• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/misc/sgi-gru/
1/*
2 * SN Platform GRU Driver
3 *
4 *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
5 *
6 * This file contains code that handles TLB misses within the GRU.
7 * These misses are reported either via interrupts or user polling of
8 * the user CB.
9 *
10 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
11 *
12 *  This program is free software; you can redistribute it and/or modify
13 *  it under the terms of the GNU General Public License as published by
14 *  the Free Software Foundation; either version 2 of the License, or
15 *  (at your option) any later version.
16 *
17 *  This program is distributed in the hope that it will be useful,
18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 *  GNU General Public License for more details.
21 *
22 *  You should have received a copy of the GNU General Public License
23 *  along with this program; if not, write to the Free Software
24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25 */
26
27#include <linux/kernel.h>
28#include <linux/errno.h>
29#include <linux/spinlock.h>
30#include <linux/mm.h>
31#include <linux/hugetlb.h>
32#include <linux/device.h>
33#include <linux/io.h>
34#include <linux/uaccess.h>
35#include <linux/security.h>
36#include <asm/pgtable.h>
37#include "gru.h"
38#include "grutables.h"
39#include "grulib.h"
40#include "gru_instructions.h"
41#include <asm/uv/uv_hub.h>
42
43/* Return codes for vtop functions */
44#define VTOP_SUCCESS               0
45#define VTOP_INVALID               -1
46#define VTOP_RETRY                 -2
47
48
49/*
50 * Test if a physical address is a valid GRU GSEG address
51 */
52static inline int is_gru_paddr(unsigned long paddr)
53{
54	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
55}
56
57/*
58 * Find the vma of a GRU segment. Caller must hold mmap_sem.
59 */
60struct vm_area_struct *gru_find_vma(unsigned long vaddr)
61{
62	struct vm_area_struct *vma;
63
64	vma = find_vma(current->mm, vaddr);
65	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
66		return vma;
67	return NULL;
68}
69
70/*
71 * Find and lock the gts that contains the specified user vaddr.
72 *
73 * Returns:
74 * 	- *gts with the mmap_sem locked for read and the GTS locked.
75 *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
76 */
77
78static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
79{
80	struct mm_struct *mm = current->mm;
81	struct vm_area_struct *vma;
82	struct gru_thread_state *gts = NULL;
83
84	down_read(&mm->mmap_sem);
85	vma = gru_find_vma(vaddr);
86	if (vma)
87		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
88	if (gts)
89		mutex_lock(&gts->ts_ctxlock);
90	else
91		up_read(&mm->mmap_sem);
92	return gts;
93}
94
95static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
96{
97	struct mm_struct *mm = current->mm;
98	struct vm_area_struct *vma;
99	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
100
101	down_write(&mm->mmap_sem);
102	vma = gru_find_vma(vaddr);
103	if (!vma)
104		goto err;
105
106	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
107	if (IS_ERR(gts))
108		goto err;
109	mutex_lock(&gts->ts_ctxlock);
110	downgrade_write(&mm->mmap_sem);
111	return gts;
112
113err:
114	up_write(&mm->mmap_sem);
115	return gts;
116}
117
118/*
119 * Unlock a GTS that was previously locked with gru_find_lock_gts().
120 */
121static void gru_unlock_gts(struct gru_thread_state *gts)
122{
123	mutex_unlock(&gts->ts_ctxlock);
124	up_read(&current->mm->mmap_sem);
125}
126
127/*
128 * Set a CB.istatus to active using a user virtual address. This must be done
129 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
130 * If the line is evicted, the status may be lost. The in-cache update
131 * is necessary to prevent the user from seeing a stale cb.istatus that will
132 * change as soon as the TFH restart is complete. Races may cause an
133 * occasional failure to clear the cb.istatus, but that is ok.
134 */
135static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
136{
137	if (cbk) {
138		cbk->istatus = CBS_ACTIVE;
139	}
140}
141
142/*
143 * Read & clear a TFM
144 *
145 * The GRU has an array of fault maps. A map is private to a cpu
146 * Only one cpu will be accessing a cpu's fault map.
147 *
148 * This function scans the cpu-private fault map & clears all bits that
149 * are set. The function returns a bitmap that indicates the bits that
150 * were cleared. Note that sense the maps may be updated asynchronously by
151 * the GRU, atomic operations must be used to clear bits.
