHS);
604	regs_buff[550] = rd32(E1000_TDFPC);
605
606}
607
608static int igb_get_eeprom_len(struct net_device *netdev)
609{
610	struct igb_adapter *adapter = netdev_priv(netdev);
611	return adapter->hw.nvm.word_size * 2;
612}
613
614static int igb_get_eeprom(struct net_device *netdev,
615			  struct ethtool_eeprom *eeprom, u8 *bytes)
616{
617	struct igb_adapter *adapter = netdev_priv(netdev);
618	struct e1000_hw *hw = &adapter->hw;
619	u16 *eeprom_buff;
620	int first_word, last_word;
621	int ret_val = 0;
622	u16 i;
623
624	if (eeprom->len == 0)
625		return -EINVAL;
626
627	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
628
629	first_word = eeprom->offset >> 1;
630	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
631
632	eeprom_buff = kmalloc(sizeof(u16) *
633			(last_word - first_word + 1), GFP_KERNEL);
634	if (!eeprom_buff)
635		return -ENOMEM;
636
637	if (hw->nvm.type == e1000_nvm_eeprom_spi)
638		ret_val = hw->nvm.ops.read(hw, first_word,
639					    last_word - first_word + 1,
640					    eeprom_buff);
641	else {
642		for (i = 0; i < last_word - first_word + 1; i++) {
643			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
644						    &eeprom_buff[i]);
645			if (ret_val)
646				break;
647		}
648	}
649
650	/* Device's eeprom is always little-endian, word addressable */
651	for (i = 0; i < last_word - first_word + 1; i++)
652		le16_to_cpus(&eeprom_buff[i]);
653
654	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
655			eeprom->len);
656	kfree(eeprom_buff);
657
658	return ret_val;
659}
660
661static int igb_set_eeprom(struct net_device *netdev,
662			  struct ethtool_eeprom *eeprom, u8 *bytes)
663{
664	struct igb_adapter *adapter = netdev_priv(netdev);
665	struct e1000_hw *hw = &adapter->hw;
666	u16 *eeprom_buff;
667	void *ptr;
668	int max_len, first_word, last_word, ret_val = 0;
669	u16 i;
670
671	if (eeprom->len == 0)
672		return -EOPNOTSUPP;
673
674	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
675		return -EFAULT;
676
677	max_len = hw->nvm.word_size * 2;
678
679	first_word = eeprom->offset >> 1;
680	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
681	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
682	if (!eeprom_buff)
683		return -ENOMEM;
684
685	ptr = (void *)eeprom_buff;
686
687	if (eeprom->offset & 1) {
688		/* need read/modify/write of first changed EEPROM word */
689		/* only the second byte of the word is being modified */
690		ret_val = hw->nvm.ops.read(hw, first_word, 1,
691					    &eeprom_buff[0]);
692		ptr++;
693	}
694	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
695		/* need read/modify/write of last changed EEPROM word */
696		/* only the first byte of the word is being modified */
697		ret_val = hw->nvm.ops.read(hw, last_word, 1,
698				   &eeprom_buff[last_word - first_word]);
699	}
700
701	/* Device's eeprom is always little-endian, word addressable */
702	for (i = 0; i < last_word - first_word + 1; i++)
703		le16_to_cpus(&eeprom_buff[i]);
704
705	memcpy(ptr, bytes, eeprom->len);
706
707	for (i = 0; i < last_word - first_word + 1; i++)
708		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
709
710	ret_val = hw->nvm.ops.write(hw, first_word,
711				     last_word - first_word + 1, eeprom_buff);
712
713	/* Update the checksum over the first part of the EEPROM if needed
714	 * and flush shadow RAM for 82573 controllers */
715	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
716		igb_update_nvm_checksum(hw);
717
718	kfree(eeprom_buff);
719	return ret_val;
720}
721
722static void igb_get_drvinfo(struct net_device *netdev,
723			    struct ethtool_drvinfo *drvinfo)
724{
725	struct igb_adapter *adapter = netdev_priv(netdev);
726	char firmware_version[32];
727	u16 eeprom_data;
728
729	strncpy(drvinfo->driver,  igb_driver_name, 32);
730	strncpy(drvinfo->version, igb_driver_version, 32);
731
732	/* EEPROM image version # is reported as firmware version # for
733	 * 82575 controllers */
734	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
735	sprintf(firmware_version, "%d.%d-%d",
736		(eeprom_data & 0xF000) >> 12,
737		(eeprom_data & 0x0FF0) >> 4,
738		eeprom_data & 0x000F);
739
740	strncpy(drvinfo->fw_version, firmware_version, 32);
741	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
742	drvinfo->n_stats = IGB_STATS_LEN;
743	drvinfo->testinfo_len = IGB_TEST_LEN;
744	drvinfo->regdump_len = igb_get_regs_len(netdev);
745	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
746}
747
748static void igb_get_ringparam(struct net_device *netdev,
749			      struct ethtool_ringparam *ring)
750{
751	struct igb_adapter *adapter = netdev_priv(netdev);
752
753	ring->rx_max_pending = IGB_MAX_RXD;
754	ring->tx_max_pending = IGB_MAX_TXD;
755	ring->rx_mini_max_pending = 0;
756	ring->rx_jumbo_max_pending = 0;
757	ring->rx_pending = adapter->rx_ring_count;
758	ring->tx_pending = adapter->tx_ring_count;
759	ring->rx_mini_pending = 0;
760	ring->rx_jumbo_pending = 0;
761}
762
763static int igb_set_ringparam(struct net_device *netdev,
764			     struct ethtool_ringparam *ring)
765{
766	struct igb_adapter *adapter = netdev_priv(netdev);
767	struct igb_ring *temp_ring;
768	int i, err = 0;
769	u16 new_rx_count, new_tx_count;
770
771	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
772		return -EINVAL;
773
774	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
775	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
776	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
777
778	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
779	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
780	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
781
782	if ((new_tx_count == adapter->tx_ring_count) &&
783	    (new_rx_count == adapter->rx_ring_count)) {
784		/* nothing to do */
785		return 0;
786	}
787
788	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
789		msleep(1);
790
791	if (!netif_running(adapter->netdev)) {
792		for (i = 0; i < adapter->num_tx_queues; i++)
793			adapter->tx_ring[i]->count = new_tx_count;
794		for (i = 0; i < adapter->num_rx_queues; i++)
795			adapter->rx_ring[i]->count = new_rx_count;
796		adapter->tx_ring_count = new_tx_count;
797		adapter->rx_ring_count = new_rx_count;
798		goto clear_reset;
799	}
800
801	if (adapter->num_tx_queues > adapter->num_rx_queues)
802		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
803	else
804		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
805
806	if (!temp_ring) {
807		err = -ENOMEM;
808		goto clear_reset;
809	}
810
811	igb_down(adapter);
812
813	/*
814	 * We can't just free everything and then setup again,
815	 * because the ISRs in MSI-X mode get passed pointers
816	 * to the tx and rx ring structs.
