• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/mfd/
1/*
2 * Copyright (C) 2004 Texas Instruments, Inc.
3 *
4 * Some parts based tps65010.c:
5 * Copyright (C) 2004 Texas Instruments and
6 * Copyright (C) 2004-2005 David Brownell
7 *
8 * Some parts based on tlv320aic24.c:
9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10 *
11 * Changes for interrupt handling and clean-up by
12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13 * Cleanup and generalized support for voltage setting by
14 * Juha Yrjola
15 * Added support for controlling VCORE and regulator sleep states,
16 * Amit Kucheria <amit.kucheria@nokia.com>
17 * Copyright (C) 2005, 2006 Nokia Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 */
33
34#include <linux/module.h>
35#include <linux/i2c.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/mutex.h>
39#include <linux/workqueue.h>
40#include <linux/delay.h>
41#include <linux/rtc.h>
42#include <linux/bcd.h>
43#include <linux/slab.h>
44
45#include <asm/mach/irq.h>
46
47#include <mach/gpio.h>
48#include <plat/menelaus.h>
49
50#define DRIVER_NAME			"menelaus"
51
52#define MENELAUS_I2C_ADDRESS		0x72
53
54#define MENELAUS_REV			0x01
55#define MENELAUS_VCORE_CTRL1		0x02
56#define MENELAUS_VCORE_CTRL2		0x03
57#define MENELAUS_VCORE_CTRL3		0x04
58#define MENELAUS_VCORE_CTRL4		0x05
59#define MENELAUS_VCORE_CTRL5		0x06
60#define MENELAUS_DCDC_CTRL1		0x07
61#define MENELAUS_DCDC_CTRL2		0x08
62#define MENELAUS_DCDC_CTRL3		0x09
63#define MENELAUS_LDO_CTRL1		0x0A
64#define MENELAUS_LDO_CTRL2		0x0B
65#define MENELAUS_LDO_CTRL3		0x0C
66#define MENELAUS_LDO_CTRL4		0x0D
67#define MENELAUS_LDO_CTRL5		0x0E
68#define MENELAUS_LDO_CTRL6		0x0F
69#define MENELAUS_LDO_CTRL7		0x10
70#define MENELAUS_LDO_CTRL8		0x11
71#define MENELAUS_SLEEP_CTRL1		0x12
72#define MENELAUS_SLEEP_CTRL2		0x13
73#define MENELAUS_DEVICE_OFF		0x14
74#define MENELAUS_OSC_CTRL		0x15
75#define MENELAUS_DETECT_CTRL		0x16
76#define MENELAUS_INT_MASK1		0x17
77#define MENELAUS_INT_MASK2		0x18
78#define MENELAUS_INT_STATUS1		0x19
79#define MENELAUS_INT_STATUS2		0x1A
80#define MENELAUS_INT_ACK1		0x1B
81#define MENELAUS_INT_ACK2		0x1C
82#define MENELAUS_GPIO_CTRL		0x1D
83#define MENELAUS_GPIO_IN		0x1E
84#define MENELAUS_GPIO_OUT		0x1F
85#define MENELAUS_BBSMS			0x20
86#define MENELAUS_RTC_CTRL		0x21
87#define MENELAUS_RTC_UPDATE		0x22
88#define MENELAUS_RTC_SEC		0x23
89#define MENELAUS_RTC_MIN		0x24
90#define MENELAUS_RTC_HR			0x25
91#define MENELAUS_RTC_DAY		0x26
92#define MENELAUS_RTC_MON		0x27
93#define MENELAUS_RTC_YR			0x28
94#define MENELAUS_RTC_WKDAY		0x29
95#define MENELAUS_RTC_AL_SEC		0x2A
96#define MENELAUS_RTC_AL_MIN		0x2B
97#define MENELAUS_RTC_AL_HR		0x2C
98#define MENELAUS_RTC_AL_DAY		0x2D
99#define MENELAUS_RTC_AL_MON		0x2E
100#define MENELAUS_RTC_AL_YR		0x2F
101#define MENELAUS_RTC_COMP_MSB		0x30
102#define MENELAUS_RTC_COMP_LSB		0x31
103#define MENELAUS_S1_PULL_EN		0x32
104#define MENELAUS_S1_PULL_DIR		0x33
105#define MENELAUS_S2_PULL_EN		0x34
106#define MENELAUS_S2_PULL_DIR		0x35
107#define MENELAUS_MCT_CTRL1		0x36
108#define MENELAUS_MCT_CTRL2		0x37
109#define MENELAUS_MCT_CTRL3		0x38
110#define MENELAUS_MCT_PIN_ST		0x39
111#define MENELAUS_DEBOUNCE1		0x3A
112
113#define IH_MENELAUS_IRQS		12
114#define MENELAUS_MMC_S1CD_IRQ		0	/* MMC slot 1 card change */
115#define MENELAUS_MMC_S2CD_IRQ		1	/* MMC slot 2 card change */
116#define MENELAUS_MMC_S1D1_IRQ		2	/* MMC DAT1 low in slot 1 */
117#define MENELAUS_MMC_S2D1_IRQ		3	/* MMC DAT1 low in slot 2 */
118#define MENELAUS_LOWBAT_IRQ		4	/* Low battery */
119#define MENELAUS_HOTDIE_IRQ		5	/* Hot die detect */
120#define MENELAUS_UVLO_IRQ		6	/* UVLO detect */
121#define MENELAUS_TSHUT_IRQ		7	/* Thermal shutdown */
122#define MENELAUS_RTCTMR_IRQ		8	/* RTC timer */
123#define MENELAUS_RTCALM_IRQ		9	/* RTC alarm */
124#define MENELAUS_RTCERR_IRQ		10	/* RTC error */
125#define MENELAUS_PSHBTN_IRQ		11	/* Push button */
126#define MENELAUS_RESERVED12_IRQ		12	/* Reserved */
127#define MENELAUS_RESERVED13_IRQ		13	/* Reserved */
128#define MENELAUS_RESERVED14_IRQ		14	/* Reserved */
129#define MENELAUS_RESERVED15_IRQ		15	/* Reserved */
130
131/* VCORE_CTRL1 register */
132#define VCORE_CTRL1_BYP_COMP		(1 << 5)
133#define VCORE_CTRL1_HW_NSW		(1 << 7)
134
135/* GPIO_CTRL register */
136#define GPIO_CTRL_SLOTSELEN		(1 << 5)
137#define GPIO_CTRL_SLPCTLEN		(1 << 6)
