• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/mtd/devices/
1
2/*
3 * Linux driver for Disk-On-Chip 2000 and Millennium
4 * (c) 1999 Machine Vision Holdings, Inc.
5 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <asm/errno.h>
11#include <asm/io.h>
12#include <asm/uaccess.h>
13#include <linux/delay.h>
14#include <linux/slab.h>
15#include <linux/sched.h>
16#include <linux/init.h>
17#include <linux/types.h>
18#include <linux/bitops.h>
19#include <linux/mutex.h>
20
21#include <linux/mtd/mtd.h>
22#include <linux/mtd/nand.h>
23#include <linux/mtd/doc2000.h>
24
25#define DOC_SUPPORT_2000
26#define DOC_SUPPORT_2000TSOP
27#define DOC_SUPPORT_MILLENNIUM
28
29#ifdef DOC_SUPPORT_2000
30#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
31#else
32#define DoC_is_2000(doc) (0)
33#endif
34
35#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
36#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
37#else
38#define DoC_is_Millennium(doc) (0)
39#endif
40
41/* #define ECC_DEBUG */
42
43/* I have no idea why some DoC chips can not use memcpy_from|to_io().
44 * This may be due to the different revisions of the ASIC controller built-in or
45 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
46 * this:
47 #undef USE_MEMCPY
48*/
49
50static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
51		    size_t *retlen, u_char *buf);
52static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
53		     size_t *retlen, const u_char *buf);
54static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
55			struct mtd_oob_ops *ops);
56static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
57			 struct mtd_oob_ops *ops);
58static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
59			 size_t *retlen, const u_char *buf);
60static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
61
62static struct mtd_info *doc2klist = NULL;
63
64/* Perform the required delay cycles by reading from the appropriate register */
65static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
66{
67	volatile char dummy;
68	int i;
69
70	for (i = 0; i < cycles; i++) {
71		if (DoC_is_Millennium(doc))
72			dummy = ReadDOC(doc->virtadr, NOP);
73		else
74			dummy = ReadDOC(doc->virtadr, DOCStatus);
75	}
76
77}
78
79/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
80static int _DoC_WaitReady(struct DiskOnChip *doc)
81{
82	void __iomem *docptr = doc->virtadr;
83	unsigned long timeo = jiffies + (HZ * 10);
84
85	DEBUG(MTD_DEBUG_LEVEL3,
86	      "_DoC_WaitReady called for out-of-line wait\n");
87
88	/* Out-of-line routine to wait for chip response */
89	while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
90		/* issue 2 read from NOP register after reading from CDSNControl register
91	   	see Software Requirement 11.4 item 2. */
92		DoC_Delay(doc, 2);
93
94		if (time_after(jiffies, timeo)) {
95			DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
96			return -EIO;
97		}
98		udelay(1);
99		cond_resched();
100	}
101
102	return 0;
103}
104
105static inline int DoC_WaitReady(struct DiskOnChip *doc)
106{
107	void __iomem *docptr = doc->virtadr;
108
109	/* This is inline, to optimise the common case, where it's ready instantly */
110	int ret = 0;
111
112	/* 4 read form NOP register should be issued in prior to the read from CDSNControl
113	   see Software Requirement 11.4 item 2. */
114	DoC_Delay(doc, 4);
115
116	if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
117		/* Call the out-of-line routine to wait */
118		ret = _DoC_WaitReady(doc);
119
120	/* issue 2 read from NOP register after reading from CDSNControl register
121	   see Software Requirement 11.4 item 2. */
122	DoC_Delay(doc, 2);
123
124	return ret;
125}
126
127/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
128   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
129   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
130
131static int DoC_Command(struct DiskOnChip *doc, unsigned char command,
132			      unsigned char xtraflags)
133{
134	void __iomem *docptr = doc->virtadr;
135
136	if (DoC_is_2000(doc))
137		xtraflags |= CDSN_CTRL_FLASH_IO;
138
139	/* Assert the CLE (Command Latch Enable) line to the flash chip */
140	WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
141	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
142
143	if (DoC_is_Millennium(doc))
144		WriteDOC(command, docptr, CDSNSlowIO);
145
146	/* Send the command */
147	WriteDOC_(command, docptr, doc->ioreg);
148	if (DoC_is_Millennium(doc))
149		WriteDOC(command, docptr, WritePipeTerm);
150
151	/* Lower the CLE line */
152	WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
153	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
154
155	/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
156	return DoC_WaitReady(doc);
157}
158
159/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
160   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
161   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
162
163static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
164		       unsigned char xtraflags1, unsigned char xtraflags2)
165{
166	int i;
167	void __iomem *docptr = doc->virtadr;
168
169	if (DoC_is_2000(doc))
170		xtraflags1 |= CDSN_CTRL_FLASH_IO;
171
172	/* Assert the ALE (Address Latch Enable) line to the flash chip */
173	WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
174
175	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
176
177	/* Send the address */
178	/* Devices with 256-byte page are addressed as:
179	   Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
180	   * there is no device on the market with page256
181	   and more than 24 bits.
