• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/
1/*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute  it and/or modify it
17 * under  the terms of  the GNU General  Public License as published by the
18 * Free Software Foundation;  either version 2 of the  License, or (at your
19 * option) any later version.
20 *
21 *  Gianfar:  AKA Lambda Draconis, "Dragon"
22 *  RA 11 31 24.2
23 *  Dec +69 19 52
24 *  V 3.84
25 *  B-V +1.62
26 *
27 *  Theory of operation
28 *
29 *  The driver is initialized through of_device. Configuration information
30 *  is therefore conveyed through an OF-style device tree.
31 *
32 *  The Gianfar Ethernet Controller uses a ring of buffer
33 *  descriptors.  The beginning is indicated by a register
34 *  pointing to the physical address of the start of the ring.
35 *  The end is determined by a "wrap" bit being set in the
36 *  last descriptor of the ring.
37 *
38 *  When a packet is received, the RXF bit in the
39 *  IEVENT register is set, triggering an interrupt when the
40 *  corresponding bit in the IMASK register is also set (if
41 *  interrupt coalescing is active, then the interrupt may not
42 *  happen immediately, but will wait until either a set number
43 *  of frames or amount of time have passed).  In NAPI, the
44 *  interrupt handler will signal there is work to be done, and
45 *  exit. This method will start at the last known empty
46 *  descriptor, and process every subsequent descriptor until there
47 *  are none left with data (NAPI will stop after a set number of
48 *  packets to give time to other tasks, but will eventually
49 *  process all the packets).  The data arrives inside a
50 *  pre-allocated skb, and so after the skb is passed up to the
51 *  stack, a new skb must be allocated, and the address field in
52 *  the buffer descriptor must be updated to indicate this new
53 *  skb.
54 *
55 *  When the kernel requests that a packet be transmitted, the
56 *  driver starts where it left off last time, and points the
57 *  descriptor at the buffer which was passed in.  The driver
58 *  then informs the DMA engine that there are packets ready to
59 *  be transmitted.  Once the controller is finished transmitting
60 *  the packet, an interrupt may be triggered (under the same
61 *  conditions as for reception, but depending on the TXF bit).
62 *  The driver then cleans up the buffer.
63 */
64
65#include <linux/kernel.h>
66#include <linux/string.h>
67#include <linux/errno.h>
68#include <linux/unistd.h>
69#include <linux/slab.h>
70#include <linux/interrupt.h>
71#include <linux/init.h>
72#include <linux/delay.h>
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/if_vlan.h>
77#include <linux/spinlock.h>
78#include <linux/mm.h>
79#include <linux/of_mdio.h>
80#include <linux/of_platform.h>
81#include <linux/ip.h>
82#include <linux/tcp.h>
83#include <linux/udp.h>
84#include <linux/in.h>
85#include <linux/net_tstamp.h>
86
87#include <asm/io.h>
88#include <asm/reg.h>
89#include <asm/irq.h>
90#include <asm/uaccess.h>
91#include <linux/module.h>
92#include <linux/dma-mapping.h>
93#include <linux/crc32.h>
94#include <linux/mii.h>
95#include <linux/phy.h>
96#include <linux/phy_fixed.h>
97#include <linux/of.h>
98
99#include "gianfar.h"
100#include "fsl_pq_mdio.h"
101
102#define TX_TIMEOUT      (1*HZ)
103#undef BRIEF_GFAR_ERRORS
104#undef VERBOSE_GFAR_ERRORS
105
106const char gfar_driver_name[] = "Gianfar Ethernet";
107const char gfar_driver_version[] = "1.3";
108
109static int gfar_enet_open(struct net_device *dev);
110static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111static void gfar_reset_task(struct work_struct *work);
112static void gfar_timeout(struct net_device *dev);
113static int gfar_close(struct net_device *dev);
114struct sk_buff *gfar_new_skb(struct net_device *dev);
115static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116		struct sk_buff *skb);
117static int gfar_set_mac_address(struct net_device *dev);
118static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119static irqreturn_t gfar_error(int irq, void *dev_id);
120static irqreturn_t gfar_transmit(int irq, void *dev_id);
121static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122static void adjust_link(struct net_device *dev);
123static void init_registers(struct net_device *dev);
124static int init_phy(struct net_device *dev);
125static int gfar_probe(struct platform_device *ofdev,
126		const struct of_device_id *match);
127static int gfar_remove(struct platform_device *ofdev);
128static void free_skb_resources(struct gfar_private *priv);
129static void gfar_set_multi(struct net_device *dev);
130static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131static void gfar_configure_serdes(struct net_device *dev);
132static int gfar_poll(struct napi_struct *napi, int budget);
133#ifdef CONFIG_NET_POLL_CONTROLLER
134static void gfar_netpoll(struct net_device *dev);
135#endif
136int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139			      int amount_pull);
140static void gfar_vlan_rx_register(struct net_device *netdev,
141		                struct vlan_group *grp);
142void gfar_halt(struct net_device *dev);
143static void gfar_halt_nodisable(struct net_device *dev);
144void gfar_start(struct net_device *dev);
145static void gfar_clear_exact_match(struct net_device *dev);
146static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
147static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148
149MODULE_AUTHOR("Freescale Semiconductor, Inc");
150MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151MODULE_LICENSE("GPL");
152
153static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154			    dma_addr_t buf)
155{
156	u32 lstatus;
157
158	bdp->bufPtr = buf;
159
160	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162		lstatus |= BD_LFLAG(RXBD_WRAP);
163
164	eieio();
165
166	bdp->lstatus = lstatus;
167}
168
169static int gfar_init_bds(struct net_device *ndev)
170{
171	struct gfar_private *priv = netdev_priv(ndev);
172	struct gfar_priv_tx_q *tx_queue = NULL;
173	struct gfar_priv_rx_q *rx_queue = NULL;
174	struct txbd8 *txbdp;
175	struct rxbd8 *rxbdp;
176	int i, j;
177
178	for (i = 0; i < priv->num_tx_queues; i++) {
179		tx_queue = priv->tx_queue[i];
180		/* Initialize some variables in our dev structure */
181		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182		tx_queue->dirty_tx = tx_queue->tx_bd_base;
183		tx_queue->cur_tx = tx_queue->tx_bd_base;
184		tx_queue->skb_curtx = 0;
185		tx_queue->skb_dirtytx = 0;
186
187		/* Initialize Transmit Descriptor Ring */
188		txbdp = tx_queue->tx_bd_base;
189		for (j = 0; j < tx_queue->tx_ring_size; j++) {
190			txbdp->lstatus = 0;
191			txbdp->bufPtr = 0;
192			txbdp++;
193		}
194
195		/* Set the last descriptor in the ring to indicate wrap */
196		txbdp--;
197		txbdp->status |= TXBD_WRAP;
198	}
199
200	for (i = 0; i < priv->num_rx_queues; i++) {
201		rx_queue = priv->rx_queue[i];
202		rx_queue->cur_rx = rx_queue->rx_bd_base;
203		rx_queue->skb_currx = 0;
204		rxbdp = rx_queue->rx_bd_base;
205
206		for (j = 0; j < rx_queue->rx_ring_size; j++) {
207			struct sk_buff *skb = rx_queue->rx_skbuff[j];
208
209			if (skb) {
210				gfar_init_rxbdp(rx_queue, rxbdp,
211						rxbdp->bufPtr);
212			} else {
213				skb = gfar_new_skb(ndev);
214				if (!skb) {
215					pr_err("%s: Can't allocate RX buffers\n",
216							ndev->name);
217					goto err_rxalloc_fail;
218				}
219				rx_queue->rx_skbuff[j] = skb;
220
221				gfar_new_rxbdp(rx_queue, rxbdp, skb);
222			}
223
224			rxbdp++;
225		}
226
227	}
228
229	return 0;
230
231err_rxalloc_fail:
232	free_skb_resources(priv);
233	return -ENOMEM;
234}
235
236static int gfar_alloc_skb_resources(struct net_device *ndev)
237{
238	void *vaddr;
239	dma_addr_t addr;
240	int i, j, k;
241	struct gfar_private *priv = netdev_priv(ndev);
242	struct device *dev = &priv->ofdev->dev;
243	struct gfar_priv_tx_q *tx_queue = NULL;
244	struct gfar_priv_rx_q *rx_queue = NULL;
245
246	priv->total_tx_ring_size = 0;
247	for (i = 0; i < priv->num_tx_queues; i++)
248		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
249
250	priv->total_rx_ring_size = 0;
251	for (i = 0; i < priv->num_rx_queues; i++)
252		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
253
254	/* Allocate memory for the buffer descriptors */
255	vaddr = dma_alloc_coherent(dev,
256			sizeof(struct txbd8) * priv->total_tx_ring_size +
257			sizeof(struct rxbd8) * priv->total_rx_ring_size,
258			&addr, GFP_KERNEL);
259	if (!vaddr) {
260		if (netif_msg_ifup(priv))
261			pr_err("%s: Could not allocate buffer descriptors!\n",
262			       ndev->name);
263		return -ENOMEM;
264	}
265
266	for (i = 0; i < priv->num_tx_queues; i++) {
267		tx_queue = priv->tx_queue[i];
268		tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
269		tx_queue->tx_bd_dma_base = addr;
270		tx_queue->dev = ndev;
271		/* enet DMA only understands physical addresses */
272		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274	}
275
276	/* Start the rx descriptor ring where the tx ring leaves off */
277	for (i = 0; i < priv->num_rx_queues; i++) {
278		rx_queue = priv->rx_queue[i];
279		rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
280		rx_queue->rx_bd_dma_base = addr;
281		rx_queue->dev = ndev;
282		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284	}
285
286	/* Setup the skbuff rings */
287	for (i = 0; i < priv->num_tx_queues; i++) {
288		tx_queue = priv->tx_queue[i];
289		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
290				  tx_queue->tx_ring_size, GFP_KERNEL);
291		if (!tx_queue->tx_skbuff) {
292			if (netif_msg_ifup(priv))
293				pr_err("%s: Could not allocate tx_skbuff\n",
294						ndev->name);
295			goto cleanup;
296		}
297
298		for (k = 0; k < tx_queue->tx_ring_size; k++)
299			tx_queue->tx_skbuff[k] = NULL;
300	}
301
302	for (i = 0; i < priv->num_rx_queues; i++) {
303		rx_queue = priv->rx_queue[i];
304		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
305				  rx_queue->rx_ring_size, GFP_KERNEL);
306
307		if (!rx_queue->rx_skbuff) {
308			if (netif_msg_ifup(priv))
309				pr_err("%s: Could not allocate rx_skbuff\n",
310				       ndev->name);
311			goto cleanup;
312		}
313
314		for (j = 0; j < rx_queue->rx_ring_size; j++)
315			rx_queue->rx_skbuff[j] = NULL;
316	}
317
318	if (gfar_init_bds(ndev))
319		goto cleanup;
320
321	return 0;
322
323cleanup:
324	free_skb_resources(priv);
325	return -ENOMEM;
326}
327
328static void gfar_init_tx_rx_base(struct gfar_private *priv)
329{
330	struct gfar __iomem *regs = priv->gfargrp[0].regs;
331	u32 __iomem *baddr;
332	int i;
333
334	baddr = &regs->tbase0;
335	for(i = 0; i < priv->num_tx_queues; i++) {
336		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
337		baddr	+= 2;
338	}
339
340	baddr = &regs->rbase0;
341	for(i = 0; i < priv->num_rx_queues; i++) {
342		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
343		baddr   += 2;
344	}
345}
346
347static void gfar_init_mac(struct net_device *ndev)
348{
349	struct gfar_private *priv = netdev_priv(ndev);
350	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351	u32 rctrl = 0;
352	u32 tctrl = 0;
353	u32 attrs = 0;
354
355	/* write the tx/rx base registers */
356	gfar_init_tx_rx_base(priv);
357
358	/* Configure the coalescing support */
359	gfar_configure_coalescing(priv, 0xFF, 0xFF);
360
361	if (priv->rx_filer_enable) {
362		rctrl |= RCTRL_FILREN;
363		/* Program the RIR0 reg with the required distribution */
364		gfar_write(&regs->rir0, DEFAULT_RIR0);
365	}
366
367	if (priv->rx_csum_enable)
368		rctrl |= RCTRL_CHECKSUMMING;
369
370	if (priv->extended_hash) {
371		rctrl |= RCTRL_EXTHASH;
372
373		gfar_clear_exact_match(ndev);
374		rctrl |= RCTRL_EMEN;
375	}
376
377	if (priv->padding) {
378		rctrl &= ~RCTRL_PAL_MASK;
379		rctrl |= RCTRL_PADDING(priv->padding);
380	}
381
382	/* Insert receive time stamps into padding alignment bytes */
383	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
384		rctrl &= ~RCTRL_PAL_MASK;
385		rctrl |= RCTRL_PADDING(8);
386		priv->padding = 8;
387	}
388
389	/* Enable HW time stamping if requested from user space */
390	if (priv->hwts_rx_en)
391		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
392
393	/* keep vlan related bits if it's enabled */
394	if (priv->vlgrp) {
395		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
396		tctrl |= TCTRL_VLINS;
397	}
398
399	/* Init rctrl based on our settings */
400	gfar_write(&regs->rctrl, rctrl);
401
402	if (ndev->features & NETIF_F_IP_CSUM)
403		tctrl |= TCTRL_INIT_CSUM;
404
405	tctrl |= TCTRL_TXSCHED_PRIO;
406
407	gfar_write(&regs->tctrl, tctrl);
408
409	/* Set the extraction length and index */
410	attrs = ATTRELI_EL(priv->rx_stash_size) |
411		ATTRELI_EI(priv->rx_stash_index);
412
413	gfar_write(&regs->attreli, attrs);
414
415	/* Start with defaults, and add stashing or locking
416	 * depending on the approprate variables */
417	attrs = ATTR_INIT_SETTINGS;
418
419	if (priv->bd_stash_en)
420		attrs |= ATTR_BDSTASH;
421
422	if (priv->rx_stash_size != 0)
423		attrs |= ATTR_BUFSTASH;
424
425	gfar_write(&regs->attr, attrs);
426
427	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
428	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
429	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
430}
431
432static struct net_device_stats *gfar_get_stats(struct net_device *dev)
433{
434	struct gfar_private *priv = netdev_priv(dev);
435	struct netdev_queue *txq;
436	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
437	unsigned long tx_packets = 0, tx_bytes = 0;
438	int i = 0;
439