138#define GPIO1_DIR_INPUT			(1 << 0)
139#define GPIO2_DIR_INPUT			(1 << 1)
140#define GPIO3_DIR_INPUT			(1 << 2)
141
142/* MCT_CTRL1 register */
143#define MCT_CTRL1_S1_CMD_OD		(1 << 2)
144#define MCT_CTRL1_S2_CMD_OD		(1 << 3)
145
146/* MCT_CTRL2 register */
147#define MCT_CTRL2_VS2_SEL_D0		(1 << 0)
148#define MCT_CTRL2_VS2_SEL_D1		(1 << 1)
149#define MCT_CTRL2_S1CD_BUFEN		(1 << 4)
150#define MCT_CTRL2_S2CD_BUFEN		(1 << 5)
151#define MCT_CTRL2_S1CD_DBEN		(1 << 6)
152#define MCT_CTRL2_S2CD_BEN		(1 << 7)
153
154/* MCT_CTRL3 register */
155#define MCT_CTRL3_SLOT1_EN		(1 << 0)
156#define MCT_CTRL3_SLOT2_EN		(1 << 1)
157#define MCT_CTRL3_S1_AUTO_EN		(1 << 2)
158#define MCT_CTRL3_S2_AUTO_EN		(1 << 3)
159
160/* MCT_PIN_ST register */
161#define MCT_PIN_ST_S1_CD_ST		(1 << 0)
162#define MCT_PIN_ST_S2_CD_ST		(1 << 1)
163
164static void menelaus_work(struct work_struct *_menelaus);
165
166struct menelaus_chip {
167	struct mutex		lock;
168	struct i2c_client	*client;
169	struct work_struct	work;
170#ifdef CONFIG_RTC_DRV_TWL92330
171	struct rtc_device	*rtc;
172	u8			rtc_control;
173	unsigned		uie:1;
174#endif
175	unsigned		vcore_hw_mode:1;
176	u8			mask1, mask2;
177	void			(*handlers[16])(struct menelaus_chip *);
178	void			(*mmc_callback)(void *data, u8 mask);
179	void			*mmc_callback_data;
180};
181
182static struct menelaus_chip *the_menelaus;
183
184static int menelaus_write_reg(int reg, u8 value)
185{
186	int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
187
188	if (val < 0) {
189		pr_err(DRIVER_NAME ": write error");
190		return val;
191	}
192
193	return 0;
194}
195
196static int menelaus_read_reg(int reg)
197{
198	int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
199
200	if (val < 0)
201		pr_err(DRIVER_NAME ": read error");
202
203	return val;
204}
205
206static int menelaus_enable_irq(int irq)
207{
208	if (irq > 7) {
209		irq -= 8;
210		the_menelaus->mask2 &= ~(1 << irq);
211		return menelaus_write_reg(MENELAUS_INT_MASK2,
212				the_menelaus->mask2);
213	} else {
214		the_menelaus->mask1 &= ~(1 << irq);
215		return menelaus_write_reg(MENELAUS_INT_MASK1,
216				the_menelaus->mask1);
217	}
218}
219
220static int menelaus_disable_irq(int irq)
221{
222	if (irq > 7) {
223		irq -= 8;
224		the_menelaus->mask2 |= (1 << irq);
225		return menelaus_write_reg(MENELAUS_INT_MASK2,
226				the_menelaus->mask2);
227	} else {
228		the_menelaus->mask1 |= (1 << irq);
229		return menelaus_write_reg(MENELAUS_INT_MASK1,
230				the_menelaus->mask1);
231	}
232}
233
234static int menelaus_ack_irq(int irq)
235{
236	if (irq > 7)
237		return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
238	else
239		return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
240}
241
242/* Adds a handler for an interrupt. Does not run in interrupt context */
243static int menelaus_add_irq_work(int irq,
244		void (*handler)(struct menelaus_chip *))
245{
246	int ret = 0;
247
248	mutex_lock(&the_menelaus->lock);
249	the_menelaus->handlers[irq] = handler;
250	ret = menelaus_enable_irq(irq);
251	mutex_unlock(&the_menelaus->lock);
252
253	return ret;
254}
255
256/* Removes handler for an interrupt */
257static int menelaus_remove_irq_work(int irq)
258{
259	int ret = 0;
260
261	mutex_lock(&the_menelaus->lock);
262	ret = menelaus_disable_irq(irq);
263	the_menelaus->handlers[irq] = NULL;
264	mutex_unlock(&the_menelaus->lock);
265
266	return ret;
267}
268
269static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
270{
271	int reg;
272	unsigned char card_mask = 0;
273
274	reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
275	if (reg < 0)
276		return;
277
278	if (!(reg & 0x1))
279		card_mask |= MCT_PIN_ST_S1_CD_ST;
280
281	if (!(reg & 0x2))
282		card_mask |= MCT_PIN_ST_S2_CD_ST;
283
284	if (menelaus_hw->mmc_callback)
285		menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
286					  card_mask);
287}
288
289/*
290 * Toggles the MMC slots between open-drain and push-pull mode.
291 */
292int menelaus_set_mmc_opendrain(int slot, int enable)
293{
294	int ret, val;
295
296	if (slot != 1 && slot != 2)
297		return -EINVAL;
298	mutex_lock(&the_menelaus->lock);
299	ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
300	if (ret < 0) {
301		mutex_unlock(&the_menelaus->lock);
302		return ret;
303	}
304	val = ret;
305	if (slot == 1) {
306		if (enable)
307			val |= MCT_CTRL1_S1_CMD_OD;
308		else
