• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/mmc/host/
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 *		Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 *		Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 *		Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/bio.h>
31#include <linux/dma-mapping.h>
32#include <linux/crc7.h>
33#include <linux/crc-itu-t.h>
34#include <linux/scatterlist.h>
35
36#include <linux/mmc/host.h>
37#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
38
39#include <linux/spi/spi.h>
40#include <linux/spi/mmc_spi.h>
41
42#include <asm/unaligned.h>
43
44
45/* NOTES:
46 *
47 * - For now, we won't try to interoperate with a real mmc/sd/sdio
48 *   controller, although some of them do have hardware support for
49 *   SPI protocol.  The main reason for such configs would be mmc-ish
50 *   cards like DataFlash, which don't support that "native" protocol.
51 *
52 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
53 *   switch between driver stacks, and in any case if "native" mode
54 *   is available, it will be faster and hence preferable.
55 *
56 * - MMC depends on a different chipselect management policy than the
57 *   SPI interface currently supports for shared bus segments:  it needs
58 *   to issue multiple spi_message requests with the chipselect active,
59 *   using the results of one message to decide the next one to issue.
60 *
61 *   Pending updates to the programming interface, this driver expects
62 *   that it not share the bus with other drivers (precluding conflicts).
63 *
64 * - We tell the controller to keep the chipselect active from the
65 *   beginning of an mmc_host_ops.request until the end.  So beware
66 *   of SPI controller drivers that mis-handle the cs_change flag!
67 *
68 *   However, many cards seem OK with chipselect flapping up/down
69 *   during that time ... at least on unshared bus segments.
70 */
71
72
73/*
74 * Local protocol constants, internal to data block protocols.
75 */
76
77/* Response tokens used to ack each block written: */
78#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
79#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
80#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
81#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
82
83/* Read and write blocks start with these tokens and end with crc;
84 * on error, read tokens act like a subset of R2_SPI_* values.
85 */
86#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
87#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
88#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
89
90#define MMC_SPI_BLOCKSIZE	512
91
92
93/* These fixed timeouts come from the latest SD specs, which say to ignore
94 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
95 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
96 * reads which takes nowhere near that long.  Older cards may be able to use
97 * shorter timeouts ... but why bother?
98 */
99#define r1b_timeout		(HZ * 3)
100
101/* One of the critical speed parameters is the amount of data which may
102 * be transfered in one command. If this value is too low, the SD card
103 * controller has to do multiple partial block writes (argggh!). With
104 * today (2008) SD cards there is little speed gain if we transfer more
105 * than 64 KBytes at a time. So use this value until there is any indication
106 * that we should do more here.
107 */
108#define MMC_SPI_BLOCKSATONCE	128
109
110/****************************************************************************/
111
112/*
113 * Local Data Structures
114 */
115
116/* "scratch" is per-{command,block} data exchanged with the card */
117struct scratch {
118	u8			status[29];
119	u8			data_token;
120	__be16			crc_val;
121};
122
123struct mmc_spi_host {
124	struct mmc_host		*mmc;
125	struct spi_device	*spi;
126
127	unsigned char		power_mode;
128	u16			powerup_msecs;
129
130	struct mmc_spi_platform_data	*pdata;
131
132	/* for bulk data transfers */
133	struct spi_transfer	token, t, crc, early_status;
134	struct spi_message	m;
135
136	/* for status readback */
137	struct spi_transfer	status;
138	struct spi_message	readback;
139
140	/* underlying DMA-aware controller, or null */
141	struct device		*dma_dev;
142
143	/* buffer used for commands and for message "overhead" */
144	struct scratch		*data;
145	dma_addr_t		data_dma;
146
147	/* Specs say to write ones most of the time, even when the card
148	 * has no need to read its input data; and many cards won't care.
149	 * This is our source of those ones.
150	 */
151	void			*ones;
152	dma_addr_t		ones_dma;
153};
154
155
156/****************************************************************************/
157
158/*
159 * MMC-over-SPI protocol glue, used by the MMC stack interface
160 */
161
162static inline int mmc_cs_off(struct mmc_spi_host *host)
163{
164	/* chipselect will always be inactive after setup() */
165	return spi_setup(host->spi);
166}
167
168static int
169mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
170{
171	int status;
172
173	if (len > sizeof(*host->data)) {
174		WARN_ON(1);
175		return -EIO;
176	}
177
178	host->status.len = len;
179
180	if (host->dma_dev)
181		dma_sync_single_for_device(host->dma_dev,
182				host->data_dma, sizeof(*host->data),
183				DMA_FROM_DEVICE);
184
185	status = spi_sync_locked(host->spi, &host->readback);
186
187	if (host->dma_dev)
188		dma_sync_single_for_cpu(host->dma_dev,
189				host->data_dma, sizeof(*host->data),
190				DMA_FROM_DEVICE);
191
192	return status;
193}
194
195static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
196			unsigned n, u8 byte)
197{
198	u8		*cp = host->data->status;
199	unsigned long start = jiffies;
200
201	while (1) {
202		int		status;
203		unsigned	i;
204
205		status = mmc_spi_readbytes(host, n);
206		if (status < 0)
207			return status;
208
209		for (i = 0; i < n; i++) {
210			if (cp[i] != byte)
211				return cp[i];
212		}
213
214		if (time_is_before_jiffies(start + timeout))
215			break;
216
217		/* If we need long timeouts, we may release the CPU.
218		 * We use jiffies here because we want to have a relation
219		 * between elapsed time and the blocking of the scheduler.
220		 */
221		if (time_is_before_jiffies(start+1))
222			schedule();
223	}
224	return -ETIMEDOUT;
225}
226
227static inline int
228mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
229{
230	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
231}
232
233static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
234{
235	return mmc_spi_skip(host, timeout, 1, 0xff);
236}
237
238
239/*
240 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
241 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
242 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
243 *
244 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
245 * newer cards R7 (IF_COND).
