• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/macintosh/
1
2
3#include <linux/types.h>
4#include <linux/module.h>
5#include <linux/errno.h>
6#include <linux/kernel.h>
7#include <linux/delay.h>
8#include <linux/sched.h>
9#include <linux/init.h>
10#include <linux/spinlock.h>
11#include <linux/wait.h>
12#include <linux/reboot.h>
13#include <linux/kmod.h>
14#include <linux/i2c.h>
15#include <linux/kthread.h>
16#include <linux/mutex.h>
17#include <linux/of_device.h>
18#include <linux/of_platform.h>
19#include <asm/prom.h>
20#include <asm/machdep.h>
21#include <asm/io.h>
22#include <asm/system.h>
23#include <asm/sections.h>
24#include <asm/macio.h>
25
26#include "therm_pm72.h"
27
28#define VERSION "1.3"
29
30#undef DEBUG
31
32#ifdef DEBUG
33#define DBG(args...)	printk(args)
34#else
35#define DBG(args...)	do { } while(0)
36#endif
37
38
39/*
40 * Driver statics
41 */
42
43static struct platform_device *		of_dev;
44static struct i2c_adapter *		u3_0;
45static struct i2c_adapter *		u3_1;
46static struct i2c_adapter *		k2;
47static struct i2c_client *		fcu;
48static struct cpu_pid_state		cpu_state[2];
49static struct basckside_pid_params	backside_params;
50static struct backside_pid_state	backside_state;
51static struct drives_pid_state		drives_state;
52static struct dimm_pid_state		dimms_state;
53static struct slots_pid_state		slots_state;
54static int				state;
55static int				cpu_count;
56static int				cpu_pid_type;
57static struct task_struct		*ctrl_task;
58static struct completion		ctrl_complete;
59static int				critical_state;
60static int				rackmac;
61static s32				dimm_output_clamp;
62static int 				fcu_rpm_shift;
63static int				fcu_tickle_ticks;
64static DEFINE_MUTEX(driver_lock);
65
66/*
67 * We have 3 types of CPU PID control. One is "split" old style control
68 * for intake & exhaust fans, the other is "combined" control for both
69 * CPUs that also deals with the pumps when present. To be "compatible"
70 * with OS X at this point, we only use "COMBINED" on the machines that
71 * are identified as having the pumps (though that identification is at
72 * least dodgy). Ultimately, we could probably switch completely to this
73 * algorithm provided we hack it to deal with the UP case
74 */
75#define CPU_PID_TYPE_SPLIT	0
76#define CPU_PID_TYPE_COMBINED	1
77#define CPU_PID_TYPE_RACKMAC	2
78
79/*
80 * This table describes all fans in the FCU. The "id" and "type" values
81 * are defaults valid for all earlier machines. Newer machines will
82 * eventually override the table content based on the device-tree
83 */
84struct fcu_fan_table
85{
86	char*	loc;	/* location code */
87	int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */
88	int	id;	/* id or -1 */
89};
90
91#define FCU_FAN_RPM		0
92#define FCU_FAN_PWM		1
93
94#define FCU_FAN_ABSENT_ID	-1
95
96#define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans)
97
98struct fcu_fan_table	fcu_fans[] = {
99	[BACKSIDE_FAN_PWM_INDEX] = {
100		.loc	= "BACKSIDE,SYS CTRLR FAN",
