• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/cxgb4vf/
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/pci.h>
38
39#include "t4vf_common.h"
40#include "t4vf_defs.h"
41
42#include "../cxgb4/t4_regs.h"
43#include "../cxgb4/t4fw_api.h"
44
45/*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's).  Return an error if it doesn't
48 * become ready ...
49 */
50int __devinit t4vf_wait_dev_ready(struct adapter *adapter)
51{
52	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53	const u32 notready1 = 0xffffffff;
54	const u32 notready2 = 0xeeeeeeee;
55	u32 val;
56
57	val = t4_read_reg(adapter, whoami);
58	if (val != notready1 && val != notready2)
59		return 0;
60	msleep(500);
61	val = t4_read_reg(adapter, whoami);
62	if (val != notready1 && val != notready2)
63		return 0;
64	else
65		return -EIO;
66}
67
68/*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73			 u32 mbox_data)
74{
75	for ( ; size; size -= 8, mbox_data += 8)
76		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77}
78
79/*
80 * Dump contents of mailbox with a leading tag.
81 */
82static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83{
84	dev_err(adapter->pdev_dev,
85		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
86		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
87		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
88		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
89		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
90		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
91		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
92		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
93		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
94}
95
96/**
97 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
98 *	@adapter: the adapter
99 *	@cmd: the command to write
100 *	@size: command length in bytes
101 *	@rpl: where to optionally store the reply
102 *	@sleep_ok: if true we may sleep while awaiting command completion
103 *
104 *	Sends the given command to FW through the mailbox and waits for the
105 *	FW to execute the command.  If @rpl is not %NULL it is used to store
106 *	the FW's reply to the command.  The command and its optional reply
107 *	are of the same length.  FW can take up to 500 ms to respond.
108 *	@sleep_ok determines whether we may sleep while awaiting the response.
109 *	If sleeping is allowed we use progressive backoff otherwise we spin.
110 *
111 *	The return value is 0 on success or a negative errno on failure.  A
112 *	failure can happen either because we are not able to execute the
113 *	command or FW executes it but signals an error.  In the latter case
114 *	the return value is the error code indicated by FW (negated).
115 */
116int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
117		      void *rpl, bool sleep_ok)
118{
119	static int delay[] = {
120		1, 1, 3, 5, 10, 10, 20, 50, 100
121	};
122
123	u32 v;
124	int i, ms, delay_idx;
125	const __be64 *p;
126	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
127	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
128
129	/*
130	 * Commands must be multiples of 16 bytes in length and may not be
131	 * larger than the size of the Mailbox Data register array.
132	 */
133	if ((size % 16) != 0 ||
134	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
135		return -EINVAL;
136
137	/*
138	 * Loop trying to get ownership of the mailbox.  Return an error
139	 * if we can't gain ownership.
140	 */
141	v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
142	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
143		v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
144	if (v != MBOX_OWNER_DRV)
145		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
146
147	/*
148	 * Write the command array into the Mailbox Data register array and
149	 * transfer ownership of the mailbox to the firmware.
150	 */
151	for (i = 0, p = cmd; i < size; i += 8)
152		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
153	t4_write_reg(adapter, mbox_ctl,
154		     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
155	t4_read_reg(adapter, mbox_ctl);          /* flush write */
156
157	/*
158	 * Spin waiting for firmware to acknowledge processing our command.
159	 */
160	delay_idx = 0;
161	ms = delay[0];
162
163	for (i = 0; i < 500; i += ms) {
164		if (sleep_ok) {
165			ms = delay[delay_idx];
166			if (delay_idx < ARRAY_SIZE(delay) - 1)
167				delay_idx++;
168			msleep(ms);
169		} else
170			mdelay(ms);
171
172		/*
173		 * If we're the owner, see if this is the reply we wanted.
174		 */
175		v = t4_read_reg(adapter, mbox_ctl);
176		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
177			/*
178			 * If the Message Valid bit isn't on, revoke ownership
179			 * of the mailbox and continue waiting for our reply.
180			 */
181			if ((v & MBMSGVALID) == 0) {
182				t4_write_reg(adapter, mbox_ctl,
183					     MBOWNER(MBOX_OWNER_NONE));
184				continue;
185			}
186
187			/*
188			 * We now have our reply.  Extract the command return
189			 * value, copy the reply back to our caller's buffer
190			 * (if specified) and revoke ownership of the mailbox.
191			 * We return the (negated) firmware command return
192			 * code (this depends on FW_SUCCESS == 0).