182	   Devices with 512-byte page are addressed as:
183	   Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
184	   * 25-31 is sent only if the chip support it.
185	   * bit 8 changes the read command to be sent
186	   (NAND_CMD_READ0 or NAND_CMD_READ1).
187	 */
188
189	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
190		if (DoC_is_Millennium(doc))
191			WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
192		WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
193	}
194
195	if (doc->page256) {
196		ofs = ofs >> 8;
197	} else {
198		ofs = ofs >> 9;
199	}
200
201	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
202		for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
203			if (DoC_is_Millennium(doc))
204				WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
205			WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
206		}
207	}
208
209	if (DoC_is_Millennium(doc))
210		WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
211
212	DoC_Delay(doc, 2);	/* Needed for some slow flash chips. mf. */
213
214
215	/* Lower the ALE line */
216	WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
217		 CDSNControl);
218
219	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
220
221	/* Wait for the chip to respond - Software requirement 11.4.1 */
222	return DoC_WaitReady(doc);
223}
224
225/* Read a buffer from DoC, taking care of Millennium odditys */
226static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
227{
228	volatile int dummy;
229	int modulus = 0xffff;
230	void __iomem *docptr = doc->virtadr;
231	int i;
232
233	if (len <= 0)
234		return;
235
236	if (DoC_is_Millennium(doc)) {
237		/* Read the data via the internal pipeline through CDSN IO register,
238		   see Pipelined Read Operations 11.3 */
239		dummy = ReadDOC(docptr, ReadPipeInit);
240
241		/* Millennium should use the LastDataRead register - Pipeline Reads */
242		len--;
243
244		/* This is needed for correctly ECC calculation */
245		modulus = 0xff;
246	}
247
248	for (i = 0; i < len; i++)
249		buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
250
251	if (DoC_is_Millennium(doc)) {
252		buf[i] = ReadDOC(docptr, LastDataRead);
253	}
254}
255
256/* Write a buffer to DoC, taking care of Millennium odditys */
257static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
258{
259	void __iomem *docptr = doc->virtadr;
260	int i;
261
262	if (len <= 0)
263		return;
264
265	for (i = 0; i < len; i++)
266		WriteDOC_(buf[i], docptr, doc->ioreg + i);
267
268	if (DoC_is_Millennium(doc)) {
269		WriteDOC(0x00, docptr, WritePipeTerm);
270	}
271}
272
273
274/* DoC_SelectChip: Select a given flash chip within the current floor */
275
276static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
277{
278	void __iomem *docptr = doc->virtadr;
279
280	/* Software requirement 11.4.4 before writing DeviceSelect */
281	/* Deassert the CE line to eliminate glitches on the FCE# outputs */
282	WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
283	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
284
285	/* Select the individual flash chip requested */
286	WriteDOC(chip, docptr, CDSNDeviceSelect);
287	DoC_Delay(doc, 4);
288
289	/* Reassert the CE line */
290	WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
291		 CDSNControl);
292	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
293
294	/* Wait for it to be ready */
295	return DoC_WaitReady(doc);
296}
297
298/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
299
300static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
301{
302	void __iomem *docptr = doc->virtadr;
303
304	/* Select the floor (bank) of chips required */
305	WriteDOC(floor, docptr, FloorSelect);
306
307	/* Wait for the chip to be ready */
308	return DoC_WaitReady(doc);
309}
310
311/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
312
313static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
314{
315	int mfr, id, i, j;
316	volatile char dummy;
317
318	/* Page in the required floor/chip */
319	DoC_SelectFloor(doc, floor);
320	DoC_SelectChip(doc, chip);
321
322	/* Reset the chip */
323	if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
324		DEBUG(MTD_DEBUG_LEVEL2,
325		      "DoC_Command (reset) for %d,%d returned true\n",
326		      floor, chip);
327		return 0;
328	}
329
330
