• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/media/video/cx23885/
1/*
2 *  Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 *  CX23888 Integrated Consumer Infrared Controller
5 *
6 *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
7 *
8 *  This program is free software; you can redistribute it and/or
9 *  modify it under the terms of the GNU General Public License
10 *  as published by the Free Software Foundation; either version 2
11 *  of the License, or (at your option) any later version.
12 *
13 *  This program is distributed in the hope that it will be useful,
14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *  GNU General Public License for more details.
17 *
18 *  You should have received a copy of the GNU General Public License
19 *  along with this program; if not, write to the Free Software
20 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 *  02110-1301, USA.
22 */
23
24#include <linux/kfifo.h>
25#include <linux/slab.h>
26
27#include <media/v4l2-device.h>
28#include <media/v4l2-chip-ident.h>
29#include <media/ir-core.h>
30
31#include "cx23885.h"
32
33static unsigned int ir_888_debug;
34module_param(ir_888_debug, int, 0644);
35MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
36
37#define CX23888_IR_REG_BASE 	0x170000
38/*
39 * These CX23888 register offsets have a straightforward one to one mapping
40 * to the CX23885 register offsets of 0x200 through 0x218
41 */
42#define CX23888_IR_CNTRL_REG	0x170000
43#define CNTRL_WIN_3_3	0x00000000
44#define CNTRL_WIN_4_3	0x00000001
45#define CNTRL_WIN_3_4	0x00000002
46#define CNTRL_WIN_4_4	0x00000003
47#define CNTRL_WIN	0x00000003
48#define CNTRL_EDG_NONE	0x00000000
49#define CNTRL_EDG_FALL	0x00000004
50#define CNTRL_EDG_RISE	0x00000008
51#define CNTRL_EDG_BOTH	0x0000000C
52#define CNTRL_EDG	0x0000000C
53#define CNTRL_DMD	0x00000010
54#define CNTRL_MOD	0x00000020
55#define CNTRL_RFE	0x00000040
56#define CNTRL_TFE	0x00000080
57#define CNTRL_RXE	0x00000100
58#define CNTRL_TXE	0x00000200
59#define CNTRL_RIC	0x00000400
60#define CNTRL_TIC	0x00000800
61#define CNTRL_CPL	0x00001000
62#define CNTRL_LBM	0x00002000
63#define CNTRL_R		0x00004000
64/* CX23888 specific control flag */
65#define CNTRL_IVO	0x00008000
66
67#define CX23888_IR_TXCLK_REG	0x170004
68#define TXCLK_TCD	0x0000FFFF
69
70#define CX23888_IR_RXCLK_REG	0x170008
71#define RXCLK_RCD	0x0000FFFF
72
73#define CX23888_IR_CDUTY_REG	0x17000C
74#define CDUTY_CDC	0x0000000F
75
76#define CX23888_IR_STATS_REG	0x170010
77#define STATS_RTO	0x00000001
78#define STATS_ROR	0x00000002
79#define STATS_RBY	0x00000004
80#define STATS_TBY	0x00000008
81#define STATS_RSR	0x00000010
82#define STATS_TSR	0x00000020
83
84#define CX23888_IR_IRQEN_REG	0x170014
85#define IRQEN_RTE	0x00000001
86#define IRQEN_ROE	0x00000002
87#define IRQEN_RSE	0x00000010
88#define IRQEN_TSE	0x00000020
89
90#define CX23888_IR_FILTR_REG	0x170018
91#define FILTR_LPF	0x0000FFFF
92
93/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94#define CX23888_IR_FIFO_REG	0x170040
95#define FIFO_RXTX	0x0000FFFF
96#define FIFO_RXTX_LVL	0x00010000
97#define FIFO_RXTX_RTO	0x0001FFFF
98#define FIFO_RX_NDV	0x00020000
99#define FIFO_RX_DEPTH	8
100#define FIFO_TX_DEPTH	8
101
102/* CX23888 unique registers */
103#define CX23888_IR_SEEDP_REG	0x17001C
104#define CX23888_IR_TIMOL_REG	0x170020
105#define CX23888_IR_WAKE0_REG	0x170024
106#define CX23888_IR_WAKE1_REG	0x170028
107#define CX23888_IR_WAKE2_REG	0x17002C
108#define CX23888_IR_MASK0_REG	0x170030
109#define CX23888_IR_MASK1_REG	0x170034
110#define CX23888_IR_MAKS2_REG	0x170038
111#define CX23888_IR_DPIPG_REG	0x17003C
112#define CX23888_IR_LEARN_REG	0x170044
113
114#define CX23888_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
115#define CX23888_IR_REFCLK_FREQ	(CX23888_VIDCLK_FREQ / 2)
116
117/*
118 * We use this union internally for convenience, but callers to tx_write
119 * and rx_read will be expecting records of type struct ir_raw_event.