152 */
153static void get_clear_fault_map(struct gru_state *gru,
154				struct gru_tlb_fault_map *imap,
155				struct gru_tlb_fault_map *dmap)
156{
157	unsigned long i, k;
158	struct gru_tlb_fault_map *tfm;
159
160	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
161	prefetchw(tfm);		/* Helps on hardware, required for emulator */
162	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
163		k = tfm->fault_bits[i];
164		if (k)
165			k = xchg(&tfm->fault_bits[i], 0UL);
166		imap->fault_bits[i] = k;
167		k = tfm->done_bits[i];
168		if (k)
169			k = xchg(&tfm->done_bits[i], 0UL);
170		dmap->fault_bits[i] = k;
171	}
172
173	/*
174	 * Not functionally required but helps performance. (Required
175	 * on emulator)
176	 */
177	gru_flush_cache(tfm);
178}
179
180/*
181 * Atomic (interrupt context) & non-atomic (user context) functions to
182 * convert a vaddr into a physical address. The size of the page
183 * is returned in pageshift.
184 * 	returns:
185 * 		  0 - successful
186 * 		< 0 - error code
187 * 		  1 - (atomic only) try again in non-atomic context
188 */
189static int non_atomic_pte_lookup(struct vm_area_struct *vma,
190				 unsigned long vaddr, int write,
191				 unsigned long *paddr, int *pageshift)
192{
193	struct page *page;
194
195#ifdef CONFIG_HUGETLB_PAGE
196	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
197#else
198	*pageshift = PAGE_SHIFT;
199#endif
200	if (get_user_pages
201	    (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
202		return -EFAULT;
203	*paddr = page_to_phys(page);
204	put_page(page);
205	return 0;
206}
207
208/*
209 * atomic_pte_lookup
210 *
211 * Convert a user virtual address to a physical address
212 * Only supports Intel large pages (2MB only) on x86_64.
213 *	ZZZ - hugepage support is incomplete
214 *
215 * NOTE: mmap_sem is already held on entry to this function. This
216 * guarantees existence of the page tables.
217 */
218static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
219	int write, unsigned long *paddr, int *pageshift)
220{
221	pgd_t *pgdp;
222	pmd_t *pmdp;
223	pud_t *pudp;
224	pte_t pte;
225
226	pgdp = pgd_offset(vma->vm_mm, vaddr);
227	if (unlikely(pgd_none(*pgdp)))
228		goto err;
229
230	pudp = pud_offset(pgdp, vaddr);
231	if (unlikely(pud_none(*pudp)))
232		goto err;
233
234	pmdp = pmd_offset(pudp, vaddr);
235	if (unlikely(pmd_none(*pmdp)))
236		goto err;
237#ifdef CONFIG_X86_64
238	if (unlikely(pmd_large(*pmdp)))
239		pte = *(pte_t *) pmdp;
240	else
241#endif
242		pte = *pte_offset_kernel(pmdp, vaddr);
243
244	if (unlikely(!pte_present(pte) ||
245		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
246		return 1;
247
248	*paddr = pte_pfn(pte) << PAGE_SHIFT;
249#ifdef CONFIG_HUGETLB_PAGE
250	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
251#else
252	*pageshift = PAGE_SHIFT;
253#endif
254	return 0;
255
256err:
257	return 1;
258}
259
260static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
261		    int write, int atomic, unsigned long *gpa, int *pageshift)
262{
263	struct mm_struct *mm = gts->ts_mm;
264	struct vm_area_struct *vma;
265	unsigned long paddr;
266	int ret, ps;
267
268	vma = find_vma(mm, vaddr);
269	if (!vma)
270		goto inval;
271
272	/*
273	 * Atomic lookup is faster & usually works even if called in non-atomic
274	 * context.
275	 */
276	rmb();	/* Must/check ms_range_active before loading PTEs */
277	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
278	if (ret) {
279		if (atomic)
280			goto upm;
281		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
282			goto inval;
283	}
284	if (is_gru_paddr(paddr))
285		goto inval;
286	paddr = paddr & ~((1UL << ps) - 1);
287	*gpa = uv_soc_phys_ram_to_gpa(paddr);
288	*pageshift = ps;
289	return VTOP_SUCCESS;
290
291inval:
292	return VTOP_INVALID;
293upm:
294	return VTOP_RETRY;
295}
296
297
298/*
299 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
300 * CBE cacheline so that the line will be written back to home agent.
301 * Otherwise the line may be silently dropped. This has no impact
302 * except on performance.