331	/* Read the NAND chip ID: 1. Send ReadID command */
332	if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
333		DEBUG(MTD_DEBUG_LEVEL2,
334		      "DoC_Command (ReadID) for %d,%d returned true\n",
335		      floor, chip);
336		return 0;
337	}
338
339	/* Read the NAND chip ID: 2. Send address byte zero */
340	DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
341
342	/* Read the manufacturer and device id codes from the device */
343
344	if (DoC_is_Millennium(doc)) {
345		DoC_Delay(doc, 2);
346		dummy = ReadDOC(doc->virtadr, ReadPipeInit);
347		mfr = ReadDOC(doc->virtadr, LastDataRead);
348
349		DoC_Delay(doc, 2);
350		dummy = ReadDOC(doc->virtadr, ReadPipeInit);
351		id = ReadDOC(doc->virtadr, LastDataRead);
352	} else {
353		/* CDSN Slow IO register see Software Req 11.4 item 5. */
354		dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
355		DoC_Delay(doc, 2);
356		mfr = ReadDOC_(doc->virtadr, doc->ioreg);
357
358		/* CDSN Slow IO register see Software Req 11.4 item 5. */
359		dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
360		DoC_Delay(doc, 2);
361		id = ReadDOC_(doc->virtadr, doc->ioreg);
362	}
363
364	/* No response - return failure */
365	if (mfr == 0xff || mfr == 0)
366		return 0;
367
368	/* Check it's the same as the first chip we identified.
369	 * M-Systems say that any given DiskOnChip device should only
370	 * contain _one_ type of flash part, although that's not a
371	 * hardware restriction. */
372	if (doc->mfr) {
373		if (doc->mfr == mfr && doc->id == id)
374			return 1;	/* This is the same as the first */
375		else
376			printk(KERN_WARNING
377			       "Flash chip at floor %d, chip %d is different:\n",
378			       floor, chip);
379	}
380
381	/* Print and store the manufacturer and ID codes. */
382	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
383		if (id == nand_flash_ids[i].id) {
384			/* Try to identify manufacturer */
385			for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
386				if (nand_manuf_ids[j].id == mfr)
387					break;
388			}
389			printk(KERN_INFO
390			       "Flash chip found: Manufacturer ID: %2.2X, "
391			       "Chip ID: %2.2X (%s:%s)\n", mfr, id,
392			       nand_manuf_ids[j].name, nand_flash_ids[i].name);
393			if (!doc->mfr) {
394				doc->mfr = mfr;
395				doc->id = id;
396				doc->chipshift =
397					ffs((nand_flash_ids[i].chipsize << 20)) - 1;
398				doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
399				doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
400				doc->erasesize =
401				    nand_flash_ids[i].erasesize;
402				return 1;
403			}
404			return 0;
405		}
406	}
407
408
409	/* We haven't fully identified the chip. Print as much as we know. */
410	printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
411	       id, mfr);
412
413	printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
414	return 0;
415}
416
417/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
418
419static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
420{
421	int floor, chip;
422	int numchips[MAX_FLOORS];
423	int ret = 1;
424
425	this->numchips = 0;
426	this->mfr = 0;
427	this->id = 0;
428
429	/* For each floor, find the number of valid chips it contains */
430	for (floor = 0; floor < MAX_FLOORS; floor++) {
431		ret = 1;
432		numchips[floor] = 0;
433		for (chip = 0; chip < maxchips && ret != 0; chip++) {
434
435			ret = DoC_IdentChip(this, floor, chip);
436			if (ret) {
437				numchips[floor]++;
438				this->numchips++;
439			}
440		}
441	}
442
443	/* If there are none at all that we recognise, bail */
444	if (!this->numchips) {
445		printk(KERN_NOTICE "No flash chips recognised.\n");
446		return;
447	}
448
449	/* Allocate an array to hold the information for each chip */
450	this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
451	if (!this->chips) {
452		printk(KERN_NOTICE "No memory for allocating chip info structures\n");
453		return;
454	}
455
456	ret = 0;
457
458	/* Fill out the chip array with {floor, chipno} for each
459	 * detected chip in the device. */
460	for (floor = 0; floor < MAX_FLOORS; floor++) {
461		for (chip = 0; chip < numchips[floor]; chip++) {
462			this->chips[ret].floor = floor;
463			this->chips[ret].chip = chip;
464			this->chips[ret].curadr = 0;
465			this->chips[ret].curmode = 0x50;