817	 */
818	if (new_tx_count != adapter->tx_ring_count) {
819		for (i = 0; i < adapter->num_tx_queues; i++) {
820			memcpy(&temp_ring[i], adapter->tx_ring[i],
821			       sizeof(struct igb_ring));
822
823			temp_ring[i].count = new_tx_count;
824			err = igb_setup_tx_resources(&temp_ring[i]);
825			if (err) {
826				while (i) {
827					i--;
828					igb_free_tx_resources(&temp_ring[i]);
829				}
830				goto err_setup;
831			}
832		}
833
834		for (i = 0; i < adapter->num_tx_queues; i++) {
835			igb_free_tx_resources(adapter->tx_ring[i]);
836
837			memcpy(adapter->tx_ring[i], &temp_ring[i],
838			       sizeof(struct igb_ring));
839		}
840
841		adapter->tx_ring_count = new_tx_count;
842	}
843
844	if (new_rx_count != adapter->rx_ring_count) {
845		for (i = 0; i < adapter->num_rx_queues; i++) {
846			memcpy(&temp_ring[i], adapter->rx_ring[i],
847			       sizeof(struct igb_ring));
848
849			temp_ring[i].count = new_rx_count;
850			err = igb_setup_rx_resources(&temp_ring[i]);
851			if (err) {
852				while (i) {
853					i--;
854					igb_free_rx_resources(&temp_ring[i]);
855				}
856				goto err_setup;
857			}
858
859		}
860
861		for (i = 0; i < adapter->num_rx_queues; i++) {
862			igb_free_rx_resources(adapter->rx_ring[i]);
863
864			memcpy(adapter->rx_ring[i], &temp_ring[i],
865			       sizeof(struct igb_ring));
866		}
867
868		adapter->rx_ring_count = new_rx_count;
869	}
870err_setup:
871	igb_up(adapter);
872	vfree(temp_ring);
873clear_reset:
874	clear_bit(__IGB_RESETTING, &adapter->state);
875	return err;
876}
877
878/* ethtool register test data */
879struct igb_reg_test {
880	u16 reg;
881	u16 reg_offset;
882	u16 array_len;
883	u16 test_type;
884	u32 mask;
885	u32 write;
886};
887
888/* In the hardware, registers are laid out either singly, in arrays
889 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
890 * most tests take place on arrays or single registers (handled
891 * as a single-element array) and special-case the tables.
892 * Table tests are always pattern tests.
893 *
894 * We also make provision for some required setup steps by specifying
895 * registers to be written without any read-back testing.
896 */
897
898#define PATTERN_TEST	1
899#define SET_READ_TEST	2
900#define WRITE_NO_TEST	3
901#define TABLE32_TEST	4
902#define TABLE64_TEST_LO	5
903#define TABLE64_TEST_HI	6
904
905/* i350 reg test */
906static struct igb_reg_test reg_test_i350[] = {
907	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
909	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
910	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
911	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
912	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
913	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
914	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
915	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
916	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
917	/* RDH is read-only for i350, only test RDT. */
918	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
919	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
920	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
921	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
922	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
923	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
924	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
925	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
926	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
927	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
928	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
929	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
930	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
931	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
932	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
933	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
934	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
935	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
936						0xFFFFFFFF, 0xFFFFFFFF },
937	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
938						0xC3FFFFFF, 0xFFFFFFFF },
939	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
940						0xFFFFFFFF, 0xFFFFFFFF },
941	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
942						0xC3FFFFFF, 0xFFFFFFFF },
943	{ E1000_MTA,	   0, 128, TABLE32_TEST,
944						0xFFFFFFFF, 0xFFFFFFFF },
945	{ 0, 0, 0, 0 }
946};
947
948/* 82580 reg test */
949static struct igb_reg_test reg_test_82580[] = {
950	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
951	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
952	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
953	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
954	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
955	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
956	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
957	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
958	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
959	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
960	/* RDH is read-only for 82580, only test RDT. */
961	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
963	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
964	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
965	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
966	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
967	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
968	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
969	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
970	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
971	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
972	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
973	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
974	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
975	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
976	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
977	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
978	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
979						0xFFFFFFFF, 0xFFFFFFFF },
980	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
981						0x83FFFFFF, 0xFFFFFFFF },
982	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
983						0xFFFFFFFF, 0xFFFFFFFF },
984	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
985						0x83FFFFFF, 0xFFFFFFFF },
986	{ E1000_MTA,	   0, 128, TABLE32_TEST,
987						0xFFFFFFFF, 0xFFFFFFFF },
988	{ 0, 0, 0, 0 }
989};
990
991/* 82576 reg test */
992static struct igb_reg_test reg_test_82576[] = {
993	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
994	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
995	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
996	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
997	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
998	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
999	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1000	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1001	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1002	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1003	/* Enable all RX queues before testing. */
1004	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1005	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1006	/* RDH is read-only for 82576, only test RDT. */
1007	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1009	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1010	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1011	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1012	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1013	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1014	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1017	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1018	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1019	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1020	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1021	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1022	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1023	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1024	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1025	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1026	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1027	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1028	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1029	{ 0, 0, 0, 0 }