193			 */
194
195			/* return value in low-order little-endian word */
196			v = t4_read_reg(adapter, mbox_data);
197			if (FW_CMD_RETVAL_GET(v))
198				dump_mbox(adapter, "FW Error", mbox_data);
199
200			if (rpl) {
201				/* request bit in high-order BE word */
202				WARN_ON((be32_to_cpu(*(const u32 *)cmd)
203					 & FW_CMD_REQUEST) == 0);
204				get_mbox_rpl(adapter, rpl, size, mbox_data);
205				WARN_ON((be32_to_cpu(*(u32 *)rpl)
206					 & FW_CMD_REQUEST) != 0);
207			}
208			t4_write_reg(adapter, mbox_ctl,
209				     MBOWNER(MBOX_OWNER_NONE));
210			return -FW_CMD_RETVAL_GET(v);
211		}
212	}
213
214	/*
215	 * We timed out.  Return the error ...
216	 */
217	dump_mbox(adapter, "FW Timeout", mbox_data);
218	return -ETIMEDOUT;
219}
220
221/**
222 *	hash_mac_addr - return the hash value of a MAC address
223 *	@addr: the 48-bit Ethernet MAC address
224 *
225 *	Hashes a MAC address according to the hash function used by hardware
226 *	inexact (hash) address matching.
227 */
228static int hash_mac_addr(const u8 *addr)
229{
230	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
231	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
232	a ^= b;
233	a ^= (a >> 12);
234	a ^= (a >> 6);
235	return a & 0x3f;
236}
237
238/**
239 *	init_link_config - initialize a link's SW state
240 *	@lc: structure holding the link state
241 *	@caps: link capabilities
242 *
243 *	Initializes the SW state maintained for each link, including the link's
244 *	capabilities and default speed/flow-control/autonegotiation settings.
245 */
246static void __devinit init_link_config(struct link_config *lc,
247				       unsigned int caps)
248{
249	lc->supported = caps;
250	lc->requested_speed = 0;
251	lc->speed = 0;
252	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
253	if (lc->supported & SUPPORTED_Autoneg) {
254		lc->advertising = lc->supported;
255		lc->autoneg = AUTONEG_ENABLE;
256		lc->requested_fc |= PAUSE_AUTONEG;
257	} else {
258		lc->advertising = 0;
259		lc->autoneg = AUTONEG_DISABLE;
260	}
261}
262
263/**
264 *	t4vf_port_init - initialize port hardware/software state
265 *	@adapter: the adapter
266 *	@pidx: the adapter port index
267 */
268int __devinit t4vf_port_init(struct adapter *adapter, int pidx)
269{
270	struct port_info *pi = adap2pinfo(adapter, pidx);
271	struct fw_vi_cmd vi_cmd, vi_rpl;
272	struct fw_port_cmd port_cmd, port_rpl;
273	int v;
274	u32 word;
275
276	/*
277	 * Execute a VI Read command to get our Virtual Interface information
278	 * like MAC address, etc.
279	 */
280	memset(&vi_cmd, 0, sizeof(vi_cmd));
281	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
282				       FW_CMD_REQUEST |
283				       FW_CMD_READ);
284	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
285	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
286	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
287	if (v)
288		return v;
289
290	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
291	pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
292	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
293
294	/*
295	 * If we don't have read access to our port information, we're done
296	 * now.  Otherwise, execute a PORT Read command to get it ...
297	 */
298	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
299		return 0;
300
301	memset(&port_cmd, 0, sizeof(port_cmd));
302	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
303					    FW_CMD_REQUEST |
304					    FW_CMD_READ |
305					    FW_PORT_CMD_PORTID(pi->port_id));
306	port_cmd.action_to_len16 =
307		cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
308			    FW_LEN16(port_cmd));
309	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
310	if (v)
311		return v;
312
313	v = 0;
314	word = be16_to_cpu(port_rpl.u.info.pcap);
315	if (word & FW_PORT_CAP_SPEED_100M)
316		v |= SUPPORTED_100baseT_Full;
317	if (word & FW_PORT_CAP_SPEED_1G)
318		v |= SUPPORTED_1000baseT_Full;
319	if (word & FW_PORT_CAP_SPEED_10G)
320		v |= SUPPORTED_10000baseT_Full;
321	if (word & FW_PORT_CAP_ANEG)
322		v |= SUPPORTED_Autoneg;
323	init_link_config(&pi->link_cfg, v);
324
325	return 0;
326}
327
328/**
329 *	t4vf_query_params - query FW or device parameters
330 *	@adapter: the adapter
331 *	@nparams: the number of parameters
332 *	@params: the parameter names
333 *	@vals: the parameter values
334 *
335 *	Reads the values of firmware or device parameters.  Up to 7 parameters
336 *	can be queried at once.