120 * Always ensure the size of this union is dictated by struct ir_raw_event.
121 */
122union cx23888_ir_fifo_rec {
123	u32 hw_fifo_data;
124	struct ir_raw_event ir_core_data;
125};
126
127#define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
128#define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
129
130struct cx23888_ir_state {
131	struct v4l2_subdev sd;
132	struct cx23885_dev *dev;
133	u32 id;
134	u32 rev;
135
136	struct v4l2_subdev_ir_parameters rx_params;
137	struct mutex rx_params_lock;
138	atomic_t rxclk_divider;
139	atomic_t rx_invert;
140
141	struct kfifo rx_kfifo;
142	spinlock_t rx_kfifo_lock;
143
144	struct v4l2_subdev_ir_parameters tx_params;
145	struct mutex tx_params_lock;
146	atomic_t txclk_divider;
147};
148
149static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
150{
151	return v4l2_get_subdevdata(sd);
152}
153
154/*
155 * IR register block read and write functions
156 */
157static
158inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
159{
160	cx_write(addr, value);
161	return 0;
162}
163
164static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
165{
166	return cx_read(addr);
167}
168
169static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
170				     u32 and_mask, u32 or_value)
171{
172	cx_andor(addr, ~and_mask, or_value);
173	return 0;
174}
175
176/*
177 * Rx and Tx Clock Divider register computations
178 *
179 * Note the largest clock divider value of 0xffff corresponds to:
180 * 	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
181 * which fits in 21 bits, so we'll use unsigned int for time arguments.
182 */
183static inline u16 count_to_clock_divider(unsigned int d)
184{
185	if (d > RXCLK_RCD + 1)
186		d = RXCLK_RCD;
187	else if (d < 2)
188		d = 1;
189	else
190		d--;
191	return (u16) d;
192}
193
194static inline u16 ns_to_clock_divider(unsigned int ns)
195{
196	return count_to_clock_divider(
197		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
198}
199
200static inline unsigned int clock_divider_to_ns(unsigned int divider)
201{
202	/* Period of the Rx or Tx clock in ns */
203	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
204				 CX23888_IR_REFCLK_FREQ / 1000000);
205}
206
207static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
208{
209	return count_to_clock_divider(
210			  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
211}
212
213static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
214{
215	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
216}
217
218static inline u16 freq_to_clock_divider(unsigned int freq,
219					unsigned int rollovers)
220{
221	return count_to_clock_divider(
222		   DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
223}
224
225static inline unsigned int clock_divider_to_freq(unsigned int divider,
226						 unsigned int rollovers)
227{
228	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
229				 (divider + 1) * rollovers);
230}
231
232/*
233 * Low Pass Filter register calculations
234 *
235 * Note the largest count value of 0xffff corresponds to:
236 * 	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
237 * which fits in 21 bits, so we'll use unsigned int for time arguments.
238 */
239static inline u16 count_to_lpf_count(unsigned int d)
240{
241	if (d > FILTR_LPF)
242		d = FILTR_LPF;
243	else if (d < 4)
244		d = 0;
245	return (u16) d;
246}
247
248static inline u16 ns_to_lpf_count(unsigned int ns)
249{
250	return count_to_lpf_count(
251		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
252}
253
254static inline unsigned int lpf_count_to_ns(unsigned int count)
255{
256	/* Duration of the Low Pass Filter rejection window in ns */
257	return DIV_ROUND_CLOSEST(count * 1000,
258				 CX23888_IR_REFCLK_FREQ / 1000000);
259}
260
261static inline unsigned int lpf_count_to_us(unsigned int count)
262{
263	/* Duration of the Low Pass Filter rejection window in us */
264	return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
265}
266
267/*
268 * FIFO register pulse width count compuations
269 */
270static u32 clock_divider_to_resolution(u16 divider)
271{
272	/*
273	 * Resolution is the duration of 1 tick of the readable portion of
274	 * of the pulse width counter as read from the FIFO.  The two lsb's are
275	 * not readable, hence the << 2.  This function returns ns.