1030};
1031
1032/* 82575 register test */
1033static struct igb_reg_test reg_test_82575[] = {
1034	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1038	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1041	/* Enable all four RX queues before testing. */
1042	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1043	/* RDH is read-only for 82575, only test RDT. */
1044	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1046	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1047	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1049	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1053	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1054	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1055	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1056	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1057	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1058	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1059	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060	{ 0, 0, 0, 0 }
1061};
1062
1063static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1064			     int reg, u32 mask, u32 write)
1065{
1066	struct e1000_hw *hw = &adapter->hw;
1067	u32 pat, val;
1068	static const u32 _test[] =
1069		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1070	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1071		wr32(reg, (_test[pat] & write));
1072		val = rd32(reg);
1073		if (val != (_test[pat] & write & mask)) {
1074			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1075				"failed: got 0x%08X expected 0x%08X\n",
1076				reg, val, (_test[pat] & write & mask));
1077			*data = reg;
1078			return 1;
1079		}
1080	}
1081
1082	return 0;
1083}
1084
1085static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1086			      int reg, u32 mask, u32 write)
1087{
1088	struct e1000_hw *hw = &adapter->hw;
1089	u32 val;
1090	wr32(reg, write & mask);
1091	val = rd32(reg);
1092	if ((write & mask) != (val & mask)) {
1093		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1094			" got 0x%08X expected 0x%08X\n", reg,
1095			(val & mask), (write & mask));
1096		*data = reg;
1097		return 1;
1098	}
1099
1100	return 0;
1101}
1102
1103#define REG_PATTERN_TEST(reg, mask, write) \
1104	do { \
1105		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1106			return 1; \
1107	} while (0)
1108
1109#define REG_SET_AND_CHECK(reg, mask, write) \
1110	do { \
1111		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1112			return 1; \
1113	} while (0)
1114
1115static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1116{
1117	struct e1000_hw *hw = &adapter->hw;
1118	struct igb_reg_test *test;
1119	u32 value, before, after;
1120	u32 i, toggle;
1121
1122	switch (adapter->hw.mac.type) {
1123	case e1000_i350:
1124		test = reg_test_i350;
1125		toggle = 0x7FEFF3FF;
1126		break;
1127	case e1000_82580:
1128		test = reg_test_82580;
1129		toggle = 0x7FEFF3FF;
1130		break;
1131	case e1000_82576:
1132		test = reg_test_82576;
1133		toggle = 0x7FFFF3FF;
1134		break;
1135	default:
1136		test = reg_test_82575;
1137		toggle = 0x7FFFF3FF;
1138		break;
1139	}
1140
1141	/* Because the status register is such a special case,
1142	 * we handle it separately from the rest of the register
1143	 * tests.  Some bits are read-only, some toggle, and some
1144	 * are writable on newer MACs.
1145	 */
1146	before = rd32(E1000_STATUS);
1147	value = (rd32(E1000_STATUS) & toggle);
1148	wr32(E1000_STATUS, toggle);
1149	after = rd32(E1000_STATUS) & toggle;
1150	if (value != after) {
1151		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1152			"got: 0x%08X expected: 0x%08X\n", after, value);
1153		*data = 1;
1154		return 1;
1155	}
1156	/* restore previous status */
1157	wr32(E1000_STATUS, before);
1158
1159	/* Perform the remainder of the register test, looping through
1160	 * the test table until we either fail or reach the null entry.
1161	 */
1162	while (test->reg) {
1163		for (i = 0; i < test->array_len; i++) {
1164			switch (test->test_type) {
1165			case PATTERN_TEST:
1166				REG_PATTERN_TEST(test->reg +
1167						(i * test->reg_offset),
1168						test->mask,
1169						test->write);
1170				break;
1171			case SET_READ_TEST:
1172				REG_SET_AND_CHECK(test->reg +
1173						(i * test->reg_offset),
1174						test->mask,
1175						test->write);
1176				break;
1177			case WRITE_NO_TEST:
1178				writel(test->write,
1179				    (adapter->hw.hw_addr + test->reg)
1180					+ (i * test->reg_offset));
1181				break;
1182			case TABLE32_TEST:
1183				REG_PATTERN_TEST(test->reg + (i * 4),
1184						test->mask,
1185						test->write);
1186				break;
1187			case TABLE64_TEST_LO:
1188				REG_PATTERN_TEST(test->reg + (i * 8),
1189						test->mask,
1190						test->write);
1191				break;
1192			case TABLE64_TEST_HI:
1193				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1194						test->mask,
1195						test->write);
1196				break;
1197			}
1198		}
1199		test++;
1200	}
1201
1202	*data = 0;
1203	return 0;
1204}
1205
1206static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1207{
1208	u16 temp;
1209	u16 checksum = 0;
1210	u16 i;
1211
1212	*data = 0;
1213	/* Read and add up the contents of the EEPROM */
1214	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1215		if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1216			*data = 1;
1217			break;
1218		}
1219		checksum += temp;
1220	}
1221
1222	/* If Checksum is not Correct return error else test passed */
1223	if ((checksum != (u16) NVM_SUM) && !(*data))
1224		*data = 2;
1225
1226	return *data;
1227}
1228
1229static irqreturn_t igb_test_intr(int irq, void *data)
1230{
1231	struct igb_adapter *adapter = (struct igb_adapter *) data;
1232	struct e1000_hw *hw = &adapter->hw;
1233
1234	adapter->test_icr |= rd32(E1000_ICR);
1235
1236	return IRQ_HANDLED;
1237}
1238
1239static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1240{
1241	struct e1000_hw *hw = &adapter->hw;
1242	struct net_device *netdev = adapter->netdev;
1243	u32 mask, ics_mask, i = 0, shared_int = true;
1244	u32 irq = adapter->pdev->irq;
1245
1246	*data = 0;
1247
1248	/* Hook up test interrupt handler just for this test */
1249	if (adapter->msix_entries) {
1250		if (request_irq(adapter->msix_entries[0].vector,
1251		                igb_test_intr, 0, netdev->name, adapter)) {
1252			*data = 1;
1253			return -1;
1254		}
1255	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1256		shared_int = false;
1257		if (request_irq(irq,
1258		                igb_test_intr, 0, netdev->name, adapter)) {
1259			*data = 1;
1260			return -1;
1261		}
1262	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1263				netdev->name, adapter)) {
1264		shared_int = false;
1265	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1266		 netdev->name, adapter)) {
1267		*data = 1;
1268		return -1;
1269	}
1270	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1271		(shared_int ? "shared" : "unshared"));
1272
1273	/* Disable all the interrupts */
1274	wr32(E1000_IMC, ~0);
1275	msleep(10);
1276
1277	/* Define all writable bits for ICS */
1278	switch (hw->mac.type) {
1279	case e1000_82575:
1280		ics_mask = 0x37F47EDD;
1281		break;
1282	case e1000_82576:
1283		ics_mask = 0x77D4FBFD;
1284		break;
1285	case e1000_82580:
1286		ics_mask = 0x77DCFED5;
1287		break;
1288	case e1000_i350:
1289		ics_mask = 0x77DCFED5;
1290		break;
1291	default:
1292		ics_mask = 0x7FFFFFFF;
1293		break;
1294	}
1295
1296	/* Test each interrupt */
1297	for (; i < 31; i++) {
1298		/* Interrupt to test */
1299		mask = 1 << i;
1300
1301		if (!(mask & ics_mask))
1302			continue;
1303
1304		if (!shared_int) {
1305			/* Disable the interrupt to be reported in
1306			 * the cause register and then force the same
1307			 * interrupt and see if one gets posted.  If
1308			 * an interrupt was posted to the bus, the
1309			 * test failed.