303 */
304static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
305{
306	if (unlikely(cbe)) {
307		cbe->cbrexecstatus = 0;         /* make CL dirty */
308		gru_flush_cache(cbe);
309	}
310}
311
312/*
313 * Preload the TLB with entries that may be required. Currently, preloading
314 * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
315 * the end of the bcopy tranfer, whichever is smaller.
316 */
317static void gru_preload_tlb(struct gru_state *gru,
318			struct gru_thread_state *gts, int atomic,
319			unsigned long fault_vaddr, int asid, int write,
320			unsigned char tlb_preload_count,
321			struct gru_tlb_fault_handle *tfh,
322			struct gru_control_block_extended *cbe)
323{
324	unsigned long vaddr = 0, gpa;
325	int ret, pageshift;
326
327	if (cbe->opccpy != OP_BCOPY)
328		return;
329
330	if (fault_vaddr == cbe->cbe_baddr0)
331		vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
332	else if (fault_vaddr == cbe->cbe_baddr1)
333		vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
334
335	fault_vaddr &= PAGE_MASK;
336	vaddr &= PAGE_MASK;
337	vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
338
339	while (vaddr > fault_vaddr) {
340		ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
341		if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
342					  GRU_PAGESIZE(pageshift)))
343			return;
344		gru_dbg(grudev,
345			"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
346			atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
347			vaddr, asid, write, pageshift, gpa);
348		vaddr -= PAGE_SIZE;
349		STAT(tlb_preload_page);
350	}
351}
352
353/*
354 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
355 *	Input:
356 *		cb    Address of user CBR. Null if not running in user context
357 * 	Return:
358 * 		  0 = dropin, exception, or switch to UPM successful
359 * 		  1 = range invalidate active
360 * 		< 0 = error code
361 *
362 */
363static int gru_try_dropin(struct gru_state *gru,
364			  struct gru_thread_state *gts,
365			  struct gru_tlb_fault_handle *tfh,
366			  struct gru_instruction_bits *cbk)
367{
368	struct gru_control_block_extended *cbe = NULL;
369	unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
370	int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
371	unsigned long gpa = 0, vaddr = 0;
372
373	/*
374	 * NOTE: The GRU contains magic hardware that eliminates races between
375	 * TLB invalidates and TLB dropins. If an invalidate occurs
376	 * in the window between reading the TFH and the subsequent TLB dropin,
377	 * the dropin is ignored. This eliminates the need for additional locks.
378	 */
379
380	/*
381	 * Prefetch the CBE if doing TLB preloading
382	 */
383	if (unlikely(tlb_preload_count)) {
384		cbe = gru_tfh_to_cbe(tfh);
385		prefetchw(cbe);
386	}
387
388	/*
389	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
390	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
391	 * is a transient state.
392	 */
393	if (tfh->status != TFHSTATUS_EXCEPTION) {
394		gru_flush_cache(tfh);
395		sync_core();
396		if (tfh->status != TFHSTATUS_EXCEPTION)
397			goto failnoexception;
398		STAT(tfh_stale_on_fault);
399	}
400	if (tfh->state == TFHSTATE_IDLE)
401		goto failidle;
402	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
403		goto failfmm;
404
405	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
406	vaddr = tfh->missvaddr;
407	asid = tfh->missasid;
408	indexway = tfh->indexway;
409	if (asid == 0)
410		goto failnoasid;
411
412	rmb();	/* TFH must be cache resident before reading ms_range_active */
413
414	/*
415	 * TFH is cache resident - at least briefly. Fail the dropin
416	 * if a range invalidate is active.