337 */
338int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
339		      const u32 *params, u32 *vals)
340{
341	int i, ret;
342	struct fw_params_cmd cmd, rpl;
343	struct fw_params_param *p;
344	size_t len16;
345
346	if (nparams > 7)
347		return -EINVAL;
348
349	memset(&cmd, 0, sizeof(cmd));
350	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
351				    FW_CMD_REQUEST |
352				    FW_CMD_READ);
353	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
354				      param[nparams].mnem), 16);
355	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
356	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
357		p->mnem = htonl(*params++);
358
359	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
360	if (ret == 0)
361		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
362			*vals++ = be32_to_cpu(p->val);
363	return ret;
364}
365
366/**
367 *	t4vf_set_params - sets FW or device parameters
368 *	@adapter: the adapter
369 *	@nparams: the number of parameters
370 *	@params: the parameter names
371 *	@vals: the parameter values
372 *
373 *	Sets the values of firmware or device parameters.  Up to 7 parameters
374 *	can be specified at once.
375 */
376int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
377		    const u32 *params, const u32 *vals)
378{
379	int i;
380	struct fw_params_cmd cmd;
381	struct fw_params_param *p;
382	size_t len16;
383
384	if (nparams > 7)
385		return -EINVAL;
386
387	memset(&cmd, 0, sizeof(cmd));
388	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
389				    FW_CMD_REQUEST |
390				    FW_CMD_WRITE);
391	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
392				      param[nparams]), 16);
393	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
394	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
395		p->mnem = cpu_to_be32(*params++);
396		p->val = cpu_to_be32(*vals++);
397	}
398
399	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
400}
401
402/**
403 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
404 *	@adapter: the adapter
405 *
406 *	Retrieves various core SGE parameters in the form of hardware SGE
407 *	register values.  The caller is responsible for decoding these as
408 *	needed.  The SGE parameters are stored in @adapter->params.sge.
409 */
410int t4vf_get_sge_params(struct adapter *adapter)
411{
412	struct sge_params *sge_params = &adapter->params.sge;
413	u32 params[7], vals[7];
414	int v;
415
416	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
417		     FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
418	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
419		     FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
420	params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
421		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
422	params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
423		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
424	params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
425		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
426	params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
427		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
428	params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
429		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
430	v = t4vf_query_params(adapter, 7, params, vals);
431	if (v)
432		return v;
433	sge_params->sge_control = vals[0];
434	sge_params->sge_host_page_size = vals[1];
435	sge_params->sge_fl_buffer_size[0] = vals[2];
436	sge_params->sge_fl_buffer_size[1] = vals[3];
437	sge_params->sge_timer_value_0_and_1 = vals[4];
438	sge_params->sge_timer_value_2_and_3 = vals[5];
439	sge_params->sge_timer_value_4_and_5 = vals[6];
440
441	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
442		     FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
443	v = t4vf_query_params(adapter, 1, params, vals);
444	if (v)
445		return v;
446	sge_params->sge_ingress_rx_threshold = vals[0];
447
448	return 0;
449}
450
451/**
452 *	t4vf_get_vpd_params - retrieve device VPD paremeters
453 *	@adapter: the adapter
454 *
455 *	Retrives various device Vital Product Data parameters.  The parameters
456 *	are stored in @adapter->params.vpd.
457 */
458int t4vf_get_vpd_params(struct adapter *adapter)
459{
460	struct vpd_params *vpd_params = &adapter->params.vpd;
461	u32 params[7], vals[7];
462	int v;
463
464	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
465		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
466	v = t4vf_query_params(adapter, 1, params, vals);
467	if (v)
468		return v;
469	vpd_params->cclk = vals[0];
470
471	return 0;
472}
473
474/**
475 *	t4vf_get_dev_params - retrieve device paremeters
476 *	@adapter: the adapter
477 *
478 *	Retrives various device parameters.  The parameters are stored in
479 *	@adapter->params.dev.
480 */
481int t4vf_get_dev_params(struct adapter *adapter)
482{
483	struct dev_params *dev_params = &adapter->params.dev;
484	u32 params[7], vals[7];
485	int v;
486
487	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
488		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
489	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
490		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
491	v = t4vf_query_params(adapter, 2, params, vals);
492	if (v)
493		return v;
494	dev_params->fwrev = vals[0];
495	dev_params->tprev = vals[1];
496
497	return 0;
498}
499
500/**
501 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
502 *	@adapter: the adapter
503 *
504 *	Retrieves global RSS mode and parameters with which we have to live
505 *	and stores them in the @adapter's RSS parameters.
506 */
507int t4vf_get_rss_glb_config(struct adapter *adapter)
508{
509	struct rss_params *rss = &adapter->params.rss;
510	struct fw_rss_glb_config_cmd cmd, rpl;
511	int v;
512
513	/*
514	 * Execute an RSS Global Configuration read command to retrieve
515	 * our RSS configuration.