1310			 */
1311			adapter->test_icr = 0;
1312
1313			/* Flush any pending interrupts */
1314			wr32(E1000_ICR, ~0);
1315
1316			wr32(E1000_IMC, mask);
1317			wr32(E1000_ICS, mask);
1318			msleep(10);
1319
1320			if (adapter->test_icr & mask) {
1321				*data = 3;
1322				break;
1323			}
1324		}
1325
1326		/* Enable the interrupt to be reported in
1327		 * the cause register and then force the same
1328		 * interrupt and see if one gets posted.  If
1329		 * an interrupt was not posted to the bus, the
1330		 * test failed.
1331		 */
1332		adapter->test_icr = 0;
1333
1334		/* Flush any pending interrupts */
1335		wr32(E1000_ICR, ~0);
1336
1337		wr32(E1000_IMS, mask);
1338		wr32(E1000_ICS, mask);
1339		msleep(10);
1340
1341		if (!(adapter->test_icr & mask)) {
1342			*data = 4;
1343			break;
1344		}
1345
1346		if (!shared_int) {
1347			/* Disable the other interrupts to be reported in
1348			 * the cause register and then force the other
1349			 * interrupts and see if any get posted.  If
1350			 * an interrupt was posted to the bus, the
1351			 * test failed.
1352			 */
1353			adapter->test_icr = 0;
1354
1355			/* Flush any pending interrupts */
1356			wr32(E1000_ICR, ~0);
1357
1358			wr32(E1000_IMC, ~mask);
1359			wr32(E1000_ICS, ~mask);
1360			msleep(10);
1361
1362			if (adapter->test_icr & mask) {
1363				*data = 5;
1364				break;
1365			}
1366		}
1367	}
1368
1369	/* Disable all the interrupts */
1370	wr32(E1000_IMC, ~0);
1371	msleep(10);
1372
1373	/* Unhook test interrupt handler */
1374	if (adapter->msix_entries)
1375		free_irq(adapter->msix_entries[0].vector, adapter);
1376	else
1377		free_irq(irq, adapter);
1378
1379	return *data;
1380}
1381
1382static void igb_free_desc_rings(struct igb_adapter *adapter)
1383{
1384	igb_free_tx_resources(&adapter->test_tx_ring);
1385	igb_free_rx_resources(&adapter->test_rx_ring);
1386}
1387
1388static int igb_setup_desc_rings(struct igb_adapter *adapter)
1389{
1390	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1391	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1392	struct e1000_hw *hw = &adapter->hw;
1393	int ret_val;
1394
1395	/* Setup Tx descriptor ring and Tx buffers */
1396	tx_ring->count = IGB_DEFAULT_TXD;
1397	tx_ring->dev = &adapter->pdev->dev;
1398	tx_ring->netdev = adapter->netdev;
1399	tx_ring->reg_idx = adapter->vfs_allocated_count;
1400
1401	if (igb_setup_tx_resources(tx_ring)) {
1402		ret_val = 1;
1403		goto err_nomem;
1404	}
1405
1406	igb_setup_tctl(adapter);
1407	igb_configure_tx_ring(adapter, tx_ring);
1408
1409	/* Setup Rx descriptor ring and Rx buffers */
1410	rx_ring->count = IGB_DEFAULT_RXD;
1411	rx_ring->dev = &adapter->pdev->dev;
1412	rx_ring->netdev = adapter->netdev;
1413	rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1414	rx_ring->reg_idx = adapter->vfs_allocated_count;
1415
1416	if (igb_setup_rx_resources(rx_ring)) {
1417		ret_val = 3;
1418		goto err_nomem;
1419	}
1420
1421	/* set the default queue to queue 0 of PF */
1422	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1423
1424	/* enable receive ring */
1425	igb_setup_rctl(adapter);
1426	igb_configure_rx_ring(adapter, rx_ring);
1427
1428	igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1429
1430	return 0;
1431
1432err_nomem:
1433	igb_free_desc_rings(adapter);
1434	return ret_val;
1435}
1436
1437static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1438{
1439	struct e1000_hw *hw = &adapter->hw;
1440
1441	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1442	igb_write_phy_reg(hw, 29, 0x001F);
1443	igb_write_phy_reg(hw, 30, 0x8FFC);
1444	igb_write_phy_reg(hw, 29, 0x001A);
1445	igb_write_phy_reg(hw, 30, 0x8FF0);
1446}
1447
1448static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1449{
1450	struct e1000_hw *hw = &adapter->hw;
1451	u32 ctrl_reg = 0;
1452
1453	hw->mac.autoneg = false;
1454
1455	if (hw->phy.type == e1000_phy_m88) {
1456		/* Auto-MDI/MDIX Off */
1457		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1458		/* reset to update Auto-MDI/MDIX */
1459		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1460		/* autoneg off */
1461		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1462	} else if (hw->phy.type == e1000_phy_82580) {
1463		/* enable MII loopback */
1464		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1465	}
1466
1467	ctrl_reg = rd32(E1000_CTRL);
1468
1469	/* force 1000, set loopback */
1470	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1471
1472	/* Now set up the MAC to the same speed/duplex as the PHY. */
1473	ctrl_reg = rd32(E1000_CTRL);
1474	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1475	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1476		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1477		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1478		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1479		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1480
1481	if (hw->phy.type == e1000_phy_m88)
1482		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1483
1484	wr32(E1000_CTRL, ctrl_reg);
1485
1486	/* Disable the receiver on the PHY so when a cable is plugged in, the
1487	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1488	 */
1489	if (hw->phy.type == e1000_phy_m88)
1490		igb_phy_disable_receiver(adapter);
1491
1492	udelay(500);
1493
1494	return 0;
1495}
1496
1497static int igb_set_phy_loopback(struct igb_adapter *adapter)
1498{
1499	return igb_integrated_phy_loopback(adapter);