440	for (i = 0; i < priv->num_rx_queues; i++) {
441		rx_packets += priv->rx_queue[i]->stats.rx_packets;
442		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
443		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
444	}
445
446	dev->stats.rx_packets = rx_packets;
447	dev->stats.rx_bytes = rx_bytes;
448	dev->stats.rx_dropped = rx_dropped;
449
450	for (i = 0; i < priv->num_tx_queues; i++) {
451		txq = netdev_get_tx_queue(dev, i);
452		tx_bytes += txq->tx_bytes;
453		tx_packets += txq->tx_packets;
454	}
455
456	dev->stats.tx_bytes = tx_bytes;
457	dev->stats.tx_packets = tx_packets;
458
459	return &dev->stats;
460}
461
462static const struct net_device_ops gfar_netdev_ops = {
463	.ndo_open = gfar_enet_open,
464	.ndo_start_xmit = gfar_start_xmit,
465	.ndo_stop = gfar_close,
466	.ndo_change_mtu = gfar_change_mtu,
467	.ndo_set_multicast_list = gfar_set_multi,
468	.ndo_tx_timeout = gfar_timeout,
469	.ndo_do_ioctl = gfar_ioctl,
470	.ndo_get_stats = gfar_get_stats,
471	.ndo_vlan_rx_register = gfar_vlan_rx_register,
472	.ndo_set_mac_address = eth_mac_addr,
473	.ndo_validate_addr = eth_validate_addr,
474#ifdef CONFIG_NET_POLL_CONTROLLER
475	.ndo_poll_controller = gfar_netpoll,
476#endif
477};
478
479unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
480unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
481
482void lock_rx_qs(struct gfar_private *priv)
483{
484	int i = 0x0;
485
486	for (i = 0; i < priv->num_rx_queues; i++)
487		spin_lock(&priv->rx_queue[i]->rxlock);
488}
489
490void lock_tx_qs(struct gfar_private *priv)
491{
492	int i = 0x0;
493
494	for (i = 0; i < priv->num_tx_queues; i++)
495		spin_lock(&priv->tx_queue[i]->txlock);
496}
497
498void unlock_rx_qs(struct gfar_private *priv)
499{
500	int i = 0x0;
501
502	for (i = 0; i < priv->num_rx_queues; i++)
503		spin_unlock(&priv->rx_queue[i]->rxlock);
504}
505
506void unlock_tx_qs(struct gfar_private *priv)
507{
508	int i = 0x0;
509
510	for (i = 0; i < priv->num_tx_queues; i++)
511		spin_unlock(&priv->tx_queue[i]->txlock);
512}
513
514/* Returns 1 if incoming frames use an FCB */
515static inline int gfar_uses_fcb(struct gfar_private *priv)
516{
517	return priv->vlgrp || priv->rx_csum_enable ||
518		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
519}
520
521static void free_tx_pointers(struct gfar_private *priv)
522{
523	int i = 0;
524
525	for (i = 0; i < priv->num_tx_queues; i++)
526		kfree(priv->tx_queue[i]);
527}
528
529static void free_rx_pointers(struct gfar_private *priv)
530{
531	int i = 0;
532
533	for (i = 0; i < priv->num_rx_queues; i++)
534		kfree(priv->rx_queue[i]);
535}
536
537static void unmap_group_regs(struct gfar_private *priv)
538{
539	int i = 0;
540
541	for (i = 0; i < MAXGROUPS; i++)
542		if (priv->gfargrp[i].regs)
543			iounmap(priv->gfargrp[i].regs);
544}
545
546static void disable_napi(struct gfar_private *priv)
547{
548	int i = 0;
549
550	for (i = 0; i < priv->num_grps; i++)
551		napi_disable(&priv->gfargrp[i].napi);
552}
553
554static void enable_napi(struct gfar_private *priv)
555{
556	int i = 0;
557
558	for (i = 0; i < priv->num_grps; i++)
559		napi_enable(&priv->gfargrp[i].napi);
560}
561
562static int gfar_parse_group(struct device_node *np,
563		struct gfar_private *priv, const char *model)
564{
565	u32 *queue_mask;
566
567	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
568	if (!priv->gfargrp[priv->num_grps].regs)
569		return -ENOMEM;
570
571	priv->gfargrp[priv->num_grps].interruptTransmit =
572			irq_of_parse_and_map(np, 0);
573
574	/* If we aren't the FEC we have multiple interrupts */
575	if (model && strcasecmp(model, "FEC")) {
576		priv->gfargrp[priv->num_grps].interruptReceive =
577			irq_of_parse_and_map(np, 1);
578		priv->gfargrp[priv->num_grps].interruptError =
579			irq_of_parse_and_map(np,2);
580		if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
581			priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
582			priv->gfargrp[priv->num_grps].interruptError < 0) {
583			return -EINVAL;
584		}
585	}
586
587	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
588	priv->gfargrp[priv->num_grps].priv = priv;
589	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
590	if(priv->mode == MQ_MG_MODE) {
591		queue_mask = (u32 *)of_get_property(np,
592					"fsl,rx-bit-map", NULL);
593		priv->gfargrp[priv->num_grps].rx_bit_map =
594			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
595		queue_mask = (u32 *)of_get_property(np,
596					"fsl,tx-bit-map", NULL);
597		priv->gfargrp[priv->num_grps].tx_bit_map =
598			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
599	} else {
600		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
601		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
602	}
603	priv->num_grps++;
604
605	return 0;
606}
607
608static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
609{
610	const char *model;
611	const char *ctype;
612	const void *mac_addr;
613	int err = 0, i;
614	struct net_device *dev = NULL;
615	struct gfar_private *priv = NULL;
616	struct device_node *np = ofdev->dev.of_node;
617	struct device_node *child = NULL;
618	const u32 *stash;
619	const u32 *stash_len;
620	const u32 *stash_idx;
621	unsigned int num_tx_qs, num_rx_qs;
622	u32 *tx_queues, *rx_queues;
623
624	if (!np || !of_device_is_available(np))
625		return -ENODEV;
626
627	/* parse the num of tx and rx queues */
628	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
629	num_tx_qs = tx_queues ? *tx_queues : 1;
630
631	if (num_tx_qs > MAX_TX_QS) {
632		printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
633				num_tx_qs, MAX_TX_QS);
634		printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
635		return -EINVAL;
636	}
637
638	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
639	num_rx_qs = rx_queues ? *rx_queues : 1;
640
641	if (num_rx_qs > MAX_RX_QS) {
642		printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
643				num_tx_qs, MAX_TX_QS);
644		printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
645		return -EINVAL;
646	}
647
648	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
649	dev = *pdev;
650	if (NULL == dev)
651		return -ENOMEM;
652
653	priv = netdev_priv(dev);
654	priv->node = ofdev->dev.of_node;
655	priv->ndev = dev;
656
657	dev->num_tx_queues = num_tx_qs;
658	dev->real_num_tx_queues = num_tx_qs;
659	priv->num_tx_queues = num_tx_qs;
660	priv->num_rx_queues = num_rx_qs;
661	priv->num_grps = 0x0;
662
663	model = of_get_property(np, "model", NULL);
664
665	for (i = 0; i < MAXGROUPS; i++)
666		priv->gfargrp[i].regs = NULL;
667
668	/* Parse and initialize group specific information */
669	if (of_device_is_compatible(np, "fsl,etsec2")) {
670		priv->mode = MQ_MG_MODE;
671		for_each_child_of_node(np, child) {
672			err = gfar_parse_group(child, priv, model);
673			if (err)
674				goto err_grp_init;
675		}
676	} else {
677		priv->mode = SQ_SG_MODE;
678		err = gfar_parse_group(np, priv, model);
679		if(err)
680			goto err_grp_init;
681	}
682
683	for (i = 0; i < priv->num_tx_queues; i++)
684	       priv->tx_queue[i] = NULL;
685	for (i = 0; i < priv->num_rx_queues; i++)
686		priv->rx_queue[i] = NULL;
687
688	for (i = 0; i < priv->num_tx_queues; i++) {
689		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
690					    GFP_KERNEL);
691		if (!priv->tx_queue[i]) {
692			err = -ENOMEM;
693			goto tx_alloc_failed;
694		}
695		priv->tx_queue[i]->tx_skbuff = NULL;
696		priv->tx_queue[i]->qindex = i;
697		priv->tx_queue[i]->dev = dev;
698		spin_lock_init(&(priv->tx_queue[i]->txlock));
699	}
700
701	for (i = 0; i < priv->num_rx_queues; i++) {
702		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
703					    GFP_KERNEL);
704		if (!priv->rx_queue[i]) {
705			err = -ENOMEM;
706			goto rx_alloc_failed;
707		}
708		priv->rx_queue[i]->rx_skbuff = NULL;
709		priv->rx_queue[i]->qindex = i;
710		priv->rx_queue[i]->dev = dev;
711		spin_lock_init(&(priv->rx_queue[i]->rxlock));
712	}
713
714
715	stash = of_get_property(np, "bd-stash", NULL);
716
717	if (stash) {
718		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
719		priv->bd_stash_en = 1;
720	}
721
722	stash_len = of_get_property(np, "rx-stash-len", NULL);
723
724	if (stash_len)
725		priv->rx_stash_size = *stash_len;
726
727	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
728
729	if (stash_idx)
730		priv->rx_stash_index = *stash_idx;
731
732	if (stash_len || stash_idx)
733		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
734
735	mac_addr = of_get_mac_address(np);
736	if (mac_addr)
737		memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
738
739	if (model && !strcasecmp(model, "TSEC"))
740		priv->device_flags =
741			FSL_GIANFAR_DEV_HAS_GIGABIT |
742			FSL_GIANFAR_DEV_HAS_COALESCE |
743			FSL_GIANFAR_DEV_HAS_RMON |
744			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
745	if (model && !strcasecmp(model, "eTSEC"))
746		priv->device_flags =
747			FSL_GIANFAR_DEV_HAS_GIGABIT |
748			FSL_GIANFAR_DEV_HAS_COALESCE |
749			FSL_GIANFAR_DEV_HAS_RMON |
750			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
751			FSL_GIANFAR_DEV_HAS_PADDING |
752			FSL_GIANFAR_DEV_HAS_CSUM |
753			FSL_GIANFAR_DEV_HAS_VLAN |
754			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
755			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
756			FSL_GIANFAR_DEV_HAS_TIMER;
757
758	ctype = of_get_property(np, "phy-connection-type", NULL);
759
760	/* We only care about rgmii-id.  The rest are autodetected */
761	if (ctype && !strcmp(ctype, "rgmii-id"))
762		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
763	else
764		priv->interface = PHY_INTERFACE_MODE_MII;
765
766	if (of_get_property(np, "fsl,magic-packet", NULL))
767		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
768
769	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
770
771	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
772	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
773
774	return 0;
775
776rx_alloc_failed:
777	free_rx_pointers(priv);
778tx_alloc_failed:
779	free_tx_pointers(priv);
780err_grp_init:
781	unmap_group_regs(priv);
782	free_netdev(dev);
783	return err;
784}
785
786static int gfar_hwtstamp_ioctl(struct net_device *netdev,
787			struct ifreq *ifr, int cmd)
788{
789	struct hwtstamp_config config;
790	struct gfar_private *priv = netdev_priv(netdev);
791
792	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
793		return -EFAULT;
794
795	/* reserved for future extensions */
796	if (config.flags)
797		return -EINVAL;
798
799	switch (config.tx_type) {
800	case HWTSTAMP_TX_OFF:
801		priv->hwts_tx_en = 0;
802		break;
803	case HWTSTAMP_TX_ON:
804		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
805			return -ERANGE;
806		priv->hwts_tx_en = 1;
807		break;
808	default:
809		return -ERANGE;
810	}
811
812	switch (config.rx_filter) {
813	case HWTSTAMP_FILTER_NONE:
814		if (priv->hwts_rx_en) {
815			stop_gfar(netdev);
816			priv->hwts_rx_en = 0;
817			startup_gfar(netdev);
818		}
819		break;
820	default:
821		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
822			return -ERANGE;
823		if (!priv->hwts_rx_en) {
824			stop_gfar(netdev);
825			priv->hwts_rx_en = 1;
826			startup_gfar(netdev);
827		}
828		config.rx_filter = HWTSTAMP_FILTER_ALL;
829		break;
830	}
831
832	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
833		-EFAULT : 0;
834}
835
836/* Ioctl MII Interface */
837static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
838{
839	struct gfar_private *priv = netdev_priv(dev);
840
841	if (!netif_running(dev))
842		return -EINVAL;
843
844	if (cmd == SIOCSHWTSTAMP)
845		return gfar_hwtstamp_ioctl(dev, rq, cmd);
846
847	if (!priv->phydev)
848		return -ENODEV;
849
850	return phy_mii_ioctl(priv->phydev, rq, cmd);
851}
852
853static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
854{
855	unsigned int new_bit_map = 0x0;
856	int mask = 0x1 << (max_qs - 1), i;
857	for (i = 0; i < max_qs; i++) {
858		if (bit_map & mask)
859			new_bit_map = new_bit_map + (1 << i);
860		mask = mask >> 0x1;
861	}
862	return new_bit_map;
863}
864
865static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
866				   u32 class)
867{
868	u32 rqfpr = FPR_FILER_MASK;
869	u32 rqfcr = 0x0;
870
871	rqfar--;
872	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
873	ftp_rqfpr[rqfar] = rqfpr;
874	ftp_rqfcr[rqfar] = rqfcr;
875	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
876
877	rqfar--;
878	rqfcr = RQFCR_CMP_NOMATCH;
879	ftp_rqfpr[rqfar] = rqfpr;
880	ftp_rqfcr[rqfar] = rqfcr;
881	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
882
883	rqfar--;
884	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
885	rqfpr = class;
886	ftp_rqfcr[rqfar] = rqfcr;
887	ftp_rqfpr[rqfar] = rqfpr;
888	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
889
890	rqfar--;
891	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
892	rqfpr = class;
893	ftp_rqfcr[rqfar] = rqfcr;
894	ftp_rqfpr[rqfar] = rqfpr;
895	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
896
897	return rqfar;
898}
899
900static void gfar_init_filer_table(struct gfar_private *priv)
901{
902	int i = 0x0;
903	u32 rqfar = MAX_FILER_IDX;
904	u32 rqfcr = 0x0;
905	u32 rqfpr = FPR_FILER_MASK;
906
907	/* Default rule */
908	rqfcr = RQFCR_CMP_MATCH;
909	ftp_rqfcr[rqfar] = rqfcr;
910	ftp_rqfpr[rqfar] = rqfpr;
911	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
912
913	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
914	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
915	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
916	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
917	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