516	 */
517	memset(&cmd, 0, sizeof(cmd));
518	cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
519				      FW_CMD_REQUEST |
520				      FW_CMD_READ);
521	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
522	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
523	if (v)
524		return v;
525
526	/*
527	 * Transate the big-endian RSS Global Configuration into our
528	 * cpu-endian format based on the RSS mode.  We also do first level
529	 * filtering at this point to weed out modes which don't support
530	 * VF Drivers ...
531	 */
532	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
533			be32_to_cpu(rpl.u.manual.mode_pkd));
534	switch (rss->mode) {
535	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
536		u32 word = be32_to_cpu(
537				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
538
539		rss->u.basicvirtual.synmapen =
540			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
541		rss->u.basicvirtual.syn4tupenipv6 =
542			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
543		rss->u.basicvirtual.syn2tupenipv6 =
544			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
545		rss->u.basicvirtual.syn4tupenipv4 =
546			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
547		rss->u.basicvirtual.syn2tupenipv4 =
548			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
549
550		rss->u.basicvirtual.ofdmapen =
551			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
552
553		rss->u.basicvirtual.tnlmapen =
554			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
555		rss->u.basicvirtual.tnlalllookup =
556			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
557
558		rss->u.basicvirtual.hashtoeplitz =
559			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
560
561		/* we need at least Tunnel Map Enable to be set */
562		if (!rss->u.basicvirtual.tnlmapen)
563			return -EINVAL;
564		break;
565	}
566
567	default:
568		/* all unknown/unsupported RSS modes result in an error */
569		return -EINVAL;
570	}
571
572	return 0;
573}
574
575/**
576 *	t4vf_get_vfres - retrieve VF resource limits
577 *	@adapter: the adapter
578 *
579 *	Retrieves configured resource limits and capabilities for a virtual
580 *	function.  The results are stored in @adapter->vfres.
581 */
582int t4vf_get_vfres(struct adapter *adapter)
583{
584	struct vf_resources *vfres = &adapter->params.vfres;
585	struct fw_pfvf_cmd cmd, rpl;
586	int v;
587	u32 word;
588
589	/*
590	 * Execute PFVF Read command to get VF resource limits; bail out early
591	 * with error on command failure.
592	 */
593	memset(&cmd, 0, sizeof(cmd));
594	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
595				    FW_CMD_REQUEST |
596				    FW_CMD_READ);
597	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
598	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
599	if (v)
600		return v;
601
602	/*
603	 * Extract VF resource limits and return success.
604	 */
605	word = be32_to_cpu(rpl.niqflint_niq);
606	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
607	vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
608
609	word = be32_to_cpu(rpl.type_to_neq);
610	vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
611	vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
612
613	word = be32_to_cpu(rpl.tc_to_nexactf);
614	vfres->tc = FW_PFVF_CMD_TC_GET(word);
615	vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
616	vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
617
618	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
619	vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
620	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
621	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
622
623	return 0;
624}
625
626/**
627 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
628 *	@adapter: the adapter
629 *	@viid: Virtual Interface ID
630 *	@config: pointer to host-native VI RSS Configuration buffer
631 *
632 *	Reads the Virtual Interface's RSS configuration information and
633 *	translates it into CPU-native format.
634 */
635int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
636			    union rss_vi_config *config)
637{
638	struct fw_rss_vi_config_cmd cmd, rpl;
639	int v;
640
641	memset(&cmd, 0, sizeof(cmd));
642	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
643				     FW_CMD_REQUEST |
644				     FW_CMD_READ |
645				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
646	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
647	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
648	if (v)
649		return v;
650
651	switch (adapter->params.rss.mode) {
652	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
653		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
654
655		config->basicvirtual.ip6fourtupen =
656			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
657		config->basicvirtual.ip6twotupen =
658			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
659		config->basicvirtual.ip4fourtupen =
660			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
661		config->basicvirtual.ip4twotupen =
662			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
663		config->basicvirtual.udpen =
664			((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
665		config->basicvirtual.defaultq =
666			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
667		break;
668	}
669
670	default:
671		return -EINVAL;
672	}
673
674	return 0;
675}
676
677/**
678 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
679 *	@adapter: the adapter
680 *	@viid: Virtual Interface ID
681 *	@config: pointer to host-native VI RSS Configuration buffer
682 *
683 *	Write the Virtual Interface's RSS configuration information
684 *	(translating it into firmware-native format before writing).