417	 */
418	if (atomic_read(&gts->ts_gms->ms_range_active))
419		goto failactive;
420
421	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
422	if (ret == VTOP_INVALID)
423		goto failinval;
424	if (ret == VTOP_RETRY)
425		goto failupm;
426
427	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
428		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
429		if (atomic || !gru_update_cch(gts)) {
430			gts->ts_force_cch_reload = 1;
431			goto failupm;
432		}
433	}
434
435	if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
436		gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
437		gru_flush_cache_cbe(cbe);
438	}
439
440	gru_cb_set_istatus_active(cbk);
441	gts->ustats.tlbdropin++;
442	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
443			  GRU_PAGESIZE(pageshift));
444	gru_dbg(grudev,
445		"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
446		" rw %d, ps %d, gpa 0x%lx\n",
447		atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
448		indexway, write, pageshift, gpa);
449	STAT(tlb_dropin);
450	return 0;
451
452failnoasid:
453	/* No asid (delayed unload). */
454	STAT(tlb_dropin_fail_no_asid);
455	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
456	if (!cbk)
457		tfh_user_polling_mode(tfh);
458	else
459		gru_flush_cache(tfh);
460	gru_flush_cache_cbe(cbe);
461	return -EAGAIN;
462
463failupm:
464	/* Atomic failure switch CBR to UPM */
465	tfh_user_polling_mode(tfh);
466	gru_flush_cache_cbe(cbe);
467	STAT(tlb_dropin_fail_upm);
468	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
469	return 1;
470
471failfmm:
472	/* FMM state on UPM call */
473	gru_flush_cache(tfh);
474	gru_flush_cache_cbe(cbe);
475	STAT(tlb_dropin_fail_fmm);
476	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
477	return 0;
478
479failnoexception:
480	/* TFH status did not show exception pending */
481	gru_flush_cache(tfh);
482	gru_flush_cache_cbe(cbe);
483	if (cbk)
484		gru_flush_cache(cbk);
485	STAT(tlb_dropin_fail_no_exception);
486	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
487		tfh, tfh->status, tfh->state);
488	return 0;
489
490failidle:
491	/* TFH state was idle  - no miss pending */
492	gru_flush_cache(tfh);
493	gru_flush_cache_cbe(cbe);
494	if (cbk)
495		gru_flush_cache(cbk);
496	STAT(tlb_dropin_fail_idle);
497	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
498	return 0;
499
500failinval:
501	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
502	tfh_exception(tfh);
503	gru_flush_cache_cbe(cbe);
504	STAT(tlb_dropin_fail_invalid);
505	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
506	return -EFAULT;
507
508failactive:
509	/* Range invalidate active. Switch to UPM iff atomic */
510	if (!cbk)
511		tfh_user_polling_mode(tfh);
512	else
513		gru_flush_cache(tfh);
514	gru_flush_cache_cbe(cbe);
515	STAT(tlb_dropin_fail_range_active);
516	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
517		tfh, vaddr);
518	return 1;
519}
520
521/*
522 * Process an external interrupt from the GRU. This interrupt is
523 * caused by a TLB miss.
524 * Note that this is the interrupt handler that is registered with linux
525 * interrupt handlers.
526 */
527static irqreturn_t gru_intr(int chiplet, int blade)
528{
529	struct gru_state *gru;
530	struct gru_tlb_fault_map imap, dmap;
531	struct gru_thread_state *gts;
532	struct gru_tlb_fault_handle *tfh = NULL;
533	struct completion *cmp;
534	int cbrnum, ctxnum;
535
536	STAT(intr);
537
538	gru = &gru_base[blade]->bs_grus[chiplet];
539	if (!gru) {
540		dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
541			raw_smp_processor_id(), chiplet);
542		return IRQ_NONE;
543	}
544	get_clear_fault_map(gru, &imap, &dmap);
545	gru_dbg(grudev,
546		"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
547		smp_processor_id(), chiplet, gru->gs_gid,
548		imap.fault_bits[0], imap.fault_bits[1],
549		dmap.fault_bits[0], dmap.fault_bits[1]);
550
551	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
552		STAT(intr_cbr);
553		cmp = gru->gs_blade->bs_async_wq;
554		if (cmp)
555			complete(cmp);
556		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
557			gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
558	}
559
560	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
561		STAT(intr_tfh);
562		tfh = get_tfh_by_index(gru, cbrnum);
563		prefetchw(tfh);	/* Helps on hdw, required for emulator */
564
565		/*
566		 * When hardware sets a bit in the faultmap, it implicitly
567		 * locks the GRU context so that it cannot be unloaded.
568		 * The gts cannot change until a TFH start/writestart command
569		 * is issued.
570		 */
571		ctxnum = tfh->ctxnum;
572		gts = gru->gs_gts[ctxnum];
573
574		/* Spurious interrupts can cause this. Ignore. */
575		if (!gts) {
576			STAT(intr_spurious);
577			continue;
578		}
579
580		/*
581		 * This is running in interrupt context. Trylock the mmap_sem.
582		 * If it fails, retry the fault in user context.