466			ret++;
467		}
468	}
469
470	/* Calculate and print the total size of the device */
471	this->totlen = this->numchips * (1 << this->chipshift);
472
473	printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
474	       this->numchips, this->totlen >> 20);
475}
476
477static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
478{
479	int tmp1, tmp2, retval;
480	if (doc1->physadr == doc2->physadr)
481		return 1;
482
483	/* Use the alias resolution register which was set aside for this
484	 * purpose. If it's value is the same on both chips, they might
485	 * be the same chip, and we write to one and check for a change in
486	 * the other. It's unclear if this register is usuable in the
487	 * DoC 2000 (it's in the Millennium docs), but it seems to work. */
488	tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
489	tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
490	if (tmp1 != tmp2)
491		return 0;
492
493	WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
494	tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
495	if (tmp2 == (tmp1 + 1) % 0xff)
496		retval = 1;
497	else
498		retval = 0;
499
500	/* Restore register contents.  May not be necessary, but do it just to
501	 * be safe. */
502	WriteDOC(tmp1, doc1->virtadr, AliasResolution);
503
504	return retval;
505}
506
507/* This routine is found from the docprobe code by symbol_get(),
508 * which will bump the use count of this module. */
509void DoC2k_init(struct mtd_info *mtd)
510{
511	struct DiskOnChip *this = mtd->priv;
512	struct DiskOnChip *old = NULL;
513	int maxchips;
514
515	/* We must avoid being called twice for the same device. */
516
517	if (doc2klist)
518		old = doc2klist->priv;
519
520	while (old) {
521		if (DoC2k_is_alias(old, this)) {
522			printk(KERN_NOTICE
523			       "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
524			       this->physadr);
525			iounmap(this->virtadr);
526			kfree(mtd);
527			return;
528		}
529		if (old->nextdoc)
530			old = old->nextdoc->priv;
531		else
532			old = NULL;
533	}
534
535
536	switch (this->ChipID) {
537	case DOC_ChipID_Doc2kTSOP:
538		mtd->name = "DiskOnChip 2000 TSOP";
539		this->ioreg = DoC_Mil_CDSN_IO;
540		/* Pretend it's a Millennium */
541		this->ChipID = DOC_ChipID_DocMil;
542		maxchips = MAX_CHIPS;
543		break;
544	case DOC_ChipID_Doc2k:
545		mtd->name = "DiskOnChip 2000";
546		this->ioreg = DoC_2k_CDSN_IO;
547		maxchips = MAX_CHIPS;
548		break;
549	case DOC_ChipID_DocMil:
550		mtd->name = "DiskOnChip Millennium";
551		this->ioreg = DoC_Mil_CDSN_IO;
552		maxchips = MAX_CHIPS_MIL;
553		break;
554	default:
555		printk("Unknown ChipID 0x%02x\n", this->ChipID);
556		kfree(mtd);
557		iounmap(this->virtadr);
558		return;
559	}
560
561	printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
562	       this->physadr);
563
564	mtd->type = MTD_NANDFLASH;
565	mtd->flags = MTD_CAP_NANDFLASH;
566	mtd->size = 0;
567	mtd->erasesize = 0;
568	mtd->writesize = 512;
569	mtd->oobsize = 16;
570	mtd->owner = THIS_MODULE;
571	mtd->erase = doc_erase;
572	mtd->point = NULL;
573	mtd->unpoint = NULL;
574	mtd->read = doc_read;
575	mtd->write = doc_write;
576	mtd->read_oob = doc_read_oob;
577	mtd->write_oob = doc_write_oob;
578	mtd->sync = NULL;
579
580	this->totlen = 0;
581	this->numchips = 0;
582
583	this->curfloor = -1;
584	this->curchip = -1;
585	mutex_init(&this->lock);
586
587	/* Ident all the chips present. */
588	DoC_ScanChips(this, maxchips);
589
590	if (!this->totlen) {
591		kfree(mtd);
592		iounmap(this->virtadr);
593	} else {
594		this->nextdoc = doc2klist;
595		doc2klist = mtd;
596		mtd->size = this->totlen;
597		mtd->erasesize = this->erasesize;
598		add_mtd_device(mtd);
599		return;
600	}
601}
602EXPORT_SYMBOL_GPL(DoC2k_init);
603
604static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
605		    size_t * retlen, u_char * buf)
606{
607	struct DiskOnChip *this = mtd->priv;
608	void __iomem *docptr = this->virtadr;
609	struct Nand *mychip;
610	unsigned char syndrome[6], eccbuf[6];
611	volatile char dummy;
612	int i, len256 = 0, ret=0;
613	size_t left = len;
614
615	/* Don't allow read past end of device */
616	if (from >= this->totlen)
617		return -EINVAL;
618
619	mutex_lock(&this->lock);
620
621	*retlen = 0;
622	while (left) {
623		len = left;
624