246 */
247
248static char *maptype(struct mmc_command *cmd)
249{
250	switch (mmc_spi_resp_type(cmd)) {
251	case MMC_RSP_SPI_R1:	return "R1";
252	case MMC_RSP_SPI_R1B:	return "R1B";
253	case MMC_RSP_SPI_R2:	return "R2/R5";
254	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
255	default:		return "?";
256	}
257}
258
259/* return zero, else negative errno after setting cmd->error */
260static int mmc_spi_response_get(struct mmc_spi_host *host,
261		struct mmc_command *cmd, int cs_on)
262{
263	u8	*cp = host->data->status;
264	u8	*end = cp + host->t.len;
265	int	value = 0;
266	int	bitshift;
267	u8 	leftover = 0;
268	unsigned short rotator;
269	int 	i;
270	char	tag[32];
271
272	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
273		cmd->opcode, maptype(cmd));
274
275	/* Except for data block reads, the whole response will already
276	 * be stored in the scratch buffer.  It's somewhere after the
277	 * command and the first byte we read after it.  We ignore that
278	 * first byte.  After STOP_TRANSMISSION command it may include
279	 * two data bits, but otherwise it's all ones.
280	 */
281	cp += 8;
282	while (cp < end && *cp == 0xff)
283		cp++;
284
285	/* Data block reads (R1 response types) may need more data... */
286	if (cp == end) {
287		cp = host->data->status;
288		end = cp+1;
289
290		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
291		 * status byte ... and we already scanned 2 bytes.
292		 *
293		 * REVISIT block read paths use nasty byte-at-a-time I/O
294		 * so it can always DMA directly into the target buffer.
295		 * It'd probably be better to memcpy() the first chunk and
296		 * avoid extra i/o calls...
297		 *
298		 * Note we check for more than 8 bytes, because in practice,
299		 * some SD cards are slow...
300		 */
301		for (i = 2; i < 16; i++) {
302			value = mmc_spi_readbytes(host, 1);
303			if (value < 0)
304				goto done;
305			if (*cp != 0xff)
306				goto checkstatus;
307		}
308		value = -ETIMEDOUT;
309		goto done;
310	}
311
312checkstatus:
313	bitshift = 0;
314	if (*cp & 0x80)	{
315		/* Houston, we have an ugly card with a bit-shifted response */
316		rotator = *cp++ << 8;
317		/* read the next byte */
318		if (cp == end) {
319			value = mmc_spi_readbytes(host, 1);
320			if (value < 0)
321				goto done;
322			cp = host->data->status;
323			end = cp+1;
324		}
325		rotator |= *cp++;
326		while (rotator & 0x8000) {
327			bitshift++;
328			rotator <<= 1;
329		}
330		cmd->resp[0] = rotator >> 8;
331		leftover = rotator;
332	} else {
333		cmd->resp[0] = *cp++;
334	}
335	cmd->error = 0;
336
337	/* Status byte: the entire seven-bit R1 response.  */
338	if (cmd->resp[0] != 0) {
339		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
340				& cmd->resp[0])
341			value = -EFAULT; /* Bad address */
342		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
343			value = -ENOSYS; /* Function not implemented */
344		else if (R1_SPI_COM_CRC & cmd->resp[0])
345			value = -EILSEQ; /* Illegal byte sequence */
346		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
347				& cmd->resp[0])
348			value = -EIO;    /* I/O error */
349		/* else R1_SPI_IDLE, "it's resetting" */
350	}
351
352	switch (mmc_spi_resp_type(cmd)) {
353
354	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
355	 * and less-common stuff like various erase operations.
356	 */
357	case MMC_RSP_SPI_R1B:
358		/* maybe we read all the busy tokens already */
359		while (cp < end && *cp == 0)
360			cp++;
361		if (cp == end)
362			mmc_spi_wait_unbusy(host, r1b_timeout);
363		break;
364
365	/* SPI R2 == R1 + second status byte; SEND_STATUS
366	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
367	 */
368	case MMC_RSP_SPI_R2:
369		/* read the next byte */
370		if (cp == end) {
371			value = mmc_spi_readbytes(host, 1);
372			if (value < 0)
373				goto done;
374			cp = host->data->status;
375			end = cp+1;
376		}
377		if (bitshift) {
378			rotator = leftover << 8;
379			rotator |= *cp << bitshift;
380			cmd->resp[0] |= (rotator & 0xFF00);
381		} else {
382			cmd->resp[0] |= *cp << 8;
383		}
384		break;
385
386	/* SPI R3, R4, or R7 == R1 + 4 bytes */
387	case MMC_RSP_SPI_R3:
388		rotator = leftover << 8;
389		cmd->resp[1] = 0;
390		for (i = 0; i < 4; i++) {
391			cmd->resp[1] <<= 8;
392			/* read the next byte */
393			if (cp == end) {
394				value = mmc_spi_readbytes(host, 1);
395				if (value < 0)
396					goto done;
397				cp = host->data->status;
398				end = cp+1;
399			}
400			if (bitshift) {
401				rotator |= *cp++ << bitshift;
402				cmd->resp[1] |= (rotator >> 8);
403				rotator <<= 8;
404			} else {
405				cmd->resp[1] |= *cp++;
406			}
407		}
408		break;
409
410	/* SPI R1 == just one status byte */
411	case MMC_RSP_SPI_R1:
412		break;
413
414	default:
415		dev_dbg(&host->spi->dev, "bad response type %04x\n",
416				mmc_spi_resp_type(cmd));
417		if (value >= 0)
418			value = -EINVAL;
419		goto done;
420	}
421
422	if (value < 0)
423		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
424			tag, cmd->resp[0], cmd->resp[1]);
425
426	/* disable chipselect on errors and some success cases */
427	if (value >= 0 && cs_on)
428		return value;
429done:
430	if (value < 0)
431		cmd->error = value;
432	mmc_cs_off(host);
433	return value;
434}
435
436/* Issue command and read its response.
437 * Returns zero on success, negative for error.
438 *
439 * On error, caller must cope with mmc core retry mechanism.  That
440 * means immediate low-level resubmit, which affects the bus lock...