309			val &= ~MCT_CTRL1_S1_CMD_OD;
310	} else {
311		if (enable)
312			val |= MCT_CTRL1_S2_CMD_OD;
313		else
314			val &= ~MCT_CTRL1_S2_CMD_OD;
315	}
316	ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
317	mutex_unlock(&the_menelaus->lock);
318
319	return ret;
320}
321EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
322
323int menelaus_set_slot_sel(int enable)
324{
325	int ret;
326
327	mutex_lock(&the_menelaus->lock);
328	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
329	if (ret < 0)
330		goto out;
331	ret |= GPIO2_DIR_INPUT;
332	if (enable)
333		ret |= GPIO_CTRL_SLOTSELEN;
334	else
335		ret &= ~GPIO_CTRL_SLOTSELEN;
336	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
337out:
338	mutex_unlock(&the_menelaus->lock);
339	return ret;
340}
341EXPORT_SYMBOL(menelaus_set_slot_sel);
342
343int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
344{
345	int ret, val;
346
347	if (slot != 1 && slot != 2)
348		return -EINVAL;
349	if (power >= 3)
350		return -EINVAL;
351
352	mutex_lock(&the_menelaus->lock);
353
354	ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
355	if (ret < 0)
356		goto out;
357	val = ret;
358	if (slot == 1) {
359		if (cd_en)
360			val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
361		else
362			val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
363	} else {
364		if (cd_en)
365			val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
366		else
367			val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
368	}
369	ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
370	if (ret < 0)
371		goto out;
372
373	ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
374	if (ret < 0)
375		goto out;
376	val = ret;
377	if (slot == 1) {
378		if (enable)
379			val |= MCT_CTRL3_SLOT1_EN;
380		else
381			val &= ~MCT_CTRL3_SLOT1_EN;
382	} else {
383		int b;
384
385		if (enable)
386			val |= MCT_CTRL3_SLOT2_EN;
387		else
388			val &= ~MCT_CTRL3_SLOT2_EN;
389		b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
390		b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
391		b |= power;
392		ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
393		if (ret < 0)
394			goto out;
395	}
396	/* Disable autonomous shutdown */
397	val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
398	ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
399out:
400	mutex_unlock(&the_menelaus->lock);
401	return ret;
402}
403EXPORT_SYMBOL(menelaus_set_mmc_slot);
404
405int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
406				   void *data)
407{
408	int ret = 0;
409
410	the_menelaus->mmc_callback_data = data;
411	the_menelaus->mmc_callback = callback;
412	ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
413				    menelaus_mmc_cd_work);
414	if (ret < 0)
415		return ret;
416	ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
417				    menelaus_mmc_cd_work);
418	if (ret < 0)
419		return ret;
420	ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
421				    menelaus_mmc_cd_work);
422	if (ret < 0)
423		return ret;
424	ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
425				    menelaus_mmc_cd_work);
426
427	return ret;
428}
429EXPORT_SYMBOL(menelaus_register_mmc_callback);
430
431void menelaus_unregister_mmc_callback(void)
432{
433	menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
434	menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
435	menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
436	menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
437
438	the_menelaus->mmc_callback = NULL;
439	the_menelaus->mmc_callback_data = 0;
440}
441EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
442
443struct menelaus_vtg {
444	const char *name;
445	u8 vtg_reg;
446	u8 vtg_shift;
447	u8 vtg_bits;
448	u8 mode_reg;
449};
450
451struct menelaus_vtg_value {
452	u16 vtg;
453	u16 val;
454};
455
456static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
457				int vtg_val, int mode)
458{
459	int val, ret;
460	struct i2c_client *c = the_menelaus->client;
461
462	mutex_lock(&the_menelaus->lock);
463	if (vtg == 0)
464		goto set_voltage;
465
466	ret = menelaus_read_reg(vtg->vtg_reg);
467	if (ret < 0)
468		goto out;
469	val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
470	val |= vtg_val << vtg->vtg_shift;
471
472	dev_dbg(&c->dev, "Setting voltage '%s'"
473			 "to %d mV (reg 0x%02x, val 0x%02x)\n",