1500}
1501
1502static int igb_setup_loopback_test(struct igb_adapter *adapter)
1503{
1504	struct e1000_hw *hw = &adapter->hw;
1505	u32 reg;
1506
1507	reg = rd32(E1000_CTRL_EXT);
1508
1509	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1510	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1511		reg = rd32(E1000_RCTL);
1512		reg |= E1000_RCTL_LBM_TCVR;
1513		wr32(E1000_RCTL, reg);
1514
1515		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1516
1517		reg = rd32(E1000_CTRL);
1518		reg &= ~(E1000_CTRL_RFCE |
1519			 E1000_CTRL_TFCE |
1520			 E1000_CTRL_LRST);
1521		reg |= E1000_CTRL_SLU |
1522		       E1000_CTRL_FD;
1523		wr32(E1000_CTRL, reg);
1524
1525		/* Unset switch control to serdes energy detect */
1526		reg = rd32(E1000_CONNSW);
1527		reg &= ~E1000_CONNSW_ENRGSRC;
1528		wr32(E1000_CONNSW, reg);
1529
1530		/* Set PCS register for forced speed */
1531		reg = rd32(E1000_PCS_LCTL);
1532		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1533		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1534		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1535		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1536		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1537		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1538		wr32(E1000_PCS_LCTL, reg);
1539
1540		return 0;
1541	}
1542
1543	return igb_set_phy_loopback(adapter);
1544}
1545
1546static void igb_loopback_cleanup(struct igb_adapter *adapter)
1547{
1548	struct e1000_hw *hw = &adapter->hw;
1549	u32 rctl;
1550	u16 phy_reg;
1551
1552	rctl = rd32(E1000_RCTL);
1553	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1554	wr32(E1000_RCTL, rctl);
1555
1556	hw->mac.autoneg = true;
1557	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1558	if (phy_reg & MII_CR_LOOPBACK) {
1559		phy_reg &= ~MII_CR_LOOPBACK;
1560		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1561		igb_phy_sw_reset(hw);
1562	}
1563}
1564
1565static void igb_create_lbtest_frame(struct sk_buff *skb,
1566				    unsigned int frame_size)
1567{
1568	memset(skb->data, 0xFF, frame_size);
1569	frame_size /= 2;
1570	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1571	memset(&skb->data[frame_size + 10], 0xBE, 1);
1572	memset(&skb->data[frame_size + 12], 0xAF, 1);
1573}
1574
1575static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1576{
1577	frame_size /= 2;
1578	if (*(skb->data + 3) == 0xFF) {
1579		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1580		   (*(skb->data + frame_size + 12) == 0xAF)) {
1581			return 0;
1582		}
1583	}
1584	return 13;
1585}
1586
1587static int igb_clean_test_rings(struct igb_ring *rx_ring,
1588                                struct igb_ring *tx_ring,
1589                                unsigned int size)
1590{
1591	union e1000_adv_rx_desc *rx_desc;
1592	struct igb_buffer *buffer_info;
1593	int rx_ntc, tx_ntc, count = 0;
1594	u32 staterr;
1595
1596	/* initialize next to clean and descriptor values */
1597	rx_ntc = rx_ring->next_to_clean;
1598	tx_ntc = tx_ring->next_to_clean;
1599	rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1600	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1601
1602	while (staterr & E1000_RXD_STAT_DD) {
1603		/* check rx buffer */
1604		buffer_info = &rx_ring->buffer_info[rx_ntc];
1605
1606		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1607		dma_unmap_single(rx_ring->dev,
1608		                 buffer_info->dma,
1609				 rx_ring->rx_buffer_len,
1610				 DMA_FROM_DEVICE);
1611		buffer_info->dma = 0;
1612
1613		/* verify contents of skb */
1614		if (!igb_check_lbtest_frame(buffer_info->skb, size))
1615			count++;
1616
1617		/* unmap buffer on tx side */
1618		buffer_info = &tx_ring->buffer_info[tx_ntc];
1619		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1620
1621		/* increment rx/tx next to clean counters */
1622		rx_ntc++;
1623		if (rx_ntc == rx_ring->count)
1624			rx_ntc = 0;
1625		tx_ntc++;
1626		if (tx_ntc == tx_ring->count)
1627			tx_ntc = 0;
1628
1629		/* fetch next descriptor */
1630		rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1631		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1632	}
1633
1634	/* re-map buffers to ring, store next to clean values */
1635	igb_alloc_rx_buffers_adv(rx_ring, count);
1636	rx_ring->next_to_clean = rx_ntc;
1637	tx_ring->next_to_clean = tx_ntc;
1638
1639	return count;
1640}
1641
1642static int igb_run_loopback_test(struct igb_adapter *adapter)
1643{
1644	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1645	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1646	int i, j, lc, good_cnt, ret_val = 0;
1647	unsigned int size = 1024;
1648	netdev_tx_t tx_ret_val;
1649	struct sk_buff *skb;
1650
1651	/* allocate test skb */
1652	skb = alloc_skb(size, GFP_KERNEL);
1653	if (!skb)
1654		return 11;
1655
1656	/* place data into test skb */
1657	igb_create_lbtest_frame(skb, size);
1658	skb_put(skb, size);
1659
1660	/*
1661	 * Calculate the loop count based on the largest descriptor ring
1662	 * The idea is to wrap the largest ring a number of times using 64
1663	 * send/receive pairs during each loop
1664	 */
1665
1666	if (rx_ring->count <= tx_ring->count)
1667		lc = ((tx_ring->count / 64) * 2) + 1;
1668	else
1669		lc = ((rx_ring->count / 64) * 2) + 1;
1670
1671	for (j = 0; j <= lc; j++) { /* loop count loop */
1672		/* reset count of good packets */
1673		good_cnt = 0;
1674
1675		/* place 64 packets on the transmit queue*/