276	 */
277	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
278				 CX23888_IR_REFCLK_FREQ / 1000000);
279}
280
281static u64 pulse_width_count_to_ns(u16 count, u16 divider)
282{
283	u64 n;
284	u32 rem;
285
286	/*
287	 * The 2 lsb's of the pulse width timer count are not readable, hence
288	 * the (count << 2) | 0x3
289	 */
290	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
291	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
292	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293		n++;
294	return n;
295}
296
297static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
298{
299	u64 n;
300	u32 rem;
301
302	/*
303	 * The 2 lsb's of the pulse width timer count are not readable, hence
304	 * the (count << 2) | 0x3
305	 */
306	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
307	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
308	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
309		n++;
310	return (unsigned int) n;
311}
312
313/*
314 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
315 *
316 * The total pulse clock count is an 18 bit pulse width timer count as the most
317 * significant part and (up to) 16 bit clock divider count as a modulus.
318 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
319 * width timer count's least significant bit.
320 */
321static u64 ns_to_pulse_clocks(u32 ns)
322{
323	u64 clocks;
324	u32 rem;
325	clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
326	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
327	if (rem >= 1000 / 2)
328		clocks++;
329	return clocks;
330}
331
332static u16 pulse_clocks_to_clock_divider(u64 count)
333{
334	u32 rem;
335
336	rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
337
338	/* net result needs to be rounded down and decremented by 1 */
339	if (count > RXCLK_RCD + 1)
340		count = RXCLK_RCD;
341	else if (count < 2)
342		count = 1;
343	else
344		count--;
345	return (u16) count;
346}
347
348/*
349 * IR Control Register helpers
350 */
351enum tx_fifo_watermark {
352	TX_FIFO_HALF_EMPTY = 0,
353	TX_FIFO_EMPTY      = CNTRL_TIC,
354};
355
356enum rx_fifo_watermark {
357	RX_FIFO_HALF_FULL = 0,
358	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
359};
360
361static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
362					    enum tx_fifo_watermark level)
363{
364	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
365}
366
367static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
368					    enum rx_fifo_watermark level)
369{
370	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
371}
372
373static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
374{
375	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
376			   enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
377}
378
379static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
380{
381	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
382			   enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
383}
384
385static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
386						bool enable)
387{
388	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
389			   enable ? CNTRL_MOD : 0);
390}
391
392static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
393						  bool enable)
394{
395	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
396			   enable ? CNTRL_DMD : 0);
397}
398
399static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
400					       u32 edge_types)
401{
402	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
403			   edge_types & CNTRL_EDG_BOTH);
404}
405
406static void control_rx_s_carrier_window(struct cx23885_dev *dev,
407					unsigned int carrier,
408					unsigned int *carrier_range_low,
409					unsigned int *carrier_range_high)
410{
411	u32 v;
412	unsigned int c16 = carrier * 16;
413
414	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
415		v = CNTRL_WIN_3_4;
416		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
417	} else {
418		v = CNTRL_WIN_3_3;
419		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
420	}
421
422	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
423		v |= CNTRL_WIN_4_3;
424		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
425	} else {
426		v |= CNTRL_WIN_3_3;
427		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
428	}
429	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
430}
431
432static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
433					      bool invert)
434{
435	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
436			   invert ? CNTRL_CPL : 0);
437}
438
439static inline void control_tx_level_invert(struct cx23885_dev *dev,
440					  bool invert)
441{
442	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
443			   invert ? CNTRL_IVO : 0);
444}
445
446/*
447 * IR Rx & Tx Clock Register helpers
448 */
449static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
450				       unsigned int freq,
451				       u16 *divider)
452{
453	*divider = carrier_freq_to_clock_divider(freq);
454	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
455	return clock_divider_to_carrier_freq(*divider);
456}
457
458static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
459				       unsigned int freq,