625		/* Don't allow a single read to cross a 512-byte block boundary */
626		if (from + len > ((from | 0x1ff) + 1))
627			len = ((from | 0x1ff) + 1) - from;
628
629		/* The ECC will not be calculated correctly if less than 512 is read */
630		if (len != 0x200)
631			printk(KERN_WARNING
632			       "ECC needs a full sector read (adr: %lx size %lx)\n",
633			       (long) from, (long) len);
634
635		/* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
636
637
638		/* Find the chip which is to be used and select it */
639		mychip = &this->chips[from >> (this->chipshift)];
640
641		if (this->curfloor != mychip->floor) {
642			DoC_SelectFloor(this, mychip->floor);
643			DoC_SelectChip(this, mychip->chip);
644		} else if (this->curchip != mychip->chip) {
645			DoC_SelectChip(this, mychip->chip);
646		}
647
648		this->curfloor = mychip->floor;
649		this->curchip = mychip->chip;
650
651		DoC_Command(this,
652			    (!this->page256
653			     && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
654			    CDSN_CTRL_WP);
655		DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
656			    CDSN_CTRL_ECC_IO);
657
658		/* Prime the ECC engine */
659		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
660		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
661
662		/* treat crossing 256-byte sector for 2M x 8bits devices */
663		if (this->page256 && from + len > (from | 0xff) + 1) {
664			len256 = (from | 0xff) + 1 - from;
665			DoC_ReadBuf(this, buf, len256);
666
667			DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
668			DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
669				    CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
670		}
671
672		DoC_ReadBuf(this, &buf[len256], len - len256);
673
674		/* Let the caller know we completed it */
675		*retlen += len;
676
677		/* Read the ECC data through the DiskOnChip ECC logic */
678		/* Note: this will work even with 2M x 8bit devices as   */
679		/*       they have 8 bytes of OOB per 256 page. mf.      */
680		DoC_ReadBuf(this, eccbuf, 6);
681
682		/* Flush the pipeline */
683		if (DoC_is_Millennium(this)) {
684			dummy = ReadDOC(docptr, ECCConf);
685			dummy = ReadDOC(docptr, ECCConf);
686			i = ReadDOC(docptr, ECCConf);
687		} else {
688			dummy = ReadDOC(docptr, 2k_ECCStatus);
689			dummy = ReadDOC(docptr, 2k_ECCStatus);
690			i = ReadDOC(docptr, 2k_ECCStatus);
691		}
692
693		/* Check the ECC Status */
694		if (i & 0x80) {
695			int nb_errors;
696			/* There was an ECC error */
697#ifdef ECC_DEBUG
698			printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
699#endif
700			/* Read the ECC syndrom through the DiskOnChip ECC
701			   logic.  These syndrome will be all ZERO when there
702			   is no error */
703			for (i = 0; i < 6; i++) {
704				syndrome[i] =
705					ReadDOC(docptr, ECCSyndrome0 + i);
706			}
707			nb_errors = doc_decode_ecc(buf, syndrome);
708
709#ifdef ECC_DEBUG
710			printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
711#endif
712			if (nb_errors < 0) {
713				/* We return error, but have actually done the
714				   read. Not that this can be told to
715				   user-space, via sys_read(), but at least
716				   MTD-aware stuff can know about it by
717				   checking *retlen */
718				ret = -EIO;
719			}
720		}
721
722#ifdef PSYCHO_DEBUG
723		printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
724		       (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
725		       eccbuf[3], eccbuf[4], eccbuf[5]);
726#endif
727
728		/* disable the ECC engine */
729		WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
730
731		/* according to 11.4.1, we need to wait for the busy line
732	         * drop if we read to the end of the page.  */
733		if(0 == ((from + len) & 0x1ff))
734		{
735		    DoC_WaitReady(this);
736		}
737
738		from += len;
739		left -= len;
740		buf += len;
741	}
742
743	mutex_unlock(&this->lock);
744
745	return ret;
746}
747
748static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
749		     size_t * retlen, const u_char * buf)
750{
751	struct DiskOnChip *this = mtd->priv;
752	int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
753	void __iomem *docptr = this->virtadr;
754	unsigned char eccbuf[6];
755	volatile char dummy;
756	int len256 = 0;
757	struct Nand *mychip;
758	size_t left = len;
759	int status;