918	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
919
920	/* cur_filer_idx indicated the first non-masked rule */
921	priv->cur_filer_idx = rqfar;
922
923	/* Rest are masked rules */
924	rqfcr = RQFCR_CMP_NOMATCH;
925	for (i = 0; i < rqfar; i++) {
926		ftp_rqfcr[i] = rqfcr;
927		ftp_rqfpr[i] = rqfpr;
928		gfar_write_filer(priv, i, rqfcr, rqfpr);
929	}
930}
931
932static void gfar_detect_errata(struct gfar_private *priv)
933{
934	struct device *dev = &priv->ofdev->dev;
935	unsigned int pvr = mfspr(SPRN_PVR);
936	unsigned int svr = mfspr(SPRN_SVR);
937	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
938	unsigned int rev = svr & 0xffff;
939
940	/* MPC8313 Rev 2.0 and higher; All MPC837x */
941	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
942			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
943		priv->errata |= GFAR_ERRATA_74;
944
945	/* MPC8313 and MPC837x all rev */
946	if ((pvr == 0x80850010 && mod == 0x80b0) ||
947			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
948		priv->errata |= GFAR_ERRATA_76;
949
950	/* MPC8313 and MPC837x all rev */
951	if ((pvr == 0x80850010 && mod == 0x80b0) ||
952			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953		priv->errata |= GFAR_ERRATA_A002;
954
955	if (priv->errata)
956		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
957			 priv->errata);
958}
959
960/* Set up the ethernet device structure, private data,
961 * and anything else we need before we start */
962static int gfar_probe(struct platform_device *ofdev,
963		const struct of_device_id *match)
964{
965	u32 tempval;
966	struct net_device *dev = NULL;
967	struct gfar_private *priv = NULL;
968	struct gfar __iomem *regs = NULL;
969	int err = 0, i, grp_idx = 0;
970	int len_devname;
971	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
972	u32 isrg = 0;
973	u32 __iomem *baddr;
974
975	err = gfar_of_init(ofdev, &dev);
976
977	if (err)
978		return err;
979
980	priv = netdev_priv(dev);
981	priv->ndev = dev;
982	priv->ofdev = ofdev;
983	priv->node = ofdev->dev.of_node;
984	SET_NETDEV_DEV(dev, &ofdev->dev);
985
986	spin_lock_init(&priv->bflock);
987	INIT_WORK(&priv->reset_task, gfar_reset_task);
988
989	dev_set_drvdata(&ofdev->dev, priv);
990	regs = priv->gfargrp[0].regs;
991
992	gfar_detect_errata(priv);
993
994	/* Stop the DMA engine now, in case it was running before */
995	/* (The firmware could have used it, and left it running). */
996	gfar_halt(dev);
997
998	/* Reset MAC layer */
999	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000
1001	/* We need to delay at least 3 TX clocks */
1002	udelay(2);
1003
1004	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005	gfar_write(&regs->maccfg1, tempval);
1006
1007	/* Initialize MACCFG2. */
1008	tempval = MACCFG2_INIT_SETTINGS;
1009	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011	gfar_write(&regs->maccfg2, tempval);
1012
1013	/* Initialize ECNTRL */
1014	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015
1016	/* Set the dev->base_addr to the gfar reg region */
1017	dev->base_addr = (unsigned long) regs;
1018
1019	SET_NETDEV_DEV(dev, &ofdev->dev);
1020
1021	/* Fill in the dev structure */
1022	dev->watchdog_timeo = TX_TIMEOUT;
1023	dev->mtu = 1500;
1024	dev->netdev_ops = &gfar_netdev_ops;
1025	dev->ethtool_ops = &gfar_ethtool_ops;
1026
1027	/* Register for napi ...We are registering NAPI for each grp */
1028	for (i = 0; i < priv->num_grps; i++)
1029		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030
1031	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032		priv->rx_csum_enable = 1;
1033		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
1034	} else
1035		priv->rx_csum_enable = 0;
1036
1037	priv->vlgrp = NULL;
1038
1039	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1040		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041
1042	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1043		priv->extended_hash = 1;
1044		priv->hash_width = 9;
1045
1046		priv->hash_regs[0] = &regs->igaddr0;
1047		priv->hash_regs[1] = &regs->igaddr1;
1048		priv->hash_regs[2] = &regs->igaddr2;
1049		priv->hash_regs[3] = &regs->igaddr3;
1050		priv->hash_regs[4] = &regs->igaddr4;
1051		priv->hash_regs[5] = &regs->igaddr5;
1052		priv->hash_regs[6] = &regs->igaddr6;
1053		priv->hash_regs[7] = &regs->igaddr7;
1054		priv->hash_regs[8] = &regs->gaddr0;
1055		priv->hash_regs[9] = &regs->gaddr1;
1056		priv->hash_regs[10] = &regs->gaddr2;
1057		priv->hash_regs[11] = &regs->gaddr3;
1058		priv->hash_regs[12] = &regs->gaddr4;
1059		priv->hash_regs[13] = &regs->gaddr5;
1060		priv->hash_regs[14] = &regs->gaddr6;
1061		priv->hash_regs[15] = &regs->gaddr7;
1062
1063	} else {
1064		priv->extended_hash = 0;
1065		priv->hash_width = 8;
1066
1067		priv->hash_regs[0] = &regs->gaddr0;
1068		priv->hash_regs[1] = &regs->gaddr1;
1069		priv->hash_regs[2] = &regs->gaddr2;
1070		priv->hash_regs[3] = &regs->gaddr3;
1071		priv->hash_regs[4] = &regs->gaddr4;
1072		priv->hash_regs[5] = &regs->gaddr5;
1073		priv->hash_regs[6] = &regs->gaddr6;
1074		priv->hash_regs[7] = &regs->gaddr7;
1075	}
1076
1077	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1078		priv->padding = DEFAULT_PADDING;
1079	else
1080		priv->padding = 0;
1081
1082	if (dev->features & NETIF_F_IP_CSUM ||
1083			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1084		dev->hard_header_len += GMAC_FCB_LEN;
1085
1086	/* Program the isrg regs only if number of grps > 1 */
1087	if (priv->num_grps > 1) {
1088		baddr = &regs->isrg0;
1089		for (i = 0; i < priv->num_grps; i++) {
1090			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1091			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1092			gfar_write(baddr, isrg);
1093			baddr++;
1094			isrg = 0x0;
1095		}
1096	}
1097
1098	/* Need to reverse the bit maps as  bit_map's MSB is q0
1099	 * but, for_each_set_bit parses from right to left, which
1100	 * basically reverses the queue numbers */
1101	for (i = 0; i< priv->num_grps; i++) {
1102		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1103				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1104		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1105				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1106	}
1107
1108	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1109	 * also assign queues to groups */
1110	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1111		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1112		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1113				priv->num_rx_queues) {
1114			priv->gfargrp[grp_idx].num_rx_queues++;
1115			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1116			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1117			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1118		}
1119		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1120		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1121				priv->num_tx_queues) {
1122			priv->gfargrp[grp_idx].num_tx_queues++;
1123			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1124			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1125			tqueue = tqueue | (TQUEUE_EN0 >> i);
1126		}
1127		priv->gfargrp[grp_idx].rstat = rstat;
1128		priv->gfargrp[grp_idx].tstat = tstat;
1129		rstat = tstat =0;
1130	}
1131
1132	gfar_write(&regs->rqueue, rqueue);
1133	gfar_write(&regs->tqueue, tqueue);
1134
1135	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1136
1137	/* Initializing some of the rx/tx queue level parameters */
1138	for (i = 0; i < priv->num_tx_queues; i++) {
1139		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1140		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1141		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1142		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1143	}
1144
1145	for (i = 0; i < priv->num_rx_queues; i++) {
1146		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1147		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1148		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1149	}
1150
1151	/* enable filer if using multiple RX queues*/
1152	if(priv->num_rx_queues > 1)
1153		priv->rx_filer_enable = 1;
1154	/* Enable most messages by default */
1155	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157	/* Carrier starts down, phylib will bring it up */
1158	netif_carrier_off(dev);
1159
1160	err = register_netdev(dev);
1161
1162	if (err) {
1163		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1164				dev->name);
1165		goto register_fail;
1166	}
1167
1168	device_init_wakeup(&dev->dev,
1169		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1170
1171	/* fill out IRQ number and name fields */
1172	len_devname = strlen(dev->name);
1173	for (i = 0; i < priv->num_grps; i++) {
1174		strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1175				len_devname);
1176		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1177			strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1178				"_g", sizeof("_g"));
1179			priv->gfargrp[i].int_name_tx[
1180				strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1181			strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1182				priv->gfargrp[i].int_name_tx)],
1183				"_tx", sizeof("_tx") + 1);
1184
1185			strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1186					len_devname);
1187			strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1188					"_g", sizeof("_g"));
1189			priv->gfargrp[i].int_name_rx[
1190				strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1191			strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1192				priv->gfargrp[i].int_name_rx)],
1193				"_rx", sizeof("_rx") + 1);
1194
1195			strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1196					len_devname);
1197			strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1198				"_g", sizeof("_g"));
1199			priv->gfargrp[i].int_name_er[strlen(
1200					priv->gfargrp[i].int_name_er)] = i+48;
1201			strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1202				priv->gfargrp[i].int_name_er)],
1203				"_er", sizeof("_er") + 1);
1204		} else
1205			priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1206	}
1207
1208	/* Initialize the filer table */
1209	gfar_init_filer_table(priv);
1210
1211	/* Create all the sysfs files */
1212	gfar_init_sysfs(dev);
1213
1214	/* Print out the device info */
1215	printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1216
1217	/* Even more device info helps when determining which kernel */
1218	/* provided which set of benchmarks. */
1219	printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1220	for (i = 0; i < priv->num_rx_queues; i++)
1221		printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1222			dev->name, i, priv->rx_queue[i]->rx_ring_size);
1223	for(i = 0; i < priv->num_tx_queues; i++)
1224		 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1225			dev->name, i, priv->tx_queue[i]->tx_ring_size);
1226
1227	return 0;
1228
1229register_fail:
1230	unmap_group_regs(priv);
1231	free_tx_pointers(priv);
1232	free_rx_pointers(priv);
1233	if (priv->phy_node)
1234		of_node_put(priv->phy_node);
1235	if (priv->tbi_node)
1236		of_node_put(priv->tbi_node);
1237	free_netdev(dev);
1238	return err;
1239}
1240
1241static int gfar_remove(struct platform_device *ofdev)
1242{
1243	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244
1245	if (priv->phy_node)
1246		of_node_put(priv->phy_node);
1247	if (priv->tbi_node)
1248		of_node_put(priv->tbi_node);
1249
1250	dev_set_drvdata(&ofdev->dev, NULL);
1251
1252	unregister_netdev(priv->ndev);
1253	unmap_group_regs(priv);
1254	free_netdev(priv->ndev);
1255
1256	return 0;
1257}
1258
1259#ifdef CONFIG_PM
1260
1261static int gfar_suspend(struct device *dev)
1262{
1263	struct gfar_private *priv = dev_get_drvdata(dev);
1264	struct net_device *ndev = priv->ndev;
1265	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266	unsigned long flags;
1267	u32 tempval;
1268
1269	int magic_packet = priv->wol_en &&
1270		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1271
1272	netif_device_detach(ndev);
1273
1274	if (netif_running(ndev)) {
1275
1276		local_irq_save(flags);
1277		lock_tx_qs(priv);
1278		lock_rx_qs(priv);
1279
1280		gfar_halt_nodisable(ndev);
1281
1282		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283		tempval = gfar_read(&regs->maccfg1);
1284
1285		tempval &= ~MACCFG1_TX_EN;
1286
1287		if (!magic_packet)
1288			tempval &= ~MACCFG1_RX_EN;
1289
1290		gfar_write(&regs->maccfg1, tempval);
1291
1292		unlock_rx_qs(priv);
1293		unlock_tx_qs(priv);
1294		local_irq_restore(flags);
1295
1296		disable_napi(priv);
1297
1298		if (magic_packet) {
1299			/* Enable interrupt on Magic Packet */
1300			gfar_write(&regs->imask, IMASK_MAG);
1301
1302			/* Enable Magic Packet mode */
1303			tempval = gfar_read(&regs->maccfg2);
1304			tempval |= MACCFG2_MPEN;
1305			gfar_write(&regs->maccfg2, tempval);
1306		} else {
1307			phy_stop(priv->phydev);
1308		}
1309	}
1310
1311	return 0;
1312}
1313
1314static int gfar_resume(struct device *dev)
1315{
1316	struct gfar_private *priv = dev_get_drvdata(dev);
1317	struct net_device *ndev = priv->ndev;
1318	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319	unsigned long flags;
1320	u32 tempval;
1321	int magic_packet = priv->wol_en &&
1322		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1323
1324	if (!netif_running(ndev)) {
1325		netif_device_attach(ndev);
1326		return 0;
1327	}
1328
1329	if (!magic_packet && priv->phydev)
1330		phy_start(priv->phydev);
1331
1332	/* Disable Magic Packet mode, in case something
1333	 * else woke us up.