460				       u16 *divider)
461{
462	*divider = carrier_freq_to_clock_divider(freq);
463	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
464	return clock_divider_to_carrier_freq(*divider);
465}
466
467static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
468				      u16 *divider)
469{
470	u64 pulse_clocks;
471
472	if (ns > IR_MAX_DURATION)
473		ns = IR_MAX_DURATION;
474	pulse_clocks = ns_to_pulse_clocks(ns);
475	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
476	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
477	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
478}
479
480static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
481				      u16 *divider)
482{
483	u64 pulse_clocks;
484
485	if (ns > IR_MAX_DURATION)
486		ns = IR_MAX_DURATION;
487	pulse_clocks = ns_to_pulse_clocks(ns);
488	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
489	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
490	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
491}
492
493/*
494 * IR Tx Carrier Duty Cycle register helpers
495 */
496static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
497					  unsigned int duty_cycle)
498{
499	u32 n;
500	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
501	if (n != 0)
502		n--;
503	if (n > 15)
504		n = 15;
505	cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
506	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
507}
508
509/*
510 * IR Filter Register helpers
511 */
512static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
513{
514	u32 count = ns_to_lpf_count(min_width_ns);
515	cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
516	return lpf_count_to_ns(count);
517}
518
519/*
520 * IR IRQ Enable Register helpers
521 */
522static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
523{
524	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
525	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
526			   ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
527}
528
529static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
530{
531	mask &= IRQEN_TSE;
532	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
533}
534
535/*
536 * V4L2 Subdevice IR Ops
537 */
538static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
539				  bool *handled)
540{
541	struct cx23888_ir_state *state = to_state(sd);
542	struct cx23885_dev *dev = state->dev;
543	unsigned long flags;
544
545	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
546	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
547	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
548
549	union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
550	unsigned int i, j, k;
551	u32 events, v;
552	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
553
554	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
555	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
556	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
557	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
558
559	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
560	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
561	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
562	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
563
564	*handled = false;
565	v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
566		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
567		 rto ? "rto" : "   ", ror ? "ror" : "   ",
568		 stats & STATS_TBY ? "tby" : "   ",
569		 stats & STATS_RBY ? "rby" : "   ");
570
571	v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
572		 tse ? "tse" : "   ", rse ? "rse" : "   ",
573		 rte ? "rte" : "   ", roe ? "roe" : "   ");
574
575	/*
576	 * Transmitter interrupt service
577	 */
578	if (tse && tsr) {
579		/*
580		 * TODO:
581		 * Check the watermark threshold setting
582		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
583		 * Push the data to the hardware FIFO.
584		 * If there was nothing more to send in the tx_kfifo, disable
585		 *	the TSR IRQ and notify the v4l2_device.
586		 * If there was something in the tx_kfifo, check the tx_kfifo
587		 *      level and notify the v4l2_device, if it is low.
588		 */
589		/* For now, inhibit TSR interrupt until Tx is implemented */
590		irqenable_tx(dev, 0);
591		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
592		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
593		*handled = true;
594	}
595
596	/*
597	 * Receiver interrupt service
598	 */
599	kror = 0;
600	if ((rse && rsr) || (rte && rto)) {
601		/*
602		 * Receive data on RSR to clear the STATS_RSR.
603		 * Receive data on RTO, since we may not have yet hit the RSR
604		 * watermark when we receive the RTO.
605		 */
606		for (i = 0, v = FIFO_RX_NDV;
607		     (v & FIFO_RX_NDV) && !kror; i = 0) {
608			for (j = 0;
609			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
610				v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
611				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
612				i++;
613			}
614			if (i == 0)
615				break;
616			j = i * sizeof(union cx23888_ir_fifo_rec);
617			k = kfifo_in_locked(&state->rx_kfifo,
618				      (unsigned char *) rx_data, j,
619				      &state->rx_kfifo_lock);
620			if (k != j)
