• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/can/
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 *   Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
33 *
34 *
35 *
36 * Your platform definition file should specify something like:
37 *
38 * static struct mcp251x_platform_data mcp251x_info = {
39 *         .oscillator_frequency = 8000000,
40 *         .board_specific_setup = &mcp251x_setup,
41 *         .model = CAN_MCP251X_MCP2510,
42 *         .power_enable = mcp251x_power_enable,
43 *         .transceiver_enable = NULL,
44 * };
45 *
46 * static struct spi_board_info spi_board_info[] = {
47 *         {
48 *                 .modalias = "mcp251x",
49 *                 .platform_data = &mcp251x_info,
50 *                 .irq = IRQ_EINT13,
51 *                 .max_speed_hz = 2*1000*1000,
52 *                 .chip_select = 2,
53 *         },
54 * };
55 *
56 * Please see mcp251x.h for a description of the fields in
57 * struct mcp251x_platform_data.
58 *
59 */
60
61#include <linux/can/core.h>
62#include <linux/can/dev.h>
63#include <linux/can/platform/mcp251x.h>
64#include <linux/completion.h>
65#include <linux/delay.h>
66#include <linux/device.h>
67#include <linux/dma-mapping.h>
68#include <linux/freezer.h>
69#include <linux/interrupt.h>
70#include <linux/io.h>
71#include <linux/kernel.h>
72#include <linux/module.h>
73#include <linux/netdevice.h>
74#include <linux/platform_device.h>
75#include <linux/slab.h>
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78
79/* SPI interface instruction set */
80#define INSTRUCTION_WRITE	0x02
81#define INSTRUCTION_READ	0x03
82#define INSTRUCTION_BIT_MODIFY	0x05
83#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
84#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
85#define INSTRUCTION_RESET	0xC0
86
87/* MPC251x registers */
88#define CANSTAT	      0x0e
89#define CANCTRL	      0x0f
90#  define CANCTRL_REQOP_MASK	    0xe0
91#  define CANCTRL_REQOP_CONF	    0x80
92#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
93#  define CANCTRL_REQOP_LOOPBACK    0x40
94#  define CANCTRL_REQOP_SLEEP	    0x20
95#  define CANCTRL_REQOP_NORMAL	    0x00
96#  define CANCTRL_OSM		    0x08
97#  define CANCTRL_ABAT		    0x10
98#define TEC	      0x1c
99#define REC	      0x1d
100#define CNF1	      0x2a
101#  define CNF1_SJW_SHIFT   6
102#define CNF2	      0x29
103#  define CNF2_BTLMODE	   0x80
104#  define CNF2_SAM         0x40
105#  define CNF2_PS1_SHIFT   3
106#define CNF3	      0x28
107#  define CNF3_SOF	   0x08
108#  define CNF3_WAKFIL	   0x04
109#  define CNF3_PHSEG2_MASK 0x07
110#define CANINTE	      0x2b
111#  define CANINTE_MERRE 0x80
112#  define CANINTE_WAKIE 0x40
113#  define CANINTE_ERRIE 0x20
114#  define CANINTE_TX2IE 0x10
115#  define CANINTE_TX1IE 0x08
116#  define CANINTE_TX0IE 0x04
117#  define CANINTE_RX1IE 0x02
118#  define CANINTE_RX0IE 0x01
119#define CANINTF	      0x2c
120#  define CANINTF_MERRF 0x80
121#  define CANINTF_WAKIF 0x40
122#  define CANINTF_ERRIF 0x20
123#  define CANINTF_TX2IF 0x10
124#  define CANINTF_TX1IF 0x08
125#  define CANINTF_TX0IF 0x04
126#  define CANINTF_RX1IF 0x02
127#  define CANINTF_RX0IF 0x01
128#define EFLG	      0x2d
129#  define EFLG_EWARN	0x01
130#  define EFLG_RXWAR	0x02
131#  define EFLG_TXWAR	0x04
132#  define EFLG_RXEP	0x08
133#  define EFLG_TXEP	0x10
134#  define EFLG_TXBO	0x20
135#  define EFLG_RX0OVR	0x40
136#  define EFLG_RX1OVR	0x80
137#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
138#  define TXBCTRL_ABTF	0x40
139#  define TXBCTRL_MLOA	0x20
140#  define TXBCTRL_TXERR 0x10
141#  define TXBCTRL_TXREQ 0x08
142#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
143#  define SIDH_SHIFT    3
144#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
145#  define SIDL_SID_MASK    7
146#  define SIDL_SID_SHIFT   5
147#  define SIDL_EXIDE_SHIFT 3
148#  define SIDL_EID_SHIFT   16
149#  define SIDL_EID_MASK    3
150#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
151#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