583		 */
584		gts->ustats.fmm_tlbmiss++;
585		if (!gts->ts_force_cch_reload &&
586					down_read_trylock(&gts->ts_mm->mmap_sem)) {
587			gru_try_dropin(gru, gts, tfh, NULL);
588			up_read(&gts->ts_mm->mmap_sem);
589		} else {
590			tfh_user_polling_mode(tfh);
591			STAT(intr_mm_lock_failed);
592		}
593	}
594	return IRQ_HANDLED;
595}
596
597irqreturn_t gru0_intr(int irq, void *dev_id)
598{
599	return gru_intr(0, uv_numa_blade_id());
600}
601
602irqreturn_t gru1_intr(int irq, void *dev_id)
603{
604	return gru_intr(1, uv_numa_blade_id());
605}
606
607irqreturn_t gru_intr_mblade(int irq, void *dev_id)
608{
609	int blade;
610
611	for_each_possible_blade(blade) {
612		if (uv_blade_nr_possible_cpus(blade))
613			continue;
614		 gru_intr(0, blade);
615		 gru_intr(1, blade);
616	}
617	return IRQ_HANDLED;
618}
619
620
621static int gru_user_dropin(struct gru_thread_state *gts,
622			   struct gru_tlb_fault_handle *tfh,
623			   void *cb)
624{
625	struct gru_mm_struct *gms = gts->ts_gms;
626	int ret;
627
628	gts->ustats.upm_tlbmiss++;
629	while (1) {
630		wait_event(gms->ms_wait_queue,
631			   atomic_read(&gms->ms_range_active) == 0);
632		prefetchw(tfh);	/* Helps on hdw, required for emulator */
633		ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
634		if (ret <= 0)
635			return ret;
636		STAT(call_os_wait_queue);
637	}
638}
639
640/*
641 * This interface is called as a result of a user detecting a "call OS" bit
642 * in a user CB. Normally means that a TLB fault has occurred.
643 * 	cb - user virtual address of the CB
644 */
645int gru_handle_user_call_os(unsigned long cb)
646{
647	struct gru_tlb_fault_handle *tfh;
648	struct gru_thread_state *gts;
649	void *cbk;
650	int ucbnum, cbrnum, ret = -EINVAL;
651
652	STAT(call_os);
653
654	/* sanity check the cb pointer */
655	ucbnum = get_cb_number((void *)cb);
656	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
657		return -EINVAL;
658
659	gts = gru_find_lock_gts(cb);
660	if (!gts)
661		return -EINVAL;
662	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
663
664	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
665		goto exit;
666
667	gru_check_context_placement(gts);
668
669	/*
670	 * CCH may contain stale data if ts_force_cch_reload is set.
671	 */
672	if (gts->ts_gru && gts->ts_force_cch_reload) {
673		gts->ts_force_cch_reload = 0;
674		gru_update_cch(gts);
675	}
676
677	ret = -EAGAIN;
678	cbrnum = thread_cbr_number(gts, ucbnum);
679	if (gts->ts_gru) {
680		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
681		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
682				gts->ts_ctxnum, ucbnum);
683		ret = gru_user_dropin(gts, tfh, cbk);
684	}
685exit:
686	gru_unlock_gts(gts);
687	return ret;
688}
689
690/*
691 * Fetch the exception detail information for a CB that terminated with
692 * an exception.
693 */
694int gru_get_exception_detail(unsigned long arg)
695{
696	struct control_block_extended_exc_detail excdet;
697	struct gru_control_block_extended *cbe;
698	struct gru_thread_state *gts;
699	int ucbnum, cbrnum, ret;
700
701	STAT(user_exception);
702	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
703		return -EFAULT;
704
705	gts = gru_find_lock_gts(excdet.cb);
706	if (!gts)
707		return -EINVAL;
708
709	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
710	ucbnum = get_cb_number((void *)excdet.cb);
711	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
712		ret = -EINVAL;
713	} else if (gts->ts_gru) {
714		cbrnum = thread_cbr_number(gts, ucbnum);
715		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
716		gru_flush_cache(cbe);	/* CBE not coherent */
717		sync_core();		/* make sure we are have current data */
718		excdet.opc = cbe->opccpy;
719		excdet.exopc = cbe->exopccpy;
720		excdet.ecause = cbe->ecause;
721		excdet.exceptdet0 = cbe->idef1upd;
722		excdet.exceptdet1 = cbe->idef3upd;
723		excdet.cbrstate = cbe->cbrstate;
724		excdet.cbrexecstatus = cbe->cbrexecstatus;
725		gru_flush_cache_cbe(cbe);
726		ret = 0;
727	} else {
728		ret = -EAGAIN;
729	}
730	gru_unlock_gts(gts);
731
732	gru_dbg(grudev,
733		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
734		"exdet0 0x%lx, exdet1 0x%x\n",
735		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
736		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
737	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
738		ret = -EFAULT;
739	return ret;
740}
741
742/*
743 * User request to unload a context. Content is saved for possible reload.