474			vtg->name, mV, vtg->vtg_reg, val);
475
476	ret = menelaus_write_reg(vtg->vtg_reg, val);
477	if (ret < 0)
478		goto out;
479set_voltage:
480	ret = menelaus_write_reg(vtg->mode_reg, mode);
481out:
482	mutex_unlock(&the_menelaus->lock);
483	if (ret == 0) {
484		/* Wait for voltage to stabilize */
485		msleep(1);
486	}
487	return ret;
488}
489
490static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
491				  int n)
492{
493	int i;
494
495	for (i = 0; i < n; i++, tbl++)
496		if (tbl->vtg == vtg)
497			return tbl->val;
498	return -EINVAL;
499}
500
501/*
502 * Vcore can be programmed in two ways:
503 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
504 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
505 * and VCORE_CTRL4
506 *
507 * Call correct 'set' function accordingly
508 */
509
510static const struct menelaus_vtg_value vcore_values[] = {
511	{ 1000, 0 },
512	{ 1025, 1 },
513	{ 1050, 2 },
514	{ 1075, 3 },
515	{ 1100, 4 },
516	{ 1125, 5 },
517	{ 1150, 6 },
518	{ 1175, 7 },
519	{ 1200, 8 },
520	{ 1225, 9 },
521	{ 1250, 10 },
522	{ 1275, 11 },
523	{ 1300, 12 },
524	{ 1325, 13 },
525	{ 1350, 14 },
526	{ 1375, 15 },
527	{ 1400, 16 },
528	{ 1425, 17 },
529	{ 1450, 18 },
530};
531
532int menelaus_set_vcore_sw(unsigned int mV)
533{
534	int val, ret;
535	struct i2c_client *c = the_menelaus->client;
536
537	val = menelaus_get_vtg_value(mV, vcore_values,
538				     ARRAY_SIZE(vcore_values));
539	if (val < 0)
540		return -EINVAL;
541
542	dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
543
544	/* Set SW mode and the voltage in one go. */
545	mutex_lock(&the_menelaus->lock);
546	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
547	if (ret == 0)
548		the_menelaus->vcore_hw_mode = 0;
549	mutex_unlock(&the_menelaus->lock);
550	msleep(1);
551
552	return ret;
553}
554
555int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
556{
557	int fval, rval, val, ret;
558	struct i2c_client *c = the_menelaus->client;
559
560	rval = menelaus_get_vtg_value(roof_mV, vcore_values,
561				      ARRAY_SIZE(vcore_values));
562	if (rval < 0)
563		return -EINVAL;
564	fval = menelaus_get_vtg_value(floor_mV, vcore_values,
565				      ARRAY_SIZE(vcore_values));
566	if (fval < 0)
567		return -EINVAL;
568
569	dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
570	       floor_mV, roof_mV);
571
572	mutex_lock(&the_menelaus->lock);
573	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
574	if (ret < 0)
575		goto out;
576	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
577	if (ret < 0)
578		goto out;
579	if (!the_menelaus->vcore_hw_mode) {
580		val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
581		/* HW mode, turn OFF byte comparator */
582		val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
583		ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
584		the_menelaus->vcore_hw_mode = 1;
585	}
586	msleep(1);
587out:
588	mutex_unlock(&the_menelaus->lock);
589	return ret;
590}
591
592static const struct menelaus_vtg vmem_vtg = {
593	.name = "VMEM",
594	.vtg_reg = MENELAUS_LDO_CTRL1,
595	.vtg_shift = 0,
596	.vtg_bits = 2,
597	.mode_reg = MENELAUS_LDO_CTRL3,
598};
599
600static const struct menelaus_vtg_value vmem_values[] = {
601	{ 1500, 0 },
602	{ 1800, 1 },
603	{ 1900, 2 },
604	{ 2500, 3 },
605};
606
607int menelaus_set_vmem(unsigned int mV)
608{
609	int val;
610
611	if (mV == 0)
612		return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
613
614	val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
615	if (val < 0)
616		return -EINVAL;
617	return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
618}
619EXPORT_SYMBOL(menelaus_set_vmem);
620
621static const struct menelaus_vtg vio_vtg = {
622	.name = "VIO",
623	.vtg_reg = MENELAUS_LDO_CTRL1,
624	.vtg_shift = 2,
625	.vtg_bits = 2,
626	.mode_reg = MENELAUS_LDO_CTRL4,
627};
628
629static const struct menelaus_vtg_value vio_values[] = {
630	{ 1500, 0 },
631	{ 1800, 1 },
632	{ 2500, 2 },
633	{ 2800, 3 },
634};
635
636int menelaus_set_vio(unsigned int mV)
637{
638	int val;
639
640	if (mV == 0)
641		return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
642
643	val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
644	if (val < 0)
645		return -EINVAL;
646	return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
647}
648EXPORT_SYMBOL(menelaus_set_vio);
649
650static const struct menelaus_vtg_value vdcdc_values[] = {