760
761	/* Don't allow write past end of device */
762	if (to >= this->totlen)
763		return -EINVAL;
764
765	mutex_lock(&this->lock);
766
767	*retlen = 0;
768	while (left) {
769		len = left;
770
771		/* Don't allow a single write to cross a 512-byte block boundary */
772		if (to + len > ((to | 0x1ff) + 1))
773			len = ((to | 0x1ff) + 1) - to;
774
775		/* The ECC will not be calculated correctly if less than 512 is written */
776/* DBB-
777		if (len != 0x200 && eccbuf)
778			printk(KERN_WARNING
779			       "ECC needs a full sector write (adr: %lx size %lx)\n",
780			       (long) to, (long) len);
781   -DBB */
782
783		/* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
784
785		/* Find the chip which is to be used and select it */
786		mychip = &this->chips[to >> (this->chipshift)];
787
788		if (this->curfloor != mychip->floor) {
789			DoC_SelectFloor(this, mychip->floor);
790			DoC_SelectChip(this, mychip->chip);
791		} else if (this->curchip != mychip->chip) {
792			DoC_SelectChip(this, mychip->chip);
793		}
794
795		this->curfloor = mychip->floor;
796		this->curchip = mychip->chip;
797
798		/* Set device to main plane of flash */
799		DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
800		DoC_Command(this,
801			    (!this->page256
802			     && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
803			    CDSN_CTRL_WP);
804
805		DoC_Command(this, NAND_CMD_SEQIN, 0);
806		DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
807
808		/* Prime the ECC engine */
809		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
810		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
811
812		/* treat crossing 256-byte sector for 2M x 8bits devices */
813		if (this->page256 && to + len > (to | 0xff) + 1) {
814			len256 = (to | 0xff) + 1 - to;
815			DoC_WriteBuf(this, buf, len256);
816
817			DoC_Command(this, NAND_CMD_PAGEPROG, 0);
818
819			DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
820			/* There's an implicit DoC_WaitReady() in DoC_Command */
821
822			dummy = ReadDOC(docptr, CDSNSlowIO);
823			DoC_Delay(this, 2);
824
825			if (ReadDOC_(docptr, this->ioreg) & 1) {
826				printk(KERN_ERR "Error programming flash\n");
827				/* Error in programming */
828				*retlen = 0;
829				mutex_unlock(&this->lock);
830				return -EIO;
831			}
832
833			DoC_Command(this, NAND_CMD_SEQIN, 0);
834			DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
835				    CDSN_CTRL_ECC_IO);
836		}
837
838		DoC_WriteBuf(this, &buf[len256], len - len256);
839
840		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl);
841
842		if (DoC_is_Millennium(this)) {
843			WriteDOC(0, docptr, NOP);
844			WriteDOC(0, docptr, NOP);
845			WriteDOC(0, docptr, NOP);
846		} else {
847			WriteDOC_(0, docptr, this->ioreg);
848			WriteDOC_(0, docptr, this->ioreg);
849			WriteDOC_(0, docptr, this->ioreg);
850		}
851
852		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
853			 CDSNControl);
854
855		/* Read the ECC data through the DiskOnChip ECC logic */
856		for (di = 0; di < 6; di++) {
857			eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
858		}
859
860		/* Reset the ECC engine */
861		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
862
863#ifdef PSYCHO_DEBUG
864		printk
865			("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
866			 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
867			 eccbuf[4], eccbuf[5]);
868#endif
869		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
870
871		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
872		/* There's an implicit DoC_WaitReady() in DoC_Command */
873
874		if (DoC_is_Millennium(this)) {
875			ReadDOC(docptr, ReadPipeInit);
876			status = ReadDOC(docptr, LastDataRead);
877		} else {
878			dummy = ReadDOC(docptr, CDSNSlowIO);
879			DoC_Delay(this, 2);
880			status = ReadDOC_(docptr, this->ioreg);
881		}
882
883		if (status & 1) {
884			printk(KERN_ERR "Error programming flash\n");
885			/* Error in programming */
886			*retlen = 0;
887			mutex_unlock(&this->lock);
888			return -EIO;
889		}
890
891		/* Let the caller know we completed it */
892		*retlen += len;
893
894		{
895			unsigned char x[8];
896			size_t dummy;
897			int ret;
898
899			/* Write the ECC data to flash */
900			for (di=0; di<6; di++)
901				x[di] = eccbuf[di];
902