152#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
153#  define DLC_RTR_SHIFT    6
154#define TXBCTRL_OFF 0
155#define TXBSIDH_OFF 1
156#define TXBSIDL_OFF 2
157#define TXBEID8_OFF 3
158#define TXBEID0_OFF 4
159#define TXBDLC_OFF  5
160#define TXBDAT_OFF  6
161#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
162#  define RXBCTRL_BUKT	0x04
163#  define RXBCTRL_RXM0	0x20
164#  define RXBCTRL_RXM1	0x40
165#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
166#  define RXBSIDH_SHIFT 3
167#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
168#  define RXBSIDL_IDE   0x08
169#  define RXBSIDL_EID   3
170#  define RXBSIDL_SHIFT 5
171#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
172#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
173#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
174#  define RXBDLC_LEN_MASK  0x0f
175#  define RXBDLC_RTR       0x40
176#define RXBCTRL_OFF 0
177#define RXBSIDH_OFF 1
178#define RXBSIDL_OFF 2
179#define RXBEID8_OFF 3
180#define RXBEID0_OFF 4
181#define RXBDLC_OFF  5
182#define RXBDAT_OFF  6
183#define RXFSIDH(n) ((n) * 4)
184#define RXFSIDL(n) ((n) * 4 + 1)
185#define RXFEID8(n) ((n) * 4 + 2)
186#define RXFEID0(n) ((n) * 4 + 3)
187#define RXMSIDH(n) ((n) * 4 + 0x20)
188#define RXMSIDL(n) ((n) * 4 + 0x21)
189#define RXMEID8(n) ((n) * 4 + 0x22)
190#define RXMEID0(n) ((n) * 4 + 0x23)
191
192#define GET_BYTE(val, byte)			\
193	(((val) >> ((byte) * 8)) & 0xff)
194#define SET_BYTE(val, byte)			\
195	(((val) & 0xff) << ((byte) * 8))
196
197/*
198 * Buffer size required for the largest SPI transfer (i.e., reading a
199 * frame)
200 */
201#define CAN_FRAME_MAX_DATA_LEN	8
202#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
203#define CAN_FRAME_MAX_BITS	128
204
205#define TX_ECHO_SKB_MAX	1
206
207#define DEVICE_NAME "mcp251x"
208
209static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
210module_param(mcp251x_enable_dma, int, S_IRUGO);
211MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
212
213static struct can_bittiming_const mcp251x_bittiming_const = {
214	.name = DEVICE_NAME,
215	.tseg1_min = 3,
216	.tseg1_max = 16,
217	.tseg2_min = 2,
218	.tseg2_max = 8,
219	.sjw_max = 4,
220	.brp_min = 1,
221	.brp_max = 64,
222	.brp_inc = 1,
223};
224
225struct mcp251x_priv {
226	struct can_priv	   can;
227	struct net_device *net;
228	struct spi_device *spi;
229
230	struct mutex mcp_lock; /* SPI device lock */
231
232	u8 *spi_tx_buf;
233	u8 *spi_rx_buf;
234	dma_addr_t spi_tx_dma;
235	dma_addr_t spi_rx_dma;
236
237	struct sk_buff *tx_skb;
238	int tx_len;
239
240	struct workqueue_struct *wq;
241	struct work_struct tx_work;
242	struct work_struct restart_work;
243
244	int force_quit;
245	int after_suspend;
246#define AFTER_SUSPEND_UP 1
247#define AFTER_SUSPEND_DOWN 2
248#define AFTER_SUSPEND_POWER 4
249#define AFTER_SUSPEND_RESTART 8
250	int restart_tx;
251};
252
253static void mcp251x_clean(struct net_device *net)
254{
255	struct mcp251x_priv *priv = netdev_priv(net);
256
257	if (priv->tx_skb || priv->tx_len)
258		net->stats.tx_errors++;
259	if (priv->tx_skb)
260		dev_kfree_skb(priv->tx_skb);
261	if (priv->tx_len)
262		can_free_echo_skb(priv->net, 0);
263	priv->tx_skb = NULL;
264	priv->tx_len = 0;
265}
266
267/*
268 * Note about handling of error return of mcp251x_spi_trans: accessing
269 * registers via SPI is not really different conceptually than using
270 * normal I/O assembler instructions, although it's much more
271 * complicated from a practical POV. So it's not advisable to always
272 * check the return value of this function. Imagine that every
273 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
274 * error();", it would be a great mess (well there are some situation
275 * when exception handling C++ like could be useful after all). So we
276 * just check that transfers are OK at the beginning of our
277 * conversation with the chip and to avoid doing really nasty things
278 * (like injecting bogus packets in the network stack).