441 */
442static int
443mmc_spi_command_send(struct mmc_spi_host *host,
444		struct mmc_request *mrq,
445		struct mmc_command *cmd, int cs_on)
446{
447	struct scratch		*data = host->data;
448	u8			*cp = data->status;
449	u32			arg = cmd->arg;
450	int			status;
451	struct spi_transfer	*t;
452
453	/* We can handle most commands (except block reads) in one full
454	 * duplex I/O operation before either starting the next transfer
455	 * (data block or command) or else deselecting the card.
456	 *
457	 * First, write 7 bytes:
458	 *  - an all-ones byte to ensure the card is ready
459	 *  - opcode byte (plus start and transmission bits)
460	 *  - four bytes of big-endian argument
461	 *  - crc7 (plus end bit) ... always computed, it's cheap
462	 *
463	 * We init the whole buffer to all-ones, which is what we need
464	 * to write while we're reading (later) response data.
465	 */
466	memset(cp++, 0xff, sizeof(data->status));
467
468	*cp++ = 0x40 | cmd->opcode;
469	*cp++ = (u8)(arg >> 24);
470	*cp++ = (u8)(arg >> 16);
471	*cp++ = (u8)(arg >> 8);
472	*cp++ = (u8)arg;
473	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
474
475	/* Then, read up to 13 bytes (while writing all-ones):
476	 *  - N(CR) (== 1..8) bytes of all-ones
477	 *  - status byte (for all response types)
478	 *  - the rest of the response, either:
479	 *      + nothing, for R1 or R1B responses
480	 *	+ second status byte, for R2 responses
481	 *	+ four data bytes, for R3 and R7 responses
482	 *
483	 * Finally, read some more bytes ... in the nice cases we know in
484	 * advance how many, and reading 1 more is always OK:
485	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
486	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
487	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
488	 *
489	 * So in those cases one full duplex I/O of at most 21 bytes will
490	 * handle the whole command, leaving the card ready to receive a
491	 * data block or new command.  We do that whenever we can, shaving
492	 * CPU and IRQ costs (especially when using DMA or FIFOs).
493	 *
494	 * There are two other cases, where it's not generally practical
495	 * to rely on a single I/O:
496	 *
497	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
498	 *
499	 *    In this case we can *try* to fit it into one I/O, then
500	 *    maybe read more data later.
501	 *
502	 *  - Data block reads are more troublesome, since a variable
503	 *    number of padding bytes precede the token and data.
504	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
505	 *      + N(AC) (== 1..many) bytes of all-ones
506	 *
507	 *    In this case we currently only have minimal speedups here:
508	 *    when N(CR) == 1 we can avoid I/O in response_get().
509	 */
510	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
511		cp += 2;	/* min(N(CR)) + status */
512		/* R1 */
513	} else {
514		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
515		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
516			cp++;
517		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
518			cp += 4;
519		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
520			cp = data->status + sizeof(data->status);
521		/* else:  R1 (most commands) */
522	}
523
524	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
525		cmd->opcode, maptype(cmd));
526
527	/* send command, leaving chipselect active */
528	spi_message_init(&host->m);
529
530	t = &host->t;
531	memset(t, 0, sizeof(*t));
532	t->tx_buf = t->rx_buf = data->status;
533	t->tx_dma = t->rx_dma = host->data_dma;
534	t->len = cp - data->status;
535	t->cs_change = 1;
536	spi_message_add_tail(t, &host->m);
537
538	if (host->dma_dev) {
539		host->m.is_dma_mapped = 1;
540		dma_sync_single_for_device(host->dma_dev,
541				host->data_dma, sizeof(*host->data),
542				DMA_BIDIRECTIONAL);
543	}
544	status = spi_sync_locked(host->spi, &host->m);
545
546	if (host->dma_dev)
547		dma_sync_single_for_cpu(host->dma_dev,
548				host->data_dma, sizeof(*host->data),
549				DMA_BIDIRECTIONAL);
550	if (status < 0) {
551		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
552		cmd->error = status;
553		return status;
554	}
555
556	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
557	return mmc_spi_response_get(host, cmd, cs_on);
558}
559
560/* Build data message with up to four separate transfers.  For TX, we
561 * start by writing the data token.  And in most cases, we finish with
562 * a status transfer.
563 *
564 * We always provide TX data for data and CRC.  The MMC/SD protocol
565 * requires us to write ones; but Linux defaults to writing zeroes;
566 * so we explicitly initialize it to all ones on RX paths.
567 *
568 * We also handle DMA mapping, so the underlying SPI controller does
569 * not need to (re)do it for each message.
570 */
571static void
572mmc_spi_setup_data_message(
573	struct mmc_spi_host	*host,
574	int			multiple,
575	enum dma_data_direction	direction)
576{
577	struct spi_transfer	*t;
578	struct scratch		*scratch = host->data;
579	dma_addr_t		dma = host->data_dma;
580
581	spi_message_init(&host->m);
582	if (dma)
583		host->m.is_dma_mapped = 1;
584
585	/* for reads, readblock() skips 0xff bytes before finding
586	 * the token; for writes, this transfer issues that token.
587	 */
588	if (direction == DMA_TO_DEVICE) {
589		t = &host->token;
590		memset(t, 0, sizeof(*t));
591		t->len = 1;
592		if (multiple)
593			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
594		else
595			scratch->data_token = SPI_TOKEN_SINGLE;
596		t->tx_buf = &scratch->data_token;
597		if (dma)
598			t->tx_dma = dma + offsetof(struct scratch, data_token);
599		spi_message_add_tail(t, &host->m);
600	}
601
602	/* Body of transfer is buffer, then CRC ...
603	 * either TX-only, or RX with TX-ones.