1676		for (i = 0; i < 64; i++) {
1677			skb_get(skb);
1678			tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1679			if (tx_ret_val == NETDEV_TX_OK)
1680				good_cnt++;
1681		}
1682
1683		if (good_cnt != 64) {
1684			ret_val = 12;
1685			break;
1686		}
1687
1688		/* allow 200 milliseconds for packets to go from tx to rx */
1689		msleep(200);
1690
1691		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1692		if (good_cnt != 64) {
1693			ret_val = 13;
1694			break;
1695		}
1696	} /* end loop count loop */
1697
1698	/* free the original skb */
1699	kfree_skb(skb);
1700
1701	return ret_val;
1702}
1703
1704static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1705{
1706	/* PHY loopback cannot be performed if SoL/IDER
1707	 * sessions are active */
1708	if (igb_check_reset_block(&adapter->hw)) {
1709		dev_err(&adapter->pdev->dev,
1710			"Cannot do PHY loopback test "
1711			"when SoL/IDER is active.\n");
1712		*data = 0;
1713		goto out;
1714	}
1715	*data = igb_setup_desc_rings(adapter);
1716	if (*data)
1717		goto out;
1718	*data = igb_setup_loopback_test(adapter);
1719	if (*data)
1720		goto err_loopback;
1721	*data = igb_run_loopback_test(adapter);
1722	igb_loopback_cleanup(adapter);
1723
1724err_loopback:
1725	igb_free_desc_rings(adapter);
1726out:
1727	return *data;
1728}
1729
1730static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1731{
1732	struct e1000_hw *hw = &adapter->hw;
1733	*data = 0;
1734	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1735		int i = 0;
1736		hw->mac.serdes_has_link = false;
1737
1738		/* On some blade server designs, link establishment
1739		 * could take as long as 2-3 minutes */
1740		do {
1741			hw->mac.ops.check_for_link(&adapter->hw);
1742			if (hw->mac.serdes_has_link)
1743				return *data;
1744			msleep(20);
1745		} while (i++ < 3750);
1746
1747		*data = 1;
1748	} else {
1749		hw->mac.ops.check_for_link(&adapter->hw);
1750		if (hw->mac.autoneg)
1751			msleep(4000);
1752
1753		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1754			*data = 1;
1755	}
1756	return *data;
1757}
1758
1759static void igb_diag_test(struct net_device *netdev,
1760			  struct ethtool_test *eth_test, u64 *data)
1761{
1762	struct igb_adapter *adapter = netdev_priv(netdev);
1763	u16 autoneg_advertised;
1764	u8 forced_speed_duplex, autoneg;
1765	bool if_running = netif_running(netdev);
1766
1767	set_bit(__IGB_TESTING, &adapter->state);
1768	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1769		/* Offline tests */
1770
1771		/* save speed, duplex, autoneg settings */
1772		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1773		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1774		autoneg = adapter->hw.mac.autoneg;
1775
1776		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1777
1778		/* power up link for link test */
1779		igb_power_up_link(adapter);
1780
1781		/* Link test performed before hardware reset so autoneg doesn't
1782		 * interfere with test result */
1783		if (igb_link_test(adapter, &data[4]))
1784			eth_test->flags |= ETH_TEST_FL_FAILED;
1785
1786		if (if_running)
1787			/* indicate we're in test mode */
1788			dev_close(netdev);
1789		else
1790			igb_reset(adapter);
1791
1792		if (igb_reg_test(adapter, &data[0]))
1793			eth_test->flags |= ETH_TEST_FL_FAILED;
1794
1795		igb_reset(adapter);
1796		if (igb_eeprom_test(adapter, &data[1]))
1797			eth_test->flags |= ETH_TEST_FL_FAILED;
1798
1799		igb_reset(adapter);
1800		if (igb_intr_test(adapter, &data[2]))
1801			eth_test->flags |= ETH_TEST_FL_FAILED;
1802
1803		igb_reset(adapter);
1804		/* power up link for loopback test */
1805		igb_power_up_link(adapter);
1806		if (igb_loopback_test(adapter, &data[3]))
1807			eth_test->flags |= ETH_TEST_FL_FAILED;
1808
1809		/* restore speed, duplex, autoneg settings */
1810		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1811		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1812		adapter->hw.mac.autoneg = autoneg;
1813
1814		/* force this routine to wait until autoneg complete/timeout */
1815		adapter->hw.phy.autoneg_wait_to_complete = true;
1816		igb_reset(adapter);
1817		adapter->hw.phy.autoneg_wait_to_complete = false;
1818
1819		clear_bit(__IGB_TESTING, &adapter->state);
1820		if (if_running)
1821			dev_open(netdev);
1822	} else {
1823		dev_info(&adapter->pdev->dev, "online testing starting\n");
1824
1825		/* PHY is powered down when interface is down */
1826		if (if_running && igb_link_test(adapter, &data[4]))
1827			eth_test->flags |= ETH_TEST_FL_FAILED;
1828		else
1829			data[4] = 0;
1830
1831		/* Online tests aren't run; pass by default */
1832		data[0] = 0;
1833		data[1] = 0;
1834		data[2] = 0;
1835		data[3] = 0;
1836
1837		clear_bit(__IGB_TESTING, &adapter->state);
1838	}
1839	msleep_interruptible(4 * 1000);
1840}
1841
1842static int igb_wol_exclusion(struct igb_adapter *adapter,
1843			     struct ethtool_wolinfo *wol)
1844{
1845	struct e1000_hw *hw = &adapter->hw;
1846	int retval = 1; /* fail by default */
1847
1848	switch (hw->device_id) {
1849	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1850		/* WoL not supported */
1851		wol->supported = 0;
1852		break;
1853	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1854	case E1000_DEV_ID_82576_FIBER:
1855	case E1000_DEV_ID_82576_SERDES:
1856		/* Wake events not supported on port B */
1857		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1858			wol->supported = 0;
1859			break;