903			x[6]=0x55;
904			x[7]=0x55;
905
906			ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
907			if (ret) {
908				mutex_unlock(&this->lock);
909				return ret;
910			}
911		}
912
913		to += len;
914		left -= len;
915		buf += len;
916	}
917
918	mutex_unlock(&this->lock);
919	return 0;
920}
921
922static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
923			struct mtd_oob_ops *ops)
924{
925	struct DiskOnChip *this = mtd->priv;
926	int len256 = 0, ret;
927	struct Nand *mychip;
928	uint8_t *buf = ops->oobbuf;
929	size_t len = ops->len;
930
931	BUG_ON(ops->mode != MTD_OOB_PLACE);
932
933	ofs += ops->ooboffs;
934
935	mutex_lock(&this->lock);
936
937	mychip = &this->chips[ofs >> this->chipshift];
938
939	if (this->curfloor != mychip->floor) {
940		DoC_SelectFloor(this, mychip->floor);
941		DoC_SelectChip(this, mychip->chip);
942	} else if (this->curchip != mychip->chip) {
943		DoC_SelectChip(this, mychip->chip);
944	}
945	this->curfloor = mychip->floor;
946	this->curchip = mychip->chip;
947
948	/* update address for 2M x 8bit devices. OOB starts on the second */
949	/* page to maintain compatibility with doc_read_ecc. */
950	if (this->page256) {
951		if (!(ofs & 0x8))
952			ofs += 0x100;
953		else
954			ofs -= 0x8;
955	}
956
957	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
958	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
959
960	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
961	/* Note: datasheet says it should automaticaly wrap to the */
962	/*       next OOB block, but it didn't work here. mf.      */
963	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
964		len256 = (ofs | 0x7) + 1 - ofs;
965		DoC_ReadBuf(this, buf, len256);
966
967		DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
968		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
969			    CDSN_CTRL_WP, 0);
970	}
971
972	DoC_ReadBuf(this, &buf[len256], len - len256);
973
974	ops->retlen = len;
975	/* Reading the full OOB data drops us off of the end of the page,
976         * causing the flash device to go into busy mode, so we need
977         * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
978
979	ret = DoC_WaitReady(this);
980
981	mutex_unlock(&this->lock);
982	return ret;
983
984}
985
986static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
987				size_t * retlen, const u_char * buf)
988{
989	struct DiskOnChip *this = mtd->priv;
990	int len256 = 0;
991	void __iomem *docptr = this->virtadr;
992	struct Nand *mychip = &this->chips[ofs >> this->chipshift];
993	volatile int dummy;
994	int status;
995
996	//      printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
997	//   buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
998
999	/* Find the chip which is to be used and select it */
1000	if (this->curfloor != mychip->floor) {
1001		DoC_SelectFloor(this, mychip->floor);
1002		DoC_SelectChip(this, mychip->chip);
1003	} else if (this->curchip != mychip->chip) {
1004		DoC_SelectChip(this, mychip->chip);
1005	}
1006	this->curfloor = mychip->floor;
1007	this->curchip = mychip->chip;
1008
1009	/* disable the ECC engine */
1010	WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
1011	WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
1012
1013	/* Reset the chip, see Software Requirement 11.4 item 1. */
1014	DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
1015
1016	/* issue the Read2 command to set the pointer to the Spare Data Area. */
1017	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1018
1019	/* update address for 2M x 8bit devices. OOB starts on the second */
1020	/* page to maintain compatibility with doc_read_ecc. */
1021	if (this->page256) {
1022		if (!(ofs & 0x8))
1023			ofs += 0x100;
1024		else
1025			ofs -= 0x8;
1026	}
1027
1028	/* issue the Serial Data In command to initial the Page Program process */
1029	DoC_Command(this, NAND_CMD_SEQIN, 0);
1030	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
1031
1032	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
1033	/* Note: datasheet says it should automaticaly wrap to the */
1034	/*       next OOB block, but it didn't work here. mf.      */
1035	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1036		len256 = (ofs | 0x7) + 1 - ofs;
1037		DoC_WriteBuf(this, buf, len256);
1038