621				kror++; /* rx_kfifo over run */
622		}
623		*handled = true;
624	}
625
626	events = 0;
627	v = 0;
628	if (kror) {
629		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
630		v4l2_err(sd, "IR receiver software FIFO overrun\n");
631	}
632	if (roe && ror) {
633		/*
634		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
635		 * the Rx FIFO Over Run status (STATS_ROR)
636		 */
637		v |= CNTRL_RFE;
638		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
639		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
640	}
641	if (rte && rto) {
642		/*
643		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
644		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
645		 */
646		v |= CNTRL_RXE;
647		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
648	}
649	if (v) {
650		/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
651		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
652		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
653		*handled = true;
654	}
655
656	spin_lock_irqsave(&state->rx_kfifo_lock, flags);
657	if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
658		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
659	spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
660
661	if (events)
662		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
663	return 0;
664}
665
666/* Receiver */
667static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
668			      ssize_t *num)
669{
670	struct cx23888_ir_state *state = to_state(sd);
671	bool invert = (bool) atomic_read(&state->rx_invert);
672	u16 divider = (u16) atomic_read(&state->rxclk_divider);
673
674	unsigned int i, n;
675	union cx23888_ir_fifo_rec *p;
676	unsigned u, v;
677
678	n = count / sizeof(union cx23888_ir_fifo_rec)
679		* sizeof(union cx23888_ir_fifo_rec);
680	if (n == 0) {
681		*num = 0;
682		return 0;
683	}
684
685	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
686
687	n /= sizeof(union cx23888_ir_fifo_rec);
688	*num = n * sizeof(union cx23888_ir_fifo_rec);
689
690	for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
691
692		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
693			/* Assume RTO was because of no IR light input */
694			u = 0;
695			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
696		} else {
697			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
698			if (invert)
699				u = u ? 0 : 1;
700		}
701
702		v = (unsigned) pulse_width_count_to_ns(
703				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
704		if (v > IR_MAX_DURATION)
705			v = IR_MAX_DURATION;
706
707		p->ir_core_data.pulse = u;
708		p->ir_core_data.duration = v;
709
710		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s\n",
711			 v, u ? "mark" : "space");
712	}
713	return 0;
714}
715
716static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
717				      struct v4l2_subdev_ir_parameters *p)
718{
719	struct cx23888_ir_state *state = to_state(sd);
720	mutex_lock(&state->rx_params_lock);
721	memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
722	mutex_unlock(&state->rx_params_lock);
723	return 0;
724}
725
726static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
727{
728	struct cx23888_ir_state *state = to_state(sd);
729	struct cx23885_dev *dev = state->dev;
730
731	mutex_lock(&state->rx_params_lock);
732
733	/* Disable or slow down all IR Rx circuits and counters */
734	irqenable_rx(dev, 0);
735	control_rx_enable(dev, false);
736	control_rx_demodulation_enable(dev, false);
737	control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
738	filter_rx_s_min_width(dev, 0);
739	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
740
741	state->rx_params.shutdown = true;
742
743	mutex_unlock(&state->rx_params_lock);
744	return 0;
745}
746
747static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
748				      struct v4l2_subdev_ir_parameters *p)
749{
750	struct cx23888_ir_state *state = to_state(sd);
751	struct cx23885_dev *dev = state->dev;
752	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
753	u16 rxclk_divider;
754
755	if (p->shutdown)
756		return cx23888_ir_rx_shutdown(sd);
757
758	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
759		return -ENOSYS;
760
761	mutex_lock(&state->rx_params_lock);
762
763	o->shutdown = p->shutdown;
764
765	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
766
767	o->bytes_per_data_element = p->bytes_per_data_element
768				  = sizeof(union cx23888_ir_fifo_rec);
769
770	/* Before we tweak the hardware, we have to disable the receiver */
771	irqenable_rx(dev, 0);
772	control_rx_enable(dev, false);
773
774	control_rx_demodulation_enable(dev, p->modulation);
775	o->modulation = p->modulation;
776
777	if (p->modulation) {
778		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
779						     &rxclk_divider);
780
781		o->carrier_freq = p->carrier_freq;
782
783		o->duty_cycle = p->duty_cycle = 50;
784
785		control_rx_s_carrier_window(dev, p->carrier_freq,
786					    &p->carrier_range_lower,
787					    &p->carrier_range_upper);
788		o->carrier_range_lower = p->carrier_range_lower;
789		o->carrier_range_upper = p->carrier_range_upper;
790
791		p->max_pulse_width =
792			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