1334	 */
1335	local_irq_save(flags);
1336	lock_tx_qs(priv);
1337	lock_rx_qs(priv);
1338
1339	tempval = gfar_read(&regs->maccfg2);
1340	tempval &= ~MACCFG2_MPEN;
1341	gfar_write(&regs->maccfg2, tempval);
1342
1343	gfar_start(ndev);
1344
1345	unlock_rx_qs(priv);
1346	unlock_tx_qs(priv);
1347	local_irq_restore(flags);
1348
1349	netif_device_attach(ndev);
1350
1351	enable_napi(priv);
1352
1353	return 0;
1354}
1355
1356static int gfar_restore(struct device *dev)
1357{
1358	struct gfar_private *priv = dev_get_drvdata(dev);
1359	struct net_device *ndev = priv->ndev;
1360
1361	if (!netif_running(ndev))
1362		return 0;
1363
1364	gfar_init_bds(ndev);
1365	init_registers(ndev);
1366	gfar_set_mac_address(ndev);
1367	gfar_init_mac(ndev);
1368	gfar_start(ndev);
1369
1370	priv->oldlink = 0;
1371	priv->oldspeed = 0;
1372	priv->oldduplex = -1;
1373
1374	if (priv->phydev)
1375		phy_start(priv->phydev);
1376
1377	netif_device_attach(ndev);
1378	enable_napi(priv);
1379
1380	return 0;
1381}
1382
1383static struct dev_pm_ops gfar_pm_ops = {
1384	.suspend = gfar_suspend,
1385	.resume = gfar_resume,
1386	.freeze = gfar_suspend,
1387	.thaw = gfar_resume,
1388	.restore = gfar_restore,
1389};
1390
1391#define GFAR_PM_OPS (&gfar_pm_ops)
1392
1393#else
1394
1395#define GFAR_PM_OPS NULL
1396
1397#endif
1398
1399/* Reads the controller's registers to determine what interface
1400 * connects it to the PHY.
1401 */
1402static phy_interface_t gfar_get_interface(struct net_device *dev)
1403{
1404	struct gfar_private *priv = netdev_priv(dev);
1405	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1406	u32 ecntrl;
1407
1408	ecntrl = gfar_read(&regs->ecntrl);
1409
1410	if (ecntrl & ECNTRL_SGMII_MODE)
1411		return PHY_INTERFACE_MODE_SGMII;
1412
1413	if (ecntrl & ECNTRL_TBI_MODE) {
1414		if (ecntrl & ECNTRL_REDUCED_MODE)
1415			return PHY_INTERFACE_MODE_RTBI;
1416		else
1417			return PHY_INTERFACE_MODE_TBI;
1418	}
1419
1420	if (ecntrl & ECNTRL_REDUCED_MODE) {
1421		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1422			return PHY_INTERFACE_MODE_RMII;
1423		else {
1424			phy_interface_t interface = priv->interface;
1425
1426			/*
1427			 * This isn't autodetected right now, so it must
1428			 * be set by the device tree or platform code.
1429			 */
1430			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1431				return PHY_INTERFACE_MODE_RGMII_ID;
1432
1433			return PHY_INTERFACE_MODE_RGMII;
1434		}
1435	}
1436
1437	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1438		return PHY_INTERFACE_MODE_GMII;
1439
1440	return PHY_INTERFACE_MODE_MII;
1441}
1442
1443
1444/* Initializes driver's PHY state, and attaches to the PHY.
1445 * Returns 0 on success.
1446 */
1447static int init_phy(struct net_device *dev)
1448{
1449	struct gfar_private *priv = netdev_priv(dev);
1450	uint gigabit_support =
1451		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1452		SUPPORTED_1000baseT_Full : 0;
1453	phy_interface_t interface;
1454
1455	priv->oldlink = 0;
1456	priv->oldspeed = 0;
1457	priv->oldduplex = -1;
1458
1459	interface = gfar_get_interface(dev);
1460
1461	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1462				      interface);
1463	if (!priv->phydev)
1464		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1465							 interface);
1466	if (!priv->phydev) {
1467		dev_err(&dev->dev, "could not attach to PHY\n");
1468		return -ENODEV;
1469	}
1470
1471	if (interface == PHY_INTERFACE_MODE_SGMII)
1472		gfar_configure_serdes(dev);
1473
1474	/* Remove any features not supported by the controller */
1475	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1476	priv->phydev->advertising = priv->phydev->supported;
1477
1478	return 0;
1479}
1480
1481/*
1482 * Initialize TBI PHY interface for communicating with the
1483 * SERDES lynx PHY on the chip.  We communicate with this PHY
1484 * through the MDIO bus on each controller, treating it as a
1485 * "normal" PHY at the address found in the TBIPA register.  We assume
1486 * that the TBIPA register is valid.  Either the MDIO bus code will set
1487 * it to a value that doesn't conflict with other PHYs on the bus, or the
1488 * value doesn't matter, as there are no other PHYs on the bus.
1489 */
1490static void gfar_configure_serdes(struct net_device *dev)
1491{
1492	struct gfar_private *priv = netdev_priv(dev);
1493	struct phy_device *tbiphy;
1494
1495	if (!priv->tbi_node) {
1496		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1497				    "device tree specify a tbi-handle\n");
1498		return;
1499	}
1500
1501	tbiphy = of_phy_find_device(priv->tbi_node);
1502	if (!tbiphy) {
1503		dev_err(&dev->dev, "error: Could not get TBI device\n");
1504		return;
1505	}
1506
1507	/*
1508	 * If the link is already up, we must already be ok, and don't need to
1509	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1510	 * everything for us?  Resetting it takes the link down and requires
1511	 * several seconds for it to come back.
1512	 */
1513	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1514		return;
1515
1516	/* Single clk mode, mii mode off(for serdes communication) */
1517	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1518
1519	phy_write(tbiphy, MII_ADVERTISE,
1520			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1521			ADVERTISE_1000XPSE_ASYM);
1522
1523	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1524			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1525}
1526
1527static void init_registers(struct net_device *dev)
1528{
1529	struct gfar_private *priv = netdev_priv(dev);
1530	struct gfar __iomem *regs = NULL;
1531	int i = 0;
1532
1533	for (i = 0; i < priv->num_grps; i++) {
1534		regs = priv->gfargrp[i].regs;
1535		/* Clear IEVENT */
1536		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1537
1538		/* Initialize IMASK */
1539		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1540	}
1541
1542	regs = priv->gfargrp[0].regs;
1543	/* Init hash registers to zero */
1544	gfar_write(&regs->igaddr0, 0);
1545	gfar_write(&regs->igaddr1, 0);
1546	gfar_write(&regs->igaddr2, 0);
1547	gfar_write(&regs->igaddr3, 0);
1548	gfar_write(&regs->igaddr4, 0);
1549	gfar_write(&regs->igaddr5, 0);
1550	gfar_write(&regs->igaddr6, 0);
1551	gfar_write(&regs->igaddr7, 0);
1552
1553	gfar_write(&regs->gaddr0, 0);
1554	gfar_write(&regs->gaddr1, 0);
1555	gfar_write(&regs->gaddr2, 0);
1556	gfar_write(&regs->gaddr3, 0);
1557	gfar_write(&regs->gaddr4, 0);
1558	gfar_write(&regs->gaddr5, 0);
1559	gfar_write(&regs->gaddr6, 0);
1560	gfar_write(&regs->gaddr7, 0);
1561
1562	/* Zero out the rmon mib registers if it has them */
1563	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1564		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1565
1566		/* Mask off the CAM interrupts */
1567		gfar_write(&regs->rmon.cam1, 0xffffffff);
1568		gfar_write(&regs->rmon.cam2, 0xffffffff);
1569	}
1570
1571	/* Initialize the max receive buffer length */
1572	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1573
1574	/* Initialize the Minimum Frame Length Register */
1575	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1576}
1577
1578static int __gfar_is_rx_idle(struct gfar_private *priv)
1579{
1580	u32 res;
1581
1582	/*
1583	 * Normaly TSEC should not hang on GRS commands, so we should
1584	 * actually wait for IEVENT_GRSC flag.
1585	 */
1586	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1587		return 0;
1588
1589	/*
1590	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1591	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1592	 * and the Rx can be safely reset.
1593	 */
1594	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1595	res &= 0x7f807f80;
1596	if ((res & 0xffff) == (res >> 16))
1597		return 1;
1598
1599	return 0;
1600}
1601
1602/* Halt the receive and transmit queues */
1603static void gfar_halt_nodisable(struct net_device *dev)
1604{
1605	struct gfar_private *priv = netdev_priv(dev);
1606	struct gfar __iomem *regs = NULL;
1607	u32 tempval;
1608	int i = 0;
1609
1610	for (i = 0; i < priv->num_grps; i++) {
1611		regs = priv->gfargrp[i].regs;
1612		/* Mask all interrupts */
1613		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1614
1615		/* Clear all interrupts */
1616		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1617	}
1618
1619	regs = priv->gfargrp[0].regs;
1620	/* Stop the DMA, and wait for it to stop */
1621	tempval = gfar_read(&regs->dmactrl);
1622	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1623	    != (DMACTRL_GRS | DMACTRL_GTS)) {
1624		int ret;
1625
1626		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1627		gfar_write(&regs->dmactrl, tempval);
1628
1629		do {
1630			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1631				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1632				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1633			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1634				ret = __gfar_is_rx_idle(priv);
1635		} while (!ret);
1636	}
1637}
1638
1639/* Halt the receive and transmit queues */
1640void gfar_halt(struct net_device *dev)
1641{
1642	struct gfar_private *priv = netdev_priv(dev);
1643	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1644	u32 tempval;
1645
1646	gfar_halt_nodisable(dev);
1647
1648	/* Disable Rx and Tx */
1649	tempval = gfar_read(&regs->maccfg1);
1650	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1651	gfar_write(&regs->maccfg1, tempval);
1652}
1653
1654static void free_grp_irqs(struct gfar_priv_grp *grp)
1655{
1656	free_irq(grp->interruptError, grp);
1657	free_irq(grp->interruptTransmit, grp);
1658	free_irq(grp->interruptReceive, grp);
1659}
1660
1661void stop_gfar(struct net_device *dev)
1662{
1663	struct gfar_private *priv = netdev_priv(dev);
1664	unsigned long flags;
1665	int i;
1666
1667	phy_stop(priv->phydev);
1668
1669
1670	/* Lock it down */
1671	local_irq_save(flags);
1672	lock_tx_qs(priv);
1673	lock_rx_qs(priv);
1674
1675	gfar_halt(dev);
1676
1677	unlock_rx_qs(priv);
1678	unlock_tx_qs(priv);
1679	local_irq_restore(flags);
1680
1681	/* Free the IRQs */
1682	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1683		for (i = 0; i < priv->num_grps; i++)
1684			free_grp_irqs(&priv->gfargrp[i]);
1685	} else {
1686		for (i = 0; i < priv->num_grps; i++)
1687			free_irq(priv->gfargrp[i].interruptTransmit,
1688					&priv->gfargrp[i]);
1689	}
1690
1691	free_skb_resources(priv);
1692}
1693
1694static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1695{
1696	struct txbd8 *txbdp;
1697	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1698	int i, j;
1699
1700	txbdp = tx_queue->tx_bd_base;
1701
1702	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1703		if (!tx_queue->tx_skbuff[i])
1704			continue;
1705
1706		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1707				txbdp->length, DMA_TO_DEVICE);
1708		txbdp->lstatus = 0;
1709		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1710				j++) {
1711			txbdp++;
1712			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1713					txbdp->length, DMA_TO_DEVICE);
1714		}
1715		txbdp++;
1716		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1717		tx_queue->tx_skbuff[i] = NULL;
1718	}
1719	kfree(tx_queue->tx_skbuff);
1720}
1721
1722static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1723{
1724	struct rxbd8 *rxbdp;
1725	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1726	int i;
1727
1728	rxbdp = rx_queue->rx_bd_base;
1729
1730	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1731		if (rx_queue->rx_skbuff[i]) {
1732			dma_unmap_single(&priv->ofdev->dev,
1733					rxbdp->bufPtr, priv->rx_buffer_size,
1734					DMA_FROM_DEVICE);
1735			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1736			rx_queue->rx_skbuff[i] = NULL;
1737		}
1738		rxbdp->lstatus = 0;
1739		rxbdp->bufPtr = 0;
1740		rxbdp++;
1741	}
1742	kfree(rx_queue->rx_skbuff);
1743}
1744
1745/* If there are any tx skbs or rx skbs still around, free them.