101		.type	= FCU_FAN_PWM,
102		.id	= BACKSIDE_FAN_PWM_DEFAULT_ID,
103	},
104	[DRIVES_FAN_RPM_INDEX] = {
105		.loc	= "DRIVE BAY",
106		.type	= FCU_FAN_RPM,
107		.id	= DRIVES_FAN_RPM_DEFAULT_ID,
108	},
109	[SLOTS_FAN_PWM_INDEX] = {
110		.loc	= "SLOT,PCI FAN",
111		.type	= FCU_FAN_PWM,
112		.id	= SLOTS_FAN_PWM_DEFAULT_ID,
113	},
114	[CPUA_INTAKE_FAN_RPM_INDEX] = {
115		.loc	= "CPU A INTAKE",
116		.type	= FCU_FAN_RPM,
117		.id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
118	},
119	[CPUA_EXHAUST_FAN_RPM_INDEX] = {
120		.loc	= "CPU A EXHAUST",
121		.type	= FCU_FAN_RPM,
122		.id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
123	},
124	[CPUB_INTAKE_FAN_RPM_INDEX] = {
125		.loc	= "CPU B INTAKE",
126		.type	= FCU_FAN_RPM,
127		.id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
128	},
129	[CPUB_EXHAUST_FAN_RPM_INDEX] = {
130		.loc	= "CPU B EXHAUST",
131		.type	= FCU_FAN_RPM,
132		.id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
133	},
134	/* pumps aren't present by default, have to be looked up in the
135	 * device-tree
136	 */
137	[CPUA_PUMP_RPM_INDEX] = {
138		.loc	= "CPU A PUMP",
139		.type	= FCU_FAN_RPM,
140		.id	= FCU_FAN_ABSENT_ID,
141	},
142	[CPUB_PUMP_RPM_INDEX] = {
143		.loc	= "CPU B PUMP",
144		.type	= FCU_FAN_RPM,
145		.id	= FCU_FAN_ABSENT_ID,
146	},
147	/* Xserve fans */
148	[CPU_A1_FAN_RPM_INDEX] = {
149		.loc	= "CPU A 1",
150		.type	= FCU_FAN_RPM,
151		.id	= FCU_FAN_ABSENT_ID,
152	},
153	[CPU_A2_FAN_RPM_INDEX] = {
154		.loc	= "CPU A 2",
155		.type	= FCU_FAN_RPM,
156		.id	= FCU_FAN_ABSENT_ID,
157	},
158	[CPU_A3_FAN_RPM_INDEX] = {
159		.loc	= "CPU A 3",
160		.type	= FCU_FAN_RPM,
161		.id	= FCU_FAN_ABSENT_ID,
162	},
163	[CPU_B1_FAN_RPM_INDEX] = {
164		.loc	= "CPU B 1",
165		.type	= FCU_FAN_RPM,
166		.id	= FCU_FAN_ABSENT_ID,
167	},
168	[CPU_B2_FAN_RPM_INDEX] = {
169		.loc	= "CPU B 2",
170		.type	= FCU_FAN_RPM,
171		.id	= FCU_FAN_ABSENT_ID,
172	},
173	[CPU_B3_FAN_RPM_INDEX] = {
174		.loc	= "CPU B 3",
175		.type	= FCU_FAN_RPM,
176		.id	= FCU_FAN_ABSENT_ID,
177	},
178};
179
180static struct i2c_driver therm_pm72_driver;
181
182/*
183 * Utility function to create an i2c_client structure and
184 * attach it to one of u3 adapters
185 */
186static struct i2c_client *attach_i2c_chip(int id, const char *name)
187{
188	struct i2c_client *clt;
189	struct i2c_adapter *adap;
190	struct i2c_board_info info;
191
192	if (id & 0x200)
193		adap = k2;
194	else if (id & 0x100)
195		adap = u3_1;
196	else
197		adap = u3_0;
198	if (adap == NULL)
199		return NULL;
200
201	memset(&info, 0, sizeof(struct i2c_board_info));
202	info.addr = (id >> 1) & 0x7f;
203	strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
204	clt = i2c_new_device(adap, &info);
205	if (!clt) {
206		printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
207		return NULL;
208	}
209
210	/*
211	 * Let i2c-core delete that device on driver removal.
212	 * This is safe because i2c-core holds the core_lock mutex for us.