279 */
280static int mcp251x_spi_trans(struct spi_device *spi, int len)
281{
282	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
283	struct spi_transfer t = {
284		.tx_buf = priv->spi_tx_buf,
285		.rx_buf = priv->spi_rx_buf,
286		.len = len,
287		.cs_change = 0,
288	};
289	struct spi_message m;
290	int ret;
291
292	spi_message_init(&m);
293
294	if (mcp251x_enable_dma) {
295		t.tx_dma = priv->spi_tx_dma;
296		t.rx_dma = priv->spi_rx_dma;
297		m.is_dma_mapped = 1;
298	}
299
300	spi_message_add_tail(&t, &m);
301
302	ret = spi_sync(spi, &m);
303	if (ret)
304		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
305	return ret;
306}
307
308static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
309{
310	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
311	u8 val = 0;
312
313	priv->spi_tx_buf[0] = INSTRUCTION_READ;
314	priv->spi_tx_buf[1] = reg;
315
316	mcp251x_spi_trans(spi, 3);
317	val = priv->spi_rx_buf[2];
318
319	return val;
320}
321
322static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
323{
324	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
325
326	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
327	priv->spi_tx_buf[1] = reg;
328	priv->spi_tx_buf[2] = val;
329
330	mcp251x_spi_trans(spi, 3);
331}
332
333static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
334			       u8 mask, uint8_t val)
335{
336	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
337
338	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
339	priv->spi_tx_buf[1] = reg;
340	priv->spi_tx_buf[2] = mask;
341	priv->spi_tx_buf[3] = val;
342
343	mcp251x_spi_trans(spi, 4);
344}
345
346static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
347				int len, int tx_buf_idx)
348{
349	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
350	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
351
352	if (pdata->model == CAN_MCP251X_MCP2510) {
353		int i;
354
355		for (i = 1; i < TXBDAT_OFF + len; i++)
356			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
357					  buf[i]);
358	} else {
359		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
360		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
361	}
362}
363
364static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
365			  int tx_buf_idx)
366{
367	u32 sid, eid, exide, rtr;
368	u8 buf[SPI_TRANSFER_BUF_LEN];
369
370	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
371	if (exide)
372		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
373	else
374		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
375	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
376	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
377
378	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
379	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
380	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
381		(exide << SIDL_EXIDE_SHIFT) |
382		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
383	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
384	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
385	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
386	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
387	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
388	mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
389}
390
391static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
392				int buf_idx)
393{
394	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
395	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
396
397	if (pdata->model == CAN_MCP251X_MCP2510) {
398		int i, len;
399
400		for (i = 1; i < RXBDAT_OFF; i++)
401			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
402
403		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
404		for (; i < (RXBDAT_OFF + len); i++)
405			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
406	} else {
407		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
408		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
409		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
410	}
411}
412
413static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
414{
415	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
416	struct sk_buff *skb;
417	struct can_frame *frame;
418	u8 buf[SPI_TRANSFER_BUF_LEN];
