• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/mtd/nand/
1/*
2 *  drivers/mtd/nand.c
3 *
4 *  Overview:
5 *   This is the generic MTD driver for NAND flash devices. It should be
6 *   capable of working with almost all NAND chips currently available.
7 *   Basic support for AG-AND chips is provided.
8 *
9 *	Additional technical information is available on
10 *	http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 *  Credits:
16 *	David Woodhouse for adding multichip support
17 *
18 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 *	rework for 2K page size chips
20 *
21 *  TODO:
22 *	Enable cached programming for 2k page size chips
23 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
24 *	if we have HW ecc support.
25 *	The AG-AND chips have nice features for speed improvement,
26 *	which are not supported yet. Read / program 4 pages in one go.
27 *	BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/delay.h>
37#include <linux/errno.h>
38#include <linux/err.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
47#include <linux/leds.h>
48#include <asm/io.h>
49
50#ifdef CONFIG_MTD_PARTITIONS
51#include <linux/mtd/partitions.h>
52#endif
53
54/* Define default oob placement schemes for large and small page devices */
55static struct nand_ecclayout nand_oob_8 = {
56	.eccbytes = 3,
57	.eccpos = {0, 1, 2},
58	.oobfree = {
59		{.offset = 3,
60		 .length = 2},
61		{.offset = 6,
62		 .length = 2}}
63};
64
65static struct nand_ecclayout nand_oob_16 = {
66	.eccbytes = 6,
67	.eccpos = {0, 1, 2, 3, 6, 7},
68	.oobfree = {
69		{.offset = 8,
70		 . length = 8}}
71};
72
73static struct nand_ecclayout nand_oob_64 = {
74	.eccbytes = 24,
75	.eccpos = {
76		   40, 41, 42, 43, 44, 45, 46, 47,
77		   48, 49, 50, 51, 52, 53, 54, 55,
78		   56, 57, 58, 59, 60, 61, 62, 63},
79	.oobfree = {
80		{.offset = 2,
81		 .length = 38}}
82};
83
84static struct nand_ecclayout nand_oob_128 = {
85	.eccbytes = 48,
86	.eccpos = {
87		   80, 81, 82, 83, 84, 85, 86, 87,
88		   88, 89, 90, 91, 92, 93, 94, 95,
89		   96, 97, 98, 99, 100, 101, 102, 103,
90		   104, 105, 106, 107, 108, 109, 110, 111,
91		   112, 113, 114, 115, 116, 117, 118, 119,
92		   120, 121, 122, 123, 124, 125, 126, 127},
93	.oobfree = {
94		{.offset = 2,
95		 .length = 78}}
96};
97
98static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
99			   int new_state);
100
101static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
102			     struct mtd_oob_ops *ops);
103
104/*
105 * For devices which display every fart in the system on a separate LED. Is
106 * compiled away when LED support is disabled.
107 */
108DEFINE_LED_TRIGGER(nand_led_trigger);
109
110static int check_offs_len(struct mtd_info *mtd,
111					loff_t ofs, uint64_t len)
112{
113	struct nand_chip *chip = mtd->priv;
114	int ret = 0;
115
116	/* Start address must align on block boundary */
117	if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
118		DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
119		ret = -EINVAL;
120	}
121
122	/* Length must align on block boundary */
123	if (len & ((1 << chip->phys_erase_shift) - 1)) {
124		DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
125					__func__);
126		ret = -EINVAL;
127	}
128
129	/* Do not allow past end of device */
130	if (ofs + len > mtd->size) {
131		DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
132					__func__);
133		ret = -EINVAL;
134	}
135
136	return ret;
137}
138
139/**
140 * nand_release_device - [GENERIC] release chip
141 * @mtd:	MTD device structure
142 *
143 * Deselect, release chip lock and wake up anyone waiting on the device
144 */
145static void nand_release_device(struct mtd_info *mtd)
146{
147	struct nand_chip *chip = mtd->priv;
148
149	/* De-select the NAND device */
150	chip->select_chip(mtd, -1);
151
152	/* Release the controller and the chip */
153	spin_lock(&chip->controller->lock);
154	chip->controller->active = NULL;
155	chip->state = FL_READY;
156	wake_up(&chip->controller->wq);
157	spin_unlock(&chip->controller->lock);
158}
159
160/**
161 * nand_read_byte - [DEFAULT] read one byte from the chip
162 * @mtd:	MTD device structure
163 *
164 * Default read function for 8bit buswith
165 */
166static uint8_t nand_read_byte(struct mtd_info *mtd)
167{
168	struct nand_chip *chip = mtd->priv;
169	return readb(chip->IO_ADDR_R);
170}
171
172/**
173 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174 * @mtd:	MTD device structure
175 *
176 * Default read function for 16bit buswith with
177 * endianess conversion
178 */
179static uint8_t nand_read_byte16(struct mtd_info *mtd)
180{
181	struct nand_chip *chip = mtd->priv;
182	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
183}
184
185/**
186 * nand_read_word - [DEFAULT] read one word from the chip
187 * @mtd:	MTD device structure
188 *
189 * Default read function for 16bit buswith without
190 * endianess conversion
191 */
192static u16 nand_read_word(struct mtd_info *mtd)
193{
194	struct nand_chip *chip = mtd->priv;
195	return readw(chip->IO_ADDR_R);
196}
197
198/**
199 * nand_select_chip - [DEFAULT] control CE line
200 * @mtd:	MTD device structure
201 * @chipnr:	chipnumber to select, -1 for deselect
202 *
203 * Default select function for 1 chip devices.
204 */
205static void nand_select_chip(struct mtd_info *mtd, int chipnr)
206{
207	struct nand_chip *chip = mtd->priv;
208
209	switch (chipnr) {
210	case -1:
211		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
212		break;
213	case 0:
214		break;
215
216	default:
217		BUG();
218	}
219}
220
221/**
222 * nand_write_buf - [DEFAULT] write buffer to chip
223 * @mtd:	MTD device structure
224 * @buf:	data buffer
225 * @len:	number of bytes to write
226 *
227 * Default write function for 8bit buswith
228 */
229static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
230{
231	int i;
232	struct nand_chip *chip = mtd->priv;
233
234	for (i = 0; i < len; i++)
235		writeb(buf[i], chip->IO_ADDR_W);
236}
237
238/**
239 * nand_read_buf - [DEFAULT] read chip data into buffer
240 * @mtd:	MTD device structure
241 * @buf:	buffer to store date
242 * @len:	number of bytes to read
243 *
244 * Default read function for 8bit buswith
245 */
246static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
247{
248	int i;
249	struct nand_chip *chip = mtd->priv;
250
251	for (i = 0; i < len; i++)
252		buf[i] = readb(chip->IO_ADDR_R);
253}
254
255/**
256 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
257 * @mtd:	MTD device structure
258 * @buf:	buffer containing the data to compare
259 * @len:	number of bytes to compare
260 *
261 * Default verify function for 8bit buswith
262 */
263static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
264{
265	int i;
266	struct nand_chip *chip = mtd->priv;
267
268	for (i = 0; i < len; i++)
269		if (buf[i] != readb(chip->IO_ADDR_R))
270			return -EFAULT;
271	return 0;
272}
273
274/**
275 * nand_write_buf16 - [DEFAULT] write buffer to chip
276 * @mtd:	MTD device structure
277 * @buf:	data buffer
278 * @len:	number of bytes to write
279 *
280 * Default write function for 16bit buswith
281 */
282static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
283{
284	int i;
285	struct nand_chip *chip = mtd->priv;
286	u16 *p = (u16 *) buf;
287	len >>= 1;
288
289	for (i = 0; i < len; i++)
290		writew(p[i], chip->IO_ADDR_W);
291
292}
293
294/**
295 * nand_read_buf16 - [DEFAULT] read chip data into buffer
296 * @mtd:	MTD device structure
297 * @buf:	buffer to store date
298 * @len:	number of bytes to read
299 *
300 * Default read function for 16bit buswith
301 */
302static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
303{
304	int i;
305	struct nand_chip *chip = mtd->priv;
306	u16 *p = (u16 *) buf;
307	len >>= 1;
308
309	for (i = 0; i < len; i++)
310		p[i] = readw(chip->IO_ADDR_R);
311}
312
313/**
314 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
315 * @mtd:	MTD device structure
316 * @buf:	buffer containing the data to compare
317 * @len:	number of bytes to compare
318 *
319 * Default verify function for 16bit buswith
320 */
321static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
322{
323	int i;
324	struct nand_chip *chip = mtd->priv;
325	u16 *p = (u16 *) buf;
326	len >>= 1;
327
328	for (i = 0; i < len; i++)
329		if (p[i] != readw(chip->IO_ADDR_R))
330			return -EFAULT;
331
332	return 0;
333}
334
335/**
336 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337 * @mtd:	MTD device structure
338 * @ofs:	offset from device start
339 * @getchip:	0, if the chip is already selected
340 *
341 * Check, if the block is bad.
342 */
343static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
344{
345	int page, chipnr, res = 0;
346	struct nand_chip *chip = mtd->priv;
347	u16 bad;
348
349	if (chip->options & NAND_BBT_SCANLASTPAGE)
350		ofs += mtd->erasesize - mtd->writesize;
351
352	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
353
354	if (getchip) {
355		chipnr = (int)(ofs >> chip->chip_shift);
356
357		nand_get_device(chip, mtd, FL_READING);
358
359		/* Select the NAND device */
360		chip->select_chip(mtd, chipnr);
361	}
362
363	if (chip->options & NAND_BUSWIDTH_16) {
364		chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
365			      page);
366		bad = cpu_to_le16(chip->read_word(mtd));
367		if (chip->badblockpos & 0x1)
368			bad >>= 8;
369		else
370			bad &= 0xFF;
371	} else {
372		chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
373		bad = chip->read_byte(mtd);
374	}
375
376	if (likely(chip->badblockbits == 8))
377		res = bad != 0xFF;
378	else
379		res = hweight8(bad) < chip->badblockbits;
380
381	if (getchip)
382		nand_release_device(mtd);
383
384	return res;
385}
386
387/**
388 * nand_default_block_markbad - [DEFAULT] mark a block bad
389 * @mtd:	MTD device structure
390 * @ofs:	offset from device start
391 *
392 * This is the default implementation, which can be overridden by
393 * a hardware specific driver.
394*/
395static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
396{
397	struct nand_chip *chip = mtd->priv;
398	uint8_t buf[2] = { 0, 0 };
399	int block, ret, i = 0;
400
401	if (chip->options & NAND_BBT_SCANLASTPAGE)
402		ofs += mtd->erasesize - mtd->writesize;
403
404	/* Get block number */
405	block = (int)(ofs >> chip->bbt_erase_shift);
406	if (chip->bbt)
407		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
408
409	/* Do we have a flash based bad block table ? */
410	if (chip->options & NAND_USE_FLASH_BBT)
411		ret = nand_update_bbt(mtd, ofs);
412	else {
413		nand_get_device(chip, mtd, FL_WRITING);
414
415		/* Write to first two pages and to byte 1 and 6 if necessary.
416		 * If we write to more than one location, the first error
417		 * encountered quits the procedure. We write two bytes per
418		 * location, so we dont have to mess with 16 bit access.
419		 */
420		do {
421			chip->ops.len = chip->ops.ooblen = 2;
422			chip->ops.datbuf = NULL;
423			chip->ops.oobbuf = buf;
424			chip->ops.ooboffs = chip->badblockpos & ~0x01;
425
426			ret = nand_do_write_oob(mtd, ofs, &chip->ops);
427
428			if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
429				chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
430					& ~0x01;
431				ret = nand_do_write_oob(mtd, ofs, &chip->ops);
432			}
433			i++;
434			ofs += mtd->writesize;
435		} while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
436				i < 2);
437
438		nand_release_device(mtd);
439	}
440	if (!ret)
441		mtd->ecc_stats.badblocks++;
442
443	return ret;
444}
445
446/**
447 * nand_check_wp - [GENERIC] check if the chip is write protected
448 * @mtd:	MTD device structure
449 * Check, if the device is write protected
450 *
451 * The function expects, that the device is already selected
452 */
453static int nand_check_wp(struct mtd_info *mtd)
454{
455	struct nand_chip *chip = mtd->priv;
456
457	/* broken xD cards report WP despite being writable */
458	if (chip->options & NAND_BROKEN_XD)
459		return 0;
460
461	/* Check the WP bit */
462	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
463	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
464}
465
466/**
467 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468 * @mtd:	MTD device structure
469 * @ofs:	offset from device start
470 * @getchip:	0, if the chip is already selected
471 * @allowbbt:	1, if its allowed to access the bbt area
472 *
473 * Check, if the block is bad. Either by reading the bad block table or
474 * calling of the scan function.