213	 */
214	list_add_tail(&clt->detected, &therm_pm72_driver.clients);
215	return clt;
216}
217
218/*
219 * Here are the i2c chip access wrappers
220 */
221
222static void initialize_adc(struct cpu_pid_state *state)
223{
224	int rc;
225	u8 buf[2];
226
227	/* Read ADC the configuration register and cache it. We
228	 * also make sure Config2 contains proper values, I've seen
229	 * cases where we got stale grabage in there, thus preventing
230	 * proper reading of conv. values
231	 */
232
233	/* Clear Config2 */
234	buf[0] = 5;
235	buf[1] = 0;
236	i2c_master_send(state->monitor, buf, 2);
237
238	/* Read & cache Config1 */
239	buf[0] = 1;
240	rc = i2c_master_send(state->monitor, buf, 1);
241	if (rc > 0) {
242		rc = i2c_master_recv(state->monitor, buf, 1);
243		if (rc > 0) {
244			state->adc_config = buf[0];
245			DBG("ADC config reg: %02x\n", state->adc_config);
246			/* Disable shutdown mode */
247		       	state->adc_config &= 0xfe;
248			buf[0] = 1;
249			buf[1] = state->adc_config;
250			rc = i2c_master_send(state->monitor, buf, 2);
251		}
252	}
253	if (rc <= 0)
254		printk(KERN_ERR "therm_pm72: Error reading ADC config"
255		       " register !\n");
256}
257
258static int read_smon_adc(struct cpu_pid_state *state, int chan)
259{
260	int rc, data, tries = 0;
261	u8 buf[2];
262
263	for (;;) {
264		/* Set channel */
265		buf[0] = 1;
266		buf[1] = (state->adc_config & 0x1f) | (chan << 5);
267		rc = i2c_master_send(state->monitor, buf, 2);
268		if (rc <= 0)
269			goto error;
270		/* Wait for convertion */
271		msleep(1);
272		/* Switch to data register */
273		buf[0] = 4;
274		rc = i2c_master_send(state->monitor, buf, 1);
275		if (rc <= 0)
276			goto error;
277		/* Read result */
278		rc = i2c_master_recv(state->monitor, buf, 2);
279		if (rc < 0)
280			goto error;
281		data = ((u16)buf[0]) << 8 | (u16)buf[1];
282		return data >> 6;
283	error:
284		DBG("Error reading ADC, retrying...\n");
285		if (++tries > 10) {
286			printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
287			return -1;
288		}
289		msleep(10);
290	}
291}
292
293static int read_lm87_reg(struct i2c_client * chip, int reg)
294{
295	int rc, tries = 0;
296	u8 buf;
297
298	for (;;) {
299		/* Set address */
300		buf = (u8)reg;
301		rc = i2c_master_send(chip, &buf, 1);
302		if (rc <= 0)
303			goto error;
304		rc = i2c_master_recv(chip, &buf, 1);
305		if (rc <= 0)
306			goto error;
307		return (int)buf;
308	error:
309		DBG("Error reading LM87, retrying...\n");
310		if (++tries > 10) {
311			printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
312			return -1;
313		}
314		msleep(10);
315	}
316}
317
318static int fan_read_reg(int reg, unsigned char *buf, int nb)
319{
320	int tries, nr, nw;
321
322	buf[0] = reg;
323	tries = 0;
324	for (;;) {
325		nw = i2c_master_send(fcu, buf, 1);
326		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
327			break;
328		msleep(10);
329		++tries;
330	}
331	if (nw <= 0) {
332		printk(KERN_ERR "Failure writing address to FCU: %d", nw);
333		return -EIO;
334	}
335	tries = 0;
336	for (;;) {
337		nr = i2c_master_recv(fcu, buf, nb);
338		if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
339			break;
340		msleep(10);
341		++tries;
342	}
343	if (nr <= 0)
344		printk(KERN_ERR "Failure reading data from FCU: %d", nw);
345	return nr;
346}
347
348static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
349{
350	int tries, nw;
351	unsigned char buf[16];
352
353	buf[0] = reg;
354	memcpy(buf+1, ptr, nb);
355	++nb;
356	tries = 0;
357	for (;;) {
358		nw = i2c_master_send(fcu, buf, nb);
359		if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
360			break;
361		msleep(10);
362		++tries;
363	}
364	if (nw < 0)
365		printk(KERN_ERR "Failure writing to FCU: %d", nw);
366	return nw;
367}
368
369static int start_fcu(void)
370{
371	unsigned char buf = 0xff;
372	int rc;
373
374	rc = fan_write_reg(0xe, &buf, 1);
375	if (rc < 0)
376		return -EIO;
377	rc = fan_write_reg(0x2e, &buf, 1);
378	if (rc < 0)
379		return -EIO;
380	rc = fan_read_reg(0, &buf, 1);
381	if (rc < 0)
382		return -EIO;
383	fcu_rpm_shift = (buf == 1) ? 2 : 3;
384	printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
385	       fcu_rpm_shift);
386
387	return 0;