604	 */
605	t = &host->t;
606	memset(t, 0, sizeof(*t));
607	t->tx_buf = host->ones;
608	t->tx_dma = host->ones_dma;
609	/* length and actual buffer info are written later */
610	spi_message_add_tail(t, &host->m);
611
612	t = &host->crc;
613	memset(t, 0, sizeof(*t));
614	t->len = 2;
615	if (direction == DMA_TO_DEVICE) {
616		/* the actual CRC may get written later */
617		t->tx_buf = &scratch->crc_val;
618		if (dma)
619			t->tx_dma = dma + offsetof(struct scratch, crc_val);
620	} else {
621		t->tx_buf = host->ones;
622		t->tx_dma = host->ones_dma;
623		t->rx_buf = &scratch->crc_val;
624		if (dma)
625			t->rx_dma = dma + offsetof(struct scratch, crc_val);
626	}
627	spi_message_add_tail(t, &host->m);
628
629	/*
630	 * A single block read is followed by N(EC) [0+] all-ones bytes
631	 * before deselect ... don't bother.
632	 *
633	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
634	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
635	 * collect that single byte, so readblock() doesn't need to.
636	 *
637	 * For a write, the one-byte data response follows immediately, then
638	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
639	 * Then single block reads may deselect, and multiblock ones issue
640	 * the next token (next data block, or STOP_TRAN).  We can try to
641	 * minimize I/O ops by using a single read to collect end-of-busy.
642	 */
643	if (multiple || direction == DMA_TO_DEVICE) {
644		t = &host->early_status;
645		memset(t, 0, sizeof(*t));
646		t->len = (direction == DMA_TO_DEVICE)
647				? sizeof(scratch->status)
648				: 1;
649		t->tx_buf = host->ones;
650		t->tx_dma = host->ones_dma;
651		t->rx_buf = scratch->status;
652		if (dma)
653			t->rx_dma = dma + offsetof(struct scratch, status);
654		t->cs_change = 1;
655		spi_message_add_tail(t, &host->m);
656	}
657}
658
659/*
660 * Write one block:
661 *  - caller handled preceding N(WR) [1+] all-ones bytes
662 *  - data block
663 *	+ token
664 *	+ data bytes
665 *	+ crc16
666 *  - an all-ones byte ... card writes a data-response byte
667 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
668 *
669 * Return negative errno, else success.
670 */
671static int
672mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
673	unsigned long timeout)
674{
675	struct spi_device	*spi = host->spi;
676	int			status, i;
677	struct scratch		*scratch = host->data;
678	u32			pattern;
679
680	if (host->mmc->use_spi_crc)
681		scratch->crc_val = cpu_to_be16(
682				crc_itu_t(0, t->tx_buf, t->len));
683	if (host->dma_dev)
684		dma_sync_single_for_device(host->dma_dev,
685				host->data_dma, sizeof(*scratch),
686				DMA_BIDIRECTIONAL);
687
688	status = spi_sync_locked(spi, &host->m);
689
690	if (status != 0) {
691		dev_dbg(&spi->dev, "write error (%d)\n", status);
692		return status;
693	}
694
695	if (host->dma_dev)
696		dma_sync_single_for_cpu(host->dma_dev,
697				host->data_dma, sizeof(*scratch),
698				DMA_BIDIRECTIONAL);
699
700	/*
701	 * Get the transmission data-response reply.  It must follow
702	 * immediately after the data block we transferred.  This reply
703	 * doesn't necessarily tell whether the write operation succeeded;
704	 * it just says if the transmission was ok and whether *earlier*
705	 * writes succeeded; see the standard.
706	 *
707	 * In practice, there are (even modern SDHC-)cards which are late
708	 * in sending the response, and miss the time frame by a few bits,
709	 * so we have to cope with this situation and check the response
710	 * bit-by-bit. Arggh!!!
711	 */
712	pattern  = scratch->status[0] << 24;
713	pattern |= scratch->status[1] << 16;
714	pattern |= scratch->status[2] << 8;
715	pattern |= scratch->status[3];
716
717	/* First 3 bit of pattern are undefined */
718	pattern |= 0xE0000000;
719
720	/* left-adjust to leading 0 bit */
721	while (pattern & 0x80000000)
722		pattern <<= 1;
723	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
724	pattern >>= 27;
725
726	switch (pattern) {
727	case SPI_RESPONSE_ACCEPTED:
728		status = 0;
729		break;
730	case SPI_RESPONSE_CRC_ERR:
731		/* host shall then issue MMC_STOP_TRANSMISSION */
732		status = -EILSEQ;
733		break;
734	case SPI_RESPONSE_WRITE_ERR:
735		/* host shall then issue MMC_STOP_TRANSMISSION,
736		 * and should MMC_SEND_STATUS to sort it out
737		 */
738		status = -EIO;
739		break;
740	default:
741		status = -EPROTO;
742		break;
743	}
744	if (status != 0) {
745		dev_dbg(&spi->dev, "write error %02x (%d)\n",
746			scratch->status[0], status);
747		return status;
748	}
749
750	t->tx_buf += t->len;
751	if (host->dma_dev)
752		t->tx_dma += t->len;
753
754	/* Return when not busy.  If we didn't collect that status yet,
755	 * we'll need some more I/O.
756	 */
757	for (i = 4; i < sizeof(scratch->status); i++) {
758		/* card is non-busy if the most recent bit is 1 */
759		if (scratch->status[i] & 0x01)
760			return 0;
761	}
762	return mmc_spi_wait_unbusy(host, timeout);
763}
764
765/*
766 * Read one block:
767 *  - skip leading all-ones bytes ... either
768 *      + N(AC) [1..f(clock,CSD)] usually, else
769 *      + N(CX) [0..8] when reading CSD or CID
770 *  - data block
771 *	+ token ... if error token, no data or crc
772 *	+ data bytes
773 *	+ crc16
774 *
775 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
776 * before dropping chipselect.
777 *
778 * For multiblock reads, caller either reads the next block or issues a
779 * STOP_TRANSMISSION command.
780 */
781static int
782mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
783	unsigned long timeout)
784{
785	struct spi_device	*spi = host->spi;
786	int			status;
787	struct scratch		*scratch = host->data;
788	unsigned int 		bitshift;
789	u8			leftover;
790
791	/* At least one SD card sends an all-zeroes byte when N(CX)
792	 * applies, before the all-ones bytes ... just cope with that.