419
420	skb = alloc_can_skb(priv->net, &frame);
421	if (!skb) {
422		dev_err(&spi->dev, "cannot allocate RX skb\n");
423		priv->net->stats.rx_dropped++;
424		return;
425	}
426
427	mcp251x_hw_rx_frame(spi, buf, buf_idx);
428	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
429		/* Extended ID format */
430		frame->can_id = CAN_EFF_FLAG;
431		frame->can_id |=
432			/* Extended ID part */
433			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
434			SET_BYTE(buf[RXBEID8_OFF], 1) |
435			SET_BYTE(buf[RXBEID0_OFF], 0) |
436			/* Standard ID part */
437			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
438			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
439		/* Remote transmission request */
440		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
441			frame->can_id |= CAN_RTR_FLAG;
442	} else {
443		/* Standard ID format */
444		frame->can_id =
445			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
446			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
447	}
448	/* Data length */
449	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
450	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
451
452	priv->net->stats.rx_packets++;
453	priv->net->stats.rx_bytes += frame->can_dlc;
454	netif_rx(skb);
455}
456
457static void mcp251x_hw_sleep(struct spi_device *spi)
458{
459	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
460}
461
462static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
463					   struct net_device *net)
464{
465	struct mcp251x_priv *priv = netdev_priv(net);
466	struct spi_device *spi = priv->spi;
467
468	if (priv->tx_skb || priv->tx_len) {
469		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
470		return NETDEV_TX_BUSY;
471	}
472
473	if (can_dropped_invalid_skb(net, skb))
474		return NETDEV_TX_OK;
475
476	netif_stop_queue(net);
477	priv->tx_skb = skb;
478	queue_work(priv->wq, &priv->tx_work);
479
480	return NETDEV_TX_OK;
481}
482
483static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
484{
485	struct mcp251x_priv *priv = netdev_priv(net);
486
487	switch (mode) {
488	case CAN_MODE_START:
489		mcp251x_clean(net);
490		/* We have to delay work since SPI I/O may sleep */
491		priv->can.state = CAN_STATE_ERROR_ACTIVE;
492		priv->restart_tx = 1;
493		if (priv->can.restart_ms == 0)
494			priv->after_suspend = AFTER_SUSPEND_RESTART;
495		queue_work(priv->wq, &priv->restart_work);
496		break;
497	default:
498		return -EOPNOTSUPP;
499	}
500
501	return 0;
502}
503
504static int mcp251x_set_normal_mode(struct spi_device *spi)
505{
506	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
507	unsigned long timeout;
508
509	/* Enable interrupts */
510	mcp251x_write_reg(spi, CANINTE,
511			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
512			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
513
514	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
515		/* Put device into loopback mode */
516		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
517	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
518		/* Put device into listen-only mode */
519		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
520	} else {
521		/* Put device into normal mode */
522		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
523
524		/* Wait for the device to enter normal mode */
525		timeout = jiffies + HZ;
526		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
527			schedule();
528			if (time_after(jiffies, timeout)) {
529				dev_err(&spi->dev, "MCP251x didn't"
530					" enter in normal mode\n");
531				return -EBUSY;
532			}
533		}
534	}
535	priv->can.state = CAN_STATE_ERROR_ACTIVE;
536	return 0;
537}
538
539static int mcp251x_do_set_bittiming(struct net_device *net)
540{
541	struct mcp251x_priv *priv = netdev_priv(net);
542	struct can_bittiming *bt = &priv->can.bittiming;
543	struct spi_device *spi = priv->spi;
544
545	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
546			  (bt->brp - 1));
547	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
548			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
549			   CNF2_SAM : 0) |
550			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
551			  (bt->prop_seg - 1));
552	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