388}
389
390static int set_rpm_fan(int fan_index, int rpm)
391{
392	unsigned char buf[2];
393	int rc, id, min, max;
394
395	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
396		return -EINVAL;
397	id = fcu_fans[fan_index].id;
398	if (id == FCU_FAN_ABSENT_ID)
399		return -EINVAL;
400
401	min = 2400 >> fcu_rpm_shift;
402	max = 56000 >> fcu_rpm_shift;
403
404	if (rpm < min)
405		rpm = min;
406	else if (rpm > max)
407		rpm = max;
408	buf[0] = rpm >> (8 - fcu_rpm_shift);
409	buf[1] = rpm << fcu_rpm_shift;
410	rc = fan_write_reg(0x10 + (id * 2), buf, 2);
411	if (rc < 0)
412		return -EIO;
413	return 0;
414}
415
416static int get_rpm_fan(int fan_index, int programmed)
417{
418	unsigned char failure;
419	unsigned char active;
420	unsigned char buf[2];
421	int rc, id, reg_base;
422
423	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
424		return -EINVAL;
425	id = fcu_fans[fan_index].id;
426	if (id == FCU_FAN_ABSENT_ID)
427		return -EINVAL;
428
429	rc = fan_read_reg(0xb, &failure, 1);
430	if (rc != 1)
431		return -EIO;
432	if ((failure & (1 << id)) != 0)
433		return -EFAULT;
434	rc = fan_read_reg(0xd, &active, 1);
435	if (rc != 1)
436		return -EIO;
437	if ((active & (1 << id)) == 0)
438		return -ENXIO;
439
440	/* Programmed value or real current speed */
441	reg_base = programmed ? 0x10 : 0x11;
442	rc = fan_read_reg(reg_base + (id * 2), buf, 2);
443	if (rc != 2)
444		return -EIO;
445
446	return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
447}
448
449static int set_pwm_fan(int fan_index, int pwm)
450{
451	unsigned char buf[2];
452	int rc, id;
453
454	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
455		return -EINVAL;
456	id = fcu_fans[fan_index].id;
457	if (id == FCU_FAN_ABSENT_ID)
458		return -EINVAL;
459
460	if (pwm < 10)
461		pwm = 10;
462	else if (pwm > 100)
463		pwm = 100;
464	pwm = (pwm * 2559) / 1000;
465	buf[0] = pwm;
466	rc = fan_write_reg(0x30 + (id * 2), buf, 1);
467	if (rc < 0)
468		return rc;
469	return 0;
470}
471
472static int get_pwm_fan(int fan_index)
473{
474	unsigned char failure;
475	unsigned char active;
476	unsigned char buf[2];
477	int rc, id;
478
479	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
480		return -EINVAL;
481	id = fcu_fans[fan_index].id;
482	if (id == FCU_FAN_ABSENT_ID)
483		return -EINVAL;
484
485	rc = fan_read_reg(0x2b, &failure, 1);
486	if (rc != 1)
487		return -EIO;
488	if ((failure & (1 << id)) != 0)
489		return -EFAULT;
490	rc = fan_read_reg(0x2d, &active, 1);
491	if (rc != 1)
492		return -EIO;
493	if ((active & (1 << id)) == 0)
494		return -ENXIO;
495
496	/* Programmed value or real current speed */
497	rc = fan_read_reg(0x30 + (id * 2), buf, 1);
498	if (rc != 1)
499		return -EIO;
500
501	return (buf[0] * 1000) / 2559;
502}
503
504static void tickle_fcu(void)
505{
506	int pwm;
507
508	pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
509
510	DBG("FCU Tickle, slots fan is: %d\n", pwm);
511	if (pwm < 0)
512		pwm = 100;
513
514	if (!rackmac) {
515		pwm = SLOTS_FAN_DEFAULT_PWM;
516	} else if (pwm < SLOTS_PID_OUTPUT_MIN)
517		pwm = SLOTS_PID_OUTPUT_MIN;
518
519	/* That is hopefully enough to make the FCU happy */
520	set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
521}
522
523
524/*
525 * Utility routine to read the CPU calibration EEPROM data
526 * from the device-tree
527 */
528static int read_eeprom(int cpu, struct mpu_data *out)
529{
530	struct device_node *np;
531	char nodename[64];
532	const u8 *data;
533	int len;
534
535	sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
536	np = of_find_node_by_path(nodename);
537	if (np == NULL) {
538		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
539		return -ENODEV;
540	}
541	data = of_get_property(np, "cpuid", &len);
542	if (data == NULL) {
543		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
544		of_node_put(np);
545		return -ENODEV;
546	}
547	memcpy(out, data, sizeof(struct mpu_data));
548	of_node_put(np);
549
550	return 0;
551}
552
553static void fetch_cpu_pumps_minmax(void)
554{
555	struct cpu_pid_state *state0 = &cpu_state[0];
556	struct cpu_pid_state *state1 = &cpu_state[1];
557	u16 pump_min = 0, pump_max = 0xffff;
558	u16 tmp[4];
559