1746 * Then free tx_skbuff and rx_skbuff */
1747static void free_skb_resources(struct gfar_private *priv)
1748{
1749	struct gfar_priv_tx_q *tx_queue = NULL;
1750	struct gfar_priv_rx_q *rx_queue = NULL;
1751	int i;
1752
1753	/* Go through all the buffer descriptors and free their data buffers */
1754	for (i = 0; i < priv->num_tx_queues; i++) {
1755		tx_queue = priv->tx_queue[i];
1756		if(tx_queue->tx_skbuff)
1757			free_skb_tx_queue(tx_queue);
1758	}
1759
1760	for (i = 0; i < priv->num_rx_queues; i++) {
1761		rx_queue = priv->rx_queue[i];
1762		if(rx_queue->rx_skbuff)
1763			free_skb_rx_queue(rx_queue);
1764	}
1765
1766	dma_free_coherent(&priv->ofdev->dev,
1767			sizeof(struct txbd8) * priv->total_tx_ring_size +
1768			sizeof(struct rxbd8) * priv->total_rx_ring_size,
1769			priv->tx_queue[0]->tx_bd_base,
1770			priv->tx_queue[0]->tx_bd_dma_base);
1771	skb_queue_purge(&priv->rx_recycle);
1772}
1773
1774void gfar_start(struct net_device *dev)
1775{
1776	struct gfar_private *priv = netdev_priv(dev);
1777	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1778	u32 tempval;
1779	int i = 0;
1780
1781	/* Enable Rx and Tx in MACCFG1 */
1782	tempval = gfar_read(&regs->maccfg1);
1783	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1784	gfar_write(&regs->maccfg1, tempval);
1785
1786	/* Initialize DMACTRL to have WWR and WOP */
1787	tempval = gfar_read(&regs->dmactrl);
1788	tempval |= DMACTRL_INIT_SETTINGS;
1789	gfar_write(&regs->dmactrl, tempval);
1790
1791	/* Make sure we aren't stopped */
1792	tempval = gfar_read(&regs->dmactrl);
1793	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1794	gfar_write(&regs->dmactrl, tempval);
1795
1796	for (i = 0; i < priv->num_grps; i++) {
1797		regs = priv->gfargrp[i].regs;
1798		/* Clear THLT/RHLT, so that the DMA starts polling now */
1799		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1800		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1801		/* Unmask the interrupts we look for */
1802		gfar_write(&regs->imask, IMASK_DEFAULT);
1803	}
1804
1805	dev->trans_start = jiffies; /* prevent tx timeout */
1806}
1807
1808void gfar_configure_coalescing(struct gfar_private *priv,
1809	unsigned long tx_mask, unsigned long rx_mask)
1810{
1811	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1812	u32 __iomem *baddr;
1813	int i = 0;
1814
1815	/* Backward compatible case ---- even if we enable
1816	 * multiple queues, there's only single reg to program
1817	 */
1818	gfar_write(&regs->txic, 0);
1819	if(likely(priv->tx_queue[0]->txcoalescing))
1820		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1821
1822	gfar_write(&regs->rxic, 0);
1823	if(unlikely(priv->rx_queue[0]->rxcoalescing))
1824		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1825
1826	if (priv->mode == MQ_MG_MODE) {
1827		baddr = &regs->txic0;
1828		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1829			if (likely(priv->tx_queue[i]->txcoalescing)) {
1830				gfar_write(baddr + i, 0);
1831				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1832			}
1833		}
1834
1835		baddr = &regs->rxic0;
1836		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1837			if (likely(priv->rx_queue[i]->rxcoalescing)) {
1838				gfar_write(baddr + i, 0);
1839				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1840			}
1841		}
1842	}
1843}
1844
1845static int register_grp_irqs(struct gfar_priv_grp *grp)
1846{
1847	struct gfar_private *priv = grp->priv;
1848	struct net_device *dev = priv->ndev;
1849	int err;
1850
1851	/* If the device has multiple interrupts, register for
1852	 * them.  Otherwise, only register for the one */
1853	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1854		/* Install our interrupt handlers for Error,
1855		 * Transmit, and Receive */
1856		if ((err = request_irq(grp->interruptError, gfar_error, 0,
1857				grp->int_name_er,grp)) < 0) {
1858			if (netif_msg_intr(priv))
1859				printk(KERN_ERR "%s: Can't get IRQ %d\n",
1860					dev->name, grp->interruptError);
1861
1862				goto err_irq_fail;
1863		}
1864
1865		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1866				0, grp->int_name_tx, grp)) < 0) {
1867			if (netif_msg_intr(priv))
1868				printk(KERN_ERR "%s: Can't get IRQ %d\n",
1869					dev->name, grp->interruptTransmit);
1870			goto tx_irq_fail;
1871		}
1872
1873		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1874				grp->int_name_rx, grp)) < 0) {
1875			if (netif_msg_intr(priv))
1876				printk(KERN_ERR "%s: Can't get IRQ %d\n",
1877					dev->name, grp->interruptReceive);
1878			goto rx_irq_fail;
1879		}
1880	} else {
1881		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882				grp->int_name_tx, grp)) < 0) {
1883			if (netif_msg_intr(priv))
1884				printk(KERN_ERR "%s: Can't get IRQ %d\n",
1885					dev->name, grp->interruptTransmit);
1886			goto err_irq_fail;
1887		}
1888	}
1889
1890	return 0;
1891
1892rx_irq_fail:
1893	free_irq(grp->interruptTransmit, grp);
1894tx_irq_fail:
1895	free_irq(grp->interruptError, grp);
1896err_irq_fail:
1897	return err;
1898
1899}
1900
1901/* Bring the controller up and running */
1902int startup_gfar(struct net_device *ndev)
1903{
1904	struct gfar_private *priv = netdev_priv(ndev);
1905	struct gfar __iomem *regs = NULL;
1906	int err, i, j;
1907
1908	for (i = 0; i < priv->num_grps; i++) {
1909		regs= priv->gfargrp[i].regs;
1910		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1911	}
1912
1913	regs= priv->gfargrp[0].regs;
1914	err = gfar_alloc_skb_resources(ndev);
1915	if (err)
1916		return err;
1917
1918	gfar_init_mac(ndev);
1919
1920	for (i = 0; i < priv->num_grps; i++) {
1921		err = register_grp_irqs(&priv->gfargrp[i]);
1922		if (err) {
1923			for (j = 0; j < i; j++)
1924				free_grp_irqs(&priv->gfargrp[j]);
1925				goto irq_fail;
1926		}
1927	}
1928
1929	/* Start the controller */
1930	gfar_start(ndev);
1931
1932	phy_start(priv->phydev);
1933
1934	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1935
1936	return 0;
1937
1938irq_fail:
1939	free_skb_resources(priv);
1940	return err;
1941}
1942
1943/* Called when something needs to use the ethernet device */
1944/* Returns 0 for success. */
1945static int gfar_enet_open(struct net_device *dev)
1946{
1947	struct gfar_private *priv = netdev_priv(dev);
1948	int err;
1949
1950	enable_napi(priv);
1951
1952	skb_queue_head_init(&priv->rx_recycle);
1953
1954	/* Initialize a bunch of registers */
1955	init_registers(dev);
1956
1957	gfar_set_mac_address(dev);
1958
1959	err = init_phy(dev);
1960
1961	if (err) {
1962		disable_napi(priv);
1963		return err;
1964	}
1965
1966	err = startup_gfar(dev);
1967	if (err) {
1968		disable_napi(priv);
1969		return err;
1970	}
1971
1972	netif_tx_start_all_queues(dev);
1973
1974	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1975
1976	return err;
1977}
1978
1979static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1980{
1981	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1982
1983	memset(fcb, 0, GMAC_FCB_LEN);
1984
1985	return fcb;
1986}
1987
1988static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1989{
1990	u8 flags = 0;
1991
1992	/* If we're here, it's a IP packet with a TCP or UDP
1993	 * payload.  We set it to checksum, using a pseudo-header
1994	 * we provide
1995	 */
1996	flags = TXFCB_DEFAULT;
1997
1998	/* Tell the controller what the protocol is */
1999	/* And provide the already calculated phcs */
2000	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2001		flags |= TXFCB_UDP;
2002		fcb->phcs = udp_hdr(skb)->check;
2003	} else
2004		fcb->phcs = tcp_hdr(skb)->check;
2005
2006	/* l3os is the distance between the start of the
2007	 * frame (skb->data) and the start of the IP hdr.
2008	 * l4os is the distance between the start of the
2009	 * l3 hdr and the l4 hdr */
2010	fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2011	fcb->l4os = skb_network_header_len(skb);
2012
2013	fcb->flags = flags;
2014}
2015
2016void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2017{
2018	fcb->flags |= TXFCB_VLN;
2019	fcb->vlctl = vlan_tx_tag_get(skb);
2020}
2021
2022static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2023			       struct txbd8 *base, int ring_size)
2024{
2025	struct txbd8 *new_bd = bdp + stride;
2026
2027	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2028}
2029
2030static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2031		int ring_size)
2032{
2033	return skip_txbd(bdp, 1, base, ring_size);
2034}
2035
2036/* This is called by the kernel when a frame is ready for transmission. */
2037/* It is pointed to by the dev->hard_start_xmit function pointer */
2038static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2039{
2040	struct gfar_private *priv = netdev_priv(dev);
2041	struct gfar_priv_tx_q *tx_queue = NULL;
2042	struct netdev_queue *txq;
2043	struct gfar __iomem *regs = NULL;
2044	struct txfcb *fcb = NULL;
2045	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2046	u32 lstatus;
2047	int i, rq = 0, do_tstamp = 0;
2048	u32 bufaddr;
2049	unsigned long flags;
2050	unsigned int nr_frags, nr_txbds, length;
2051	union skb_shared_tx *shtx;
2052
2053	/*
2054	 * TOE=1 frames larger than 2500 bytes may see excess delays
2055	 * before start of transmission.