475 */
476static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
477			       int allowbbt)
478{
479	struct nand_chip *chip = mtd->priv;
480
481	if (!chip->bbt)
482		return chip->block_bad(mtd, ofs, getchip);
483
484	/* Return info from the table */
485	return nand_isbad_bbt(mtd, ofs, allowbbt);
486}
487
488/**
489 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490 * @mtd:	MTD device structure
491 * @timeo:	Timeout
492 *
493 * Helper function for nand_wait_ready used when needing to wait in interrupt
494 * context.
495 */
496static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
497{
498	struct nand_chip *chip = mtd->priv;
499	int i;
500
501	/* Wait for the device to get ready */
502	for (i = 0; i < timeo; i++) {
503		if (chip->dev_ready(mtd))
504			break;
505		touch_softlockup_watchdog();
506		mdelay(1);
507	}
508}
509
510/*
511 * Wait for the ready pin, after a command
512 * The timeout is catched later.
513 */
514void nand_wait_ready(struct mtd_info *mtd)
515{
516	struct nand_chip *chip = mtd->priv;
517	unsigned long timeo = jiffies + 2;
518
519	/* 400ms timeout */
520	if (in_interrupt() || oops_in_progress)
521		return panic_nand_wait_ready(mtd, 400);
522
523	led_trigger_event(nand_led_trigger, LED_FULL);
524	/* wait until command is processed or timeout occures */
525	do {
526		if (chip->dev_ready(mtd))
527			break;
528		touch_softlockup_watchdog();
529	} while (time_before(jiffies, timeo));
530	led_trigger_event(nand_led_trigger, LED_OFF);
531}
532EXPORT_SYMBOL_GPL(nand_wait_ready);
533
534/**
535 * nand_command - [DEFAULT] Send command to NAND device
536 * @mtd:	MTD device structure
537 * @command:	the command to be sent
538 * @column:	the column address for this command, -1 if none
539 * @page_addr:	the page address for this command, -1 if none
540 *
541 * Send command to NAND device. This function is used for small page
542 * devices (256/512 Bytes per page)
543 */
544static void nand_command(struct mtd_info *mtd, unsigned int command,
545			 int column, int page_addr)
546{
547	register struct nand_chip *chip = mtd->priv;
548	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
549
550	/*
551	 * Write out the command to the device.
552	 */
553	if (command == NAND_CMD_SEQIN) {
554		int readcmd;
555
556		if (column >= mtd->writesize) {
557			/* OOB area */
558			column -= mtd->writesize;
559			readcmd = NAND_CMD_READOOB;
560		} else if (column < 256) {
561			/* First 256 bytes --> READ0 */
562			readcmd = NAND_CMD_READ0;
563		} else {
564			column -= 256;
565			readcmd = NAND_CMD_READ1;
566		}
567		chip->cmd_ctrl(mtd, readcmd, ctrl);
568		ctrl &= ~NAND_CTRL_CHANGE;
569	}
570	chip->cmd_ctrl(mtd, command, ctrl);
571
572	/*
573	 * Address cycle, when necessary
574	 */
575	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
576	/* Serially input address */
577	if (column != -1) {
578		/* Adjust columns for 16 bit buswidth */
579		if (chip->options & NAND_BUSWIDTH_16)
580			column >>= 1;
581		chip->cmd_ctrl(mtd, column, ctrl);
582		ctrl &= ~NAND_CTRL_CHANGE;
583	}
584	if (page_addr != -1) {
585		chip->cmd_ctrl(mtd, page_addr, ctrl);
586		ctrl &= ~NAND_CTRL_CHANGE;
587		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
588		/* One more address cycle for devices > 32MiB */
589		if (chip->chipsize > (32 << 20))
590			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
591	}
592	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
593
594	/*
595	 * program and erase have their own busy handlers
596	 * status and sequential in needs no delay
597	 */
598	switch (command) {
599
600	case NAND_CMD_PAGEPROG:
601	case NAND_CMD_ERASE1:
602	case NAND_CMD_ERASE2:
603	case NAND_CMD_SEQIN:
604	case NAND_CMD_STATUS:
605		return;
606
607	case NAND_CMD_RESET:
608		if (chip->dev_ready)
609			break;
610		udelay(chip->chip_delay);
611		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
612			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
613		chip->cmd_ctrl(mtd,
614			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
615		while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
616		return;
617
618		/* This applies to read commands */
619	default:
620		/*
621		 * If we don't have access to the busy pin, we apply the given
622		 * command delay
623		 */
624		if (!chip->dev_ready) {
625			udelay(chip->chip_delay);
626			return;
627		}
628	}
629	/* Apply this short delay always to ensure that we do wait tWB in
630	 * any case on any machine. */
631	ndelay(100);
632
633	nand_wait_ready(mtd);
634}
635
636/**
637 * nand_command_lp - [DEFAULT] Send command to NAND large page device
638 * @mtd:	MTD device structure
639 * @command:	the command to be sent
640 * @column:	the column address for this command, -1 if none
641 * @page_addr:	the page address for this command, -1 if none
642 *
643 * Send command to NAND device. This is the version for the new large page
644 * devices We dont have the separate regions as we have in the small page
645 * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
646 */
647static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
648			    int column, int page_addr)
649{
650	register struct nand_chip *chip = mtd->priv;
651
652	/* Emulate NAND_CMD_READOOB */
653	if (command == NAND_CMD_READOOB) {
654		column += mtd->writesize;
655		command = NAND_CMD_READ0;
656	}
657
658	/* Command latch cycle */
659	chip->cmd_ctrl(mtd, command & 0xff,
660		       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
661
662	if (column != -1 || page_addr != -1) {
663		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
664
665		/* Serially input address */
666		if (column != -1) {
667			/* Adjust columns for 16 bit buswidth */
668			if (chip->options & NAND_BUSWIDTH_16)
669				column >>= 1;
670			chip->cmd_ctrl(mtd, column, ctrl);
671			ctrl &= ~NAND_CTRL_CHANGE;
672			chip->cmd_ctrl(mtd, column >> 8, ctrl);
673		}
674		if (page_addr != -1) {
675			chip->cmd_ctrl(mtd, page_addr, ctrl);
676			chip->cmd_ctrl(mtd, page_addr >> 8,
677				       NAND_NCE | NAND_ALE);
678			/* One more address cycle for devices > 128MiB */
679			if (chip->chipsize > (128 << 20))
680				chip->cmd_ctrl(mtd, page_addr >> 16,
681					       NAND_NCE | NAND_ALE);
682		}
683	}
684	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
685
686	/*
687	 * program and erase have their own busy handlers
688	 * status, sequential in, and deplete1 need no delay
689	 */
690	switch (command) {
691
692	case NAND_CMD_CACHEDPROG:
693	case NAND_CMD_PAGEPROG:
694	case NAND_CMD_ERASE1:
695	case NAND_CMD_ERASE2:
696	case NAND_CMD_SEQIN:
697	case NAND_CMD_RNDIN:
698	case NAND_CMD_STATUS:
699	case NAND_CMD_DEPLETE1:
700		return;
701
702		/*
703		 * read error status commands require only a short delay
704		 */
705	case NAND_CMD_STATUS_ERROR:
706	case NAND_CMD_STATUS_ERROR0:
707	case NAND_CMD_STATUS_ERROR1:
708	case NAND_CMD_STATUS_ERROR2:
709	case NAND_CMD_STATUS_ERROR3:
710		udelay(chip->chip_delay);
711		return;
712
713	case NAND_CMD_RESET:
714		if (chip->dev_ready)
715			break;
716		udelay(chip->chip_delay);
717		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
718			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
719		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
720			       NAND_NCE | NAND_CTRL_CHANGE);
721		while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
722		return;
723
724	case NAND_CMD_RNDOUT:
725		/* No ready / busy check necessary */
726		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
727			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
729			       NAND_NCE | NAND_CTRL_CHANGE);
730		return;
731
732	case NAND_CMD_READ0:
733		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
734			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736			       NAND_NCE | NAND_CTRL_CHANGE);
737
738		/* This applies to read commands */
739	default:
740		/*
741		 * If we don't have access to the busy pin, we apply the given
742		 * command delay
743		 */
744		if (!chip->dev_ready) {
745			udelay(chip->chip_delay);
746			return;
747		}
748	}
749
750	/* Apply this short delay always to ensure that we do wait tWB in
751	 * any case on any machine. */
752	ndelay(100);
753
754	nand_wait_ready(mtd);
755}
756
757/**
758 * panic_nand_get_device - [GENERIC] Get chip for selected access
759 * @chip:	the nand chip descriptor
760 * @mtd:	MTD device structure
761 * @new_state:	the state which is requested
762 *
763 * Used when in panic, no locks are taken.
764 */
765static void panic_nand_get_device(struct nand_chip *chip,
766		      struct mtd_info *mtd, int new_state)
767{
768	/* Hardware controller shared among independend devices */
769	chip->controller->active = chip;
770	chip->state = new_state;
771}
772
773/**
774 * nand_get_device - [GENERIC] Get chip for selected access
775 * @chip:	the nand chip descriptor
776 * @mtd:	MTD device structure
777 * @new_state:	the state which is requested
778 *
779 * Get the device and lock it for exclusive access
780 */
781static int
782nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
783{
784	spinlock_t *lock = &chip->controller->lock;
785	wait_queue_head_t *wq = &chip->controller->wq;
786	DECLARE_WAITQUEUE(wait, current);
787 retry:
788	spin_lock(lock);
789
790	/* Hardware controller shared among independent devices */
791	if (!chip->controller->active)
792		chip->controller->active = chip;
793
794	if (chip->controller->active == chip && chip->state == FL_READY) {
795		chip->state = new_state;
796		spin_unlock(lock);
797		return 0;
798	}
799	if (new_state == FL_PM_SUSPENDED) {
800		if (chip->controller->active->state == FL_PM_SUSPENDED) {
801			chip->state = FL_PM_SUSPENDED;
802			spin_unlock(lock);
803			return 0;
804		}
805	}
806	set_current_state(TASK_UNINTERRUPTIBLE);
807	add_wait_queue(wq, &wait);
808	spin_unlock(lock);
809	schedule();
810	remove_wait_queue(wq, &wait);
811	goto retry;
812}
813
814/**
815 * panic_nand_wait - [GENERIC]  wait until the command is done
816 * @mtd:	MTD device structure
817 * @chip:	NAND chip structure
818 * @timeo:	Timeout
819 *
820 * Wait for command done. This is a helper function for nand_wait used when
821 * we are in interrupt context. May happen when in panic and trying to write
822 * an oops trough mtdoops.
823 */
824static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
825			    unsigned long timeo)
826{
827	int i;
828	for (i = 0; i < timeo; i++) {
829		if (chip->dev_ready) {
830			if (chip->dev_ready(mtd))
831				break;
832		} else {
833			if (chip->read_byte(mtd) & NAND_STATUS_READY)
834				break;
835		}
836		mdelay(1);
837        }
838}
839
840/**
841 * nand_wait - [DEFAULT]  wait until the command is done
842 * @mtd:	MTD device structure
843 * @chip:	NAND chip structure
844 *
845 * Wait for command done. This applies to erase and program only
846 * Erase can take up to 400ms and program up to 20ms according to
847 * general NAND and SmartMedia specs
848 */
849static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
850{
851
852	unsigned long timeo = jiffies;
853	int status, state = chip->state;
854
855	if (state == FL_ERASING)
856		timeo += (HZ * 400) / 1000;
857	else
858		timeo += (HZ * 20) / 1000;
859
860	led_trigger_event(nand_led_trigger, LED_FULL);
861
862	/* Apply this short delay always to ensure that we do wait tWB in
863	 * any case on any machine. */
864	ndelay(100);
865
866	if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
867		chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
868	else
869		chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
870
871	if (in_interrupt() || oops_in_progress)
872		panic_nand_wait(mtd, chip, timeo);
873	else {
874		while (time_before(jiffies, timeo)) {
875			if (chip->dev_ready) {
876				if (chip->dev_ready(mtd))
877					break;
878			} else {
879				if (chip->read_byte(mtd) & NAND_STATUS_READY)
880					break;
881			}
882			cond_resched();
883		}
884	}
885	led_trigger_event(nand_led_trigger, LED_OFF);
886
887	status = (int)chip->read_byte(mtd);
888	return status;
889}
890
891/**
892 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
893 *
894 * @mtd: mtd info
895 * @ofs: offset to start unlock from
896 * @len: length to unlock
897 * @invert:   when = 0, unlock the range of blocks within the lower and
898 *                      upper boundary address
899 *            when = 1, unlock the range of blocks outside the boundaries
900 *                      of the lower and upper boundary address
901 *
902 * return - unlock status
903 */
904static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
905					uint64_t len, int invert)
906{
907	int ret = 0;
908	int status, page;
909	struct nand_chip *chip = mtd->priv;
910
911	/* Submit address of first page to unlock */
912	page = ofs >> chip->page_shift;
913	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
914
915	/* Submit address of last page to unlock */
916	page = (ofs + len) >> chip->page_shift;
917	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
918				(page | invert) & chip->pagemask);
919
920	/* Call wait ready function */
921	status = chip->waitfunc(mtd, chip);
922	udelay(1000);
923	/* See if device thinks it succeeded */
924	if (status & 0x01) {
925		DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
926					__func__, status);
927		ret = -EIO;
928	}
929
930	return ret;
931}
932
933/**
934 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
935 *
936 * @mtd: mtd info
937 * @ofs: offset to start unlock from
938 * @len: length to unlock
939 *
940 * return - unlock status
941 */
942int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
943{
944	int ret = 0;
945	int chipnr;
946	struct nand_chip *chip = mtd->priv;
947
948	DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
949			__func__, (unsigned long long)ofs, len);
950
951	if (check_offs_len(mtd, ofs, len))
952		ret = -EINVAL;
953
954	/* Align to last block address if size addresses end of the device */
955	if (ofs + len == mtd->size)
956		len -= mtd->erasesize;
957
958	nand_get_device(chip, mtd, FL_UNLOCKING);
959
960	/* Shift to get chip number */
961	chipnr = ofs >> chip->chip_shift;
962
963	chip->select_chip(mtd, chipnr);
964
965	/* Check, if it is write protected */
966	if (nand_check_wp(mtd)) {
967		DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
968					__func__);
969		ret = -EIO;
970		goto out;
971	}
972
973	ret = __nand_unlock(mtd, ofs, len, 0);
974
975out:
976	/* de-select the NAND device */
977	chip->select_chip(mtd, -1);
978
979	nand_release_device(mtd);
980
981	return ret;
982}
983
984/**
985 * nand_lock - [REPLACEABLE] locks all blocks present in the device
986 *
987 * @mtd: mtd info
988 * @ofs: offset to start unlock from
989 * @len: length to unlock
990 *
991 * return - lock status
992 *
993 * This feature is not supported in many NAND parts. 'Micron' NAND parts
994 * do have this feature, but it allows only to lock all blocks, not for
995 * specified range for block.