685 */
686int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
687			     union rss_vi_config *config)
688{
689	struct fw_rss_vi_config_cmd cmd, rpl;
690
691	memset(&cmd, 0, sizeof(cmd));
692	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
693				     FW_CMD_REQUEST |
694				     FW_CMD_WRITE |
695				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
696	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
697	switch (adapter->params.rss.mode) {
698	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
699		u32 word = 0;
700
701		if (config->basicvirtual.ip6fourtupen)
702			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
703		if (config->basicvirtual.ip6twotupen)
704			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
705		if (config->basicvirtual.ip4fourtupen)
706			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
707		if (config->basicvirtual.ip4twotupen)
708			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
709		if (config->basicvirtual.udpen)
710			word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
711		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
712				config->basicvirtual.defaultq);
713		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
714		break;
715	}
716
717	default:
718		return -EINVAL;
719	}
720
721	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
722}
723
724/**
725 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
726 *	@adapter: the adapter
727 *	@viid: Virtual Interface of RSS Table Slice
728 *	@start: starting entry in the table to write
729 *	@n: how many table entries to write
730 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
731 *	@nrspq: number of values in @rspq
732 *
733 *	Programs the selected part of the VI's RSS mapping table with the
734 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
735 *	until the full table range is populated.
736 *
737 *	The caller must ensure the values in @rspq are in the range 0..1023.
738 */
739int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
740			  int start, int n, const u16 *rspq, int nrspq)
741{
742	const u16 *rsp = rspq;
743	const u16 *rsp_end = rspq+nrspq;
744	struct fw_rss_ind_tbl_cmd cmd;
745
746	/*
747	 * Initialize firmware command template to write the RSS table.
748	 */
749	memset(&cmd, 0, sizeof(cmd));
750	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
751				     FW_CMD_REQUEST |
752				     FW_CMD_WRITE |
753				     FW_RSS_IND_TBL_CMD_VIID(viid));
754	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
755
756	/*
757	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
758	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
759	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
760	 * reserved.
761	 */
762	while (n > 0) {
763		__be32 *qp = &cmd.iq0_to_iq2;
764		int nq = min(n, 32);
765		int ret;
766
767		/*
768		 * Set up the firmware RSS command header to send the next
769		 * "nq" Ingress Queue IDs to the firmware.
770		 */
771		cmd.niqid = cpu_to_be16(nq);
772		cmd.startidx = cpu_to_be16(start);
773
774		/*
775		 * "nq" more done for the start of the next loop.
776		 */
777		start += nq;
778		n -= nq;
779
780		/*
781		 * While there are still Ingress Queue IDs to stuff into the
782		 * current firmware RSS command, retrieve them from the
783		 * Ingress Queue ID array and insert them into the command.
784		 */
785		while (nq > 0) {
786			/*
787			 * Grab up to the next 3 Ingress Queue IDs (wrapping
788			 * around the Ingress Queue ID array if necessary) and
789			 * insert them into the firmware RSS command at the
790			 * current 3-tuple position within the commad.
791			 */
792			u16 qbuf[3];
793			u16 *qbp = qbuf;
794			int nqbuf = min(3, nq);
795
796			nq -= nqbuf;
797			qbuf[0] = qbuf[1] = qbuf[2] = 0;
798			while (nqbuf) {
799				nqbuf--;
800				*qbp++ = *rsp++;
801				if (rsp >= rsp_end)
802					rsp = rspq;
803			}
804			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
805					    FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
806					    FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
807		}
808
809		/*
810		 * Send this portion of the RRS table update to the firmware;
811		 * bail out on any errors.
812		 */
813		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
814		if (ret)
815			return ret;
816	}
817	return 0;
818}
819
820/**
821 *	t4vf_alloc_vi - allocate a virtual interface on a port
822 *	@adapter: the adapter
823 *	@port_id: physical port associated with the VI
824 *
825 *	Allocate a new Virtual Interface and bind it to the indicated
826 *	physical port.  Return the new Virtual Interface Identifier on
827 *	success, or a [negative] error number on failure.
828 */
829int t4vf_alloc_vi(struct adapter *adapter, int port_id)
830{
831	struct fw_vi_cmd cmd, rpl;
832	int v;
833
834	/*
835	 * Execute a VI command to allocate Virtual Interface and return its
836	 * VIID.
837	 */
838	memset(&cmd, 0, sizeof(cmd));
839	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
840				    FW_CMD_REQUEST |
841				    FW_CMD_WRITE |
842				    FW_CMD_EXEC);
843	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
844					 FW_VI_CMD_ALLOC);
845	cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
846	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
847	if (v)
848		return v;
849
850	return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
851}
852
853/**
854 *	t4vf_free_vi -- free a virtual interface
855 *	@adapter: the adapter
856 *	@viid: the virtual interface identifier
857 *
858 *	Free a previously allocated Virtual Interface.  Return an error on
859 *	failure.
860 */
861int t4vf_free_vi(struct adapter *adapter, int viid)
862{
863	struct fw_vi_cmd cmd;
864
865	/*
866	 * Execute a VI command to free the Virtual Interface.