2056	 */
2057	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2058			skb->ip_summed == CHECKSUM_PARTIAL &&
2059			skb->len > 2500)) {
2060		int ret;
2061
2062		ret = skb_checksum_help(skb);
2063		if (ret)
2064			return ret;
2065	}
2066
2067	rq = skb->queue_mapping;
2068	tx_queue = priv->tx_queue[rq];
2069	txq = netdev_get_tx_queue(dev, rq);
2070	base = tx_queue->tx_bd_base;
2071	regs = tx_queue->grp->regs;
2072	shtx = skb_tx(skb);
2073
2074	/* check if time stamp should be generated */
2075	if (unlikely(shtx->hardware && priv->hwts_tx_en))
2076		do_tstamp = 1;
2077
2078	/* make space for additional header when fcb is needed */
2079	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2080			(priv->vlgrp && vlan_tx_tag_present(skb)) ||
2081			unlikely(do_tstamp)) &&
2082			(skb_headroom(skb) < GMAC_FCB_LEN)) {
2083		struct sk_buff *skb_new;
2084
2085		skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2086		if (!skb_new) {
2087			dev->stats.tx_errors++;
2088			kfree_skb(skb);
2089			return NETDEV_TX_OK;
2090		}
2091		kfree_skb(skb);
2092		skb = skb_new;
2093	}
2094
2095	/* total number of fragments in the SKB */
2096	nr_frags = skb_shinfo(skb)->nr_frags;
2097
2098	/* calculate the required number of TxBDs for this skb */
2099	if (unlikely(do_tstamp))
2100		nr_txbds = nr_frags + 2;
2101	else
2102		nr_txbds = nr_frags + 1;
2103
2104	/* check if there is space to queue this packet */
2105	if (nr_txbds > tx_queue->num_txbdfree) {
2106		/* no space, stop the queue */
2107		netif_tx_stop_queue(txq);
2108		dev->stats.tx_fifo_errors++;
2109		return NETDEV_TX_BUSY;
2110	}
2111
2112	/* Update transmit stats */
2113	txq->tx_bytes += skb->len;
2114	txq->tx_packets ++;
2115
2116	txbdp = txbdp_start = tx_queue->cur_tx;
2117	lstatus = txbdp->lstatus;
2118
2119	/* Time stamp insertion requires one additional TxBD */
2120	if (unlikely(do_tstamp))
2121		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2122				tx_queue->tx_ring_size);
2123
2124	if (nr_frags == 0) {
2125		if (unlikely(do_tstamp))
2126			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2127					TXBD_INTERRUPT);
2128		else
2129			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2130	} else {
2131		/* Place the fragment addresses and lengths into the TxBDs */
2132		for (i = 0; i < nr_frags; i++) {
2133			/* Point at the next BD, wrapping as needed */
2134			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2135
2136			length = skb_shinfo(skb)->frags[i].size;
2137
2138			lstatus = txbdp->lstatus | length |
2139				BD_LFLAG(TXBD_READY);
2140
2141			/* Handle the last BD specially */
2142			if (i == nr_frags - 1)
2143				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2144
2145			bufaddr = dma_map_page(&priv->ofdev->dev,
2146					skb_shinfo(skb)->frags[i].page,
2147					skb_shinfo(skb)->frags[i].page_offset,
2148					length,
2149					DMA_TO_DEVICE);
2150
2151			/* set the TxBD length and buffer pointer */
2152			txbdp->bufPtr = bufaddr;
2153			txbdp->lstatus = lstatus;
2154		}
2155
2156		lstatus = txbdp_start->lstatus;
2157	}
2158
2159	/* Set up checksumming */
2160	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2161		fcb = gfar_add_fcb(skb);
2162		lstatus |= BD_LFLAG(TXBD_TOE);
2163		gfar_tx_checksum(skb, fcb);
2164	}
2165
2166	if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2167		if (unlikely(NULL == fcb)) {
2168			fcb = gfar_add_fcb(skb);
2169			lstatus |= BD_LFLAG(TXBD_TOE);
2170		}
2171
2172		gfar_tx_vlan(skb, fcb);
2173	}
2174
2175	/* Setup tx hardware time stamping if requested */
2176	if (unlikely(do_tstamp)) {
2177		shtx->in_progress = 1;
2178		if (fcb == NULL)
2179			fcb = gfar_add_fcb(skb);
2180		fcb->ptp = 1;
2181		lstatus |= BD_LFLAG(TXBD_TOE);
2182	}
2183
2184	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2185			skb_headlen(skb), DMA_TO_DEVICE);
2186
2187	/*
2188	 * If time stamping is requested one additional TxBD must be set up. The
2189	 * first TxBD points to the FCB and must have a data length of
2190	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2191	 * the full frame length.
2192	 */
2193	if (unlikely(do_tstamp)) {
2194		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2195		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2196				(skb_headlen(skb) - GMAC_FCB_LEN);
2197		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2198	} else {
2199		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2200	}
2201
2202	/*
2203	 * We can work in parallel with gfar_clean_tx_ring(), except
2204	 * when modifying num_txbdfree. Note that we didn't grab the lock
2205	 * when we were reading the num_txbdfree and checking for available
2206	 * space, that's because outside of this function it can only grow,
2207	 * and once we've got needed space, it cannot suddenly disappear.
2208	 *
2209	 * The lock also protects us from gfar_error(), which can modify
2210	 * regs->tstat and thus retrigger the transfers, which is why we
2211	 * also must grab the lock before setting ready bit for the first
2212	 * to be transmitted BD.
2213	 */
2214	spin_lock_irqsave(&tx_queue->txlock, flags);
2215
2216	/*
2217	 * The powerpc-specific eieio() is used, as wmb() has too strong
2218	 * semantics (it requires synchronization between cacheable and
2219	 * uncacheable mappings, which eieio doesn't provide and which we
2220	 * don't need), thus requiring a more expensive sync instruction.  At
2221	 * some point, the set of architecture-independent barrier functions
2222	 * should be expanded to include weaker barriers.
2223	 */
2224	eieio();
2225
2226	txbdp_start->lstatus = lstatus;
2227
2228	eieio(); /* force lstatus write before tx_skbuff */
2229
2230	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2231
2232	/* Update the current skb pointer to the next entry we will use
2233	 * (wrapping if necessary) */
2234	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2235		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2236
2237	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2238
2239	/* reduce TxBD free count */
2240	tx_queue->num_txbdfree -= (nr_txbds);
2241
2242	/* If the next BD still needs to be cleaned up, then the bds
2243	   are full.  We need to tell the kernel to stop sending us stuff. */
2244	if (!tx_queue->num_txbdfree) {
2245		netif_tx_stop_queue(txq);
2246
2247		dev->stats.tx_fifo_errors++;
2248	}
2249
2250	/* Tell the DMA to go go go */
2251	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2252
2253	/* Unlock priv */
2254	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2255
2256	return NETDEV_TX_OK;
2257}
2258
2259/* Stops the kernel queue, and halts the controller */
2260static int gfar_close(struct net_device *dev)
2261{
2262	struct gfar_private *priv = netdev_priv(dev);
2263
2264	disable_napi(priv);
2265
2266	cancel_work_sync(&priv->reset_task);
2267	stop_gfar(dev);
2268
2269	/* Disconnect from the PHY */
2270	phy_disconnect(priv->phydev);
2271	priv->phydev = NULL;
2272
2273	netif_tx_stop_all_queues(dev);
2274
2275	return 0;
2276}
2277
2278/* Changes the mac address if the controller is not running. */
2279static int gfar_set_mac_address(struct net_device *dev)
2280{
2281	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2282
2283	return 0;
2284}
2285
2286
2287/* Enables and disables VLAN insertion/extraction */
2288static void gfar_vlan_rx_register(struct net_device *dev,
2289		struct vlan_group *grp)
2290{
2291	struct gfar_private *priv = netdev_priv(dev);
2292	struct gfar __iomem *regs = NULL;
2293	unsigned long flags;
2294	u32 tempval;
2295
2296	regs = priv->gfargrp[0].regs;
2297	local_irq_save(flags);
2298	lock_rx_qs(priv);
2299
2300	priv->vlgrp = grp;
2301
2302	if (grp) {
2303		/* Enable VLAN tag insertion */
2304		tempval = gfar_read(&regs->tctrl);
2305		tempval |= TCTRL_VLINS;
2306
2307		gfar_write(&regs->tctrl, tempval);
2308
2309		/* Enable VLAN tag extraction */
2310		tempval = gfar_read(&regs->rctrl);
2311		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2312		gfar_write(&regs->rctrl, tempval);
2313	} else {
2314		/* Disable VLAN tag insertion */
2315		tempval = gfar_read(&regs->tctrl);
2316		tempval &= ~TCTRL_VLINS;
2317		gfar_write(&regs->tctrl, tempval);
2318
2319		/* Disable VLAN tag extraction */
2320		tempval = gfar_read(&regs->rctrl);
2321		tempval &= ~RCTRL_VLEX;
2322		/* If parse is no longer required, then disable parser */
2323		if (tempval & RCTRL_REQ_PARSER)
2324			tempval |= RCTRL_PRSDEP_INIT;
2325		else
2326			tempval &= ~RCTRL_PRSDEP_INIT;
2327		gfar_write(&regs->rctrl, tempval);
2328	}
2329
2330	gfar_change_mtu(dev, dev->mtu);
2331
2332	unlock_rx_qs(priv);
2333	local_irq_restore(flags);
2334}
2335
2336static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2337{
2338	int tempsize, tempval;
2339	struct gfar_private *priv = netdev_priv(dev);
2340	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2341	int oldsize = priv->rx_buffer_size;
2342	int frame_size = new_mtu + ETH_HLEN;
2343
2344	if (priv->vlgrp)
2345		frame_size += VLAN_HLEN;
2346
2347	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2348		if (netif_msg_drv(priv))
2349			printk(KERN_ERR "%s: Invalid MTU setting\n",
2350					dev->name);
2351		return -EINVAL;
2352	}
2353
2354	if (gfar_uses_fcb(priv))
2355		frame_size += GMAC_FCB_LEN;
2356
2357	frame_size += priv->padding;
2358
2359	tempsize =
2360	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2361	    INCREMENTAL_BUFFER_SIZE;
2362
2363	/* Only stop and start the controller if it isn't already
2364	 * stopped, and we changed something */
2365	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2366		stop_gfar(dev);
2367
2368	priv->rx_buffer_size = tempsize;
2369
2370	dev->mtu = new_mtu;
2371
2372	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2373	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2374
2375	/* If the mtu is larger than the max size for standard
2376	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2377	 * to allow huge frames, and to check the length */
2378	tempval = gfar_read(&regs->maccfg2);
2379
2380	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2381			gfar_has_errata(priv, GFAR_ERRATA_74))
2382		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2383	else
2384		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2385
2386	gfar_write(&regs->maccfg2, tempval);
2387
2388	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2389		startup_gfar(dev);
2390
2391	return 0;
2392}
2393
2394/* gfar_reset_task gets scheduled when a packet has not been
2395 * transmitted after a set amount of time.
2396 * For now, assume that clearing out all the structures, and
2397 * starting over will fix the problem.
2398 */
2399static void gfar_reset_task(struct work_struct *work)
2400{
2401	struct gfar_private *priv = container_of(work, struct gfar_private,
2402			reset_task);
2403	struct net_device *dev = priv->ndev;
2404
2405	if (dev->flags & IFF_UP) {
2406		netif_tx_stop_all_queues(dev);
2407		stop_gfar(dev);
2408		startup_gfar(dev);
2409		netif_tx_start_all_queues(dev);
2410	}
2411
2412	netif_tx_schedule_all(dev);
2413}
2414
2415static void gfar_timeout(struct net_device *dev)
2416{
2417	struct gfar_private *priv = netdev_priv(dev);
2418
2419	dev->stats.tx_errors++;
2420	schedule_work(&priv->reset_task);
2421}
2422
2423static void gfar_align_skb(struct sk_buff *skb)
2424{
2425	/* We need the data buffer to be aligned properly.  We will reserve
2426	 * as many bytes as needed to align the data properly
2427	 */
2428	skb_reserve(skb, RXBUF_ALIGNMENT -
2429		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2430}
2431
2432/* Interrupt Handler for Transmit complete */
2433static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2434{
2435	struct net_device *dev = tx_queue->dev;
2436	struct gfar_private *priv = netdev_priv(dev);
2437	struct gfar_priv_rx_q *rx_queue = NULL;
2438	struct txbd8 *bdp, *next = NULL;
2439	struct txbd8 *lbdp = NULL;
2440	struct txbd8 *base = tx_queue->tx_bd_base;
2441	struct sk_buff *skb;
2442	int skb_dirtytx;
2443	int tx_ring_size = tx_queue->tx_ring_size;
2444	int frags = 0, nr_txbds = 0;
2445	int i;
2446	int howmany = 0;
2447	u32 lstatus;
2448	size_t buflen;
2449	union skb_shared_tx *shtx;
2450
2451	rx_queue = priv->rx_queue[tx_queue->qindex];
2452	bdp = tx_queue->dirty_tx;
2453	skb_dirtytx = tx_queue->skb_dirtytx;
2454
2455	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2456		unsigned long flags;
2457
2458		frags = skb_shinfo(skb)->nr_frags;
2459
2460		/*
2461		 * When time stamping, one additional TxBD must be freed.
2462		 * Also, we need to dma_unmap_single() the TxPAL.