793	 */
794	status = mmc_spi_readbytes(host, 1);
795	if (status < 0)
796		return status;
797	status = scratch->status[0];
798	if (status == 0xff || status == 0)
799		status = mmc_spi_readtoken(host, timeout);
800
801	if (status < 0) {
802		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
803		return status;
804	}
805
806	/* The token may be bit-shifted...
807	 * the first 0-bit precedes the data stream.
808	 */
809	bitshift = 7;
810	while (status & 0x80) {
811		status <<= 1;
812		bitshift--;
813	}
814	leftover = status << 1;
815
816	if (host->dma_dev) {
817		dma_sync_single_for_device(host->dma_dev,
818				host->data_dma, sizeof(*scratch),
819				DMA_BIDIRECTIONAL);
820		dma_sync_single_for_device(host->dma_dev,
821				t->rx_dma, t->len,
822				DMA_FROM_DEVICE);
823	}
824
825	status = spi_sync_locked(spi, &host->m);
826
827	if (host->dma_dev) {
828		dma_sync_single_for_cpu(host->dma_dev,
829				host->data_dma, sizeof(*scratch),
830				DMA_BIDIRECTIONAL);
831		dma_sync_single_for_cpu(host->dma_dev,
832				t->rx_dma, t->len,
833				DMA_FROM_DEVICE);
834	}
835
836	if (bitshift) {
837		/* Walk through the data and the crc and do
838		 * all the magic to get byte-aligned data.
839		 */
840		u8 *cp = t->rx_buf;
841		unsigned int len;
842		unsigned int bitright = 8 - bitshift;
843		u8 temp;
844		for (len = t->len; len; len--) {
845			temp = *cp;
846			*cp++ = leftover | (temp >> bitshift);
847			leftover = temp << bitright;
848		}
849		cp = (u8 *) &scratch->crc_val;
850		temp = *cp;
851		*cp++ = leftover | (temp >> bitshift);
852		leftover = temp << bitright;
853		temp = *cp;
854		*cp = leftover | (temp >> bitshift);
855	}
856
857	if (host->mmc->use_spi_crc) {
858		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
859
860		be16_to_cpus(&scratch->crc_val);
861		if (scratch->crc_val != crc) {
862			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
863					"computed=0x%04x len=%d\n",
864					scratch->crc_val, crc, t->len);
865			return -EILSEQ;
866		}
867	}
868
869	t->rx_buf += t->len;
870	if (host->dma_dev)
871		t->rx_dma += t->len;
872
873	return 0;
874}
875
876/*
877 * An MMC/SD data stage includes one or more blocks, optional CRCs,
878 * and inline handshaking.  That handhaking makes it unlike most
879 * other SPI protocol stacks.
880 */
881static void
882mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
883		struct mmc_data *data, u32 blk_size)
884{
885	struct spi_device	*spi = host->spi;
886	struct device		*dma_dev = host->dma_dev;
887	struct spi_transfer	*t;
888	enum dma_data_direction	direction;
889	struct scatterlist	*sg;
890	unsigned		n_sg;
891	int			multiple = (data->blocks > 1);
892	u32			clock_rate;
893	unsigned long		timeout;
894
895	if (data->flags & MMC_DATA_READ)
896		direction = DMA_FROM_DEVICE;
897	else
898		direction = DMA_TO_DEVICE;
899	mmc_spi_setup_data_message(host, multiple, direction);
900	t = &host->t;
901
902	if (t->speed_hz)
903		clock_rate = t->speed_hz;
904	else
905		clock_rate = spi->max_speed_hz;
906
907	timeout = data->timeout_ns +
908		  data->timeout_clks * 1000000 / clock_rate;
909	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
910
911	/* Handle scatterlist segments one at a time, with synch for
912	 * each 512-byte block
913	 */
914	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
915		int			status = 0;
916		dma_addr_t		dma_addr = 0;
917		void			*kmap_addr;
918		unsigned		length = sg->length;
919		enum dma_data_direction	dir = direction;
920
921		/* set up dma mapping for controller drivers that might
922		 * use DMA ... though they may fall back to PIO
923		 */
924		if (dma_dev) {
925			/* never invalidate whole *shared* pages ... */
926			if ((sg->offset != 0 || length != PAGE_SIZE)
927					&& dir == DMA_FROM_DEVICE)
928				dir = DMA_BIDIRECTIONAL;
929
930			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
931						PAGE_SIZE, dir);
932			if (direction == DMA_TO_DEVICE)
933				t->tx_dma = dma_addr + sg->offset;
934			else
935				t->rx_dma = dma_addr + sg->offset;
936		}
937
938		/* allow pio too; we don't allow highmem */
939		kmap_addr = kmap(sg_page(sg));
940		if (direction == DMA_TO_DEVICE)
941			t->tx_buf = kmap_addr + sg->offset;
942		else
943			t->rx_buf = kmap_addr + sg->offset;
944
945		/* transfer each block, and update request status */
946		while (length) {
947			t->len = min(length, blk_size);
948
949			dev_dbg(&host->spi->dev,
950				"    mmc_spi: %s block, %d bytes\n",
951				(direction == DMA_TO_DEVICE)
952				? "write"
953				: "read",
954				t->len);
955
956			if (direction == DMA_TO_DEVICE)
957				status = mmc_spi_writeblock(host, t, timeout);
958			else
959				status = mmc_spi_readblock(host, t, timeout);
960			if (status < 0)
961				break;
962
963			data->bytes_xfered += t->len;
964			length -= t->len;
965
966			if (!multiple)
967				break;
968		}
969
970		/* discard mappings */
971		if (direction == DMA_FROM_DEVICE)
972			flush_kernel_dcache_page(sg_page(sg));
973		kunmap(sg_page(sg));
974		if (dma_dev)
975			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
976
977		if (status < 0) {
978			data->error = status;
979			dev_dbg(&spi->dev, "%s status %d\n",
980				(direction == DMA_TO_DEVICE)
981					? "write" : "read",
982				status);
983			break;
984		}
985	}
986
987	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
988	 * can be issued before multiblock writes.  Unlike its more widely
989	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
990	 * that can affect the STOP_TRAN logic.   Complete (and current)
991	 * MMC specs should sort that out before Linux starts using CMD23.