1860		}
1861		/* return success for non excluded adapter ports */
1862		retval = 0;
1863		break;
1864	case E1000_DEV_ID_82576_QUAD_COPPER:
1865	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1866		/* quad port adapters only support WoL on port A */
1867		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1868			wol->supported = 0;
1869			break;
1870		}
1871		/* return success for non excluded adapter ports */
1872		retval = 0;
1873		break;
1874	default:
1875		/* dual port cards only support WoL on port A from now on
1876		 * unless it was enabled in the eeprom for port B
1877		 * so exclude FUNC_1 ports from having WoL enabled */
1878		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1879		    !adapter->eeprom_wol) {
1880			wol->supported = 0;
1881			break;
1882		}
1883
1884		retval = 0;
1885	}
1886
1887	return retval;
1888}
1889
1890static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1891{
1892	struct igb_adapter *adapter = netdev_priv(netdev);
1893
1894	wol->supported = WAKE_UCAST | WAKE_MCAST |
1895	                 WAKE_BCAST | WAKE_MAGIC |
1896	                 WAKE_PHY;
1897	wol->wolopts = 0;
1898
1899	/* this function will set ->supported = 0 and return 1 if wol is not
1900	 * supported by this hardware */
1901	if (igb_wol_exclusion(adapter, wol) ||
1902	    !device_can_wakeup(&adapter->pdev->dev))
1903		return;
1904
1905	/* apply any specific unsupported masks here */
1906	switch (adapter->hw.device_id) {
1907	default:
1908		break;
1909	}
1910
1911	if (adapter->wol & E1000_WUFC_EX)
1912		wol->wolopts |= WAKE_UCAST;
1913	if (adapter->wol & E1000_WUFC_MC)
1914		wol->wolopts |= WAKE_MCAST;
1915	if (adapter->wol & E1000_WUFC_BC)
1916		wol->wolopts |= WAKE_BCAST;
1917	if (adapter->wol & E1000_WUFC_MAG)
1918		wol->wolopts |= WAKE_MAGIC;
1919	if (adapter->wol & E1000_WUFC_LNKC)
1920		wol->wolopts |= WAKE_PHY;
1921}
1922
1923static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1924{
1925	struct igb_adapter *adapter = netdev_priv(netdev);
1926
1927	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1928		return -EOPNOTSUPP;
1929
1930	if (igb_wol_exclusion(adapter, wol) ||
1931	    !device_can_wakeup(&adapter->pdev->dev))
1932		return wol->wolopts ? -EOPNOTSUPP : 0;
1933
1934	/* these settings will always override what we currently have */
1935	adapter->wol = 0;
1936
1937	if (wol->wolopts & WAKE_UCAST)
1938		adapter->wol |= E1000_WUFC_EX;
1939	if (wol->wolopts & WAKE_MCAST)
1940		adapter->wol |= E1000_WUFC_MC;
1941	if (wol->wolopts & WAKE_BCAST)
1942		adapter->wol |= E1000_WUFC_BC;
1943	if (wol->wolopts & WAKE_MAGIC)
1944		adapter->wol |= E1000_WUFC_MAG;
1945	if (wol->wolopts & WAKE_PHY)
1946		adapter->wol |= E1000_WUFC_LNKC;
1947	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1948
1949	return 0;
1950}
1951
1952/* bit defines for adapter->led_status */
1953#define IGB_LED_ON		0
1954
1955static int igb_phys_id(struct net_device *netdev, u32 data)
1956{
1957	struct igb_adapter *adapter = netdev_priv(netdev);
1958	struct e1000_hw *hw = &adapter->hw;
1959	unsigned long timeout;
1960
1961	timeout = data * 1000;
1962
1963	/*
1964	 *  msleep_interruptable only accepts unsigned int so we are limited
1965	 * in how long a duration we can wait
1966	 */
1967	if (!timeout || timeout > UINT_MAX)
1968		timeout = UINT_MAX;
1969
1970	igb_blink_led(hw);
1971	msleep_interruptible(timeout);
1972
1973	igb_led_off(hw);
1974	clear_bit(IGB_LED_ON, &adapter->led_status);
1975	igb_cleanup_led(hw);
1976
1977	return 0;
1978}
1979
1980static int igb_set_coalesce(struct net_device *netdev,
1981			    struct ethtool_coalesce *ec)
1982{
1983	struct igb_adapter *adapter = netdev_priv(netdev);
1984	int i;
1985
1986	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1987	    ((ec->rx_coalesce_usecs > 3) &&
1988	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1989	    (ec->rx_coalesce_usecs == 2))
1990		return -EINVAL;
1991
1992	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1993	    ((ec->tx_coalesce_usecs > 3) &&
1994	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1995	    (ec->tx_coalesce_usecs == 2))
1996		return -EINVAL;
1997
1998	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1999		return -EINVAL;
2000
2001	/* convert to rate of irq's per second */
2002	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2003		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2004	else
2005		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2006
2007	/* convert to rate of irq's per second */
2008	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2009		adapter->tx_itr_setting = adapter->rx_itr_setting;
2010	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2011		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2012	else
2013		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2014
2015	for (i = 0; i < adapter->num_q_vectors; i++) {
2016		struct igb_q_vector *q_vector = adapter->q_vector[i];
2017		if (q_vector->rx_ring)
2018			q_vector->itr_val = adapter->rx_itr_setting;
2019		else
2020			q_vector->itr_val = adapter->tx_itr_setting;
2021		if (q_vector->itr_val && q_vector->itr_val <= 3)
2022			q_vector->itr_val = IGB_START_ITR;
2023		q_vector->set_itr = 1;
2024	}
2025
2026	return 0;
2027}
2028
2029static int igb_get_coalesce(struct net_device *netdev,
2030			    struct ethtool_coalesce *ec)
2031{
2032	struct igb_adapter *adapter = netdev_priv(netdev);
2033
2034	if (adapter->rx_itr_setting <= 3)