996 *
997 * Implementing 'lock' feature by making use of 'unlock', for now.
998 */
999int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1000{
1001	int ret = 0;
1002	int chipnr, status, page;
1003	struct nand_chip *chip = mtd->priv;
1004
1005	DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1006			__func__, (unsigned long long)ofs, len);
1007
1008	if (check_offs_len(mtd, ofs, len))
1009		ret = -EINVAL;
1010
1011	nand_get_device(chip, mtd, FL_LOCKING);
1012
1013	/* Shift to get chip number */
1014	chipnr = ofs >> chip->chip_shift;
1015
1016	chip->select_chip(mtd, chipnr);
1017
1018	/* Check, if it is write protected */
1019	if (nand_check_wp(mtd)) {
1020		DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1021					__func__);
1022		status = MTD_ERASE_FAILED;
1023		ret = -EIO;
1024		goto out;
1025	}
1026
1027	/* Submit address of first page to lock */
1028	page = ofs >> chip->page_shift;
1029	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1030
1031	/* Call wait ready function */
1032	status = chip->waitfunc(mtd, chip);
1033	udelay(1000);
1034	/* See if device thinks it succeeded */
1035	if (status & 0x01) {
1036		DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1037					__func__, status);
1038		ret = -EIO;
1039		goto out;
1040	}
1041
1042	ret = __nand_unlock(mtd, ofs, len, 0x1);
1043
1044out:
1045	/* de-select the NAND device */
1046	chip->select_chip(mtd, -1);
1047
1048	nand_release_device(mtd);
1049
1050	return ret;
1051}
1052
1053/**
1054 * nand_read_page_raw - [Intern] read raw page data without ecc
1055 * @mtd:	mtd info structure
1056 * @chip:	nand chip info structure
1057 * @buf:	buffer to store read data
1058 * @page:	page number to read
1059 *
1060 * Not for syndrome calculating ecc controllers, which use a special oob layout
1061 */
1062static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1063			      uint8_t *buf, int page)
1064{
1065	chip->read_buf(mtd, buf, mtd->writesize);
1066	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1067	return 0;
1068}
1069
1070/**
1071 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1072 * @mtd:	mtd info structure
1073 * @chip:	nand chip info structure
1074 * @buf:	buffer to store read data
1075 * @page:	page number to read
1076 *
1077 * We need a special oob layout and handling even when OOB isn't used.
1078 */
1079static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1080			      uint8_t *buf, int page)
1081{
1082	int eccsize = chip->ecc.size;
1083	int eccbytes = chip->ecc.bytes;
1084	uint8_t *oob = chip->oob_poi;
1085	int steps, size;
1086
1087	for (steps = chip->ecc.steps; steps > 0; steps--) {
1088		chip->read_buf(mtd, buf, eccsize);
1089		buf += eccsize;
1090
1091		if (chip->ecc.prepad) {
1092			chip->read_buf(mtd, oob, chip->ecc.prepad);
1093			oob += chip->ecc.prepad;
1094		}
1095
1096		chip->read_buf(mtd, oob, eccbytes);
1097		oob += eccbytes;
1098
1099		if (chip->ecc.postpad) {
1100			chip->read_buf(mtd, oob, chip->ecc.postpad);
1101			oob += chip->ecc.postpad;
1102		}
1103	}
1104
1105	size = mtd->oobsize - (oob - chip->oob_poi);
1106	if (size)
1107		chip->read_buf(mtd, oob, size);
1108
1109	return 0;
1110}
1111
1112/**
1113 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1114 * @mtd:	mtd info structure
1115 * @chip:	nand chip info structure
1116 * @buf:	buffer to store read data
1117 * @page:	page number to read
1118 */
1119static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1120				uint8_t *buf, int page)
1121{
1122	int i, eccsize = chip->ecc.size;
1123	int eccbytes = chip->ecc.bytes;
1124	int eccsteps = chip->ecc.steps;
1125	uint8_t *p = buf;
1126	uint8_t *ecc_calc = chip->buffers->ecccalc;
1127	uint8_t *ecc_code = chip->buffers->ecccode;
1128	uint32_t *eccpos = chip->ecc.layout->eccpos;
1129
1130	chip->ecc.read_page_raw(mtd, chip, buf, page);
1131
1132	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1133		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1134
1135	for (i = 0; i < chip->ecc.total; i++)
1136		ecc_code[i] = chip->oob_poi[eccpos[i]];
1137
1138	eccsteps = chip->ecc.steps;
1139	p = buf;
1140
1141	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1142		int stat;
1143
1144		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1145		if (stat < 0)
1146			mtd->ecc_stats.failed++;
1147		else
1148			mtd->ecc_stats.corrected += stat;
1149	}
1150	return 0;
1151}
1152
1153/**
1154 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1155 * @mtd:	mtd info structure
1156 * @chip:	nand chip info structure
1157 * @data_offs:	offset of requested data within the page
1158 * @readlen:	data length
1159 * @bufpoi:	buffer to store read data
1160 */
1161static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1162{
1163	int start_step, end_step, num_steps;
1164	uint32_t *eccpos = chip->ecc.layout->eccpos;
1165	uint8_t *p;
1166	int data_col_addr, i, gaps = 0;
1167	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1168	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1169
1170	/* Column address wihin the page aligned to ECC size (256bytes). */
1171	start_step = data_offs / chip->ecc.size;
1172	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1173	num_steps = end_step - start_step + 1;
1174
1175	/* Data size aligned to ECC ecc.size*/
1176	datafrag_len = num_steps * chip->ecc.size;
1177	eccfrag_len = num_steps * chip->ecc.bytes;
1178
1179	data_col_addr = start_step * chip->ecc.size;
1180	/* If we read not a page aligned data */
1181	if (data_col_addr != 0)
1182		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1183
1184	p = bufpoi + data_col_addr;
1185	chip->read_buf(mtd, p, datafrag_len);
1186
1187	/* Calculate  ECC */
1188	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1189		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1190
1191	/* The performance is faster if to position offsets
1192	   according to ecc.pos. Let make sure here that
1193	   there are no gaps in ecc positions */
1194	for (i = 0; i < eccfrag_len - 1; i++) {
1195		if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1196			eccpos[i + start_step * chip->ecc.bytes + 1]) {
1197			gaps = 1;
1198			break;
1199		}
1200	}
1201	if (gaps) {
1202		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1203		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1204	} else {
1205		/* send the command to read the particular ecc bytes */
1206		/* take care about buswidth alignment in read_buf */
1207		aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1208		aligned_len = eccfrag_len;
1209		if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1210			aligned_len++;
1211		if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1212			aligned_len++;
1213
1214		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1215		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1216	}
1217
1218	for (i = 0; i < eccfrag_len; i++)
1219		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1220
1221	p = bufpoi + data_col_addr;
1222	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1223		int stat;
1224
1225		stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1226		if (stat == -1)
1227			mtd->ecc_stats.failed++;
1228		else
1229			mtd->ecc_stats.corrected += stat;
1230	}
1231	return 0;
1232}
1233
1234/**
1235 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1236 * @mtd:	mtd info structure
1237 * @chip:	nand chip info structure
1238 * @buf:	buffer to store read data
1239 * @page:	page number to read
1240 *
1241 * Not for syndrome calculating ecc controllers which need a special oob layout
1242 */
1243static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1244				uint8_t *buf, int page)
1245{
1246	int i, eccsize = chip->ecc.size;
1247	int eccbytes = chip->ecc.bytes;
1248	int eccsteps = chip->ecc.steps;
1249	uint8_t *p = buf;
1250	uint8_t *ecc_calc = chip->buffers->ecccalc;
1251	uint8_t *ecc_code = chip->buffers->ecccode;
1252	uint32_t *eccpos = chip->ecc.layout->eccpos;
1253
1254	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1255		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1256		chip->read_buf(mtd, p, eccsize);
1257		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1258	}
1259	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1260
1261	for (i = 0; i < chip->ecc.total; i++)
1262		ecc_code[i] = chip->oob_poi[eccpos[i]];
1263
1264	eccsteps = chip->ecc.steps;
1265	p = buf;
1266
1267	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1268		int stat;
1269
1270		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1271		if (stat < 0)
1272			mtd->ecc_stats.failed++;
1273		else
1274			mtd->ecc_stats.corrected += stat;
1275	}
1276	return 0;
1277}
1278
1279/**
1280 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1281 * @mtd:	mtd info structure
1282 * @chip:	nand chip info structure
1283 * @buf:	buffer to store read data
1284 * @page:	page number to read
1285 *
1286 * Hardware ECC for large page chips, require OOB to be read first.
1287 * For this ECC mode, the write_page method is re-used from ECC_HW.
1288 * These methods read/write ECC from the OOB area, unlike the
1289 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1290 * "infix ECC" scheme and reads/writes ECC from the data area, by
1291 * overwriting the NAND manufacturer bad block markings.
1292 */
1293static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1294	struct nand_chip *chip, uint8_t *buf, int page)
1295{
1296	int i, eccsize = chip->ecc.size;
1297	int eccbytes = chip->ecc.bytes;
1298	int eccsteps = chip->ecc.steps;
1299	uint8_t *p = buf;
1300	uint8_t *ecc_code = chip->buffers->ecccode;
1301	uint32_t *eccpos = chip->ecc.layout->eccpos;
1302	uint8_t *ecc_calc = chip->buffers->ecccalc;
1303
1304	/* Read the OOB area first */
1305	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1306	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1307	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1308
1309	for (i = 0; i < chip->ecc.total; i++)
1310		ecc_code[i] = chip->oob_poi[eccpos[i]];
1311
1312	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1313		int stat;
1314
1315		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1316		chip->read_buf(mtd, p, eccsize);
1317		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1318
1319		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1320		if (stat < 0)
1321			mtd->ecc_stats.failed++;
1322		else
1323			mtd->ecc_stats.corrected += stat;
1324	}
1325	return 0;
1326}
1327
1328/**
1329 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1330 * @mtd:	mtd info structure
1331 * @chip:	nand chip info structure
1332 * @buf:	buffer to store read data
1333 * @page:	page number to read
1334 *
1335 * The hw generator calculates the error syndrome automatically. Therefor
1336 * we need a special oob layout and handling.