793	} else {
794		p->max_pulse_width =
795			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
796						       &rxclk_divider);
797	}
798	o->max_pulse_width = p->max_pulse_width;
799	atomic_set(&state->rxclk_divider, rxclk_divider);
800
801	p->noise_filter_min_width =
802			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
803	o->noise_filter_min_width = p->noise_filter_min_width;
804
805	p->resolution = clock_divider_to_resolution(rxclk_divider);
806	o->resolution = p->resolution;
807
808	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
809
810	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
811
812	o->invert_level = p->invert_level;
813	atomic_set(&state->rx_invert, p->invert_level);
814
815	o->interrupt_enable = p->interrupt_enable;
816	o->enable = p->enable;
817	if (p->enable) {
818		unsigned long flags;
819
820		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
821		kfifo_reset(&state->rx_kfifo);
822		/* reset tx_fifo too if there is one... */
823		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
824		if (p->interrupt_enable)
825			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
826		control_rx_enable(dev, p->enable);
827	}
828
829	mutex_unlock(&state->rx_params_lock);
830	return 0;
831}
832
833/* Transmitter */
834static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
835			       ssize_t *num)
836{
837	struct cx23888_ir_state *state = to_state(sd);
838	struct cx23885_dev *dev = state->dev;
839	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
840	irqenable_tx(dev, IRQEN_TSE);
841	*num = count;
842	return 0;
843}
844
845static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
846				      struct v4l2_subdev_ir_parameters *p)
847{
848	struct cx23888_ir_state *state = to_state(sd);
849	mutex_lock(&state->tx_params_lock);
850	memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
851	mutex_unlock(&state->tx_params_lock);
852	return 0;
853}
854
855static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
856{
857	struct cx23888_ir_state *state = to_state(sd);
858	struct cx23885_dev *dev = state->dev;
859
860	mutex_lock(&state->tx_params_lock);
861
862	/* Disable or slow down all IR Tx circuits and counters */
863	irqenable_tx(dev, 0);
864	control_tx_enable(dev, false);
865	control_tx_modulation_enable(dev, false);
866	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
867
868	state->tx_params.shutdown = true;
869
870	mutex_unlock(&state->tx_params_lock);
871	return 0;
872}
873
874static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
875				      struct v4l2_subdev_ir_parameters *p)
876{
877	struct cx23888_ir_state *state = to_state(sd);
878	struct cx23885_dev *dev = state->dev;
879	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
880	u16 txclk_divider;
881
882	if (p->shutdown)
883		return cx23888_ir_tx_shutdown(sd);
884
885	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
886		return -ENOSYS;
887
888	mutex_lock(&state->tx_params_lock);
889
890	o->shutdown = p->shutdown;
891
892	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
893
894	o->bytes_per_data_element = p->bytes_per_data_element
895				  = sizeof(union cx23888_ir_fifo_rec);
896
897	/* Before we tweak the hardware, we have to disable the transmitter */
898	irqenable_tx(dev, 0);
899	control_tx_enable(dev, false);
900
901	control_tx_modulation_enable(dev, p->modulation);
902	o->modulation = p->modulation;
903
904	if (p->modulation) {
905		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
906						     &txclk_divider);
907		o->carrier_freq = p->carrier_freq;
908
909		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
910		o->duty_cycle = p->duty_cycle;
911
912		p->max_pulse_width =
913			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
914	} else {
915		p->max_pulse_width =
916			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
917						       &txclk_divider);
918	}
919	o->max_pulse_width = p->max_pulse_width;
920	atomic_set(&state->txclk_divider, txclk_divider);
921
922	p->resolution = clock_divider_to_resolution(txclk_divider);
923	o->resolution = p->resolution;
924
925	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
926
927	control_tx_polarity_invert(dev, p->invert_carrier_sense);
928	o->invert_carrier_sense = p->invert_carrier_sense;
929
930	control_tx_level_invert(dev, p->invert_level);
931	o->invert_level = p->invert_level;
932
933	o->interrupt_enable = p->interrupt_enable;
934	o->enable = p->enable;
935	if (p->enable) {
936		if (p->interrupt_enable)
937			irqenable_tx(dev, IRQEN_TSE);
938		control_tx_enable(dev, p->enable);
939	}
940
941	mutex_unlock(&state->tx_params_lock);
942	return 0;
943}
944
945
946/*
947 * V4L2 Subdevice Core Ops
948 */
949static int cx23888_ir_log_status(struct v4l2_subdev *sd)
950{
951	struct cx23888_ir_state *state = to_state(sd);
952	struct cx23885_dev *dev = state->dev;
953	char *s;
954	int i, j;
955
956	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
957	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
958	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
959	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
960	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
961	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