867	 */
868	memset(&cmd, 0, sizeof(cmd));
869	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
870				    FW_CMD_REQUEST |
871				    FW_CMD_EXEC);
872	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
873					 FW_VI_CMD_FREE);
874	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
875	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
876}
877
878/**
879 *	t4vf_enable_vi - enable/disable a virtual interface
880 *	@adapter: the adapter
881 *	@viid: the Virtual Interface ID
882 *	@rx_en: 1=enable Rx, 0=disable Rx
883 *	@tx_en: 1=enable Tx, 0=disable Tx
884 *
885 *	Enables/disables a virtual interface.
886 */
887int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
888		   bool rx_en, bool tx_en)
889{
890	struct fw_vi_enable_cmd cmd;
891
892	memset(&cmd, 0, sizeof(cmd));
893	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
894				     FW_CMD_REQUEST |
895				     FW_CMD_EXEC |
896				     FW_VI_ENABLE_CMD_VIID(viid));
897	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
898				       FW_VI_ENABLE_CMD_EEN(tx_en) |
899				       FW_LEN16(cmd));
900	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
901}
902
903/**
904 *	t4vf_identify_port - identify a VI's port by blinking its LED
905 *	@adapter: the adapter
906 *	@viid: the Virtual Interface ID
907 *	@nblinks: how many times to blink LED at 2.5 Hz
908 *
909 *	Identifies a VI's port by blinking its LED.
910 */
911int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
912		       unsigned int nblinks)
913{
914	struct fw_vi_enable_cmd cmd;
915
916	memset(&cmd, 0, sizeof(cmd));
917	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
918				     FW_CMD_REQUEST |
919				     FW_CMD_EXEC |
920				     FW_VI_ENABLE_CMD_VIID(viid));
921	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
922				       FW_LEN16(cmd));
923	cmd.blinkdur = cpu_to_be16(nblinks);
924	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
925}
926
927/**
928 *	t4vf_set_rxmode - set Rx properties of a virtual interface
929 *	@adapter: the adapter
930 *	@viid: the VI id
931 *	@mtu: the new MTU or -1 for no change
932 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
933 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
934 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
935 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
936 *		-1 no change
937 *
938 *	Sets Rx properties of a virtual interface.
939 */
940int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
941		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
942		    bool sleep_ok)
943{
944	struct fw_vi_rxmode_cmd cmd;
945
946	/* convert to FW values */
947	if (mtu < 0)
948		mtu = FW_VI_RXMODE_CMD_MTU_MASK;
949	if (promisc < 0)
950		promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
951	if (all_multi < 0)
952		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
953	if (bcast < 0)
954		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
955	if (vlanex < 0)
956		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
957
958	memset(&cmd, 0, sizeof(cmd));
959	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
960				     FW_CMD_REQUEST |
961				     FW_CMD_WRITE |
962				     FW_VI_RXMODE_CMD_VIID(viid));
963	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
964	cmd.mtu_to_vlanexen =
965		cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
966			    FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
967			    FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
968			    FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
969			    FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
970	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
971}
972
973/**
974 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
975 *	@adapter: the adapter
976 *	@viid: the Virtual Interface Identifier
977 *	@free: if true any existing filters for this VI id are first removed
978 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
979 *	@addr: the MAC address(es)
980 *	@idx: where to store the index of each allocated filter
981 *	@hash: pointer to hash address filter bitmap
982 *	@sleep_ok: call is allowed to sleep
983 *
984 *	Allocates an exact-match filter for each of the supplied addresses and
985 *	sets it to the corresponding address.  If @idx is not %NULL it should
986 *	have at least @naddr entries, each of which will be set to the index of
987 *	the filter allocated for the corresponding MAC address.  If a filter
988 *	could not be allocated for an address its index is set to 0xffff.
989 *	If @hash is not %NULL addresses that fail to allocate an exact filter
990 *	are hashed and update the hash filter bitmap pointed at by @hash.
991 *
992 *	Returns a negative error number or the number of filters allocated.