1039		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1040		DoC_Command(this, NAND_CMD_STATUS, 0);
1041		/* DoC_WaitReady() is implicit in DoC_Command */
1042
1043		if (DoC_is_Millennium(this)) {
1044			ReadDOC(docptr, ReadPipeInit);
1045			status = ReadDOC(docptr, LastDataRead);
1046		} else {
1047			dummy = ReadDOC(docptr, CDSNSlowIO);
1048			DoC_Delay(this, 2);
1049			status = ReadDOC_(docptr, this->ioreg);
1050		}
1051
1052		if (status & 1) {
1053			printk(KERN_ERR "Error programming oob data\n");
1054			/* There was an error */
1055			*retlen = 0;
1056			return -EIO;
1057		}
1058		DoC_Command(this, NAND_CMD_SEQIN, 0);
1059		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
1060	}
1061
1062	DoC_WriteBuf(this, &buf[len256], len - len256);
1063
1064	DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1065	DoC_Command(this, NAND_CMD_STATUS, 0);
1066	/* DoC_WaitReady() is implicit in DoC_Command */
1067
1068	if (DoC_is_Millennium(this)) {
1069		ReadDOC(docptr, ReadPipeInit);
1070		status = ReadDOC(docptr, LastDataRead);
1071	} else {
1072		dummy = ReadDOC(docptr, CDSNSlowIO);
1073		DoC_Delay(this, 2);
1074		status = ReadDOC_(docptr, this->ioreg);
1075	}
1076
1077	if (status & 1) {
1078		printk(KERN_ERR "Error programming oob data\n");
1079		/* There was an error */
1080		*retlen = 0;
1081		return -EIO;
1082	}
1083
1084	*retlen = len;
1085	return 0;
1086
1087}
1088
1089static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1090			 struct mtd_oob_ops *ops)
1091{
1092	struct DiskOnChip *this = mtd->priv;
1093	int ret;
1094
1095	BUG_ON(ops->mode != MTD_OOB_PLACE);
1096
1097	mutex_lock(&this->lock);
1098	ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len,
1099				   &ops->retlen, ops->oobbuf);
1100
1101	mutex_unlock(&this->lock);
1102	return ret;
1103}
1104
1105static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
1106{
1107	struct DiskOnChip *this = mtd->priv;
1108	__u32 ofs = instr->addr;
1109	__u32 len = instr->len;
1110	volatile int dummy;
1111	void __iomem *docptr = this->virtadr;
1112	struct Nand *mychip;
1113	int status;
1114
1115 	mutex_lock(&this->lock);
1116
1117	if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
1118		mutex_unlock(&this->lock);
1119		return -EINVAL;
1120	}
1121
1122	instr->state = MTD_ERASING;
1123
1124	while(len) {
1125		mychip = &this->chips[ofs >> this->chipshift];
1126
1127		if (this->curfloor != mychip->floor) {
1128			DoC_SelectFloor(this, mychip->floor);
1129			DoC_SelectChip(this, mychip->chip);
1130		} else if (this->curchip != mychip->chip) {
1131			DoC_SelectChip(this, mychip->chip);
1132		}
1133		this->curfloor = mychip->floor;
1134		this->curchip = mychip->chip;
1135
1136		DoC_Command(this, NAND_CMD_ERASE1, 0);
1137		DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
1138		DoC_Command(this, NAND_CMD_ERASE2, 0);
1139
1140		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1141
1142		if (DoC_is_Millennium(this)) {
1143			ReadDOC(docptr, ReadPipeInit);
1144			status = ReadDOC(docptr, LastDataRead);
1145		} else {
1146			dummy = ReadDOC(docptr, CDSNSlowIO);
1147			DoC_Delay(this, 2);
1148			status = ReadDOC_(docptr, this->ioreg);
1149		}
1150
1151		if (status & 1) {
1152			printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
1153			/* There was an error */
1154			instr->state = MTD_ERASE_FAILED;
1155			goto callback;
1156		}
1157		ofs += mtd->erasesize;
1158		len -= mtd->erasesize;
1159	}
1160	instr->state = MTD_ERASE_DONE;
1161
1162 callback:
1163	mtd_erase_callback(instr);
1164
1165	mutex_unlock(&this->lock);
1166	return 0;
1167}
1168
1169
1170/****************************************************************************
1171 *
1172 * Module stuff
1173 *
1174 ****************************************************************************/
1175
1176static void __exit cleanup_doc2000(void)
1177{
1178	struct mtd_info *mtd;
1179	struct DiskOnChip *this;
1180
1181	while ((mtd = doc2klist)) {
1182		this = mtd->priv;
1183		doc2klist = this->nextdoc;
1184
1185		del_mtd_device(mtd);
1186
1187		iounmap(this->virtadr);
1188		kfree(this->chips);
1189		kfree(mtd);
1190	}
1191}
1192
1193module_exit(cleanup_doc2000);
1194
1195MODULE_LICENSE("GPL");
1196MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
1197MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
1198