962	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
963
964	v4l2_info(sd, "IR Receiver:\n");
965	v4l2_info(sd, "\tEnabled:                           %s\n",
966		  cntrl & CNTRL_RXE ? "yes" : "no");
967	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
968		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
969	v4l2_info(sd, "\tFIFO:                              %s\n",
970		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
971	switch (cntrl & CNTRL_EDG) {
972	case CNTRL_EDG_NONE:
973		s = "disabled";
974		break;
975	case CNTRL_EDG_FALL:
976		s = "falling edge";
977		break;
978	case CNTRL_EDG_RISE:
979		s = "rising edge";
980		break;
981	case CNTRL_EDG_BOTH:
982		s = "rising & falling edges";
983		break;
984	default:
985		s = "??? edge";
986		break;
987	}
988	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
989	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
990		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
991	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
992		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
993	v4l2_info(sd, "\tLoopback mode:                     %s\n",
994		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
995	if (cntrl & CNTRL_DMD) {
996		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
997			  clock_divider_to_carrier_freq(rxclk));
998		switch (cntrl & CNTRL_WIN) {
999		case CNTRL_WIN_3_3:
1000			i = 3;
1001			j = 3;
1002			break;
1003		case CNTRL_WIN_4_3:
1004			i = 4;
1005			j = 3;
1006			break;
1007		case CNTRL_WIN_3_4:
1008			i = 3;
1009			j = 4;
1010			break;
1011		case CNTRL_WIN_4_4:
1012			i = 4;
1013			j = 4;
1014			break;
1015		default:
1016			i = 0;
1017			j = 0;
1018			break;
1019		}
1020		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1021			  "-%1d/+%1d, %u to %u Hz\n", i, j,
1022			  clock_divider_to_freq(rxclk, 16 + j),
1023			  clock_divider_to_freq(rxclk, 16 - i));
1024	}
1025	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1026		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1027		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1028	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1029		  filtr ? "enabled" : "disabled");
1030	if (filtr)
1031		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1032			  "%u ns\n",
1033			  lpf_count_to_us(filtr),
1034			  lpf_count_to_ns(filtr));
1035	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1036		  stats & STATS_RTO ? "yes" : "no");
1037	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1038		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1039	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1040		  stats & STATS_ROR ? "yes" : "no");
1041	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1042		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1043	v4l2_info(sd, "\tBusy:                              %s\n",
1044		  stats & STATS_RBY ? "yes" : "no");
1045	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1046		  stats & STATS_RSR ? "yes" : "no");
1047	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1048		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1049
1050	v4l2_info(sd, "IR Transmitter:\n");
1051	v4l2_info(sd, "\tEnabled:                           %s\n",
1052		  cntrl & CNTRL_TXE ? "yes" : "no");
1053	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1054		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1055	v4l2_info(sd, "\tFIFO:                              %s\n",
1056		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1057	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1058		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1059	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1060		  cntrl & CNTRL_IVO ? "yes" : "no");
1061	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1062		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1063				    : "space:noburst mark:burst");
1064	if (cntrl & CNTRL_MOD) {
1065		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1066			  clock_divider_to_carrier_freq(txclk));
1067		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1068			  cduty + 1);
1069	}
1070	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1071		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1072		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1073	v4l2_info(sd, "\tBusy:                              %s\n",
1074		  stats & STATS_TBY ? "yes" : "no");
1075	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1076		  stats & STATS_TSR ? "yes" : "no");
1077	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1078		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1079
1080	return 0;
1081}
1082
1083static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1084{
1085	return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1086}
1087
1088static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1089				   struct v4l2_dbg_chip_ident *chip)
1090{
1091	struct cx23888_ir_state *state = to_state(sd);
1092
1093	if (cx23888_ir_dbg_match(&chip->match)) {
1094		chip->ident = state->id;
1095		chip->revision = state->rev;
1096	}
1097	return 0;
1098}
1099
1100#ifdef CONFIG_VIDEO_ADV_DEBUG