1337 */
1338static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1339				   uint8_t *buf, int page)
1340{
1341	int i, eccsize = chip->ecc.size;
1342	int eccbytes = chip->ecc.bytes;
1343	int eccsteps = chip->ecc.steps;
1344	uint8_t *p = buf;
1345	uint8_t *oob = chip->oob_poi;
1346
1347	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1348		int stat;
1349
1350		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1351		chip->read_buf(mtd, p, eccsize);
1352
1353		if (chip->ecc.prepad) {
1354			chip->read_buf(mtd, oob, chip->ecc.prepad);
1355			oob += chip->ecc.prepad;
1356		}
1357
1358		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1359		chip->read_buf(mtd, oob, eccbytes);
1360		stat = chip->ecc.correct(mtd, p, oob, NULL);
1361
1362		if (stat < 0)
1363			mtd->ecc_stats.failed++;
1364		else
1365			mtd->ecc_stats.corrected += stat;
1366
1367		oob += eccbytes;
1368
1369		if (chip->ecc.postpad) {
1370			chip->read_buf(mtd, oob, chip->ecc.postpad);
1371			oob += chip->ecc.postpad;
1372		}
1373	}
1374
1375	/* Calculate remaining oob bytes */
1376	i = mtd->oobsize - (oob - chip->oob_poi);
1377	if (i)
1378		chip->read_buf(mtd, oob, i);
1379
1380	return 0;
1381}
1382
1383/**
1384 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1385 * @chip:	nand chip structure
1386 * @oob:	oob destination address
1387 * @ops:	oob ops structure
1388 * @len:	size of oob to transfer
1389 */
1390static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1391				  struct mtd_oob_ops *ops, size_t len)
1392{
1393	switch(ops->mode) {
1394
1395	case MTD_OOB_PLACE:
1396	case MTD_OOB_RAW:
1397		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1398		return oob + len;
1399
1400	case MTD_OOB_AUTO: {
1401		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1402		uint32_t boffs = 0, roffs = ops->ooboffs;
1403		size_t bytes = 0;
1404
1405		for(; free->length && len; free++, len -= bytes) {
1406			/* Read request not from offset 0 ? */
1407			if (unlikely(roffs)) {
1408				if (roffs >= free->length) {
1409					roffs -= free->length;
1410					continue;
1411				}
1412				boffs = free->offset + roffs;
1413				bytes = min_t(size_t, len,
1414					      (free->length - roffs));
1415				roffs = 0;
1416			} else {
1417				bytes = min_t(size_t, len, free->length);
1418				boffs = free->offset;
1419			}
1420			memcpy(oob, chip->oob_poi + boffs, bytes);
1421			oob += bytes;
1422		}
1423		return oob;
1424	}
1425	default:
1426		BUG();
1427	}
1428	return NULL;
1429}
1430
1431/**
1432 * nand_do_read_ops - [Internal] Read data with ECC
1433 *
1434 * @mtd:	MTD device structure
1435 * @from:	offset to read from
1436 * @ops:	oob ops structure
1437 *
1438 * Internal function. Called with chip held.
1439 */
1440static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1441			    struct mtd_oob_ops *ops)
1442{
1443	int chipnr, page, realpage, col, bytes, aligned;
1444	struct nand_chip *chip = mtd->priv;
1445	struct mtd_ecc_stats stats;
1446	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1447	int sndcmd = 1;
1448	int ret = 0;
1449	uint32_t readlen = ops->len;
1450	uint32_t oobreadlen = ops->ooblen;
1451	uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1452		mtd->oobavail : mtd->oobsize;
1453
1454	uint8_t *bufpoi, *oob, *buf;
1455
1456	stats = mtd->ecc_stats;
1457
1458	chipnr = (int)(from >> chip->chip_shift);
1459	chip->select_chip(mtd, chipnr);
1460
1461	realpage = (int)(from >> chip->page_shift);
1462	page = realpage & chip->pagemask;
1463
1464	col = (int)(from & (mtd->writesize - 1));
1465
1466	buf = ops->datbuf;
1467	oob = ops->oobbuf;
1468
1469	while(1) {
1470		bytes = min(mtd->writesize - col, readlen);
1471		aligned = (bytes == mtd->writesize);
1472
1473		/* Is the current page in the buffer ? */
1474		if (realpage != chip->pagebuf || oob) {
1475			bufpoi = aligned ? buf : chip->buffers->databuf;
1476
1477			if (likely(sndcmd)) {
1478				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1479				sndcmd = 0;
1480			}
1481
1482			/* Now read the page into the buffer */
1483			if (unlikely(ops->mode == MTD_OOB_RAW))
1484				ret = chip->ecc.read_page_raw(mtd, chip,
1485							      bufpoi, page);
1486			else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1487				ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1488			else
1489				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1490							  page);
1491			if (ret < 0)
1492				break;
1493
1494			/* Transfer not aligned data */
1495			if (!aligned) {
1496				if (!NAND_SUBPAGE_READ(chip) && !oob)
1497					chip->pagebuf = realpage;
1498				memcpy(buf, chip->buffers->databuf + col, bytes);
1499			}
1500
1501			buf += bytes;
1502
1503			if (unlikely(oob)) {
1504
1505				int toread = min(oobreadlen, max_oobsize);
1506
1507				if (toread) {
1508					oob = nand_transfer_oob(chip,
1509						oob, ops, toread);
1510					oobreadlen -= toread;
1511				}
1512			}
1513
1514			if (!(chip->options & NAND_NO_READRDY)) {
1515				/*
1516				 * Apply delay or wait for ready/busy pin. Do
1517				 * this before the AUTOINCR check, so no
1518				 * problems arise if a chip which does auto
1519				 * increment is marked as NOAUTOINCR by the
1520				 * board driver.
1521				 */
1522				if (!chip->dev_ready)
1523					udelay(chip->chip_delay);
1524				else
1525					nand_wait_ready(mtd);
1526			}
1527		} else {
1528			memcpy(buf, chip->buffers->databuf + col, bytes);
1529			buf += bytes;
1530		}
1531
1532		readlen -= bytes;
1533
1534		if (!readlen)
1535			break;
1536
1537		/* For subsequent reads align to page boundary. */
1538		col = 0;
1539		/* Increment page address */
1540		realpage++;
1541
1542		page = realpage & chip->pagemask;
1543		/* Check, if we cross a chip boundary */
1544		if (!page) {
1545			chipnr++;
1546			chip->select_chip(mtd, -1);
1547			chip->select_chip(mtd, chipnr);
1548		}
1549
1550		/* Check, if the chip supports auto page increment
1551		 * or if we have hit a block boundary.
1552		 */
1553		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1554			sndcmd = 1;
1555	}
1556
1557	ops->retlen = ops->len - (size_t) readlen;
1558	if (oob)
1559		ops->oobretlen = ops->ooblen - oobreadlen;
1560
1561	if (ret)
1562		return ret;
1563
1564	if (mtd->ecc_stats.failed - stats.failed)
1565		return -EBADMSG;
1566
1567	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1568}
1569
1570/**
1571 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1572 * @mtd:	MTD device structure
1573 * @from:	offset to read from
1574 * @len:	number of bytes to read
1575 * @retlen:	pointer to variable to store the number of read bytes
1576 * @buf:	the databuffer to put data
1577 *
1578 * Get hold of the chip and call nand_do_read
1579 */
1580static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1581		     size_t *retlen, uint8_t *buf)
1582{
1583	struct nand_chip *chip = mtd->priv;
1584	int ret;
1585
1586	/* Do not allow reads past end of device */
1587	if ((from + len) > mtd->size)
1588		return -EINVAL;
1589	if (!len)
1590		return 0;
1591
1592	nand_get_device(chip, mtd, FL_READING);
1593
1594	chip->ops.len = len;
1595	chip->ops.datbuf = buf;
1596	chip->ops.oobbuf = NULL;
1597
1598	ret = nand_do_read_ops(mtd, from, &chip->ops);
1599
1600	*retlen = chip->ops.retlen;
1601
1602	nand_release_device(mtd);
1603
1604	return ret;
1605}
1606
1607/**
1608 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1609 * @mtd:	mtd info structure
1610 * @chip:	nand chip info structure
1611 * @page:	page number to read
1612 * @sndcmd:	flag whether to issue read command or not
1613 */
1614static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1615			     int page, int sndcmd)
1616{
1617	if (sndcmd) {
1618		chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1619		sndcmd = 0;
1620	}
1621	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1622	return sndcmd;
1623}
1624
1625/**
1626 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1627 *			    with syndromes
1628 * @mtd:	mtd info structure
1629 * @chip:	nand chip info structure
1630 * @page:	page number to read
1631 * @sndcmd:	flag whether to issue read command or not
1632 */
1633static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1634				  int page, int sndcmd)
1635{
1636	uint8_t *buf = chip->oob_poi;
1637	int length = mtd->oobsize;
1638	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1639	int eccsize = chip->ecc.size;
1640	uint8_t *bufpoi = buf;
1641	int i, toread, sndrnd = 0, pos;
1642
1643	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1644	for (i = 0; i < chip->ecc.steps; i++) {
1645		if (sndrnd) {
1646			pos = eccsize + i * (eccsize + chunk);
1647			if (mtd->writesize > 512)
1648				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1649			else
1650				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1651		} else
1652			sndrnd = 1;
1653		toread = min_t(int, length, chunk);
1654		chip->read_buf(mtd, bufpoi, toread);
1655		bufpoi += toread;
1656		length -= toread;
1657	}
1658	if (length > 0)
1659		chip->read_buf(mtd, bufpoi, length);
1660
1661	return 1;
1662}
1663
1664/**
1665 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1666 * @mtd:	mtd info structure
1667 * @chip:	nand chip info structure
1668 * @page:	page number to write
1669 */
1670static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1671			      int page)
1672{
1673	int status = 0;
1674	const uint8_t *buf = chip->oob_poi;
1675	int length = mtd->oobsize;
1676
1677	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1678	chip->write_buf(mtd, buf, length);
1679	/* Send command to program the OOB data */
1680	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1681
1682	status = chip->waitfunc(mtd, chip);
1683
1684	return status & NAND_STATUS_FAIL ? -EIO : 0;
1685}
1686
1687/**
1688 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1689 *			     with syndrome - only for large page flash !
1690 * @mtd:	mtd info structure
1691 * @chip:	nand chip info structure
1692 * @page:	page number to write
1693 */
1694static int nand_write_oob_syndrome(struct mtd_info *mtd,
1695				   struct nand_chip *chip, int page)
1696{
1697	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1698	int eccsize = chip->ecc.size, length = mtd->oobsize;
1699	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1700	const uint8_t *bufpoi = chip->oob_poi;
1701
1702	/*
1703	 * data-ecc-data-ecc ... ecc-oob
1704	 * or
1705	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1706	 */
1707	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1708		pos = steps * (eccsize + chunk);
1709		steps = 0;
1710	} else
1711		pos = eccsize;
1712
1713	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1714	for (i = 0; i < steps; i++) {
1715		if (sndcmd) {
1716			if (mtd->writesize <= 512) {
1717				uint32_t fill = 0xFFFFFFFF;
1718
1719				len = eccsize;
1720				while (len > 0) {
1721					int num = min_t(int, len, 4);
1722					chip->write_buf(mtd, (uint8_t *)&fill,
1723							num);
1724					len -= num;
1725				}
1726			} else {
1727				pos = eccsize + i * (eccsize + chunk);
1728				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1729			}
1730		} else
1731			sndcmd = 1;
1732		len = min_t(int, length, chunk);
1733		chip->write_buf(mtd, bufpoi, len);
1734		bufpoi += len;
1735		length -= len;
1736	}
1737	if (length > 0)
1738		chip->write_buf(mtd, bufpoi, length);
1739
1740	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1741	status = chip->waitfunc(mtd, chip);
1742
1743	return status & NAND_STATUS_FAIL ? -EIO : 0;
1744}
1745
1746/**
1747 * nand_do_read_oob - [Intern] NAND read out-of-band
1748 * @mtd:	MTD device structure
1749 * @from:	offset to read from
1750 * @ops:	oob operations description structure
1751 *
1752 * NAND read out-of-band data from the spare area
1753 */
1754static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1755			    struct mtd_oob_ops *ops)
1756{
1757	int page, realpage, chipnr, sndcmd = 1;
1758	struct nand_chip *chip = mtd->priv;
1759	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1760	int readlen = ops->ooblen;
1761	int len;
1762	uint8_t *buf = ops->oobbuf;
1763
1764	DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1765			__func__, (unsigned long long)from, readlen);
1766
1767	if (ops->mode == MTD_OOB_AUTO)
1768		len = chip->ecc.layout->oobavail;
1769	else
1770		len = mtd->oobsize;
1771
1772	if (unlikely(ops->ooboffs >= len)) {
1773		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1774					"outside oob\n", __func__);
1775		return -EINVAL;
1776	}
1777
1778	/* Do not allow reads past end of device */
1779	if (unlikely(from >= mtd->size ||
1780		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1781					(from >> chip->page_shift)) * len)) {
1782		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1783					"of device\n", __func__);
1784		return -EINVAL;
1785	}
1786
1787	chipnr = (int)(from >> chip->chip_shift);
1788	chip->select_chip(mtd, chipnr);
1789
1790	/* Shift to get page */
1791	realpage = (int)(from >> chip->page_shift);
1792	page = realpage & chip->pagemask;
1793
1794	while(1) {
1795		sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1796
1797		len = min(len, readlen);
1798		buf = nand_transfer_oob(chip, buf, ops, len);
1799
1800		if (!(chip->options & NAND_NO_READRDY)) {
1801			/*
1802			 * Apply delay or wait for ready/busy pin. Do this
1803			 * before the AUTOINCR check, so no problems arise if a
1804			 * chip which does auto increment is marked as
1805			 * NOAUTOINCR by the board driver.