651	{ 1500, 0 },
652	{ 1800, 1 },
653	{ 2000, 2 },
654	{ 2200, 3 },
655	{ 2400, 4 },
656	{ 2800, 5 },
657	{ 3000, 6 },
658	{ 3300, 7 },
659};
660
661static const struct menelaus_vtg vdcdc2_vtg = {
662	.name = "VDCDC2",
663	.vtg_reg = MENELAUS_DCDC_CTRL1,
664	.vtg_shift = 0,
665	.vtg_bits = 3,
666	.mode_reg = MENELAUS_DCDC_CTRL2,
667};
668
669static const struct menelaus_vtg vdcdc3_vtg = {
670	.name = "VDCDC3",
671	.vtg_reg = MENELAUS_DCDC_CTRL1,
672	.vtg_shift = 3,
673	.vtg_bits = 3,
674	.mode_reg = MENELAUS_DCDC_CTRL3,
675};
676
677int menelaus_set_vdcdc(int dcdc, unsigned int mV)
678{
679	const struct menelaus_vtg *vtg;
680	int val;
681
682	if (dcdc != 2 && dcdc != 3)
683		return -EINVAL;
684	if (dcdc == 2)
685		vtg = &vdcdc2_vtg;
686	else
687		vtg = &vdcdc3_vtg;
688
689	if (mV == 0)
690		return menelaus_set_voltage(vtg, 0, 0, 0);
691
692	val = menelaus_get_vtg_value(mV, vdcdc_values,
693				     ARRAY_SIZE(vdcdc_values));
694	if (val < 0)
695		return -EINVAL;
696	return menelaus_set_voltage(vtg, mV, val, 0x03);
697}
698
699static const struct menelaus_vtg_value vmmc_values[] = {
700	{ 1850, 0 },
701	{ 2800, 1 },
702	{ 3000, 2 },
703	{ 3100, 3 },
704};
705
706static const struct menelaus_vtg vmmc_vtg = {
707	.name = "VMMC",
708	.vtg_reg = MENELAUS_LDO_CTRL1,
709	.vtg_shift = 6,
710	.vtg_bits = 2,
711	.mode_reg = MENELAUS_LDO_CTRL7,
712};
713
714int menelaus_set_vmmc(unsigned int mV)
715{
716	int val;
717
718	if (mV == 0)
719		return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
720
721	val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
722	if (val < 0)
723		return -EINVAL;
724	return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
725}
726EXPORT_SYMBOL(menelaus_set_vmmc);
727
728
729static const struct menelaus_vtg_value vaux_values[] = {
730	{ 1500, 0 },
731	{ 1800, 1 },
732	{ 2500, 2 },
733	{ 2800, 3 },
734};
735
736static const struct menelaus_vtg vaux_vtg = {
737	.name = "VAUX",
738	.vtg_reg = MENELAUS_LDO_CTRL1,
739	.vtg_shift = 4,
740	.vtg_bits = 2,
741	.mode_reg = MENELAUS_LDO_CTRL6,
742};
743
744int menelaus_set_vaux(unsigned int mV)
745{
746	int val;
747
748	if (mV == 0)
749		return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
750
751	val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
752	if (val < 0)
753		return -EINVAL;
754	return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
755}
756EXPORT_SYMBOL(menelaus_set_vaux);
757
758int menelaus_get_slot_pin_states(void)
759{
760	return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
761}
762EXPORT_SYMBOL(menelaus_get_slot_pin_states);
763
764int menelaus_set_regulator_sleep(int enable, u32 val)
765{
766	int t, ret;
767	struct i2c_client *c = the_menelaus->client;
768
769	mutex_lock(&the_menelaus->lock);
770	ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
771	if (ret < 0)
772		goto out;
773
774	dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
775
776	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
777	if (ret < 0)
778		goto out;
779	t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
780	if (enable)
781		ret |= t;
782	else
783		ret &= ~t;
784	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
785out:
786	mutex_unlock(&the_menelaus->lock);
787	return ret;
788}
789
790/*-----------------------------------------------------------------------*/
791
792/* Handles Menelaus interrupts. Does not run in interrupt context */
793static void menelaus_work(struct work_struct *_menelaus)
794{
795	struct menelaus_chip *menelaus =
796			container_of(_menelaus, struct menelaus_chip, work);
797	void (*handler)(struct menelaus_chip *menelaus);
798
799	while (1) {
800		unsigned isr;
801
802		isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
803				& ~menelaus->mask2) << 8;
804		isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
805				& ~menelaus->mask1;
806		if (!isr)
807			break;
808
809		while (isr) {
810			int irq = fls(isr) - 1;
811			isr &= ~(1 << irq);
812
813			mutex_lock(&menelaus->lock);
814			menelaus_disable_irq(irq);
815			menelaus_ack_irq(irq);
816			handler = menelaus->handlers[irq];
817			if (handler)
818				handler(menelaus);
819			menelaus_enable_irq(irq);
820			mutex_unlock(&menelaus->lock);
821		}
822	}
823	enable_irq(menelaus->client->irq);
824}
825
826/*
827 * We cannot use I2C in interrupt context, so we just schedule work.