553			   (bt->phase_seg2 - 1));
554	dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
555		 mcp251x_read_reg(spi, CNF1),
556		 mcp251x_read_reg(spi, CNF2),
557		 mcp251x_read_reg(spi, CNF3));
558
559	return 0;
560}
561
562static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
563			 struct spi_device *spi)
564{
565	mcp251x_do_set_bittiming(net);
566
567	mcp251x_write_reg(spi, RXBCTRL(0),
568			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
569	mcp251x_write_reg(spi, RXBCTRL(1),
570			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
571	return 0;
572}
573
574static int mcp251x_hw_reset(struct spi_device *spi)
575{
576	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
577	int ret;
578	unsigned long timeout;
579
580	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
581	ret = spi_write(spi, priv->spi_tx_buf, 1);
582	if (ret) {
583		dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
584		return -EIO;
585	}
586
587	/* Wait for reset to finish */
588	timeout = jiffies + HZ;
589	mdelay(10);
590	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
591	       != CANCTRL_REQOP_CONF) {
592		schedule();
593		if (time_after(jiffies, timeout)) {
594			dev_err(&spi->dev, "MCP251x didn't"
595				" enter in conf mode after reset\n");
596			return -EBUSY;
597		}
598	}
599	return 0;
600}
601
602static int mcp251x_hw_probe(struct spi_device *spi)
603{
604	int st1, st2;
605
606	mcp251x_hw_reset(spi);
607
608	/*
609	 * Please note that these are "magic values" based on after
610	 * reset defaults taken from data sheet which allows us to see
611	 * if we really have a chip on the bus (we avoid common all
612	 * zeroes or all ones situations)
613	 */
614	st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
615	st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
616
617	dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
618
619	/* Check for power up default values */
620	return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
621}
622
623static void mcp251x_open_clean(struct net_device *net)
624{
625	struct mcp251x_priv *priv = netdev_priv(net);
626	struct spi_device *spi = priv->spi;
627	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
628
629	free_irq(spi->irq, priv);
630	mcp251x_hw_sleep(spi);
631	if (pdata->transceiver_enable)
632		pdata->transceiver_enable(0);
633	close_candev(net);
634}
635
636static int mcp251x_stop(struct net_device *net)
637{
638	struct mcp251x_priv *priv = netdev_priv(net);
639	struct spi_device *spi = priv->spi;
640	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
641
642	close_candev(net);
643
644	priv->force_quit = 1;
645	free_irq(spi->irq, priv);
646	destroy_workqueue(priv->wq);
647	priv->wq = NULL;
648
649	mutex_lock(&priv->mcp_lock);
650
651	/* Disable and clear pending interrupts */
652	mcp251x_write_reg(spi, CANINTE, 0x00);
653	mcp251x_write_reg(spi, CANINTF, 0x00);
654
655	mcp251x_write_reg(spi, TXBCTRL(0), 0);
656	mcp251x_clean(net);
657
658	mcp251x_hw_sleep(spi);
659
660	if (pdata->transceiver_enable)
661		pdata->transceiver_enable(0);
662
663	priv->can.state = CAN_STATE_STOPPED;
664
665	mutex_unlock(&priv->mcp_lock);
666
667	return 0;
668}
669
670static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
671{
672	struct sk_buff *skb;
673	struct can_frame *frame;
674
675	skb = alloc_can_err_skb(net, &frame);
676	if (skb) {
677		frame->can_id = can_id;
678		frame->data[1] = data1;
679		netif_rx(skb);
680	} else {
681		dev_err(&net->dev,
682			"cannot allocate error skb\n");
683	}
684}
685
686static void mcp251x_tx_work_handler(struct work_struct *ws)
687{
688	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
689						 tx_work);
690	struct spi_device *spi = priv->spi;
691	struct net_device *net = priv->net;
692	struct can_frame *frame;
693
694	mutex_lock(&priv->mcp_lock);
695	if (priv->tx_skb) {
696		if (priv->can.state == CAN_STATE_BUS_OFF) {
697			mcp251x_clean(net);
698		} else {
699			frame = (struct can_frame *)priv->tx_skb->data;
700
701			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
702				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
703			mcp251x_hw_tx(spi, frame, 0);
704			priv->tx_len = 1 + frame->can_dlc;
705			can_put_echo_skb(priv->tx_skb, net, 0);