744 */
745static int gru_unload_all_contexts(void)
746{
747	struct gru_thread_state *gts;
748	struct gru_state *gru;
749	int gid, ctxnum;
750
751	if (!capable(CAP_SYS_ADMIN))
752		return -EPERM;
753	foreach_gid(gid) {
754		gru = GID_TO_GRU(gid);
755		spin_lock(&gru->gs_lock);
756		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
757			gts = gru->gs_gts[ctxnum];
758			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
759				spin_unlock(&gru->gs_lock);
760				gru_unload_context(gts, 1);
761				mutex_unlock(&gts->ts_ctxlock);
762				spin_lock(&gru->gs_lock);
763			}
764		}
765		spin_unlock(&gru->gs_lock);
766	}
767	return 0;
768}
769
770int gru_user_unload_context(unsigned long arg)
771{
772	struct gru_thread_state *gts;
773	struct gru_unload_context_req req;
774
775	STAT(user_unload_context);
776	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
777		return -EFAULT;
778
779	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
780
781	if (!req.gseg)
782		return gru_unload_all_contexts();
783
784	gts = gru_find_lock_gts(req.gseg);
785	if (!gts)
786		return -EINVAL;
787
788	if (gts->ts_gru)
789		gru_unload_context(gts, 1);
790	gru_unlock_gts(gts);
791
792	return 0;
793}
794
795/*
796 * User request to flush a range of virtual addresses from the GRU TLB
797 * (Mainly for testing).
798 */
799int gru_user_flush_tlb(unsigned long arg)
800{
801	struct gru_thread_state *gts;
802	struct gru_flush_tlb_req req;
803	struct gru_mm_struct *gms;
804
805	STAT(user_flush_tlb);
806	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
807		return -EFAULT;
808
809	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
810		req.vaddr, req.len);
811
812	gts = gru_find_lock_gts(req.gseg);
813	if (!gts)
814		return -EINVAL;
815
816	gms = gts->ts_gms;
817	gru_unlock_gts(gts);
818	gru_flush_tlb_range(gms, req.vaddr, req.len);
819
820	return 0;
821}
822
823/*
824 * Fetch GSEG statisticss
825 */
826long gru_get_gseg_statistics(unsigned long arg)
827{
828	struct gru_thread_state *gts;
829	struct gru_get_gseg_statistics_req req;
830
831	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
832		return -EFAULT;
833
834	/*
835	 * The library creates arrays of contexts for threaded programs.
836	 * If no gts exists in the array, the context has never been used & all
837	 * statistics are implicitly 0.
838	 */
839	gts = gru_find_lock_gts(req.gseg);
840	if (gts) {
841		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
842		gru_unlock_gts(gts);
843	} else {
844		memset(&req.stats, 0, sizeof(gts->ustats));
845	}
846
847	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
848		return -EFAULT;
849
850	return 0;
851}
852
853/*
854 * Register the current task as the user of the GSEG slice.
855 * Needed for TLB fault interrupt targeting.
856 */
857int gru_set_context_option(unsigned long arg)
858{
859	struct gru_thread_state *gts;
860	struct gru_set_context_option_req req;
861	int ret = 0;
862
863	STAT(set_context_option);
864	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
865		return -EFAULT;
866	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
867
868	gts = gru_find_lock_gts(req.gseg);
869	if (!gts) {
870		gts = gru_alloc_locked_gts(req.gseg);
871		if (IS_ERR(gts))
872			return PTR_ERR(gts);
873	}
874
875	switch (req.op) {
876	case sco_blade_chiplet:
877		/* Select blade/chiplet for GRU context */
878		if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
879		    req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
880			ret = -EINVAL;
881		} else {
882			gts->ts_user_blade_id = req.val1;
883			gts->ts_user_chiplet_id = req.val0;
884			gru_check_context_placement(gts);
885		}
886		break;
887	case sco_gseg_owner:
888 		/* Register the current task as the GSEG owner */
889		gts->ts_tgid_owner = current->tgid;
890		break;
891	case sco_cch_req_slice:
892 		/* Set the CCH slice option */
893		gts->ts_cch_req_slice = req.val1 & 3;
894		break;
895	default:
896		ret = -EINVAL;
897	}
898	gru_unlock_gts(gts);
899
900	return ret;
901}
902