828 */
829static irqreturn_t menelaus_irq(int irq, void *_menelaus)
830{
831	struct menelaus_chip *menelaus = _menelaus;
832
833	disable_irq_nosync(irq);
834	(void)schedule_work(&menelaus->work);
835
836	return IRQ_HANDLED;
837}
838
839/*-----------------------------------------------------------------------*/
840
841/*
842 * The RTC needs to be set once, then it runs on backup battery power.
843 * It supports alarms, including system wake alarms (from some modes);
844 * and 1/second IRQs if requested.
845 */
846#ifdef CONFIG_RTC_DRV_TWL92330
847
848#define RTC_CTRL_RTC_EN		(1 << 0)
849#define RTC_CTRL_AL_EN		(1 << 1)
850#define RTC_CTRL_MODE12		(1 << 2)
851#define RTC_CTRL_EVERY_MASK	(3 << 3)
852#define RTC_CTRL_EVERY_SEC	(0 << 3)
853#define RTC_CTRL_EVERY_MIN	(1 << 3)
854#define RTC_CTRL_EVERY_HR	(2 << 3)
855#define RTC_CTRL_EVERY_DAY	(3 << 3)
856
857#define RTC_UPDATE_EVERY	0x08
858
859#define RTC_HR_PM		(1 << 7)
860
861static void menelaus_to_time(char *regs, struct rtc_time *t)
862{
863	t->tm_sec = bcd2bin(regs[0]);
864	t->tm_min = bcd2bin(regs[1]);
865	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
866		t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
867		if (regs[2] & RTC_HR_PM)
868			t->tm_hour += 12;
869	} else
870		t->tm_hour = bcd2bin(regs[2] & 0x3f);
871	t->tm_mday = bcd2bin(regs[3]);
872	t->tm_mon = bcd2bin(regs[4]) - 1;
873	t->tm_year = bcd2bin(regs[5]) + 100;
874}
875
876static int time_to_menelaus(struct rtc_time *t, int regnum)
877{
878	int	hour, status;
879
880	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
881	if (status < 0)
882		goto fail;
883
884	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
885	if (status < 0)
886		goto fail;
887
888	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
889		hour = t->tm_hour + 1;
890		if (hour > 12)
891			hour = RTC_HR_PM | bin2bcd(hour - 12);
892		else
893			hour = bin2bcd(hour);
894	} else
895		hour = bin2bcd(t->tm_hour);
896	status = menelaus_write_reg(regnum++, hour);
897	if (status < 0)
898		goto fail;
899
900	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
901	if (status < 0)
902		goto fail;
903
904	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
905	if (status < 0)
906		goto fail;
907
908	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
909	if (status < 0)
910		goto fail;
911
912	return 0;
913fail:
914	dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
915			--regnum, status);
916	return status;
917}
918
919static int menelaus_read_time(struct device *dev, struct rtc_time *t)
920{
921	struct i2c_msg	msg[2];
922	char		regs[7];
923	int		status;
924
925	/* block read date and time registers */
926	regs[0] = MENELAUS_RTC_SEC;
927
928	msg[0].addr = MENELAUS_I2C_ADDRESS;
929	msg[0].flags = 0;
930	msg[0].len = 1;
931	msg[0].buf = regs;
932
933	msg[1].addr = MENELAUS_I2C_ADDRESS;
934	msg[1].flags = I2C_M_RD;
935	msg[1].len = sizeof(regs);
936	msg[1].buf = regs;
937
938	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
939	if (status != 2) {
940		dev_err(dev, "%s error %d\n", "read", status);
941		return -EIO;
942	}
943
944	menelaus_to_time(regs, t);
945	t->tm_wday = bcd2bin(regs[6]);
946
947	return 0;
948}
949
950static int menelaus_set_time(struct device *dev, struct rtc_time *t)
951{
952	int		status;
953
954	/* write date and time registers */
955	status = time_to_menelaus(t, MENELAUS_RTC_SEC);
956	if (status < 0)
957		return status;
958	status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
959	if (status < 0) {
960		dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
961				"err %d\n", MENELAUS_RTC_WKDAY, status);
962		return status;
963	}
964
965	/* now commit the write */
966	status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
967	if (status < 0)
968		dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
969				status);
970
971	return 0;
972}
973
974static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
975{
976	struct i2c_msg	msg[2];
977	char		regs[6];
978	int		status;
979
980	/* block read alarm registers */
981	regs[0] = MENELAUS_RTC_AL_SEC;
982
983	msg[0].addr = MENELAUS_I2C_ADDRESS;
984	msg[0].flags = 0;
985	msg[0].len = 1;
986	msg[0].buf = regs;
987
988	msg[1].addr = MENELAUS_I2C_ADDRESS;
989	msg[1].flags = I2C_M_RD;
990	msg[1].len = sizeof(regs);
991	msg[1].buf = regs;
992
993	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
994	if (status != 2) {
995		dev_err(dev, "%s error %d\n", "alarm read", status);