706			priv->tx_skb = NULL;
707		}
708	}
709	mutex_unlock(&priv->mcp_lock);
710}
711
712static void mcp251x_restart_work_handler(struct work_struct *ws)
713{
714	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
715						 restart_work);
716	struct spi_device *spi = priv->spi;
717	struct net_device *net = priv->net;
718
719	mutex_lock(&priv->mcp_lock);
720	if (priv->after_suspend) {
721		mdelay(10);
722		mcp251x_hw_reset(spi);
723		mcp251x_setup(net, priv, spi);
724		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
725			mcp251x_set_normal_mode(spi);
726		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
727			netif_device_attach(net);
728			mcp251x_clean(net);
729			mcp251x_set_normal_mode(spi);
730			netif_wake_queue(net);
731		} else {
732			mcp251x_hw_sleep(spi);
733		}
734		priv->after_suspend = 0;
735		priv->force_quit = 0;
736	}
737
738	if (priv->restart_tx) {
739		priv->restart_tx = 0;
740		mcp251x_write_reg(spi, TXBCTRL(0), 0);
741		mcp251x_clean(net);
742		netif_wake_queue(net);
743		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
744	}
745	mutex_unlock(&priv->mcp_lock);
746}
747
748static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
749{
750	struct mcp251x_priv *priv = dev_id;
751	struct spi_device *spi = priv->spi;
752	struct net_device *net = priv->net;
753
754	mutex_lock(&priv->mcp_lock);
755	while (!priv->force_quit) {
756		enum can_state new_state;
757		u8 intf = mcp251x_read_reg(spi, CANINTF);
758		u8 eflag;
759		int can_id = 0, data1 = 0;
760
761		if (intf & CANINTF_RX0IF) {
762			mcp251x_hw_rx(spi, 0);
763			/* Free one buffer ASAP */
764			mcp251x_write_bits(spi, CANINTF, intf & CANINTF_RX0IF,
765					   0x00);
766		}
767
768		if (intf & CANINTF_RX1IF)
769			mcp251x_hw_rx(spi, 1);
770
771		mcp251x_write_bits(spi, CANINTF, intf, 0x00);
772
773		eflag = mcp251x_read_reg(spi, EFLG);
774		mcp251x_write_reg(spi, EFLG, 0x00);
775
776		/* Update can state */
777		if (eflag & EFLG_TXBO) {
778			new_state = CAN_STATE_BUS_OFF;
779			can_id |= CAN_ERR_BUSOFF;
780		} else if (eflag & EFLG_TXEP) {
781			new_state = CAN_STATE_ERROR_PASSIVE;
782			can_id |= CAN_ERR_CRTL;
783			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
784		} else if (eflag & EFLG_RXEP) {
785			new_state = CAN_STATE_ERROR_PASSIVE;
786			can_id |= CAN_ERR_CRTL;
787			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
788		} else if (eflag & EFLG_TXWAR) {
789			new_state = CAN_STATE_ERROR_WARNING;
790			can_id |= CAN_ERR_CRTL;
791			data1 |= CAN_ERR_CRTL_TX_WARNING;
792		} else if (eflag & EFLG_RXWAR) {
793			new_state = CAN_STATE_ERROR_WARNING;
794			can_id |= CAN_ERR_CRTL;
795			data1 |= CAN_ERR_CRTL_RX_WARNING;
796		} else {
797			new_state = CAN_STATE_ERROR_ACTIVE;
798		}
799
800		/* Update can state statistics */
801		switch (priv->can.state) {
802		case CAN_STATE_ERROR_ACTIVE:
803			if (new_state >= CAN_STATE_ERROR_WARNING &&
804			    new_state <= CAN_STATE_BUS_OFF)
805				priv->can.can_stats.error_warning++;
806		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
807			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
808			    new_state <= CAN_STATE_BUS_OFF)
809				priv->can.can_stats.error_passive++;
810			break;
811		default:
812			break;
813		}
814		priv->can.state = new_state;
815
816		if (intf & CANINTF_ERRIF) {
817			/* Handle overflow counters */
818			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
819				if (eflag & EFLG_RX0OVR)
820					net->stats.rx_over_errors++;
821				if (eflag & EFLG_RX1OVR)
822					net->stats.rx_over_errors++;
823				can_id |= CAN_ERR_CRTL;
824				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
825			}
826			mcp251x_error_skb(net, can_id, data1);
827		}
828
829		if (priv->can.state == CAN_STATE_BUS_OFF) {
830			if (priv->can.restart_ms == 0) {
831				priv->force_quit = 1;
832				can_bus_off(net);
833				mcp251x_hw_sleep(spi);
834				break;
835			}
836		}
837
838		if (intf == 0)
839			break;
840
841		if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
842			net->stats.tx_packets++;
843			net->stats.tx_bytes += priv->tx_len - 1;
844			if (priv->tx_len) {
845				can_get_echo_skb(net, 0);
846				priv->tx_len = 0;
847			}
848			netif_wake_queue(net);
849		}
850
851	}
852	mutex_unlock(&priv->mcp_lock);