1806			 */
1807			if (!chip->dev_ready)
1808				udelay(chip->chip_delay);
1809			else
1810				nand_wait_ready(mtd);
1811		}
1812
1813		readlen -= len;
1814		if (!readlen)
1815			break;
1816
1817		/* Increment page address */
1818		realpage++;
1819
1820		page = realpage & chip->pagemask;
1821		/* Check, if we cross a chip boundary */
1822		if (!page) {
1823			chipnr++;
1824			chip->select_chip(mtd, -1);
1825			chip->select_chip(mtd, chipnr);
1826		}
1827
1828		/* Check, if the chip supports auto page increment
1829		 * or if we have hit a block boundary.
1830		 */
1831		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1832			sndcmd = 1;
1833	}
1834
1835	ops->oobretlen = ops->ooblen;
1836	return 0;
1837}
1838
1839/**
1840 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1841 * @mtd:	MTD device structure
1842 * @from:	offset to read from
1843 * @ops:	oob operation description structure
1844 *
1845 * NAND read data and/or out-of-band data
1846 */
1847static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1848			 struct mtd_oob_ops *ops)
1849{
1850	struct nand_chip *chip = mtd->priv;
1851	int ret = -ENOTSUPP;
1852
1853	ops->retlen = 0;
1854
1855	/* Do not allow reads past end of device */
1856	if (ops->datbuf && (from + ops->len) > mtd->size) {
1857		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1858				"beyond end of device\n", __func__);
1859		return -EINVAL;
1860	}
1861
1862	nand_get_device(chip, mtd, FL_READING);
1863
1864	switch(ops->mode) {
1865	case MTD_OOB_PLACE:
1866	case MTD_OOB_AUTO:
1867	case MTD_OOB_RAW:
1868		break;
1869
1870	default:
1871		goto out;
1872	}
1873
1874	if (!ops->datbuf)
1875		ret = nand_do_read_oob(mtd, from, ops);
1876	else
1877		ret = nand_do_read_ops(mtd, from, ops);
1878
1879 out:
1880	nand_release_device(mtd);
1881	return ret;
1882}
1883
1884
1885/**
1886 * nand_write_page_raw - [Intern] raw page write function
1887 * @mtd:	mtd info structure
1888 * @chip:	nand chip info structure
1889 * @buf:	data buffer
1890 *
1891 * Not for syndrome calculating ecc controllers, which use a special oob layout
1892 */
1893static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1894				const uint8_t *buf)
1895{
1896	chip->write_buf(mtd, buf, mtd->writesize);
1897	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1898}
1899
1900/**
1901 * nand_write_page_raw_syndrome - [Intern] raw page write function
1902 * @mtd:	mtd info structure
1903 * @chip:	nand chip info structure
1904 * @buf:	data buffer
1905 *
1906 * We need a special oob layout and handling even when ECC isn't checked.
1907 */
1908static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1909				const uint8_t *buf)
1910{
1911	int eccsize = chip->ecc.size;
1912	int eccbytes = chip->ecc.bytes;
1913	uint8_t *oob = chip->oob_poi;
1914	int steps, size;
1915
1916	for (steps = chip->ecc.steps; steps > 0; steps--) {
1917		chip->write_buf(mtd, buf, eccsize);
1918		buf += eccsize;
1919
1920		if (chip->ecc.prepad) {
1921			chip->write_buf(mtd, oob, chip->ecc.prepad);
1922			oob += chip->ecc.prepad;
1923		}
1924
1925		chip->read_buf(mtd, oob, eccbytes);
1926		oob += eccbytes;
1927
1928		if (chip->ecc.postpad) {
1929			chip->write_buf(mtd, oob, chip->ecc.postpad);
1930			oob += chip->ecc.postpad;
1931		}
1932	}
1933
1934	size = mtd->oobsize - (oob - chip->oob_poi);
1935	if (size)
1936		chip->write_buf(mtd, oob, size);
1937}
1938/**
1939 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1940 * @mtd:	mtd info structure
1941 * @chip:	nand chip info structure
1942 * @buf:	data buffer
1943 */
1944static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1945				  const uint8_t *buf)
1946{
1947	int i, eccsize = chip->ecc.size;
1948	int eccbytes = chip->ecc.bytes;
1949	int eccsteps = chip->ecc.steps;
1950	uint8_t *ecc_calc = chip->buffers->ecccalc;
1951	const uint8_t *p = buf;
1952	uint32_t *eccpos = chip->ecc.layout->eccpos;
1953
1954	/* Software ecc calculation */
1955	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1956		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1957
1958	for (i = 0; i < chip->ecc.total; i++)
1959		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1960
1961	chip->ecc.write_page_raw(mtd, chip, buf);
1962}
1963
1964/**
1965 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1966 * @mtd:	mtd info structure
1967 * @chip:	nand chip info structure
1968 * @buf:	data buffer
1969 */
1970static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1971				  const uint8_t *buf)
1972{
1973	int i, eccsize = chip->ecc.size;
1974	int eccbytes = chip->ecc.bytes;
1975	int eccsteps = chip->ecc.steps;
1976	uint8_t *ecc_calc = chip->buffers->ecccalc;
1977	const uint8_t *p = buf;
1978	uint32_t *eccpos = chip->ecc.layout->eccpos;
1979
1980	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1981		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1982		chip->write_buf(mtd, p, eccsize);
1983		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1984	}
1985
1986	for (i = 0; i < chip->ecc.total; i++)
1987		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1988
1989	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1990}
1991
1992/**
1993 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1994 * @mtd:	mtd info structure
1995 * @chip:	nand chip info structure
1996 * @buf:	data buffer
1997 *
1998 * The hw generator calculates the error syndrome automatically. Therefor
1999 * we need a special oob layout and handling.
2000 */
2001static void nand_write_page_syndrome(struct mtd_info *mtd,
2002				    struct nand_chip *chip, const uint8_t *buf)
2003{
2004	int i, eccsize = chip->ecc.size;
2005	int eccbytes = chip->ecc.bytes;
2006	int eccsteps = chip->ecc.steps;
2007	const uint8_t *p = buf;
2008	uint8_t *oob = chip->oob_poi;
2009
2010	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2011
2012		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2013		chip->write_buf(mtd, p, eccsize);
2014
2015		if (chip->ecc.prepad) {
2016			chip->write_buf(mtd, oob, chip->ecc.prepad);
2017			oob += chip->ecc.prepad;
2018		}
2019
2020		chip->ecc.calculate(mtd, p, oob);
2021		chip->write_buf(mtd, oob, eccbytes);
2022		oob += eccbytes;
2023
2024		if (chip->ecc.postpad) {
2025			chip->write_buf(mtd, oob, chip->ecc.postpad);
2026			oob += chip->ecc.postpad;
2027		}
2028	}
2029
2030	/* Calculate remaining oob bytes */
2031	i = mtd->oobsize - (oob - chip->oob_poi);
2032	if (i)
2033		chip->write_buf(mtd, oob, i);
2034}
2035
2036/**
2037 * nand_write_page - [REPLACEABLE] write one page
2038 * @mtd:	MTD device structure
2039 * @chip:	NAND chip descriptor
2040 * @buf:	the data to write
2041 * @page:	page number to write
2042 * @cached:	cached programming
2043 * @raw:	use _raw version of write_page
2044 */
2045static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2046			   const uint8_t *buf, int page, int cached, int raw)
2047{
2048	int status;
2049
2050	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2051
2052	if (unlikely(raw))
2053		chip->ecc.write_page_raw(mtd, chip, buf);
2054	else
2055		chip->ecc.write_page(mtd, chip, buf);
2056
2057	/*
2058	 * Cached progamming disabled for now, Not sure if its worth the
2059	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2060	 */
2061	cached = 0;
2062
2063	if (!cached || !(chip->options & NAND_CACHEPRG)) {
2064
2065		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2066		status = chip->waitfunc(mtd, chip);
2067		/*
2068		 * See if operation failed and additional status checks are
2069		 * available
2070		 */
2071		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2072			status = chip->errstat(mtd, chip, FL_WRITING, status,
2073					       page);
2074
2075		if (status & NAND_STATUS_FAIL)
2076			return -EIO;
2077	} else {
2078		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2079		status = chip->waitfunc(mtd, chip);
2080	}
2081
2082#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2083	/* Send command to read back the data */
2084	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2085
2086	if (chip->verify_buf(mtd, buf, mtd->writesize))
2087		return -EIO;
2088#endif
2089	return 0;
2090}
2091
2092/**
2093 * nand_fill_oob - [Internal] Transfer client buffer to oob
2094 * @chip:	nand chip structure
2095 * @oob:	oob data buffer
2096 * @len:	oob data write length
2097 * @ops:	oob ops structure
2098 */
2099static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2100						struct mtd_oob_ops *ops)
2101{
2102	switch(ops->mode) {
2103
2104	case MTD_OOB_PLACE:
2105	case MTD_OOB_RAW:
2106		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2107		return oob + len;
2108
2109	case MTD_OOB_AUTO: {
2110		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2111		uint32_t boffs = 0, woffs = ops->ooboffs;
2112		size_t bytes = 0;
2113
2114		for(; free->length && len; free++, len -= bytes) {
2115			/* Write request not from offset 0 ? */
2116			if (unlikely(woffs)) {
2117				if (woffs >= free->length) {
2118					woffs -= free->length;
2119					continue;
2120				}
2121				boffs = free->offset + woffs;
2122				bytes = min_t(size_t, len,
2123					      (free->length - woffs));
2124				woffs = 0;
2125			} else {
2126				bytes = min_t(size_t, len, free->length);
2127				boffs = free->offset;
2128			}
2129			memcpy(chip->oob_poi + boffs, oob, bytes);
2130			oob += bytes;
2131		}
2132		return oob;
2133	}
2134	default:
2135		BUG();
2136	}
2137	return NULL;
2138}
2139
2140#define NOTALIGNED(x)	(x & (chip->subpagesize - 1)) != 0
2141
2142/**
2143 * nand_do_write_ops - [Internal] NAND write with ECC
2144 * @mtd:	MTD device structure
2145 * @to:		offset to write to
2146 * @ops:	oob operations description structure
2147 *
2148 * NAND write with ECC
2149 */
2150static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2151			     struct mtd_oob_ops *ops)
2152{
2153	int chipnr, realpage, page, blockmask, column;
2154	struct nand_chip *chip = mtd->priv;
2155	uint32_t writelen = ops->len;
2156
2157	uint32_t oobwritelen = ops->ooblen;
2158	uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2159				mtd->oobavail : mtd->oobsize;
2160
2161	uint8_t *oob = ops->oobbuf;
2162	uint8_t *buf = ops->datbuf;
2163	int ret, subpage;
2164
2165	ops->retlen = 0;
2166	if (!writelen)
2167		return 0;
2168
2169	/* reject writes, which are not page aligned */
2170	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2171		printk(KERN_NOTICE "%s: Attempt to write not "
2172				"page aligned data\n", __func__);
2173		return -EINVAL;
2174	}
2175
2176	column = to & (mtd->writesize - 1);
2177	subpage = column || (writelen & (mtd->writesize - 1));
2178
2179	if (subpage && oob)
2180		return -EINVAL;
2181
2182	chipnr = (int)(to >> chip->chip_shift);
2183	chip->select_chip(mtd, chipnr);
2184
2185	/* Check, if it is write protected */
2186	if (nand_check_wp(mtd))
2187		return -EIO;
2188
2189	realpage = (int)(to >> chip->page_shift);
2190	page = realpage & chip->pagemask;
2191	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2192
2193	/* Invalidate the page cache, when we write to the cached page */
2194	if (to <= (chip->pagebuf << chip->page_shift) &&
2195	    (chip->pagebuf << chip->page_shift) < (to + ops->len))
2196		chip->pagebuf = -1;
2197
2198	/* If we're not given explicit OOB data, let it be 0xFF */
2199	if (likely(!oob))
2200		memset(chip->oob_poi, 0xff, mtd->oobsize);
2201
2202	/* Don't allow multipage oob writes with offset */
2203	if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2204		return -EINVAL;
2205
2206	while(1) {
2207		int bytes = mtd->writesize;
2208		int cached = writelen > bytes && page != blockmask;
2209		uint8_t *wbuf = buf;
2210
2211		/* Partial page write ? */
2212		if (unlikely(column || writelen < (mtd->writesize - 1))) {
2213			cached = 0;
2214			bytes = min_t(int, bytes - column, (int) writelen);
2215			chip->pagebuf = -1;
2216			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2217			memcpy(&chip->buffers->databuf[column], buf, bytes);
2218			wbuf = chip->buffers->databuf;
2219		}
2220
2221		if (unlikely(oob)) {
2222			size_t len = min(oobwritelen, oobmaxlen);
2223			oob = nand_fill_oob(chip, oob, len, ops);
2224			oobwritelen -= len;
2225		}
2226
2227		ret = chip->write_page(mtd, chip, wbuf, page, cached,
2228				       (ops->mode == MTD_OOB_RAW));
2229		if (ret)
2230			break;
2231
2232		writelen -= bytes;
2233		if (!writelen)
2234			break;
2235
2236		column = 0;
2237		buf += bytes;
2238		realpage++;
2239
2240		page = realpage & chip->pagemask;
2241		/* Check, if we cross a chip boundary */
2242		if (!page) {
2243			chipnr++;
2244			chip->select_chip(mtd, -1);
2245			chip->select_chip(mtd, chipnr);
2246		}
2247	}
2248
2249	ops->retlen = ops->len - writelen;
2250	if (unlikely(oob))
2251		ops->oobretlen = ops->ooblen;
2252	return ret;
2253}
2254
2255/**
2256 * panic_nand_write - [MTD Interface] NAND write with ECC
2257 * @mtd:	MTD device structure
2258 * @to:		offset to write to
2259 * @len:	number of bytes to write
2260 * @retlen:	pointer to variable to store the number of written bytes
2261 * @buf:	the data to write
2262 *
2263 * NAND write with ECC. Used when performing writes in interrupt context, this
2264 * may for example be called by mtdoops when writing an oops while in panic.