992	 */
993	if (direction == DMA_TO_DEVICE && multiple) {
994		struct scratch	*scratch = host->data;
995		int		tmp;
996		const unsigned	statlen = sizeof(scratch->status);
997
998		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
999
1000		/* Tweak the per-block message we set up earlier by morphing
1001		 * it to hold single buffer with the token followed by some
1002		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1003		 * "not busy any longer" status, and leave chip selected.
1004		 */
1005		INIT_LIST_HEAD(&host->m.transfers);
1006		list_add(&host->early_status.transfer_list,
1007				&host->m.transfers);
1008
1009		memset(scratch->status, 0xff, statlen);
1010		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1011
1012		host->early_status.tx_buf = host->early_status.rx_buf;
1013		host->early_status.tx_dma = host->early_status.rx_dma;
1014		host->early_status.len = statlen;
1015
1016		if (host->dma_dev)
1017			dma_sync_single_for_device(host->dma_dev,
1018					host->data_dma, sizeof(*scratch),
1019					DMA_BIDIRECTIONAL);
1020
1021		tmp = spi_sync_locked(spi, &host->m);
1022
1023		if (host->dma_dev)
1024			dma_sync_single_for_cpu(host->dma_dev,
1025					host->data_dma, sizeof(*scratch),
1026					DMA_BIDIRECTIONAL);
1027
1028		if (tmp < 0) {
1029			if (!data->error)
1030				data->error = tmp;
1031			return;
1032		}
1033
1034		/* Ideally we collected "not busy" status with one I/O,
1035		 * avoiding wasteful byte-at-a-time scanning... but more
1036		 * I/O is often needed.
1037		 */
1038		for (tmp = 2; tmp < statlen; tmp++) {
1039			if (scratch->status[tmp] != 0)
1040				return;
1041		}
1042		tmp = mmc_spi_wait_unbusy(host, timeout);
1043		if (tmp < 0 && !data->error)
1044			data->error = tmp;
1045	}
1046}
1047
1048/****************************************************************************/
1049
1050/*
1051 * MMC driver implementation -- the interface to the MMC stack
1052 */
1053
1054static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1055{
1056	struct mmc_spi_host	*host = mmc_priv(mmc);
1057	int			status = -EINVAL;
1058
1059#ifdef DEBUG
1060	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1061	{
1062		struct mmc_command	*cmd;
1063		int			invalid = 0;
1064
1065		cmd = mrq->cmd;
1066		if (!mmc_spi_resp_type(cmd)) {
1067			dev_dbg(&host->spi->dev, "bogus command\n");
1068			cmd->error = -EINVAL;
1069			invalid = 1;
1070		}
1071
1072		cmd = mrq->stop;
1073		if (cmd && !mmc_spi_resp_type(cmd)) {
1074			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1075			cmd->error = -EINVAL;
1076			invalid = 1;
1077		}
1078
1079		if (invalid) {
1080			dump_stack();
1081			mmc_request_done(host->mmc, mrq);
1082			return;
1083		}
1084	}
1085#endif
1086
1087	/* request exclusive bus access */
1088	spi_bus_lock(host->spi->master);
1089
1090	/* issue command; then optionally data and stop */
1091	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1092	if (status == 0 && mrq->data) {
1093		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1094		if (mrq->stop)
1095			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1096		else
1097			mmc_cs_off(host);
1098	}
1099
1100	/* release the bus */
1101	spi_bus_unlock(host->spi->master);
1102
1103	mmc_request_done(host->mmc, mrq);
1104}
1105
1106static void mmc_spi_initsequence(struct mmc_spi_host *host)
1107{
1108	/* Try to be very sure any previous command has completed;
1109	 * wait till not-busy, skip debris from any old commands.
1110	 */
1111	mmc_spi_wait_unbusy(host, r1b_timeout);
1112	mmc_spi_readbytes(host, 10);
1113
1114	/*
1115	 * Do a burst with chipselect active-high.  We need to do this to
1116	 * meet the requirement of 74 clock cycles with both chipselect
1117	 * and CMD (MOSI) high before CMD0 ... after the card has been
1118	 * powered up to Vdd(min), and so is ready to take commands.
1119	 *
1120	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1121	 * while most others don't seem to care.
1122	 *
1123	 * Note that this is one of the places MMC/SD plays games with the
1124	 * SPI protocol.  Another is that when chipselect is released while
1125	 * the card returns BUSY status, the clock must issue several cycles
1126	 * with chipselect high before the card will stop driving its output.
1127	 */
1128	host->spi->mode |= SPI_CS_HIGH;
1129	if (spi_setup(host->spi) != 0) {
1130		/* Just warn; most cards work without it. */
1131		dev_warn(&host->spi->dev,
1132				"can't change chip-select polarity\n");
1133		host->spi->mode &= ~SPI_CS_HIGH;
1134	} else {
1135		mmc_spi_readbytes(host, 18);
1136
1137		host->spi->mode &= ~SPI_CS_HIGH;
1138		if (spi_setup(host->spi) != 0) {
1139			/* Wot, we can't get the same setup we had before? */
1140			dev_err(&host->spi->dev,
1141					"can't restore chip-select polarity\n");
1142		}
1143	}
1144}
1145
1146static char *mmc_powerstring(u8 power_mode)
1147{
1148	switch (power_mode) {
1149	case MMC_POWER_OFF: return "off";
1150	case MMC_POWER_UP:  return "up";
1151	case MMC_POWER_ON:  return "on";
1152	}
1153	return "?";
1154}
1155
1156static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1157{
1158	struct mmc_spi_host *host = mmc_priv(mmc);
1159
1160	if (host->power_mode != ios->power_mode) {
1161		int		canpower;
1162
1163		canpower = host->pdata && host->pdata->setpower;
1164
1165		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1166				mmc_powerstring(ios->power_mode),
1167				ios->vdd,
1168				canpower ? ", can switch" : "");
1169
1170		/* switch power on/off if possible, accounting for
1171		 * max 250msec powerup time if needed.