853	return IRQ_HANDLED;
854}
855
856static int mcp251x_open(struct net_device *net)
857{
858	struct mcp251x_priv *priv = netdev_priv(net);
859	struct spi_device *spi = priv->spi;
860	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
861	int ret;
862
863	ret = open_candev(net);
864	if (ret) {
865		dev_err(&spi->dev, "unable to set initial baudrate!\n");
866		return ret;
867	}
868
869	mutex_lock(&priv->mcp_lock);
870	if (pdata->transceiver_enable)
871		pdata->transceiver_enable(1);
872
873	priv->force_quit = 0;
874	priv->tx_skb = NULL;
875	priv->tx_len = 0;
876
877	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
878			  IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
879	if (ret) {
880		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
881		if (pdata->transceiver_enable)
882			pdata->transceiver_enable(0);
883		close_candev(net);
884		goto open_unlock;
885	}
886
887	priv->wq = create_freezeable_workqueue("mcp251x_wq");
888	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
889	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
890
891	ret = mcp251x_hw_reset(spi);
892	if (ret) {
893		mcp251x_open_clean(net);
894		goto open_unlock;
895	}
896	ret = mcp251x_setup(net, priv, spi);
897	if (ret) {
898		mcp251x_open_clean(net);
899		goto open_unlock;
900	}
901	ret = mcp251x_set_normal_mode(spi);
902	if (ret) {
903		mcp251x_open_clean(net);
904		goto open_unlock;
905	}
906	netif_wake_queue(net);
907
908open_unlock:
909	mutex_unlock(&priv->mcp_lock);
910	return ret;
911}
912
913static const struct net_device_ops mcp251x_netdev_ops = {
914	.ndo_open = mcp251x_open,
915	.ndo_stop = mcp251x_stop,
916	.ndo_start_xmit = mcp251x_hard_start_xmit,
917};
918
919static int __devinit mcp251x_can_probe(struct spi_device *spi)
920{
921	struct net_device *net;
922	struct mcp251x_priv *priv;
923	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
924	int model = spi_get_device_id(spi)->driver_data;
925	int ret = -ENODEV;
926
927	if (!pdata)
928		/* Platform data is required for osc freq */
929		goto error_out;
930
931	if (model)
932		pdata->model = model;
933
934	/* Allocate can/net device */
935	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
936	if (!net) {
937		ret = -ENOMEM;
938		goto error_alloc;
939	}
940
941	net->netdev_ops = &mcp251x_netdev_ops;
942	net->flags |= IFF_ECHO;
943
944	priv = netdev_priv(net);
945	priv->can.bittiming_const = &mcp251x_bittiming_const;
946	priv->can.do_set_mode = mcp251x_do_set_mode;
947	priv->can.clock.freq = pdata->oscillator_frequency / 2;
948	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
949		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
950	priv->net = net;
951	dev_set_drvdata(&spi->dev, priv);
952
953	priv->spi = spi;
954	mutex_init(&priv->mcp_lock);
955
956	/* If requested, allocate DMA buffers */
957	if (mcp251x_enable_dma) {
958		spi->dev.coherent_dma_mask = ~0;
959
960		/*
961		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
962		 * that much and share it between Tx and Rx DMA buffers.
963		 */
964		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
965						      PAGE_SIZE,
966						      &priv->spi_tx_dma,
967						      GFP_DMA);
968
969		if (priv->spi_tx_buf) {
970			priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
971						  (PAGE_SIZE / 2));
972			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
973							(PAGE_SIZE / 2));
974		} else {
975			/* Fall back to non-DMA */
976			mcp251x_enable_dma = 0;
977		}
978	}
979
980	/* Allocate non-DMA buffers */
981	if (!mcp251x_enable_dma) {
982		priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
983		if (!priv->spi_tx_buf) {
984			ret = -ENOMEM;
985			goto error_tx_buf;
986		}
987		priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
988		if (!priv->spi_rx_buf) {
989			ret = -ENOMEM;
990			goto error_rx_buf;
991		}
992	}
993
994	if (pdata->power_enable)
995		pdata->power_enable(1);
996
997	/* Call out to platform specific setup */
998	if (pdata->board_specific_setup)
999		pdata->board_specific_setup(spi);
1000
1001	SET_NETDEV_DEV(net, &spi->dev);
1002
1003	/* Configure the SPI bus */
1004	spi->mode = SPI_MODE_0;
1005	spi->bits_per_word = 8;
1006	spi_setup(spi);
1007
1008	/* Here is OK to not lock the MCP, no one knows about it yet */