2265 */
2266static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2267			    size_t *retlen, const uint8_t *buf)
2268{
2269	struct nand_chip *chip = mtd->priv;
2270	int ret;
2271
2272	/* Do not allow reads past end of device */
2273	if ((to + len) > mtd->size)
2274		return -EINVAL;
2275	if (!len)
2276		return 0;
2277
2278	/* Wait for the device to get ready.  */
2279	panic_nand_wait(mtd, chip, 400);
2280
2281	/* Grab the device.  */
2282	panic_nand_get_device(chip, mtd, FL_WRITING);
2283
2284	chip->ops.len = len;
2285	chip->ops.datbuf = (uint8_t *)buf;
2286	chip->ops.oobbuf = NULL;
2287
2288	ret = nand_do_write_ops(mtd, to, &chip->ops);
2289
2290	*retlen = chip->ops.retlen;
2291	return ret;
2292}
2293
2294/**
2295 * nand_write - [MTD Interface] NAND write with ECC
2296 * @mtd:	MTD device structure
2297 * @to:		offset to write to
2298 * @len:	number of bytes to write
2299 * @retlen:	pointer to variable to store the number of written bytes
2300 * @buf:	the data to write
2301 *
2302 * NAND write with ECC
2303 */
2304static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2305			  size_t *retlen, const uint8_t *buf)
2306{
2307	struct nand_chip *chip = mtd->priv;
2308	int ret;
2309
2310	/* Do not allow reads past end of device */
2311	if ((to + len) > mtd->size)
2312		return -EINVAL;
2313	if (!len)
2314		return 0;
2315
2316	nand_get_device(chip, mtd, FL_WRITING);
2317
2318	chip->ops.len = len;
2319	chip->ops.datbuf = (uint8_t *)buf;
2320	chip->ops.oobbuf = NULL;
2321
2322	ret = nand_do_write_ops(mtd, to, &chip->ops);
2323
2324	*retlen = chip->ops.retlen;
2325
2326	nand_release_device(mtd);
2327
2328	return ret;
2329}
2330
2331/**
2332 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2333 * @mtd:	MTD device structure
2334 * @to:		offset to write to
2335 * @ops:	oob operation description structure
2336 *
2337 * NAND write out-of-band
2338 */
2339static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2340			     struct mtd_oob_ops *ops)
2341{
2342	int chipnr, page, status, len;
2343	struct nand_chip *chip = mtd->priv;
2344
2345	DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2346			 __func__, (unsigned int)to, (int)ops->ooblen);
2347
2348	if (ops->mode == MTD_OOB_AUTO)
2349		len = chip->ecc.layout->oobavail;
2350	else
2351		len = mtd->oobsize;
2352
2353	/* Do not allow write past end of page */
2354	if ((ops->ooboffs + ops->ooblen) > len) {
2355		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2356				"past end of page\n", __func__);
2357		return -EINVAL;
2358	}
2359
2360	if (unlikely(ops->ooboffs >= len)) {
2361		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2362				"write outside oob\n", __func__);
2363		return -EINVAL;
2364	}
2365
2366	/* Do not allow reads past end of device */
2367	if (unlikely(to >= mtd->size ||
2368		     ops->ooboffs + ops->ooblen >
2369			((mtd->size >> chip->page_shift) -
2370			 (to >> chip->page_shift)) * len)) {
2371		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2372				"end of device\n", __func__);
2373		return -EINVAL;
2374	}
2375
2376	chipnr = (int)(to >> chip->chip_shift);
2377	chip->select_chip(mtd, chipnr);
2378
2379	/* Shift to get page */
2380	page = (int)(to >> chip->page_shift);
2381
2382	/*
2383	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2384	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2385	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2386	 * it in the doc2000 driver in August 1999.  dwmw2.
2387	 */
2388	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2389
2390	/* Check, if it is write protected */
2391	if (nand_check_wp(mtd))
2392		return -EROFS;
2393
2394	/* Invalidate the page cache, if we write to the cached page */
2395	if (page == chip->pagebuf)
2396		chip->pagebuf = -1;
2397
2398	memset(chip->oob_poi, 0xff, mtd->oobsize);
2399	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2400	status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2401	memset(chip->oob_poi, 0xff, mtd->oobsize);
2402
2403	if (status)
2404		return status;
2405
2406	ops->oobretlen = ops->ooblen;
2407
2408	return 0;
2409}
2410
2411/**
2412 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2413 * @mtd:	MTD device structure
2414 * @to:		offset to write to
2415 * @ops:	oob operation description structure
2416 */
2417static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2418			  struct mtd_oob_ops *ops)
2419{
2420	struct nand_chip *chip = mtd->priv;
2421	int ret = -ENOTSUPP;
2422
2423	ops->retlen = 0;
2424
2425	/* Do not allow writes past end of device */
2426	if (ops->datbuf && (to + ops->len) > mtd->size) {
2427		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2428				"end of device\n", __func__);
2429		return -EINVAL;
2430	}
2431
2432	nand_get_device(chip, mtd, FL_WRITING);
2433
2434	switch(ops->mode) {
2435	case MTD_OOB_PLACE:
2436	case MTD_OOB_AUTO:
2437	case MTD_OOB_RAW:
2438		break;
2439
2440	default:
2441		goto out;
2442	}
2443
2444	if (!ops->datbuf)
2445		ret = nand_do_write_oob(mtd, to, ops);
2446	else
2447		ret = nand_do_write_ops(mtd, to, ops);
2448
2449 out:
2450	nand_release_device(mtd);
2451	return ret;
2452}
2453
2454/**
2455 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2456 * @mtd:	MTD device structure
2457 * @page:	the page address of the block which will be erased
2458 *
2459 * Standard erase command for NAND chips
2460 */
2461static void single_erase_cmd(struct mtd_info *mtd, int page)
2462{
2463	struct nand_chip *chip = mtd->priv;
2464	/* Send commands to erase a block */
2465	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2466	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2467}
2468
2469/**
2470 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2471 * @mtd:	MTD device structure
2472 * @page:	the page address of the block which will be erased
2473 *
2474 * AND multi block erase command function
2475 * Erase 4 consecutive blocks
2476 */
2477static void multi_erase_cmd(struct mtd_info *mtd, int page)
2478{
2479	struct nand_chip *chip = mtd->priv;
2480	/* Send commands to erase a block */
2481	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2482	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2483	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2484	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2485	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2486}
2487
2488/**
2489 * nand_erase - [MTD Interface] erase block(s)
2490 * @mtd:	MTD device structure
2491 * @instr:	erase instruction
2492 *
2493 * Erase one ore more blocks
2494 */
2495static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2496{
2497	return nand_erase_nand(mtd, instr, 0);
2498}
2499
2500#define BBT_PAGE_MASK	0xffffff3f
2501/**
2502 * nand_erase_nand - [Internal] erase block(s)
2503 * @mtd:	MTD device structure
2504 * @instr:	erase instruction
2505 * @allowbbt:	allow erasing the bbt area
2506 *
2507 * Erase one ore more blocks
2508 */
2509int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2510		    int allowbbt)
2511{
2512	int page, status, pages_per_block, ret, chipnr;
2513	struct nand_chip *chip = mtd->priv;
2514	loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2515	unsigned int bbt_masked_page = 0xffffffff;
2516	loff_t len;
2517
2518	DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2519				__func__, (unsigned long long)instr->addr,
2520				(unsigned long long)instr->len);
2521
2522	if (check_offs_len(mtd, instr->addr, instr->len))
2523		return -EINVAL;
2524
2525	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2526
2527	/* Grab the lock and see if the device is available */
2528	nand_get_device(chip, mtd, FL_ERASING);
2529
2530	/* Shift to get first page */
2531	page = (int)(instr->addr >> chip->page_shift);
2532	chipnr = (int)(instr->addr >> chip->chip_shift);
2533
2534	/* Calculate pages in each block */
2535	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2536
2537	/* Select the NAND device */
2538	chip->select_chip(mtd, chipnr);
2539
2540	/* Check, if it is write protected */
2541	if (nand_check_wp(mtd)) {
2542		DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2543					__func__);
2544		instr->state = MTD_ERASE_FAILED;
2545		goto erase_exit;
2546	}
2547
2548	/*
2549	 * If BBT requires refresh, set the BBT page mask to see if the BBT
2550	 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2551	 * can not be matched. This is also done when the bbt is actually
2552	 * erased to avoid recusrsive updates
2553	 */
2554	if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2555		bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2556
2557	/* Loop through the pages */
2558	len = instr->len;
2559
2560	instr->state = MTD_ERASING;
2561
2562	while (len) {
2563		/*
2564		 * heck if we have a bad block, we do not erase bad blocks !