2463		 */
2464		shtx = skb_tx(skb);
2465		if (unlikely(shtx->in_progress))
2466			nr_txbds = frags + 2;
2467		else
2468			nr_txbds = frags + 1;
2469
2470		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2471
2472		lstatus = lbdp->lstatus;
2473
2474		/* Only clean completed frames */
2475		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2476				(lstatus & BD_LENGTH_MASK))
2477			break;
2478
2479		if (unlikely(shtx->in_progress)) {
2480			next = next_txbd(bdp, base, tx_ring_size);
2481			buflen = next->length + GMAC_FCB_LEN;
2482		} else
2483			buflen = bdp->length;
2484
2485		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2486				buflen, DMA_TO_DEVICE);
2487
2488		if (unlikely(shtx->in_progress)) {
2489			struct skb_shared_hwtstamps shhwtstamps;
2490			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2491			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2492			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2493			skb_tstamp_tx(skb, &shhwtstamps);
2494			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2495			bdp = next;
2496		}
2497
2498		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2499		bdp = next_txbd(bdp, base, tx_ring_size);
2500
2501		for (i = 0; i < frags; i++) {
2502			dma_unmap_page(&priv->ofdev->dev,
2503					bdp->bufPtr,
2504					bdp->length,
2505					DMA_TO_DEVICE);
2506			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2507			bdp = next_txbd(bdp, base, tx_ring_size);
2508		}
2509
2510		/*
2511		 * If there's room in the queue (limit it to rx_buffer_size)
2512		 * we add this skb back into the pool, if it's the right size
2513		 */
2514		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2515				skb_recycle_check(skb, priv->rx_buffer_size +
2516					RXBUF_ALIGNMENT)) {
2517			gfar_align_skb(skb);
2518			__skb_queue_head(&priv->rx_recycle, skb);
2519		} else
2520			dev_kfree_skb_any(skb);
2521
2522		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2523
2524		skb_dirtytx = (skb_dirtytx + 1) &
2525			TX_RING_MOD_MASK(tx_ring_size);
2526
2527		howmany++;
2528		spin_lock_irqsave(&tx_queue->txlock, flags);
2529		tx_queue->num_txbdfree += nr_txbds;
2530		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2531	}
2532
2533	/* If we freed a buffer, we can restart transmission, if necessary */
2534	if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2535		netif_wake_subqueue(dev, tx_queue->qindex);
2536
2537	/* Update dirty indicators */
2538	tx_queue->skb_dirtytx = skb_dirtytx;
2539	tx_queue->dirty_tx = bdp;
2540
2541	return howmany;
2542}
2543
2544static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2545{
2546	unsigned long flags;
2547
2548	spin_lock_irqsave(&gfargrp->grplock, flags);
2549	if (napi_schedule_prep(&gfargrp->napi)) {
2550		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2551		__napi_schedule(&gfargrp->napi);
2552	} else {
2553		/*
2554		 * Clear IEVENT, so interrupts aren't called again
2555		 * because of the packets that have already arrived.
2556		 */
2557		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2558	}
2559	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2560
2561}
2562
2563/* Interrupt Handler for Transmit complete */
2564static irqreturn_t gfar_transmit(int irq, void *grp_id)
2565{
2566	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2567	return IRQ_HANDLED;
2568}
2569
2570static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2571		struct sk_buff *skb)
2572{
2573	struct net_device *dev = rx_queue->dev;
2574	struct gfar_private *priv = netdev_priv(dev);
2575	dma_addr_t buf;
2576
2577	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2578			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2579	gfar_init_rxbdp(rx_queue, bdp, buf);
2580}
2581
2582static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2583{
2584	struct gfar_private *priv = netdev_priv(dev);
2585	struct sk_buff *skb = NULL;
2586
2587	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2588	if (!skb)
2589		return NULL;
2590
2591	gfar_align_skb(skb);
2592
2593	return skb;
2594}
2595
2596struct sk_buff * gfar_new_skb(struct net_device *dev)
2597{
2598	struct gfar_private *priv = netdev_priv(dev);
2599	struct sk_buff *skb = NULL;
2600
2601	skb = __skb_dequeue(&priv->rx_recycle);
2602	if (!skb)
2603		skb = gfar_alloc_skb(dev);
2604
2605	return skb;
2606}
2607
2608static inline void count_errors(unsigned short status, struct net_device *dev)
2609{
2610	struct gfar_private *priv = netdev_priv(dev);
2611	struct net_device_stats *stats = &dev->stats;
2612	struct gfar_extra_stats *estats = &priv->extra_stats;
2613
2614	/* If the packet was truncated, none of the other errors
2615	 * matter */
2616	if (status & RXBD_TRUNCATED) {
2617		stats->rx_length_errors++;
2618
2619		estats->rx_trunc++;
2620
2621		return;
2622	}
2623	/* Count the errors, if there were any */
2624	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2625		stats->rx_length_errors++;
2626
2627		if (status & RXBD_LARGE)
2628			estats->rx_large++;
2629		else
2630			estats->rx_short++;
2631	}
2632	if (status & RXBD_NONOCTET) {
2633		stats->rx_frame_errors++;
2634		estats->rx_nonoctet++;
2635	}
2636	if (status & RXBD_CRCERR) {
2637		estats->rx_crcerr++;
2638		stats->rx_crc_errors++;
2639	}
2640	if (status & RXBD_OVERRUN) {
2641		estats->rx_overrun++;
2642		stats->rx_crc_errors++;
2643	}
2644}
2645
2646irqreturn_t gfar_receive(int irq, void *grp_id)
2647{
2648	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2649	return IRQ_HANDLED;
2650}
2651
2652static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2653{
2654	/* If valid headers were found, and valid sums
2655	 * were verified, then we tell the kernel that no
2656	 * checksumming is necessary.  Otherwise, it is */
2657	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2658		skb->ip_summed = CHECKSUM_UNNECESSARY;
2659	else
2660		skb->ip_summed = CHECKSUM_NONE;
2661}
2662
2663
2664/* gfar_process_frame() -- handle one incoming packet if skb
2665 * isn't NULL.  */
2666static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2667			      int amount_pull)
2668{
2669	struct gfar_private *priv = netdev_priv(dev);
2670	struct rxfcb *fcb = NULL;
2671
2672	int ret;
2673
2674	/* fcb is at the beginning if exists */
2675	fcb = (struct rxfcb *)skb->data;
2676
2677	/* Remove the FCB from the skb */
2678	/* Remove the padded bytes, if there are any */
2679	if (amount_pull) {
2680		skb_record_rx_queue(skb, fcb->rq);
2681		skb_pull(skb, amount_pull);
2682	}
2683
2684	/* Get receive timestamp from the skb */
2685	if (priv->hwts_rx_en) {
2686		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2687		u64 *ns = (u64 *) skb->data;
2688		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2689		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2690	}
2691
2692	if (priv->padding)
2693		skb_pull(skb, priv->padding);
2694
2695	if (priv->rx_csum_enable)
2696		gfar_rx_checksum(skb, fcb);
2697
2698	/* Tell the skb what kind of packet this is */
2699	skb->protocol = eth_type_trans(skb, dev);
2700
2701	/* Send the packet up the stack */
2702	if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2703		ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2704	else
2705		ret = netif_receive_skb(skb);
2706
2707	if (NET_RX_DROP == ret)
2708		priv->extra_stats.kernel_dropped++;
2709
2710	return 0;
2711}
2712
2713/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2714 *   until the budget/quota has been reached. Returns the number
2715 *   of frames handled
2716 */
2717int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2718{
2719	struct net_device *dev = rx_queue->dev;
2720	struct rxbd8 *bdp, *base;
2721	struct sk_buff *skb;
2722	int pkt_len;
2723	int amount_pull;
2724	int howmany = 0;
2725	struct gfar_private *priv = netdev_priv(dev);
2726
2727	/* Get the first full descriptor */
2728	bdp = rx_queue->cur_rx;
2729	base = rx_queue->rx_bd_base;
2730
2731	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2732
2733	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2734		struct sk_buff *newskb;
2735		rmb();
2736
2737		/* Add another skb for the future */
2738		newskb = gfar_new_skb(dev);
2739
2740		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2741
2742		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2743				priv->rx_buffer_size, DMA_FROM_DEVICE);
2744
2745		if (unlikely(!(bdp->status & RXBD_ERR) &&
2746				bdp->length > priv->rx_buffer_size))
2747			bdp->status = RXBD_LARGE;
2748
2749		/* We drop the frame if we failed to allocate a new buffer */
2750		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2751				 bdp->status & RXBD_ERR)) {
2752			count_errors(bdp->status, dev);
2753
2754			if (unlikely(!newskb))
2755				newskb = skb;
2756			else if (skb)
2757				__skb_queue_head(&priv->rx_recycle, skb);
2758		} else {
2759			/* Increment the number of packets */
2760			rx_queue->stats.rx_packets++;
2761			howmany++;
2762
2763			if (likely(skb)) {
2764				pkt_len = bdp->length - ETH_FCS_LEN;
2765				/* Remove the FCS from the packet length */
2766				skb_put(skb, pkt_len);
2767				rx_queue->stats.rx_bytes += pkt_len;
2768				skb_record_rx_queue(skb, rx_queue->qindex);
2769				gfar_process_frame(dev, skb, amount_pull);
2770
2771			} else {
2772				if (netif_msg_rx_err(priv))
2773					printk(KERN_WARNING
2774					       "%s: Missing skb!\n", dev->name);
2775				rx_queue->stats.rx_dropped++;
2776				priv->extra_stats.rx_skbmissing++;
2777			}
2778
2779		}
2780
2781		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2782
2783		/* Setup the new bdp */
2784		gfar_new_rxbdp(rx_queue, bdp, newskb);
2785
2786		/* Update to the next pointer */
2787		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2788
2789		/* update to point at the next skb */
2790		rx_queue->skb_currx =
2791		    (rx_queue->skb_currx + 1) &
2792		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2793	}
2794
2795	/* Update the current rxbd pointer to be the next one */
2796	rx_queue->cur_rx = bdp;
2797
2798	return howmany;
2799}
2800
2801static int gfar_poll(struct napi_struct *napi, int budget)
2802{
2803	struct gfar_priv_grp *gfargrp = container_of(napi,
2804			struct gfar_priv_grp, napi);
2805	struct gfar_private *priv = gfargrp->priv;
2806	struct gfar __iomem *regs = gfargrp->regs;
2807	struct gfar_priv_tx_q *tx_queue = NULL;
2808	struct gfar_priv_rx_q *rx_queue = NULL;
2809	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2810	int tx_cleaned = 0, i, left_over_budget = budget;
2811	unsigned long serviced_queues = 0;
2812	int num_queues = 0;
2813
2814	num_queues = gfargrp->num_rx_queues;
2815	budget_per_queue = budget/num_queues;
2816
2817	/* Clear IEVENT, so interrupts aren't called again
2818	 * because of the packets that have already arrived */
2819	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2820
2821	while (num_queues && left_over_budget) {
2822
2823		budget_per_queue = left_over_budget/num_queues;
2824		left_over_budget = 0;
2825
2826		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2827			if (test_bit(i, &serviced_queues))
2828				continue;
2829			rx_queue = priv->rx_queue[i];
2830			tx_queue = priv->tx_queue[rx_queue->qindex];
2831
2832			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2833			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2834							budget_per_queue);
2835			rx_cleaned += rx_cleaned_per_queue;
2836			if(rx_cleaned_per_queue < budget_per_queue) {
2837				left_over_budget = left_over_budget +
2838					(budget_per_queue - rx_cleaned_per_queue);
2839				set_bit(i, &serviced_queues);
2840				num_queues--;
2841			}
2842		}
2843	}
2844
2845	if (tx_cleaned)
2846		return budget;
2847
2848	if (rx_cleaned < budget) {
2849		napi_complete(napi);
2850
2851		/* Clear the halt bit in RSTAT */
2852		gfar_write(&regs->rstat, gfargrp->rstat);
2853
2854		gfar_write(&regs->imask, IMASK_DEFAULT);
2855
2856		/* If we are coalescing interrupts, update the timer */
2857		/* Otherwise, clear it */
2858		gfar_configure_coalescing(priv,
2859				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2860	}
2861
2862	return rx_cleaned;
2863}
2864
2865#ifdef CONFIG_NET_POLL_CONTROLLER
2866/*
2867 * Polling 'interrupt' - used by things like netconsole to send skbs
2868 * without having to re-enable interrupts. It's not called while
2869 * the interrupt routine is executing.
2870 */
2871static void gfar_netpoll(struct net_device *dev)
2872{
2873	struct gfar_private *priv = netdev_priv(dev);
2874	int i = 0;
2875
2876	/* If the device has multiple interrupts, run tx/rx */
2877	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2878		for (i = 0; i < priv->num_grps; i++) {
2879			disable_irq(priv->gfargrp[i].interruptTransmit);
2880			disable_irq(priv->gfargrp[i].interruptReceive);
2881			disable_irq(priv->gfargrp[i].interruptError);
2882			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2883						&priv->gfargrp[i]);
2884			enable_irq(priv->gfargrp[i].interruptError);
2885			enable_irq(priv->gfargrp[i].interruptReceive);
2886			enable_irq(priv->gfargrp[i].interruptTransmit);
2887		}
2888	} else {
2889		for (i = 0; i < priv->num_grps; i++) {
2890			disable_irq(priv->gfargrp[i].interruptTransmit);
2891			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2892						&priv->gfargrp[i]);
2893			enable_irq(priv->gfargrp[i].interruptTransmit);
2894		}
2895	}
2896}
2897#endif
2898
2899/* The interrupt handler for devices with one interrupt */
2900static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2901{
2902	struct gfar_priv_grp *gfargrp = grp_id;
2903
2904	/* Save ievent for future reference */
2905	u32 events = gfar_read(&gfargrp->regs->ievent);
2906
2907	/* Check for reception */
2908	if (events & IEVENT_RX_MASK)
2909		gfar_receive(irq, grp_id);
2910
2911	/* Check for transmit completion */
2912	if (events & IEVENT_TX_MASK)
2913		gfar_transmit(irq, grp_id);
2914
2915	/* Check for errors */
2916	if (events & IEVENT_ERR_MASK)
2917		gfar_error(irq, grp_id);
2918
2919	return IRQ_HANDLED;
2920}
2921
2922/* Called every time the controller might need to be made
2923 * aware of new link state.  The PHY code conveys this
2924 * information through variables in the phydev structure, and this
2925 * function converts those variables into the appropriate
2926 * register values, and can bring down the device if needed.