1172		 */
1173		if (canpower) {
1174			switch (ios->power_mode) {
1175			case MMC_POWER_OFF:
1176			case MMC_POWER_UP:
1177				host->pdata->setpower(&host->spi->dev,
1178						ios->vdd);
1179				if (ios->power_mode == MMC_POWER_UP)
1180					msleep(host->powerup_msecs);
1181			}
1182		}
1183
1184		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1185		if (ios->power_mode == MMC_POWER_ON)
1186			mmc_spi_initsequence(host);
1187
1188		/* If powering down, ground all card inputs to avoid power
1189		 * delivery from data lines!  On a shared SPI bus, this
1190		 * will probably be temporary; 6.4.2 of the simplified SD
1191		 * spec says this must last at least 1msec.
1192		 *
1193		 *   - Clock low means CPOL 0, e.g. mode 0
1194		 *   - MOSI low comes from writing zero
1195		 *   - Chipselect is usually active low...
1196		 */
1197		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1198			int mres;
1199			u8 nullbyte = 0;
1200
1201			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1202			mres = spi_setup(host->spi);
1203			if (mres < 0)
1204				dev_dbg(&host->spi->dev,
1205					"switch to SPI mode 0 failed\n");
1206
1207			if (spi_write(host->spi, &nullbyte, 1) < 0)
1208				dev_dbg(&host->spi->dev,
1209					"put spi signals to low failed\n");
1210
1211			msleep(10);
1212			if (mres == 0) {
1213				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1214				mres = spi_setup(host->spi);
1215				if (mres < 0)
1216					dev_dbg(&host->spi->dev,
1217						"switch back to SPI mode 3"
1218						" failed\n");
1219			}
1220		}
1221
1222		host->power_mode = ios->power_mode;
1223	}
1224
1225	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1226		int		status;
1227
1228		host->spi->max_speed_hz = ios->clock;
1229		status = spi_setup(host->spi);
1230		dev_dbg(&host->spi->dev,
1231			"mmc_spi:  clock to %d Hz, %d\n",
1232			host->spi->max_speed_hz, status);
1233	}
1234}
1235
1236static int mmc_spi_get_ro(struct mmc_host *mmc)
1237{
1238	struct mmc_spi_host *host = mmc_priv(mmc);
1239
1240	if (host->pdata && host->pdata->get_ro)
1241		return !!host->pdata->get_ro(mmc->parent);
1242	/*
1243	 * Board doesn't support read only detection; let the mmc core
1244	 * decide what to do.
1245	 */
1246	return -ENOSYS;
1247}
1248
1249static int mmc_spi_get_cd(struct mmc_host *mmc)
1250{
1251	struct mmc_spi_host *host = mmc_priv(mmc);
1252
1253	if (host->pdata && host->pdata->get_cd)
1254		return !!host->pdata->get_cd(mmc->parent);
1255	return -ENOSYS;
1256}
1257
1258static const struct mmc_host_ops mmc_spi_ops = {
1259	.request	= mmc_spi_request,
1260	.set_ios	= mmc_spi_set_ios,
1261	.get_ro		= mmc_spi_get_ro,
1262	.get_cd		= mmc_spi_get_cd,
1263};
1264
1265
1266/****************************************************************************/
1267
1268/*
1269 * SPI driver implementation
1270 */
1271
1272static irqreturn_t
1273mmc_spi_detect_irq(int irq, void *mmc)
1274{
1275	struct mmc_spi_host *host = mmc_priv(mmc);
1276	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1277
1278	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1279	return IRQ_HANDLED;
1280}
1281
1282static int mmc_spi_probe(struct spi_device *spi)
1283{
1284	void			*ones;
1285	struct mmc_host		*mmc;
1286	struct mmc_spi_host	*host;
1287	int			status;
1288
1289	/* We rely on full duplex transfers, mostly to reduce
1290	 * per-transfer overheads (by making fewer transfers).
1291	 */
1292	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1293		return -EINVAL;
1294
1295	/* MMC and SD specs only seem to care that sampling is on the
1296	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1297	 * should be legit.  We'll use mode 0 since the steady state is 0,
1298	 * which is appropriate for hotplugging, unless the platform data
1299	 * specify mode 3 (if hardware is not compatible to mode 0).
1300	 */
1301	if (spi->mode != SPI_MODE_3)
1302		spi->mode = SPI_MODE_0;
1303	spi->bits_per_word = 8;
1304
1305	status = spi_setup(spi);
1306	if (status < 0) {
1307		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1308				spi->mode, spi->max_speed_hz / 1000,
1309				status);
1310		return status;
1311	}
1312
1313	/* We need a supply of ones to transmit.  This is the only time
1314	 * the CPU touches these, so cache coherency isn't a concern.
1315	 *
1316	 * NOTE if many systems use more than one MMC-over-SPI connector
1317	 * it'd save some memory to share this.  That's evidently rare.
1318	 */
1319	status = -ENOMEM;
1320	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1321	if (!ones)
1322		goto nomem;
1323	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1324
1325	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1326	if (!mmc)
1327		goto nomem;
1328
1329	mmc->ops = &mmc_spi_ops;
1330	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1331	mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE;
1332	mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE;
1333	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1334	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1335
1336	mmc->caps = MMC_CAP_SPI;
1337
1338	/* SPI doesn't need the lowspeed device identification thing for
1339	 * MMC or SD cards, since it never comes up in open drain mode.
1340	 * That's good; some SPI masters can't handle very low speeds!
1341	 *
1342	 * However, low speed SDIO cards need not handle over 400 KHz;
1343	 * that's the only reason not to use a few MHz for f_min (until
1344	 * the upper layer reads the target frequency from the CSD).