560	/* Try to fetch pumps min/max infos from eeprom */
561
562	memcpy(&tmp, &state0->mpu.processor_part_num, 8);
563	if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
564		pump_min = max(pump_min, tmp[0]);
565		pump_max = min(pump_max, tmp[1]);
566	}
567	if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
568		pump_min = max(pump_min, tmp[2]);
569		pump_max = min(pump_max, tmp[3]);
570	}
571
572	/* Double check the values, this _IS_ needed as the EEPROM on
573	 * some dual 2.5Ghz G5s seem, at least, to have both min & max
574	 * same to the same value ... (grrrr)
575	 */
576	if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
577		pump_min = CPU_PUMP_OUTPUT_MIN;
578		pump_max = CPU_PUMP_OUTPUT_MAX;
579	}
580
581	state0->pump_min = state1->pump_min = pump_min;
582	state0->pump_max = state1->pump_max = pump_max;
583}
584
585/*
586 * Now, unfortunately, sysfs doesn't give us a nice void * we could
587 * pass around to the attribute functions, so we don't really have
588 * choice but implement a bunch of them...
589 *
590 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
591 * the input twice... I accept patches :)
592 */
593#define BUILD_SHOW_FUNC_FIX(name, data)				\
594static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
595{								\
596	ssize_t r;						\
597	mutex_lock(&driver_lock);					\
598	r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\
599	mutex_unlock(&driver_lock);					\
600	return r;						\
601}
602#define BUILD_SHOW_FUNC_INT(name, data)				\
603static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
604{								\
605	return sprintf(buf, "%d", data);			\
606}
607
608BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
609BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
610BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
611BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
612BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
613
614BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
615BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
616BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
617BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
618BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
619
620BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
621BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
622
623BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
624BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
625
626BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
627BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
628
629BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
630
631static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
632static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
633static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
634static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
635static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
636
637static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
638static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
639static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
640static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
641static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
642
643static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
644static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
645
646static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
647static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
648
649static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
650static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
651
652static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
653
654/*
655 * CPUs fans control loop
656 */
657
658static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
659{
660	s32 ltemp, volts, amps;
661	int index, rc = 0;
662
663	/* Default (in case of error) */
664	*temp = state->cur_temp;
665	*power = state->cur_power;
666
667	if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
668		index = (state->index == 0) ?
669			CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
670	else
671		index = (state->index == 0) ?