2035		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2036	else
2037		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2038
2039	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2040		if (adapter->tx_itr_setting <= 3)
2041			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2042		else
2043			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2044	}
2045
2046	return 0;
2047}
2048
2049static int igb_nway_reset(struct net_device *netdev)
2050{
2051	struct igb_adapter *adapter = netdev_priv(netdev);
2052	if (netif_running(netdev))
2053		igb_reinit_locked(adapter);
2054	return 0;
2055}
2056
2057static int igb_get_sset_count(struct net_device *netdev, int sset)
2058{
2059	switch (sset) {
2060	case ETH_SS_STATS:
2061		return IGB_STATS_LEN;
2062	case ETH_SS_TEST:
2063		return IGB_TEST_LEN;
2064	default:
2065		return -ENOTSUPP;
2066	}
2067}
2068
2069static void igb_get_ethtool_stats(struct net_device *netdev,
2070				  struct ethtool_stats *stats, u64 *data)
2071{
2072	struct igb_adapter *adapter = netdev_priv(netdev);
2073	struct net_device_stats *net_stats = &netdev->stats;
2074	u64 *queue_stat;
2075	int i, j, k;
2076	char *p;
2077
2078	igb_update_stats(adapter);
2079
2080	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2081		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2082		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2083			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2084	}
2085	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2086		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2087		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2088			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2089	}
2090	for (j = 0; j < adapter->num_tx_queues; j++) {
2091		queue_stat = (u64 *)&adapter->tx_ring[j]->tx_stats;
2092		for (k = 0; k < IGB_TX_QUEUE_STATS_LEN; k++, i++)
2093			data[i] = queue_stat[k];
2094	}
2095	for (j = 0; j < adapter->num_rx_queues; j++) {
2096		queue_stat = (u64 *)&adapter->rx_ring[j]->rx_stats;
2097		for (k = 0; k < IGB_RX_QUEUE_STATS_LEN; k++, i++)
2098			data[i] = queue_stat[k];
2099	}
2100}
2101
2102static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2103{
2104	struct igb_adapter *adapter = netdev_priv(netdev);
2105	u8 *p = data;
2106	int i;
2107
2108	switch (stringset) {
2109	case ETH_SS_TEST:
2110		memcpy(data, *igb_gstrings_test,
2111			IGB_TEST_LEN*ETH_GSTRING_LEN);
2112		break;
2113	case ETH_SS_STATS:
2114		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2115			memcpy(p, igb_gstrings_stats[i].stat_string,
2116			       ETH_GSTRING_LEN);
2117			p += ETH_GSTRING_LEN;
2118		}
2119		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2120			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2121			       ETH_GSTRING_LEN);
2122			p += ETH_GSTRING_LEN;
2123		}
2124		for (i = 0; i < adapter->num_tx_queues; i++) {
2125			sprintf(p, "tx_queue_%u_packets", i);
2126			p += ETH_GSTRING_LEN;
2127			sprintf(p, "tx_queue_%u_bytes", i);
2128			p += ETH_GSTRING_LEN;
2129			sprintf(p, "tx_queue_%u_restart", i);
2130			p += ETH_GSTRING_LEN;
2131		}
2132		for (i = 0; i < adapter->num_rx_queues; i++) {
2133			sprintf(p, "rx_queue_%u_packets", i);
2134			p += ETH_GSTRING_LEN;
2135			sprintf(p, "rx_queue_%u_bytes", i);
2136			p += ETH_GSTRING_LEN;
2137			sprintf(p, "rx_queue_%u_drops", i);
2138			p += ETH_GSTRING_LEN;
2139			sprintf(p, "rx_queue_%u_csum_err", i);
2140			p += ETH_GSTRING_LEN;
2141			sprintf(p, "rx_queue_%u_alloc_failed", i);
2142			p += ETH_GSTRING_LEN;
2143		}
2144/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2145		break;
2146	}
2147}
2148
2149static const struct ethtool_ops igb_ethtool_ops = {
2150	.get_settings           = igb_get_settings,
2151	.set_settings           = igb_set_settings,
2152	.get_drvinfo            = igb_get_drvinfo,
2153	.get_regs_len           = igb_get_regs_len,
2154	.get_regs               = igb_get_regs,
2155	.get_wol                = igb_get_wol,
2156	.set_wol                = igb_set_wol,
2157	.get_msglevel           = igb_get_msglevel,
2158	.set_msglevel           = igb_set_msglevel,
2159	.nway_reset             = igb_nway_reset,
2160	.get_link               = igb_get_link,
2161	.get_eeprom_len         = igb_get_eeprom_len,
2162	.get_eeprom             = igb_get_eeprom,
2163	.set_eeprom             = igb_set_eeprom,
2164	.get_ringparam          = igb_get_ringparam,
2165	.set_ringparam          = igb_set_ringparam,
2166	.get_pauseparam         = igb_get_pauseparam,
2167	.set_pauseparam         = igb_set_pauseparam,
2168	.get_rx_csum            = igb_get_rx_csum,
2169	.set_rx_csum            = igb_set_rx_csum,
2170	.get_tx_csum            = igb_get_tx_csum,
2171	.set_tx_csum            = igb_set_tx_csum,
2172	.get_sg                 = ethtool_op_get_sg,
2173	.set_sg                 = ethtool_op_set_sg,
2174	.get_tso                = ethtool_op_get_tso,
2175	.set_tso                = igb_set_tso,
2176	.self_test              = igb_diag_test,
2177	.get_strings            = igb_get_strings,
2178	.phys_id                = igb_phys_id,
2179	.get_sset_count         = igb_get_sset_count,
2180	.get_ethtool_stats      = igb_get_ethtool_stats,
2181	.get_coalesce           = igb_get_coalesce,
2182	.set_coalesce           = igb_set_coalesce,
2183};
2184
2185void igb_set_ethtool_ops(struct net_device *netdev)
2186{
2187	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2188}
2189