1345	 */
1346	mmc->f_min = 400000;
1347	mmc->f_max = spi->max_speed_hz;
1348
1349	host = mmc_priv(mmc);
1350	host->mmc = mmc;
1351	host->spi = spi;
1352
1353	host->ones = ones;
1354
1355	/* Platform data is used to hook up things like card sensing
1356	 * and power switching gpios.
1357	 */
1358	host->pdata = mmc_spi_get_pdata(spi);
1359	if (host->pdata)
1360		mmc->ocr_avail = host->pdata->ocr_mask;
1361	if (!mmc->ocr_avail) {
1362		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1363		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1364	}
1365	if (host->pdata && host->pdata->setpower) {
1366		host->powerup_msecs = host->pdata->powerup_msecs;
1367		if (!host->powerup_msecs || host->powerup_msecs > 250)
1368			host->powerup_msecs = 250;
1369	}
1370
1371	dev_set_drvdata(&spi->dev, mmc);
1372
1373	/* preallocate dma buffers */
1374	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1375	if (!host->data)
1376		goto fail_nobuf1;
1377
1378	if (spi->master->dev.parent->dma_mask) {
1379		struct device	*dev = spi->master->dev.parent;
1380
1381		host->dma_dev = dev;
1382		host->ones_dma = dma_map_single(dev, ones,
1383				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1384		host->data_dma = dma_map_single(dev, host->data,
1385				sizeof(*host->data), DMA_BIDIRECTIONAL);
1386
1387		/* REVISIT in theory those map operations can fail... */
1388
1389		dma_sync_single_for_cpu(host->dma_dev,
1390				host->data_dma, sizeof(*host->data),
1391				DMA_BIDIRECTIONAL);
1392	}
1393
1394	/* setup message for status/busy readback */
1395	spi_message_init(&host->readback);
1396	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1397
1398	spi_message_add_tail(&host->status, &host->readback);
1399	host->status.tx_buf = host->ones;
1400	host->status.tx_dma = host->ones_dma;
1401	host->status.rx_buf = &host->data->status;
1402	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1403	host->status.cs_change = 1;
1404
1405	/* register card detect irq */
1406	if (host->pdata && host->pdata->init) {
1407		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1408		if (status != 0)
1409			goto fail_glue_init;
1410	}
1411
1412	/* pass platform capabilities, if any */
1413	if (host->pdata)
1414		mmc->caps |= host->pdata->caps;
1415
1416	status = mmc_add_host(mmc);
1417	if (status != 0)
1418		goto fail_add_host;
1419
1420	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1421			dev_name(&mmc->class_dev),
1422			host->dma_dev ? "" : ", no DMA",
1423			(host->pdata && host->pdata->get_ro)
1424				? "" : ", no WP",
1425			(host->pdata && host->pdata->setpower)
1426				? "" : ", no poweroff",
1427			(mmc->caps & MMC_CAP_NEEDS_POLL)
1428				? ", cd polling" : "");
1429	return 0;
1430
1431fail_add_host:
1432	mmc_remove_host (mmc);
1433fail_glue_init:
1434	if (host->dma_dev)
1435		dma_unmap_single(host->dma_dev, host->data_dma,
1436				sizeof(*host->data), DMA_BIDIRECTIONAL);
1437	kfree(host->data);
1438
1439fail_nobuf1:
1440	mmc_free_host(mmc);
1441	mmc_spi_put_pdata(spi);
1442	dev_set_drvdata(&spi->dev, NULL);
1443
1444nomem:
1445	kfree(ones);
1446	return status;
1447}
1448
1449
1450static int __devexit mmc_spi_remove(struct spi_device *spi)
1451{
1452	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1453	struct mmc_spi_host	*host;
1454
1455	if (mmc) {
1456		host = mmc_priv(mmc);
1457
1458		/* prevent new mmc_detect_change() calls */
1459		if (host->pdata && host->pdata->exit)
1460			host->pdata->exit(&spi->dev, mmc);
1461
1462		mmc_remove_host(mmc);
1463
1464		if (host->dma_dev) {
1465			dma_unmap_single(host->dma_dev, host->ones_dma,
1466				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1467			dma_unmap_single(host->dma_dev, host->data_dma,
1468				sizeof(*host->data), DMA_BIDIRECTIONAL);
1469		}
1470
1471		kfree(host->data);
1472		kfree(host->ones);
1473
1474		spi->max_speed_hz = mmc->f_max;
1475		mmc_free_host(mmc);
1476		mmc_spi_put_pdata(spi);
1477		dev_set_drvdata(&spi->dev, NULL);
1478	}
1479	return 0;
1480}
1481
1482#if defined(CONFIG_OF)
1483static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1484	{ .compatible = "mmc-spi-slot", },
1485	{},
1486};
1487#endif
1488
1489static struct spi_driver mmc_spi_driver = {
1490	.driver = {
1491		.name =		"mmc_spi",
1492		.bus =		&spi_bus_type,
1493		.owner =	THIS_MODULE,
1494#if defined(CONFIG_OF)
1495		.of_match_table = mmc_spi_of_match_table,
1496#endif
1497	},
1498	.probe =	mmc_spi_probe,
1499	.remove =	__devexit_p(mmc_spi_remove),
1500};
1501
1502
1503static int __init mmc_spi_init(void)
1504{
1505	return spi_register_driver(&mmc_spi_driver);
1506}
1507module_init(mmc_spi_init);
1508
1509
1510static void __exit mmc_spi_exit(void)
1511{
1512	spi_unregister_driver(&mmc_spi_driver);
1513}
1514module_exit(mmc_spi_exit);
1515
1516
1517MODULE_AUTHOR("Mike Lavender, David Brownell, "
1518		"Hans-Peter Nilsson, Jan Nikitenko");
1519MODULE_DESCRIPTION("SPI SD/MMC host driver");
1520MODULE_LICENSE("GPL");
1521MODULE_ALIAS("spi:mmc_spi");
1522