993 */
994int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
995			unsigned int naddr, const u8 **addr, u16 *idx,
996			u64 *hash, bool sleep_ok)
997{
998	int i, ret;
999	struct fw_vi_mac_cmd cmd, rpl;
1000	struct fw_vi_mac_exact *p;
1001	size_t len16;
1002
1003	if (naddr > ARRAY_SIZE(cmd.u.exact))
1004		return -EINVAL;
1005	len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1006				      u.exact[naddr]), 16);
1007
1008	memset(&cmd, 0, sizeof(cmd));
1009	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1010				     FW_CMD_REQUEST |
1011				     FW_CMD_WRITE |
1012				     (free ? FW_CMD_EXEC : 0) |
1013				     FW_VI_MAC_CMD_VIID(viid));
1014	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1015					    FW_CMD_LEN16(len16));
1016
1017	for (i = 0, p = cmd.u.exact; i < naddr; i++, p++) {
1018		p->valid_to_idx =
1019			cpu_to_be16(FW_VI_MAC_CMD_VALID |
1020				    FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1021		memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
1022	}
1023
1024	ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, sleep_ok);
1025	if (ret)
1026		return ret;
1027
1028	for (i = 0, p = rpl.u.exact; i < naddr; i++, p++) {
1029		u16 index = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1030
1031		if (idx)
1032			idx[i] = (index >= FW_CLS_TCAM_NUM_ENTRIES
1033				  ? 0xffff
1034				  : index);
1035		if (index < FW_CLS_TCAM_NUM_ENTRIES)
1036			ret++;
1037		else if (hash)
1038			*hash |= (1 << hash_mac_addr(addr[i]));
1039	}
1040	return ret;
1041}
1042
1043/**
1044 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1045 *	@adapter: the adapter
1046 *	@viid: the Virtual Interface ID
1047 *	@idx: index of existing filter for old value of MAC address, or -1
1048 *	@addr: the new MAC address value
1049 *	@persist: if idx < 0, the new MAC allocation should be persistent
1050 *
1051 *	Modifies an exact-match filter and sets it to the new MAC address.
1052 *	Note that in general it is not possible to modify the value of a given
1053 *	filter so the generic way to modify an address filter is to free the
1054 *	one being used by the old address value and allocate a new filter for
1055 *	the new address value.  @idx can be -1 if the address is a new
1056 *	addition.
1057 *
1058 *	Returns a negative error number or the index of the filter with the new
1059 *	MAC value.
1060 */
1061int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1062		    int idx, const u8 *addr, bool persist)
1063{
1064	int ret;
1065	struct fw_vi_mac_cmd cmd, rpl;
1066	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1067	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1068					     u.exact[1]), 16);
1069
1070	/*
1071	 * If this is a new allocation, determine whether it should be
1072	 * persistent (across a "freemacs" operation) or not.
1073	 */
1074	if (idx < 0)
1075		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1076
1077	memset(&cmd, 0, sizeof(cmd));
1078	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1079				     FW_CMD_REQUEST |
1080				     FW_CMD_WRITE |
1081				     FW_VI_MAC_CMD_VIID(viid));
1082	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1083	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1084				      FW_VI_MAC_CMD_IDX(idx));
1085	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1086
1087	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1088	if (ret == 0) {
1089		p = &rpl.u.exact[0];
1090		ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1091		if (ret >= FW_CLS_TCAM_NUM_ENTRIES)
1092			ret = -ENOMEM;
1093	}
1094	return ret;
1095}
1096
1097/**
1098 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1099 *	@adapter: the adapter
1100 *	@viid: the Virtual Interface Identifier
1101 *	@ucast: whether the hash filter should also match unicast addresses
1102 *	@vec: the value to be written to the hash filter
1103 *	@sleep_ok: call is allowed to sleep
1104 *
1105 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1106 */
1107int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1108		       bool ucast, u64 vec, bool sleep_ok)
1109{
1110	struct fw_vi_mac_cmd cmd;
1111	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1112					     u.exact[0]), 16);
1113
1114	memset(&cmd, 0, sizeof(cmd));
1115	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1116				     FW_CMD_REQUEST |
1117				     FW_CMD_WRITE |
1118				     FW_VI_ENABLE_CMD_VIID(viid));
1119	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1120					    FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1121					    FW_CMD_LEN16(len16));
1122	cmd.u.hash.hashvec = cpu_to_be64(vec);
1123	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1124}
1125
1126/**
1127 *	t4vf_get_port_stats - collect "port" statistics
1128 *	@adapter: the adapter
1129 *	@pidx: the port index
1130 *	@s: the stats structure to fill
1131 *
1132 *	Collect statistics for the "port"'s Virtual Interface.
1133 */
1134int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1135			struct t4vf_port_stats *s)
1136{
1137	struct port_info *pi = adap2pinfo(adapter, pidx);
1138	struct fw_vi_stats_vf fwstats;
1139	unsigned int rem = VI_VF_NUM_STATS;
1140	__be64 *fwsp = (__be64 *)&fwstats;
1141
1142	/*
1143	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1144	 * commands.  We could use a Work Request and get all of them at once
1145	 * but that's an asynchronous interface which is awkward to use.
1146	 */
1147	while (rem) {
1148		unsigned int ix = VI_VF_NUM_STATS - rem;
1149		unsigned int nstats = min(6U, rem);
1150		struct fw_vi_stats_cmd cmd, rpl;
1151		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1152			      sizeof(struct fw_vi_stats_ctl));
1153		size_t len16 = DIV_ROUND_UP(len, 16);
1154		int ret;
1155
1156		memset(&cmd, 0, sizeof(cmd));
1157		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1158					     FW_VI_STATS_CMD_VIID(pi->viid) |
1159					     FW_CMD_REQUEST |
1160					     FW_CMD_READ);
1161		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1162		cmd.u.ctl.nstats_ix =
1163			cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1164				    FW_VI_STATS_CMD_NSTATS(nstats));
1165		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1166		if (ret)
1167			return ret;
1168
1169		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1170
1171		rem -= nstats;
1172		fwsp += nstats;
1173	}
1174
1175	/*
1176	 * Translate firmware statistics into host native statistics.