2565		 */
2566		if (nand_block_checkbad(mtd, ((loff_t) page) <<
2567					chip->page_shift, 0, allowbbt)) {
2568			printk(KERN_WARNING "%s: attempt to erase a bad block "
2569					"at page 0x%08x\n", __func__, page);
2570			instr->state = MTD_ERASE_FAILED;
2571			goto erase_exit;
2572		}
2573
2574		/*
2575		 * Invalidate the page cache, if we erase the block which
2576		 * contains the current cached page
2577		 */
2578		if (page <= chip->pagebuf && chip->pagebuf <
2579		    (page + pages_per_block))
2580			chip->pagebuf = -1;
2581
2582		chip->erase_cmd(mtd, page & chip->pagemask);
2583
2584		status = chip->waitfunc(mtd, chip);
2585
2586		/*
2587		 * See if operation failed and additional status checks are
2588		 * available
2589		 */
2590		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2591			status = chip->errstat(mtd, chip, FL_ERASING,
2592					       status, page);
2593
2594		/* See if block erase succeeded */
2595		if (status & NAND_STATUS_FAIL) {
2596			DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2597					"page 0x%08x\n", __func__, page);
2598			instr->state = MTD_ERASE_FAILED;
2599			instr->fail_addr =
2600				((loff_t)page << chip->page_shift);
2601			goto erase_exit;
2602		}
2603
2604		/*
2605		 * If BBT requires refresh, set the BBT rewrite flag to the
2606		 * page being erased
2607		 */
2608		if (bbt_masked_page != 0xffffffff &&
2609		    (page & BBT_PAGE_MASK) == bbt_masked_page)
2610			    rewrite_bbt[chipnr] =
2611					((loff_t)page << chip->page_shift);
2612
2613		/* Increment page address and decrement length */
2614		len -= (1 << chip->phys_erase_shift);
2615		page += pages_per_block;
2616
2617		/* Check, if we cross a chip boundary */
2618		if (len && !(page & chip->pagemask)) {
2619			chipnr++;
2620			chip->select_chip(mtd, -1);
2621			chip->select_chip(mtd, chipnr);
2622
2623			/*
2624			 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2625			 * page mask to see if this BBT should be rewritten
2626			 */
2627			if (bbt_masked_page != 0xffffffff &&
2628			    (chip->bbt_td->options & NAND_BBT_PERCHIP))
2629				bbt_masked_page = chip->bbt_td->pages[chipnr] &
2630					BBT_PAGE_MASK;
2631		}
2632	}
2633	instr->state = MTD_ERASE_DONE;
2634
2635 erase_exit:
2636
2637	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2638
2639	/* Deselect and wake up anyone waiting on the device */
2640	nand_release_device(mtd);
2641
2642	/* Do call back function */
2643	if (!ret)
2644		mtd_erase_callback(instr);
2645
2646	/*
2647	 * If BBT requires refresh and erase was successful, rewrite any
2648	 * selected bad block tables
2649	 */
2650	if (bbt_masked_page == 0xffffffff || ret)
2651		return ret;
2652
2653	for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2654		if (!rewrite_bbt[chipnr])
2655			continue;
2656		/* update the BBT for chip */
2657		DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2658			"(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2659			rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2660		nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2661	}
2662
2663	/* Return more or less happy */
2664	return ret;
2665}
2666
2667/**
2668 * nand_sync - [MTD Interface] sync
2669 * @mtd:	MTD device structure
2670 *
2671 * Sync is actually a wait for chip ready function
2672 */
2673static void nand_sync(struct mtd_info *mtd)
2674{
2675	struct nand_chip *chip = mtd->priv;
2676
2677	DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2678
2679	/* Grab the lock and see if the device is available */
2680	nand_get_device(chip, mtd, FL_SYNCING);
2681	/* Release it and go back */
2682	nand_release_device(mtd);
2683}
2684
2685/**
2686 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2687 * @mtd:	MTD device structure
2688 * @offs:	offset relative to mtd start
2689 */
2690static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2691{
2692	/* Check for invalid offset */
2693	if (offs > mtd->size)
2694		return -EINVAL;
2695
2696	return nand_block_checkbad(mtd, offs, 1, 0);
2697}
2698
2699/**
2700 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2701 * @mtd:	MTD device structure
2702 * @ofs:	offset relative to mtd start
2703 */
2704static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2705{
2706	struct nand_chip *chip = mtd->priv;
2707	int ret;
2708
2709	if ((ret = nand_block_isbad(mtd, ofs))) {
2710		/* If it was bad already, return success and do nothing. */
2711		if (ret > 0)
2712			return 0;
2713		return ret;
2714	}
2715
2716	return chip->block_markbad(mtd, ofs);
2717}
2718
2719/**
2720 * nand_suspend - [MTD Interface] Suspend the NAND flash
2721 * @mtd:	MTD device structure
2722 */
2723static int nand_suspend(struct mtd_info *mtd)
2724{
2725	struct nand_chip *chip = mtd->priv;
2726
2727	return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2728}
2729
2730/**
2731 * nand_resume - [MTD Interface] Resume the NAND flash
2732 * @mtd:	MTD device structure
2733 */
2734static void nand_resume(struct mtd_info *mtd)
2735{
2736	struct nand_chip *chip = mtd->priv;
2737
2738	if (chip->state == FL_PM_SUSPENDED)
2739		nand_release_device(mtd);
2740	else
2741		printk(KERN_ERR "%s called for a chip which is not "
2742		       "in suspended state\n", __func__);
2743}
2744
2745/*
2746 * Set default functions
2747 */
2748static void nand_set_defaults(struct nand_chip *chip, int busw)
2749{
2750	/* check for proper chip_delay setup, set 20us if not */
2751	if (!chip->chip_delay)
2752		chip->chip_delay = 20;
2753
2754	/* check, if a user supplied command function given */
2755	if (chip->cmdfunc == NULL)
2756		chip->cmdfunc = nand_command;
2757
2758	/* check, if a user supplied wait function given */
2759	if (chip->waitfunc == NULL)
2760		chip->waitfunc = nand_wait;
2761
2762	if (!chip->select_chip)
2763		chip->select_chip = nand_select_chip;
2764	if (!chip->read_byte)
2765		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2766	if (!chip->read_word)
2767		chip->read_word = nand_read_word;
2768	if (!chip->block_bad)
2769		chip->block_bad = nand_block_bad;
2770	if (!chip->block_markbad)
2771		chip->block_markbad = nand_default_block_markbad;
2772	if (!chip->write_buf)
2773		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2774	if (!chip->read_buf)
2775		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2776	if (!chip->verify_buf)
2777		chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2778	if (!chip->scan_bbt)
2779		chip->scan_bbt = nand_default_bbt;
2780
2781	if (!chip->controller) {
2782		chip->controller = &chip->hwcontrol;
2783		spin_lock_init(&chip->controller->lock);
2784		init_waitqueue_head(&chip->controller->wq);
2785	}
2786
2787}
2788
2789/*
2790 * Get the flash and manufacturer id and lookup if the type is supported
2791 */
2792static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2793						  struct nand_chip *chip,
2794						  int busw, int *maf_id,
2795						  struct nand_flash_dev *type)
2796{
2797	int i, dev_id, maf_idx;
2798	u8 id_data[8];
2799
2800	/* Select the device */
2801	chip->select_chip(mtd, 0);
2802
2803	/*
2804	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2805	 * after power-up
2806	 */
2807	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2808
2809	/* Send the command for reading device ID */
2810	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2811
2812	/* Read manufacturer and device IDs */
2813	*maf_id = chip->read_byte(mtd);
2814	dev_id = chip->read_byte(mtd);
2815
2816	/* Try again to make sure, as some systems the bus-hold or other
2817	 * interface concerns can cause random data which looks like a
2818	 * possibly credible NAND flash to appear. If the two results do
2819	 * not match, ignore the device completely.
2820	 */
2821
2822	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2823
2824	/* Read entire ID string */
2825
2826	for (i = 0; i < 8; i++)
2827		id_data[i] = chip->read_byte(mtd);
2828
2829	if (id_data[0] != *maf_id || id_data[1] != dev_id) {
2830		printk(KERN_INFO "%s: second ID read did not match "
2831		       "%02x,%02x against %02x,%02x\n", __func__,
2832		       *maf_id, dev_id, id_data[0], id_data[1]);
2833		return ERR_PTR(-ENODEV);
2834	}
2835
2836	if (!type)
2837		type = nand_flash_ids;
2838
2839	for (; type->name != NULL; type++)
2840		if (dev_id == type->id)
2841                        break;
2842
2843	if (!type->name)
2844		return ERR_PTR(-ENODEV);
2845
2846	if (!mtd->name)
2847		mtd->name = type->name;
2848
2849	chip->chipsize = (uint64_t)type->chipsize << 20;
2850
2851	/* Newer devices have all the information in additional id bytes */
2852	if (!type->pagesize) {
2853		int extid;
2854		/* The 3rd id byte holds MLC / multichip data */
2855		chip->cellinfo = id_data[2];
2856		/* The 4th id byte is the important one */
2857		extid = id_data[3];
2858
2859		/*
2860		 * Field definitions are in the following datasheets:
2861		 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2862		 * New style   (6 byte ID): Samsung K9GAG08U0D (p.40)
2863		 *
2864		 * Check for wraparound + Samsung ID + nonzero 6th byte
2865		 * to decide what to do.
2866		 */
2867		if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2868				id_data[0] == NAND_MFR_SAMSUNG &&
2869				(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2870				id_data[5] != 0x00) {
2871			/* Calc pagesize */
2872			mtd->writesize = 2048 << (extid & 0x03);
2873			extid >>= 2;
2874			/* Calc oobsize */
2875			mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2876			extid >>= 2;
2877			/* Calc blocksize */
2878			mtd->erasesize = (128 * 1024) <<
2879				(((extid >> 1) & 0x04) | (extid & 0x03));
2880			busw = 0;
2881		} else {
2882			/* Calc pagesize */
2883			mtd->writesize = 1024 << (extid & 0x03);
2884			extid >>= 2;
2885			/* Calc oobsize */
2886			mtd->oobsize = (8 << (extid & 0x01)) *
2887				(mtd->writesize >> 9);
2888			extid >>= 2;
2889			/* Calc blocksize. Blocksize is multiples of 64KiB */
2890			mtd->erasesize = (64 * 1024) << (extid & 0x03);
2891			extid >>= 2;
2892			/* Get buswidth information */
2893			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2894		}
2895	} else {
2896		/*
2897		 * Old devices have chip data hardcoded in the device id table
2898		 */
2899		mtd->erasesize = type->erasesize;
2900		mtd->writesize = type->pagesize;
2901		mtd->oobsize = mtd->writesize / 32;
2902		busw = type->options & NAND_BUSWIDTH_16;
2903	}
2904
2905#ifdef CONFIG_BCM47XX
2906	/* Override for specific Samsung K9LCG08U0B, Micron MT29F64G08CBABA */
2907	if ((id_data[0] == 0xec && id_data[1] == 0xde && id_data[2] == 0xd5 &&
2908	     id_data[3] == 0x7e && id_data[4] == 0x68 && id_data[5] == 0x44) ||
2909	     (id_data[0] == 0x2c && id_data[1] == 0x64 && id_data[2] == 0x44 &&
2910	    id_data[3] == 0x4b && id_data[4] == 0xa9))
2911		mtd->oobsize = 720;
2912#endif /* CONFIG_BCM47XX */
2913
2914	/* Try to identify manufacturer */
2915	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2916		if (nand_manuf_ids[maf_idx].id == *maf_id)
2917			break;
2918	}
2919
2920	/*
2921	 * Check, if buswidth is correct. Hardware drivers should set
2922	 * chip correct !
2923	 */
2924	if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2925		printk(KERN_INFO "NAND device: Manufacturer ID:"
2926		       " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2927		       dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2928		printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2929		       (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2930		       busw ? 16 : 8);
2931		return ERR_PTR(-EINVAL);
2932	}
2933
2934	/* Calculate the address shift from the page size */
2935	chip->page_shift = ffs(mtd->writesize) - 1;
2936	/* Convert chipsize to number of pages per chip -1. */
2937	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2938
2939	chip->bbt_erase_shift = chip->phys_erase_shift =
2940		ffs(mtd->erasesize) - 1;
2941	if (chip->chipsize & 0xffffffff)
2942		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2943	else
2944		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2945
2946	/* Set the bad block position */
2947	if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
2948		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
2949	else
2950		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
2951
2952	/* Get chip options, preserve non chip based options */
2953	chip->options &= ~NAND_CHIPOPTIONS_MSK;
2954	chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2955
2956	/*
2957	 * Set chip as a default. Board drivers can override it, if necessary
2958	 */
2959	chip->options |= NAND_NO_AUTOINCR;
2960
2961	/* Check if chip is a not a samsung device. Do not clear the
2962	 * options for chips which are not having an extended id.
2963	 */
2964	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2965		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2966
2967	/*
2968	 * Bad block marker is stored in the last page of each block
2969	 * on Samsung and Hynix MLC devices; stored in first two pages
2970	 * of each block on Micron devices with 2KiB pages and on
2971	 * SLC Samsung, Hynix, and AMD/Spansion. All others scan only
2972	 * the first page.
2973	 */
2974	if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2975			(*maf_id == NAND_MFR_SAMSUNG ||
2976			 *maf_id == NAND_MFR_HYNIX))
2977		chip->options |= NAND_BBT_SCANLASTPAGE;
2978	else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2979				(*maf_id == NAND_MFR_SAMSUNG ||
2980				 *maf_id == NAND_MFR_HYNIX ||
2981				 *maf_id == NAND_MFR_AMD)) ||
2982			(mtd->writesize == 2048 &&
2983			 *maf_id == NAND_MFR_MICRON))
2984		chip->options |= NAND_BBT_SCAN2NDPAGE;
2985
2986	/*
2987	 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
2988	 */
2989	if (!(busw & NAND_BUSWIDTH_16) &&
2990			*maf_id == NAND_MFR_STMICRO &&
2991			mtd->writesize == 2048) {
2992		chip->options |= NAND_BBT_SCANBYTE1AND6;
2993		chip->badblockpos = 0;
2994	}
2995
2996	/* Check for AND chips with 4 page planes */
2997	if (chip->options & NAND_4PAGE_ARRAY)
2998		chip->erase_cmd = multi_erase_cmd;
2999	else
3000		chip->erase_cmd = single_erase_cmd;
3001
3002	/* Do not replace user supplied command function ! */
3003	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3004		chip->cmdfunc = nand_command_lp;
3005
3006	printk(KERN_INFO "NAND device: Manufacturer ID:"
3007	       " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
3008	       nand_manuf_ids[maf_idx].name, type->name);
3009
3010	return type;
3011}
3012
3013/**
3014 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3015 * @mtd:	     MTD device structure
3016 * @maxchips:	     Number of chips to scan for
3017 * @table:	     Alternative NAND ID table
3018 *
3019 * This is the first phase of the normal nand_scan() function. It
3020 * reads the flash ID and sets up MTD fields accordingly.
3021 *
3022 * The mtd->owner field must be set to the module of the caller.