1101static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1102				 struct v4l2_dbg_register *reg)
1103{
1104	struct cx23888_ir_state *state = to_state(sd);
1105	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1106
1107	if (!cx23888_ir_dbg_match(&reg->match))
1108		return -EINVAL;
1109	if ((addr & 0x3) != 0)
1110		return -EINVAL;
1111	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1112		return -EINVAL;
1113	if (!capable(CAP_SYS_ADMIN))
1114		return -EPERM;
1115	reg->size = 4;
1116	reg->val = cx23888_ir_read4(state->dev, addr);
1117	return 0;
1118}
1119
1120static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1121				 struct v4l2_dbg_register *reg)
1122{
1123	struct cx23888_ir_state *state = to_state(sd);
1124	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1125
1126	if (!cx23888_ir_dbg_match(&reg->match))
1127		return -EINVAL;
1128	if ((addr & 0x3) != 0)
1129		return -EINVAL;
1130	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1131		return -EINVAL;
1132	if (!capable(CAP_SYS_ADMIN))
1133		return -EPERM;
1134	cx23888_ir_write4(state->dev, addr, reg->val);
1135	return 0;
1136}
1137#endif
1138
1139static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1140	.g_chip_ident = cx23888_ir_g_chip_ident,
1141	.log_status = cx23888_ir_log_status,
1142#ifdef CONFIG_VIDEO_ADV_DEBUG
1143	.g_register = cx23888_ir_g_register,
1144	.s_register = cx23888_ir_s_register,
1145#endif
1146	.interrupt_service_routine = cx23888_ir_irq_handler,
1147};
1148
1149static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1150	.rx_read = cx23888_ir_rx_read,
1151	.rx_g_parameters = cx23888_ir_rx_g_parameters,
1152	.rx_s_parameters = cx23888_ir_rx_s_parameters,
1153
1154	.tx_write = cx23888_ir_tx_write,
1155	.tx_g_parameters = cx23888_ir_tx_g_parameters,
1156	.tx_s_parameters = cx23888_ir_tx_s_parameters,
1157};
1158
1159static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1160	.core = &cx23888_ir_core_ops,
1161	.ir = &cx23888_ir_ir_ops,
1162};
1163
1164static const struct v4l2_subdev_ir_parameters default_rx_params = {
1165	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1166	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1167
1168	.enable = false,
1169	.interrupt_enable = false,
1170	.shutdown = true,
1171
1172	.modulation = true,
1173	.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1174
1175	/* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1176	/* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1177	.noise_filter_min_width = 333333, /* ns */
1178	.carrier_range_lower = 35000,
1179	.carrier_range_upper = 37000,
1180	.invert_level = false,
1181};
1182
1183static const struct v4l2_subdev_ir_parameters default_tx_params = {
1184	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1185	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1186
1187	.enable = false,
1188	.interrupt_enable = false,
1189	.shutdown = true,
1190
1191	.modulation = true,
1192	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1193	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1194	.invert_level = false,
1195	.invert_carrier_sense = false,
1196};
1197
1198int cx23888_ir_probe(struct cx23885_dev *dev)
1199{
1200	struct cx23888_ir_state *state;
1201	struct v4l2_subdev *sd;
1202	struct v4l2_subdev_ir_parameters default_params;
1203	int ret;
1204
1205	state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1206	if (state == NULL)
1207		return -ENOMEM;
1208
1209	spin_lock_init(&state->rx_kfifo_lock);
1210	if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1211		return -ENOMEM;
1212
1213	state->dev = dev;
1214	state->id = V4L2_IDENT_CX23888_IR;
1215	state->rev = 0;
1216	sd = &state->sd;
1217
1218	v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1219	v4l2_set_subdevdata(sd, state);
1220	snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1221	sd->grp_id = CX23885_HW_888_IR;
1222
1223	ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1224	if (ret == 0) {
1225		/*
1226		 * Ensure no interrupts arrive from '888 specific conditions,
1227		 * since we ignore them in this driver to have commonality with
1228		 * similar IR controller cores.
1229		 */
1230		cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1231
1232		mutex_init(&state->rx_params_lock);
1233		memcpy(&default_params, &default_rx_params,
1234		       sizeof(struct v4l2_subdev_ir_parameters));
1235		v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1236
1237		mutex_init(&state->tx_params_lock);
1238		memcpy(&default_params, &default_tx_params,
1239		       sizeof(struct v4l2_subdev_ir_parameters));
1240		v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1241	} else {
1242		kfifo_free(&state->rx_kfifo);
1243	}
1244	return ret;
1245}
1246
1247int cx23888_ir_remove(struct cx23885_dev *dev)
1248{
1249	struct v4l2_subdev *sd;
1250	struct cx23888_ir_state *state;
1251
1252	sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1253	if (sd == NULL)
1254		return -ENODEV;
1255
1256	cx23888_ir_rx_shutdown(sd);
1257	cx23888_ir_tx_shutdown(sd);
1258
1259	state = to_state(sd);
1260	v4l2_device_unregister_subdev(sd);
1261	kfifo_free(&state->rx_kfifo);
1262	kfree(state);
1263	/* Nothing more to free() as state held the actual v4l2_subdev object */
1264	return 0;
1265}
1266