1177	 */
1178	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1179	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1180	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1181	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1182	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1183	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1184	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1185	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1186	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1187
1188	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1189	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1190	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1191	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1192	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1193	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1194
1195	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1196
1197	return 0;
1198}
1199
1200/**
1201 *	t4vf_iq_free - free an ingress queue and its free lists
1202 *	@adapter: the adapter
1203 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1204 *	@iqid: ingress queue ID
1205 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1206 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1207 *
1208 *	Frees an ingress queue and its associated free lists, if any.
1209 */
1210int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1211		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1212{
1213	struct fw_iq_cmd cmd;
1214
1215	memset(&cmd, 0, sizeof(cmd));
1216	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1217				    FW_CMD_REQUEST |
1218				    FW_CMD_EXEC);
1219	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1220					 FW_LEN16(cmd));
1221	cmd.type_to_iqandstindex =
1222		cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1223
1224	cmd.iqid = cpu_to_be16(iqid);
1225	cmd.fl0id = cpu_to_be16(fl0id);
1226	cmd.fl1id = cpu_to_be16(fl1id);
1227	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1228}
1229
1230/**
1231 *	t4vf_eth_eq_free - free an Ethernet egress queue
1232 *	@adapter: the adapter
1233 *	@eqid: egress queue ID
1234 *
1235 *	Frees an Ethernet egress queue.
1236 */
1237int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1238{
1239	struct fw_eq_eth_cmd cmd;
1240
1241	memset(&cmd, 0, sizeof(cmd));
1242	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1243				    FW_CMD_REQUEST |
1244				    FW_CMD_EXEC);
1245	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1246					 FW_LEN16(cmd));
1247	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1248	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1249}
1250
1251/**
1252 *	t4vf_handle_fw_rpl - process a firmware reply message
1253 *	@adapter: the adapter
1254 *	@rpl: start of the firmware message
1255 *
1256 *	Processes a firmware message, such as link state change messages.
1257 */
1258int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1259{
1260	struct fw_cmd_hdr *cmd_hdr = (struct fw_cmd_hdr *)rpl;
1261	u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1262
1263	switch (opcode) {
1264	case FW_PORT_CMD: {
1265		/*
1266		 * Link/module state change message.
1267		 */
1268		const struct fw_port_cmd *port_cmd = (void *)rpl;
1269		u32 word;
1270		int action, port_id, link_ok, speed, fc, pidx;
1271
1272		/*
1273		 * Extract various fields from port status change message.
1274		 */
1275		action = FW_PORT_CMD_ACTION_GET(
1276			be32_to_cpu(port_cmd->action_to_len16));
1277		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1278			dev_err(adapter->pdev_dev,
1279				"Unknown firmware PORT reply action %x\n",
1280				action);
1281			break;
1282		}
1283
1284		port_id = FW_PORT_CMD_PORTID_GET(
1285			be32_to_cpu(port_cmd->op_to_portid));
1286
1287		word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1288		link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1289		speed = 0;
1290		fc = 0;
1291		if (word & FW_PORT_CMD_RXPAUSE)
1292			fc |= PAUSE_RX;
1293		if (word & FW_PORT_CMD_TXPAUSE)
1294			fc |= PAUSE_TX;
1295		if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1296			speed = SPEED_100;
1297		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1298			speed = SPEED_1000;
1299		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1300			speed = SPEED_10000;
1301
1302		/*
1303		 * Scan all of our "ports" (Virtual Interfaces) looking for
1304		 * those bound to the physical port which has changed.  If
1305		 * our recorded state doesn't match the current state,
1306		 * signal that change to the OS code.
1307		 */
1308		for_each_port(adapter, pidx) {
1309			struct port_info *pi = adap2pinfo(adapter, pidx);
1310			struct link_config *lc;
1311
1312			if (pi->port_id != port_id)
1313				continue;
1314
1315			lc = &pi->link_cfg;
1316			if (link_ok != lc->link_ok || speed != lc->speed ||
1317			    fc != lc->fc) {
1318				/* something changed */
1319				lc->link_ok = link_ok;
1320				lc->speed = speed;
1321				lc->fc = fc;
1322				t4vf_os_link_changed(adapter, pidx, link_ok);
1323			}
1324		}
1325		break;
1326	}
1327
1328	default:
1329		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1330			opcode);
1331	}
1332	return 0;
1333}
1334