3023 */
3024int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3025		    struct nand_flash_dev *table)
3026{
3027	int i, busw, nand_maf_id;
3028	struct nand_chip *chip = mtd->priv;
3029	struct nand_flash_dev *type;
3030
3031	/* Get buswidth to select the correct functions */
3032	busw = chip->options & NAND_BUSWIDTH_16;
3033	/* Set the default functions */
3034	nand_set_defaults(chip, busw);
3035
3036	/* Read the flash type */
3037	type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
3038
3039	if (IS_ERR(type)) {
3040		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3041			printk(KERN_WARNING "No NAND device found.\n");
3042		chip->select_chip(mtd, -1);
3043		return PTR_ERR(type);
3044	}
3045
3046	/* Check for a chip array */
3047	for (i = 1; i < maxchips; i++) {
3048		chip->select_chip(mtd, i);
3049		/* See comment in nand_get_flash_type for reset */
3050		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3051		/* Send the command for reading device ID */
3052		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3053		/* Read manufacturer and device IDs */
3054		if (nand_maf_id != chip->read_byte(mtd) ||
3055		    type->id != chip->read_byte(mtd))
3056			break;
3057	}
3058	if (i > 1)
3059		printk(KERN_INFO "%d NAND chips detected\n", i);
3060
3061	/* Store the number of chips and calc total size for mtd */
3062	chip->numchips = i;
3063	mtd->size = i * chip->chipsize;
3064
3065	return 0;
3066}
3067
3068
3069/**
3070 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3071 * @mtd:	    MTD device structure
3072 *
3073 * This is the second phase of the normal nand_scan() function. It
3074 * fills out all the uninitialized function pointers with the defaults
3075 * and scans for a bad block table if appropriate.
3076 */
3077int nand_scan_tail(struct mtd_info *mtd)
3078{
3079	int i;
3080	struct nand_chip *chip = mtd->priv;
3081
3082	if (!(chip->options & NAND_OWN_BUFFERS))
3083		chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3084	if (!chip->buffers)
3085		return -ENOMEM;
3086
3087	/* Set the internal oob buffer location, just after the page data */
3088	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3089
3090	/*
3091	 * If no default placement scheme is given, select an appropriate one
3092	 */
3093	if (!chip->ecc.layout) {
3094		switch (mtd->oobsize) {
3095		case 8:
3096			chip->ecc.layout = &nand_oob_8;
3097			break;
3098		case 16:
3099			chip->ecc.layout = &nand_oob_16;
3100			break;
3101		case 64:
3102			chip->ecc.layout = &nand_oob_64;
3103			break;
3104		case 128:
3105			chip->ecc.layout = &nand_oob_128;
3106			break;
3107		default:
3108			printk(KERN_WARNING "No oob scheme defined for "
3109			       "oobsize %d\n", mtd->oobsize);
3110			BUG();
3111		}
3112	}
3113
3114	if (!chip->write_page)
3115		chip->write_page = nand_write_page;
3116
3117	/*
3118	 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3119	 * selected and we have 256 byte pagesize fallback to software ECC
3120	 */
3121
3122	switch (chip->ecc.mode) {
3123	case NAND_ECC_HW_OOB_FIRST:
3124		/* Similar to NAND_ECC_HW, but a separate read_page handle */
3125		if (!chip->ecc.calculate || !chip->ecc.correct ||
3126		     !chip->ecc.hwctl) {
3127			printk(KERN_WARNING "No ECC functions supplied; "
3128			       "Hardware ECC not possible\n");
3129			BUG();
3130		}
3131		if (!chip->ecc.read_page)
3132			chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3133
3134	case NAND_ECC_HW:
3135		/* Use standard hwecc read page function ? */
3136		if (!chip->ecc.read_page)
3137			chip->ecc.read_page = nand_read_page_hwecc;
3138		if (!chip->ecc.write_page)
3139			chip->ecc.write_page = nand_write_page_hwecc;
3140		if (!chip->ecc.read_page_raw)
3141			chip->ecc.read_page_raw = nand_read_page_raw;
3142		if (!chip->ecc.write_page_raw)
3143			chip->ecc.write_page_raw = nand_write_page_raw;
3144		if (!chip->ecc.read_oob)
3145			chip->ecc.read_oob = nand_read_oob_std;
3146		if (!chip->ecc.write_oob)
3147			chip->ecc.write_oob = nand_write_oob_std;
3148
3149	case NAND_ECC_HW_SYNDROME:
3150		if ((!chip->ecc.calculate || !chip->ecc.correct ||
3151		     !chip->ecc.hwctl) &&
3152		    (!chip->ecc.read_page ||
3153		     chip->ecc.read_page == nand_read_page_hwecc ||
3154		     !chip->ecc.write_page ||
3155		     chip->ecc.write_page == nand_write_page_hwecc)) {
3156			printk(KERN_WARNING "No ECC functions supplied; "
3157			       "Hardware ECC not possible\n");
3158			BUG();
3159		}
3160		/* Use standard syndrome read/write page function ? */
3161		if (!chip->ecc.read_page)
3162			chip->ecc.read_page = nand_read_page_syndrome;
3163		if (!chip->ecc.write_page)
3164			chip->ecc.write_page = nand_write_page_syndrome;
3165		if (!chip->ecc.read_page_raw)
3166			chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3167		if (!chip->ecc.write_page_raw)
3168			chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3169		if (!chip->ecc.read_oob)
3170			chip->ecc.read_oob = nand_read_oob_syndrome;
3171		if (!chip->ecc.write_oob)
3172			chip->ecc.write_oob = nand_write_oob_syndrome;
3173
3174		if (mtd->writesize >= chip->ecc.size)
3175			break;
3176		printk(KERN_WARNING "%d byte HW ECC not possible on "
3177		       "%d byte page size, fallback to SW ECC\n",
3178		       chip->ecc.size, mtd->writesize);
3179		chip->ecc.mode = NAND_ECC_SOFT;
3180
3181	case NAND_ECC_SOFT:
3182		chip->ecc.calculate = nand_calculate_ecc;
3183		chip->ecc.correct = nand_correct_data;
3184		chip->ecc.read_page = nand_read_page_swecc;
3185		chip->ecc.read_subpage = nand_read_subpage;
3186		chip->ecc.write_page = nand_write_page_swecc;
3187		chip->ecc.read_page_raw = nand_read_page_raw;
3188		chip->ecc.write_page_raw = nand_write_page_raw;
3189		chip->ecc.read_oob = nand_read_oob_std;
3190		chip->ecc.write_oob = nand_write_oob_std;
3191		if (!chip->ecc.size)
3192			chip->ecc.size = 256;
3193		chip->ecc.bytes = 3;
3194		break;
3195
3196	case NAND_ECC_NONE:
3197		printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3198		       "This is not recommended !!\n");
3199		chip->ecc.read_page = nand_read_page_raw;
3200		chip->ecc.write_page = nand_write_page_raw;
3201		chip->ecc.read_oob = nand_read_oob_std;
3202		chip->ecc.read_page_raw = nand_read_page_raw;
3203		chip->ecc.write_page_raw = nand_write_page_raw;
3204		chip->ecc.write_oob = nand_write_oob_std;
3205		chip->ecc.size = mtd->writesize;
3206		chip->ecc.bytes = 0;
3207		break;
3208
3209	default:
3210		printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3211		       chip->ecc.mode);
3212		BUG();
3213	}
3214
3215	/*
3216	 * The number of bytes available for a client to place data into
3217	 * the out of band area
3218	 */
3219	chip->ecc.layout->oobavail = 0;
3220	for (i = 0; chip->ecc.layout->oobfree[i].length
3221			&& i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3222		chip->ecc.layout->oobavail +=
3223			chip->ecc.layout->oobfree[i].length;
3224	mtd->oobavail = chip->ecc.layout->oobavail;
3225
3226	/*
3227	 * Set the number of read / write steps for one page depending on ECC
3228	 * mode
3229	 */
3230	chip->ecc.steps = mtd->writesize / chip->ecc.size;
3231	if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3232		printk(KERN_WARNING "Invalid ecc parameters\n");
3233		BUG();
3234	}
3235	chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3236
3237	/*
3238	 * Allow subpage writes up to ecc.steps. Not possible for MLC
3239	 * FLASH.
3240	 */
3241	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3242	    !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3243		switch(chip->ecc.steps) {
3244		case 2:
3245			mtd->subpage_sft = 1;
3246			break;
3247		case 4:
3248		case 8:
3249		case 16:
3250			mtd->subpage_sft = 2;
3251			break;
3252		}
3253	}
3254	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3255
3256	/* Initialize state */
3257	chip->state = FL_READY;
3258
3259	/* De-select the device */
3260	chip->select_chip(mtd, -1);
3261
3262	/* Invalidate the pagebuffer reference */
3263	chip->pagebuf = -1;
3264
3265	/* Fill in remaining MTD driver data */
3266	mtd->type = MTD_NANDFLASH;
3267	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3268						MTD_CAP_NANDFLASH;
3269	mtd->erase = nand_erase;
3270	mtd->point = NULL;
3271	mtd->unpoint = NULL;
3272	mtd->read = nand_read;
3273	mtd->write = nand_write;
3274	mtd->panic_write = panic_nand_write;
3275	mtd->read_oob = nand_read_oob;
3276	mtd->write_oob = nand_write_oob;
3277	mtd->sync = nand_sync;
3278	mtd->lock = NULL;
3279	mtd->unlock = NULL;
3280	mtd->suspend = nand_suspend;
3281	mtd->resume = nand_resume;
3282	mtd->block_isbad = nand_block_isbad;
3283	mtd->block_markbad = nand_block_markbad;
3284
3285	/* propagate ecc.layout to mtd_info */
3286	mtd->ecclayout = chip->ecc.layout;
3287
3288	/* Check, if we should skip the bad block table scan */
3289	if (chip->options & NAND_SKIP_BBTSCAN)
3290		return 0;
3291
3292	/* Build bad block table */
3293	return chip->scan_bbt(mtd);
3294}
3295
3296/* is_module_text_address() isn't exported, and it's mostly a pointless
3297   test if this is a module _anyway_ -- they'd have to try _really_ hard
3298   to call us from in-kernel code if the core NAND support is modular. */
3299#ifdef MODULE
3300#define caller_is_module() (1)
3301#else
3302#define caller_is_module() \
3303	is_module_text_address((unsigned long)__builtin_return_address(0))
3304#endif
3305
3306/**
3307 * nand_scan - [NAND Interface] Scan for the NAND device
3308 * @mtd:	MTD device structure
3309 * @maxchips:	Number of chips to scan for
3310 *
3311 * This fills out all the uninitialized function pointers
3312 * with the defaults.
3313 * The flash ID is read and the mtd/chip structures are
3314 * filled with the appropriate values.
3315 * The mtd->owner field must be set to the module of the caller
3316 *
3317 */
3318int nand_scan(struct mtd_info *mtd, int maxchips)
3319{
3320	int ret;
3321
3322	/* Many callers got this wrong, so check for it for a while... */
3323	if (!mtd->owner && caller_is_module()) {
3324		printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3325				__func__);
3326		BUG();
3327	}
3328
3329	ret = nand_scan_ident(mtd, maxchips, NULL);
3330	if (!ret)
3331		ret = nand_scan_tail(mtd);
3332	return ret;
3333}
3334
3335/**
3336 * nand_release - [NAND Interface] Free resources held by the NAND device
3337 * @mtd:	MTD device structure
3338*/
3339void nand_release(struct mtd_info *mtd)
3340{
3341	struct nand_chip *chip = mtd->priv;
3342
3343#ifdef CONFIG_MTD_PARTITIONS
3344	/* Deregister partitions */
3345	del_mtd_partitions(mtd);
3346#endif
3347	/* Deregister the device */
3348	del_mtd_device(mtd);
3349
3350	/* Free bad block table memory */
3351	kfree(chip->bbt);
3352	if (!(chip->options & NAND_OWN_BUFFERS))
3353		kfree(chip->buffers);
3354
3355	/* Free bad block descriptor memory */
3356	if (chip->badblock_pattern && chip->badblock_pattern->options
3357			& NAND_BBT_DYNAMICSTRUCT)
3358		kfree(chip->badblock_pattern);
3359}
3360
3361EXPORT_SYMBOL_GPL(nand_lock);
3362EXPORT_SYMBOL_GPL(nand_unlock);
3363EXPORT_SYMBOL_GPL(nand_scan);
3364EXPORT_SYMBOL_GPL(nand_scan_ident);
3365EXPORT_SYMBOL_GPL(nand_scan_tail);
3366EXPORT_SYMBOL_GPL(nand_release);
3367
3368static int __init nand_base_init(void)
3369{
3370	led_trigger_register_simple("nand-disk", &nand_led_trigger);
3371	return 0;
3372}
3373
3374static void __exit nand_base_exit(void)
3375{
3376	led_trigger_unregister_simple(nand_led_trigger);
3377}
3378
3379module_init(nand_base_init);
3380module_exit(nand_base_exit);
3381
3382MODULE_LICENSE("GPL");
3383MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3384MODULE_DESCRIPTION("Generic NAND flash driver code");
3385