996		return -EIO;
997	}
998
999	menelaus_to_time(regs, &w->time);
1000
1001	w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
1002
1003	/* NOTE we *could* check if actually pending... */
1004	w->pending = 0;
1005
1006	return 0;
1007}
1008
1009static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
1010{
1011	int		status;
1012
1013	if (the_menelaus->client->irq <= 0 && w->enabled)
1014		return -ENODEV;
1015
1016	/* clear previous alarm enable */
1017	if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
1018		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1019		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1020				the_menelaus->rtc_control);
1021		if (status < 0)
1022			return status;
1023	}
1024
1025	/* write alarm registers */
1026	status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
1027	if (status < 0)
1028		return status;
1029
1030	/* enable alarm if requested */
1031	if (w->enabled) {
1032		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1033		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1034				the_menelaus->rtc_control);
1035	}
1036
1037	return status;
1038}
1039
1040#ifdef CONFIG_RTC_INTF_DEV
1041
1042static void menelaus_rtc_update_work(struct menelaus_chip *m)
1043{
1044	/* report 1/sec update */
1045	local_irq_disable();
1046	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1047	local_irq_enable();
1048}
1049
1050static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1051{
1052	int	status;
1053
1054	if (the_menelaus->client->irq <= 0)
1055		return -ENOIOCTLCMD;
1056
1057	switch (cmd) {
1058	/* alarm IRQ */
1059	case RTC_AIE_ON:
1060		if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1061			return 0;
1062		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1063		break;
1064	case RTC_AIE_OFF:
1065		if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1066			return 0;
1067		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1068		break;
1069	/* 1/second "update" IRQ */
1070	case RTC_UIE_ON:
1071		if (the_menelaus->uie)
1072			return 0;
1073		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1074		status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1075				menelaus_rtc_update_work);
1076		if (status == 0)
1077			the_menelaus->uie = 1;
1078		return status;
1079	case RTC_UIE_OFF:
1080		if (!the_menelaus->uie)
1081			return 0;
1082		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1083		if (status == 0)
1084			the_menelaus->uie = 0;
1085		return status;
1086	default:
1087		return -ENOIOCTLCMD;
1088	}
1089	return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1090}
1091
1092#else
1093#define menelaus_ioctl	NULL
1094#endif
1095
1096/* REVISIT no compensation register support ... */
1097
1098static const struct rtc_class_ops menelaus_rtc_ops = {
1099	.ioctl			= menelaus_ioctl,
1100	.read_time		= menelaus_read_time,
1101	.set_time		= menelaus_set_time,
1102	.read_alarm		= menelaus_read_alarm,
1103	.set_alarm		= menelaus_set_alarm,
1104};
1105
1106static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1107{
1108	/* report alarm */
1109	local_irq_disable();
1110	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1111	local_irq_enable();
1112
1113	/* then disable it; alarms are oneshot */
1114	the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1115	menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1116}
1117
1118static inline void menelaus_rtc_init(struct menelaus_chip *m)
1119{
1120	int	alarm = (m->client->irq > 0);
1121
1122	/* assume 32KDETEN pin is pulled high */
1123	if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1124		dev_dbg(&m->client->dev, "no 32k oscillator\n");
1125		return;
1126	}
1127
1128	/* support RTC alarm; it can issue wakeups */
1129	if (alarm) {
1130		if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1131				menelaus_rtc_alarm_work) < 0) {
1132			dev_err(&m->client->dev, "can't handle RTC alarm\n");
1133			return;
1134		}
1135		device_init_wakeup(&m->client->dev, 1);
1136	}
1137
1138	/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1139	m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1140	if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1141			|| (m->rtc_control & RTC_CTRL_AL_EN)
1142			|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1143		if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1144			dev_warn(&m->client->dev, "rtc clock needs setting\n");