1009	if (!mcp251x_hw_probe(spi)) {
1010		dev_info(&spi->dev, "Probe failed\n");
1011		goto error_probe;
1012	}
1013	mcp251x_hw_sleep(spi);
1014
1015	if (pdata->transceiver_enable)
1016		pdata->transceiver_enable(0);
1017
1018	ret = register_candev(net);
1019	if (!ret) {
1020		dev_info(&spi->dev, "probed\n");
1021		return ret;
1022	}
1023error_probe:
1024	if (!mcp251x_enable_dma)
1025		kfree(priv->spi_rx_buf);
1026error_rx_buf:
1027	if (!mcp251x_enable_dma)
1028		kfree(priv->spi_tx_buf);
1029error_tx_buf:
1030	free_candev(net);
1031	if (mcp251x_enable_dma)
1032		dma_free_coherent(&spi->dev, PAGE_SIZE,
1033				  priv->spi_tx_buf, priv->spi_tx_dma);
1034error_alloc:
1035	if (pdata->power_enable)
1036		pdata->power_enable(0);
1037	dev_err(&spi->dev, "probe failed\n");
1038error_out:
1039	return ret;
1040}
1041
1042static int __devexit mcp251x_can_remove(struct spi_device *spi)
1043{
1044	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1045	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1046	struct net_device *net = priv->net;
1047
1048	unregister_candev(net);
1049	free_candev(net);
1050
1051	if (mcp251x_enable_dma) {
1052		dma_free_coherent(&spi->dev, PAGE_SIZE,
1053				  priv->spi_tx_buf, priv->spi_tx_dma);
1054	} else {
1055		kfree(priv->spi_tx_buf);
1056		kfree(priv->spi_rx_buf);
1057	}
1058
1059	if (pdata->power_enable)
1060		pdata->power_enable(0);
1061
1062	return 0;
1063}
1064
1065#ifdef CONFIG_PM
1066static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1067{
1068	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1069	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1070	struct net_device *net = priv->net;
1071
1072	priv->force_quit = 1;
1073	disable_irq(spi->irq);
1074	/*
1075	 * Note: at this point neither IST nor workqueues are running.
1076	 * open/stop cannot be called anyway so locking is not needed
1077	 */
1078	if (netif_running(net)) {
1079		netif_device_detach(net);
1080
1081		mcp251x_hw_sleep(spi);
1082		if (pdata->transceiver_enable)
1083			pdata->transceiver_enable(0);
1084		priv->after_suspend = AFTER_SUSPEND_UP;
1085	} else {
1086		priv->after_suspend = AFTER_SUSPEND_DOWN;
1087	}
1088
1089	if (pdata->power_enable) {
1090		pdata->power_enable(0);
1091		priv->after_suspend |= AFTER_SUSPEND_POWER;
1092	}
1093
1094	return 0;
1095}
1096
1097static int mcp251x_can_resume(struct spi_device *spi)
1098{
1099	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1100	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1101
1102	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1103		pdata->power_enable(1);
1104		queue_work(priv->wq, &priv->restart_work);
1105	} else {
1106		if (priv->after_suspend & AFTER_SUSPEND_UP) {
1107			if (pdata->transceiver_enable)
1108				pdata->transceiver_enable(1);
1109			queue_work(priv->wq, &priv->restart_work);
1110		} else {
1111			priv->after_suspend = 0;
1112		}
1113	}
1114	priv->force_quit = 0;
1115	enable_irq(spi->irq);
1116	return 0;
1117}
1118#else
1119#define mcp251x_can_suspend NULL
1120#define mcp251x_can_resume NULL
1121#endif
1122
1123static struct spi_device_id mcp251x_id_table[] = {
1124	{ "mcp251x", 	0 /* Use pdata.model */ },
1125	{ "mcp2510",	CAN_MCP251X_MCP2510 },
1126	{ "mcp2515",	CAN_MCP251X_MCP2515 },
1127	{ },
1128};
1129
1130MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1131
1132static struct spi_driver mcp251x_can_driver = {
1133	.driver = {
1134		.name = DEVICE_NAME,
1135		.bus = &spi_bus_type,
1136		.owner = THIS_MODULE,
1137	},
1138
1139	.id_table = mcp251x_id_table,
1140	.probe = mcp251x_can_probe,
1141	.remove = __devexit_p(mcp251x_can_remove),
1142	.suspend = mcp251x_can_suspend,
1143	.resume = mcp251x_can_resume,
1144};
1145
1146static int __init mcp251x_can_init(void)
1147{
1148	return spi_register_driver(&mcp251x_can_driver);
1149}
1150
1151static void __exit mcp251x_can_exit(void)
1152{
1153	spi_unregister_driver(&mcp251x_can_driver);
1154}
1155
1156module_init(mcp251x_can_init);
1157module_exit(mcp251x_can_exit);
1158
1159MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1160	      "Christian Pellegrin <chripell@evolware.org>");
1161MODULE_DESCRIPTION("Microchip 251x CAN driver");
1162MODULE_LICENSE("GPL v2");
1163