2927 */
2928static void adjust_link(struct net_device *dev)
2929{
2930	struct gfar_private *priv = netdev_priv(dev);
2931	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2932	unsigned long flags;
2933	struct phy_device *phydev = priv->phydev;
2934	int new_state = 0;
2935
2936	local_irq_save(flags);
2937	lock_tx_qs(priv);
2938
2939	if (phydev->link) {
2940		u32 tempval = gfar_read(&regs->maccfg2);
2941		u32 ecntrl = gfar_read(&regs->ecntrl);
2942
2943		/* Now we make sure that we can be in full duplex mode.
2944		 * If not, we operate in half-duplex mode. */
2945		if (phydev->duplex != priv->oldduplex) {
2946			new_state = 1;
2947			if (!(phydev->duplex))
2948				tempval &= ~(MACCFG2_FULL_DUPLEX);
2949			else
2950				tempval |= MACCFG2_FULL_DUPLEX;
2951
2952			priv->oldduplex = phydev->duplex;
2953		}
2954
2955		if (phydev->speed != priv->oldspeed) {
2956			new_state = 1;
2957			switch (phydev->speed) {
2958			case 1000:
2959				tempval =
2960				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2961
2962				ecntrl &= ~(ECNTRL_R100);
2963				break;
2964			case 100:
2965			case 10:
2966				tempval =
2967				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2968
2969				/* Reduced mode distinguishes
2970				 * between 10 and 100 */
2971				if (phydev->speed == SPEED_100)
2972					ecntrl |= ECNTRL_R100;
2973				else
2974					ecntrl &= ~(ECNTRL_R100);
2975				break;
2976			default:
2977				if (netif_msg_link(priv))
2978					printk(KERN_WARNING
2979						"%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2980						dev->name, phydev->speed);
2981				break;
2982			}
2983
2984			priv->oldspeed = phydev->speed;
2985		}
2986
2987		gfar_write(&regs->maccfg2, tempval);
2988		gfar_write(&regs->ecntrl, ecntrl);
2989
2990		if (!priv->oldlink) {
2991			new_state = 1;
2992			priv->oldlink = 1;
2993		}
2994	} else if (priv->oldlink) {
2995		new_state = 1;
2996		priv->oldlink = 0;
2997		priv->oldspeed = 0;
2998		priv->oldduplex = -1;
2999	}
3000
3001	if (new_state && netif_msg_link(priv))
3002		phy_print_status(phydev);
3003	unlock_tx_qs(priv);
3004	local_irq_restore(flags);
3005}
3006
3007/* Update the hash table based on the current list of multicast
3008 * addresses we subscribe to.  Also, change the promiscuity of
3009 * the device based on the flags (this function is called
3010 * whenever dev->flags is changed */
3011static void gfar_set_multi(struct net_device *dev)
3012{
3013	struct netdev_hw_addr *ha;
3014	struct gfar_private *priv = netdev_priv(dev);
3015	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3016	u32 tempval;
3017
3018	if (dev->flags & IFF_PROMISC) {
3019		/* Set RCTRL to PROM */
3020		tempval = gfar_read(&regs->rctrl);
3021		tempval |= RCTRL_PROM;
3022		gfar_write(&regs->rctrl, tempval);
3023	} else {
3024		/* Set RCTRL to not PROM */
3025		tempval = gfar_read(&regs->rctrl);
3026		tempval &= ~(RCTRL_PROM);
3027		gfar_write(&regs->rctrl, tempval);
3028	}
3029
3030	if (dev->flags & IFF_ALLMULTI) {
3031		/* Set the hash to rx all multicast frames */
3032		gfar_write(&regs->igaddr0, 0xffffffff);
3033		gfar_write(&regs->igaddr1, 0xffffffff);
3034		gfar_write(&regs->igaddr2, 0xffffffff);
3035		gfar_write(&regs->igaddr3, 0xffffffff);
3036		gfar_write(&regs->igaddr4, 0xffffffff);
3037		gfar_write(&regs->igaddr5, 0xffffffff);
3038		gfar_write(&regs->igaddr6, 0xffffffff);
3039		gfar_write(&regs->igaddr7, 0xffffffff);
3040		gfar_write(&regs->gaddr0, 0xffffffff);
3041		gfar_write(&regs->gaddr1, 0xffffffff);
3042		gfar_write(&regs->gaddr2, 0xffffffff);
3043		gfar_write(&regs->gaddr3, 0xffffffff);
3044		gfar_write(&regs->gaddr4, 0xffffffff);
3045		gfar_write(&regs->gaddr5, 0xffffffff);
3046		gfar_write(&regs->gaddr6, 0xffffffff);
3047		gfar_write(&regs->gaddr7, 0xffffffff);
3048	} else {
3049		int em_num;
3050		int idx;
3051
3052		/* zero out the hash */
3053		gfar_write(&regs->igaddr0, 0x0);
3054		gfar_write(&regs->igaddr1, 0x0);
3055		gfar_write(&regs->igaddr2, 0x0);
3056		gfar_write(&regs->igaddr3, 0x0);
3057		gfar_write(&regs->igaddr4, 0x0);
3058		gfar_write(&regs->igaddr5, 0x0);
3059		gfar_write(&regs->igaddr6, 0x0);
3060		gfar_write(&regs->igaddr7, 0x0);
3061		gfar_write(&regs->gaddr0, 0x0);
3062		gfar_write(&regs->gaddr1, 0x0);
3063		gfar_write(&regs->gaddr2, 0x0);
3064		gfar_write(&regs->gaddr3, 0x0);
3065		gfar_write(&regs->gaddr4, 0x0);
3066		gfar_write(&regs->gaddr5, 0x0);
3067		gfar_write(&regs->gaddr6, 0x0);
3068		gfar_write(&regs->gaddr7, 0x0);
3069
3070		/* If we have extended hash tables, we need to
3071		 * clear the exact match registers to prepare for
3072		 * setting them */
3073		if (priv->extended_hash) {
3074			em_num = GFAR_EM_NUM + 1;
3075			gfar_clear_exact_match(dev);
3076			idx = 1;
3077		} else {
3078			idx = 0;
3079			em_num = 0;
3080		}
3081
3082		if (netdev_mc_empty(dev))
3083			return;
3084
3085		/* Parse the list, and set the appropriate bits */
3086		netdev_for_each_mc_addr(ha, dev) {
3087			if (idx < em_num) {
3088				gfar_set_mac_for_addr(dev, idx, ha->addr);
3089				idx++;
3090			} else
3091				gfar_set_hash_for_addr(dev, ha->addr);
3092		}
3093	}
3094}
3095
3096
3097/* Clears each of the exact match registers to zero, so they
3098 * don't interfere with normal reception */
3099static void gfar_clear_exact_match(struct net_device *dev)
3100{
3101	int idx;
3102	u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
3103
3104	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3105		gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
3106}
3107
3108/* Set the appropriate hash bit for the given addr */
3109/* The algorithm works like so:
3110 * 1) Take the Destination Address (ie the multicast address), and
3111 * do a CRC on it (little endian), and reverse the bits of the
3112 * result.
3113 * 2) Use the 8 most significant bits as a hash into a 256-entry
3114 * table.  The table is controlled through 8 32-bit registers:
3115 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3116 * gaddr7.  This means that the 3 most significant bits in the
3117 * hash index which gaddr register to use, and the 5 other bits
3118 * indicate which bit (assuming an IBM numbering scheme, which
3119 * for PowerPC (tm) is usually the case) in the register holds
3120 * the entry. */
3121static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3122{
3123	u32 tempval;
3124	struct gfar_private *priv = netdev_priv(dev);
3125	u32 result = ether_crc(MAC_ADDR_LEN, addr);
3126	int width = priv->hash_width;
3127	u8 whichbit = (result >> (32 - width)) & 0x1f;
3128	u8 whichreg = result >> (32 - width + 5);
3129	u32 value = (1 << (31-whichbit));
3130
3131	tempval = gfar_read(priv->hash_regs[whichreg]);
3132	tempval |= value;
3133	gfar_write(priv->hash_regs[whichreg], tempval);
3134}
3135
3136
3137/* There are multiple MAC Address register pairs on some controllers
3138 * This function sets the numth pair to a given address
3139 */
3140static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
3141{
3142	struct gfar_private *priv = netdev_priv(dev);
3143	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3144	int idx;
3145	char tmpbuf[MAC_ADDR_LEN];
3146	u32 tempval;
3147	u32 __iomem *macptr = &regs->macstnaddr1;
3148
3149	macptr += num*2;
3150
3151	/* Now copy it into the mac registers backwards, cuz */
3152	/* little endian is silly */
3153	for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3154		tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3155
3156	gfar_write(macptr, *((u32 *) (tmpbuf)));
3157
3158	tempval = *((u32 *) (tmpbuf + 4));
3159
3160	gfar_write(macptr+1, tempval);
3161}
3162
3163/* GFAR error interrupt handler */
3164static irqreturn_t gfar_error(int irq, void *grp_id)
3165{
3166	struct gfar_priv_grp *gfargrp = grp_id;
3167	struct gfar __iomem *regs = gfargrp->regs;
3168	struct gfar_private *priv= gfargrp->priv;
3169	struct net_device *dev = priv->ndev;
3170
3171	/* Save ievent for future reference */
3172	u32 events = gfar_read(&regs->ievent);
3173
3174	/* Clear IEVENT */
3175	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3176
3177	/* Magic Packet is not an error. */
3178	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3179	    (events & IEVENT_MAG))
3180		events &= ~IEVENT_MAG;
3181
3182	/* Hmm... */
3183	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3184		printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3185		       dev->name, events, gfar_read(&regs->imask));
3186
3187	/* Update the error counters */
3188	if (events & IEVENT_TXE) {
3189		dev->stats.tx_errors++;
3190
3191		if (events & IEVENT_LC)
3192			dev->stats.tx_window_errors++;
3193		if (events & IEVENT_CRL)
3194			dev->stats.tx_aborted_errors++;
3195		if (events & IEVENT_XFUN) {
3196			unsigned long flags;
3197
3198			if (netif_msg_tx_err(priv))
3199				printk(KERN_DEBUG "%s: TX FIFO underrun, "
3200				       "packet dropped.\n", dev->name);
3201			dev->stats.tx_dropped++;
3202			priv->extra_stats.tx_underrun++;
3203
3204			local_irq_save(flags);
3205			lock_tx_qs(priv);
3206
3207			/* Reactivate the Tx Queues */
3208			gfar_write(&regs->tstat, gfargrp->tstat);
3209
3210			unlock_tx_qs(priv);
3211			local_irq_restore(flags);
3212		}
3213		if (netif_msg_tx_err(priv))
3214			printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3215	}
3216	if (events & IEVENT_BSY) {
3217		dev->stats.rx_errors++;
3218		priv->extra_stats.rx_bsy++;
3219
3220		gfar_receive(irq, grp_id);
3221
3222		if (netif_msg_rx_err(priv))
3223			printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3224			       dev->name, gfar_read(&regs->rstat));
3225	}
3226	if (events & IEVENT_BABR) {
3227		dev->stats.rx_errors++;
3228		priv->extra_stats.rx_babr++;
3229
3230		if (netif_msg_rx_err(priv))
3231			printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3232	}
3233	if (events & IEVENT_EBERR) {
3234		priv->extra_stats.eberr++;
3235		if (netif_msg_rx_err(priv))
3236			printk(KERN_DEBUG "%s: bus error\n", dev->name);
3237	}
3238	if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3239		printk(KERN_DEBUG "%s: control frame\n", dev->name);
3240
3241	if (events & IEVENT_BABT) {
3242		priv->extra_stats.tx_babt++;
3243		if (netif_msg_tx_err(priv))
3244			printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3245	}
3246	return IRQ_HANDLED;
3247}
3248
3249static struct of_device_id gfar_match[] =
3250{
3251	{
3252		.type = "network",
3253		.compatible = "gianfar",
3254	},
3255	{
3256		.compatible = "fsl,etsec2",
3257	},
3258	{},
3259};
3260MODULE_DEVICE_TABLE(of, gfar_match);
3261
3262/* Structure for a device driver */
3263static struct of_platform_driver gfar_driver = {
3264	.driver = {
3265		.name = "fsl-gianfar",
3266		.owner = THIS_MODULE,
3267		.pm = GFAR_PM_OPS,
3268		.of_match_table = gfar_match,
3269	},
3270	.probe = gfar_probe,
3271	.remove = gfar_remove,
3272};
3273
3274static int __init gfar_init(void)
3275{
3276	return of_register_platform_driver(&gfar_driver);
3277}
3278
3279static void __exit gfar_exit(void)
3280{
3281	of_unregister_platform_driver(&gfar_driver);
3282}
3283
3284module_init(gfar_init);
3285module_exit(gfar_exit);
3286