1145			m->rtc_control |= RTC_CTRL_RTC_EN;
1146		}
1147		m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1148		m->rtc_control &= ~RTC_CTRL_AL_EN;
1149		menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1150	}
1151
1152	m->rtc = rtc_device_register(DRIVER_NAME,
1153			&m->client->dev,
1154			&menelaus_rtc_ops, THIS_MODULE);
1155	if (IS_ERR(m->rtc)) {
1156		if (alarm) {
1157			menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1158			device_init_wakeup(&m->client->dev, 0);
1159		}
1160		dev_err(&m->client->dev, "can't register RTC: %d\n",
1161				(int) PTR_ERR(m->rtc));
1162		the_menelaus->rtc = NULL;
1163	}
1164}
1165
1166#else
1167
1168static inline void menelaus_rtc_init(struct menelaus_chip *m)
1169{
1170	/* nothing */
1171}
1172
1173#endif
1174
1175/*-----------------------------------------------------------------------*/
1176
1177static struct i2c_driver menelaus_i2c_driver;
1178
1179static int menelaus_probe(struct i2c_client *client,
1180			  const struct i2c_device_id *id)
1181{
1182	struct menelaus_chip	*menelaus;
1183	int			rev = 0, val;
1184	int			err = 0;
1185	struct menelaus_platform_data *menelaus_pdata =
1186					client->dev.platform_data;
1187
1188	if (the_menelaus) {
1189		dev_dbg(&client->dev, "only one %s for now\n",
1190				DRIVER_NAME);
1191		return -ENODEV;
1192	}
1193
1194	menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL);
1195	if (!menelaus)
1196		return -ENOMEM;
1197
1198	i2c_set_clientdata(client, menelaus);
1199
1200	the_menelaus = menelaus;
1201	menelaus->client = client;
1202
1203	/* If a true probe check the device */
1204	rev = menelaus_read_reg(MENELAUS_REV);
1205	if (rev < 0) {
1206		pr_err(DRIVER_NAME ": device not found");
1207		err = -ENODEV;
1208		goto fail1;
1209	}
1210
1211	/* Ack and disable all Menelaus interrupts */
1212	menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1213	menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1214	menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1215	menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1216	menelaus->mask1 = 0xff;
1217	menelaus->mask2 = 0xff;
1218
1219	/* Set output buffer strengths */
1220	menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1221
1222	if (client->irq > 0) {
1223		err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED,
1224				  DRIVER_NAME, menelaus);
1225		if (err) {
1226			dev_dbg(&client->dev,  "can't get IRQ %d, err %d\n",
1227					client->irq, err);
1228			goto fail1;
1229		}
1230	}
1231
1232	mutex_init(&menelaus->lock);
1233	INIT_WORK(&menelaus->work, menelaus_work);
1234
1235	pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1236
1237	val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1238	if (val < 0)
1239		goto fail2;
1240	if (val & (1 << 7))
1241		menelaus->vcore_hw_mode = 1;
1242	else
1243		menelaus->vcore_hw_mode = 0;
1244
1245	if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1246		err = menelaus_pdata->late_init(&client->dev);
1247		if (err < 0)
1248			goto fail2;
1249	}
1250
1251	menelaus_rtc_init(menelaus);
1252
1253	return 0;
1254fail2:
1255	free_irq(client->irq, menelaus);
1256	flush_scheduled_work();
1257fail1:
1258	kfree(menelaus);
1259	return err;
1260}
1261
1262static int __exit menelaus_remove(struct i2c_client *client)
1263{
1264	struct menelaus_chip	*menelaus = i2c_get_clientdata(client);
1265
1266	free_irq(client->irq, menelaus);
1267	kfree(menelaus);
1268	the_menelaus = NULL;
1269	return 0;
1270}
1271
1272static const struct i2c_device_id menelaus_id[] = {
1273	{ "menelaus", 0 },
1274	{ }
1275};
1276MODULE_DEVICE_TABLE(i2c, menelaus_id);
1277
1278static struct i2c_driver menelaus_i2c_driver = {
1279	.driver = {
1280		.name		= DRIVER_NAME,
1281	},
1282	.probe		= menelaus_probe,
1283	.remove		= __exit_p(menelaus_remove),
1284	.id_table	= menelaus_id,
1285};
1286
1287static int __init menelaus_init(void)
1288{
1289	int res;
1290
1291	res = i2c_add_driver(&menelaus_i2c_driver);
1292	if (res < 0) {
1293		pr_err(DRIVER_NAME ": driver registration failed\n");
1294		return res;
1295	}
1296
1297	return 0;
1298}
1299
1300static void __exit menelaus_exit(void)
1301{
1302	i2c_del_driver(&menelaus_i2c_driver);
1303
1304}
1305
1306MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1307MODULE_DESCRIPTION("I2C interface for Menelaus.");
1308MODULE_LICENSE("GPL");
1309
1310module_init(menelaus_init);
1311module_exit(menelaus_exit);
1312