672			CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
673
674	/* Read current fan status */
675	rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
676	if (rc < 0) {
677		DBG("  cpu %d, fan reading error !\n", state->index);
678	} else {
679		state->rpm = rc;
680		DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
681	}
682
683	/* Get some sensor readings and scale it */
684	ltemp = read_smon_adc(state, 1);
685	if (ltemp == -1) {
686		state->overtemp++;
687		if (rc == 0)
688			rc = -EIO;
689		DBG("  cpu %d, temp reading error !\n", state->index);
690	} else {
691		/* Fixup temperature according to diode calibration
692		 */
693		DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
694		    state->index,
695		    ltemp, state->mpu.mdiode, state->mpu.bdiode);
696		*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
697		state->last_temp = *temp;
698		DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
699	}
700
701	/*
702	 * Read voltage & current and calculate power
703	 */
704	volts = read_smon_adc(state, 3);
705	amps = read_smon_adc(state, 4);
706
707	/* Scale voltage and current raw sensor values according to fixed scales
708	 * obtained in Darwin and calculate power from I and V
709	 */
710	volts *= ADC_CPU_VOLTAGE_SCALE;
711	amps *= ADC_CPU_CURRENT_SCALE;
712	*power = (((u64)volts) * ((u64)amps)) >> 16;
713	state->voltage = volts;
714	state->current_a = amps;
715	state->last_power = *power;
716
717	DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
718	    state->index, FIX32TOPRINT(state->current_a),
719	    FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
720
721	return 0;
722}
723
724static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
725{
726	s32 power_target, integral, derivative, proportional, adj_in_target, sval;
727	s64 integ_p, deriv_p, prop_p, sum;
728	int i;
729
730	/* Calculate power target value (could be done once for all)
731	 * and convert to a 16.16 fp number
732	 */
733	power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
734	DBG("  power target: %d.%03d, error: %d.%03d\n",
735	    FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
736
737	/* Store temperature and power in history array */
738	state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
739	state->temp_history[state->cur_temp] = temp;
740	state->cur_power = (state->cur_power + 1) % state->count_power;
741	state->power_history[state->cur_power] = power;
742	state->error_history[state->cur_power] = power_target - power;
743
744	/* If first loop, fill the history table */
745	if (state->first) {
746		for (i = 0; i < (state->count_power - 1); i++) {
747			state->cur_power = (state->cur_power + 1) % state->count_power;
748			state->power_history[state->cur_power] = power;
749			state->error_history[state->cur_power] = power_target - power;
750		}
751		for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
752			state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
753			state->temp_history[state->cur_temp] = temp;
754		}
755		state->first = 0;
756	}
757
758	/* Calculate the integral term normally based on the "power" values */
759	sum = 0;
760	integral = 0;
761	for (i = 0; i < state->count_power; i++)
762		integral += state->error_history[i];
763	integral *= CPU_PID_INTERVAL;
764	DBG("  integral: %08x\n", integral);
765
766	/* Calculate the adjusted input (sense value).
767	 *   G_r is 12.20
768	 *   integ is 16.16
769	 *   so the result is 28.36
770	 *
771	 * input target is mpu.ttarget, input max is mpu.tmax
772	 */
773	integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
774	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
775	sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
776	adj_in_target = (state->mpu.ttarget << 16);
777	if (adj_in_target > sval)
778		adj_in_target = sval;
779	DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
780	    state->mpu.ttarget);
781
782	/* Calculate the derivative term */
783	derivative = state->temp_history[state->cur_temp] -
784		state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
785				    % CPU_TEMP_HISTORY_SIZE];
786	derivative /= CPU_PID_INTERVAL;
787	deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
788	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
789	sum += deriv_p;
790
791	/* Calculate the proportional term */
792	proportional = temp - adj_in_target;
793	prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
794	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
795	sum += prop_p;
796
797	/* Scale sum */
798	sum >>= 36;
799
800	DBG("   sum: %d\n", (int)sum);
801	state->rpm += (s32)sum;
802}
803
804static void do_monitor_cpu_combined(void)
805{
806	struct cpu_pid_state *state0 = &cpu_state[0];
807	struct cpu_pid_state *state1 = &cpu_state[1];
808	s32 temp0, power0, temp1, power1;
809	s32 temp_combi, power_combi;
810	int rc, intake, pump;
811
812	rc = do_read_one_cpu_values(state0, &temp0, &power0);
813	if (rc < 0) {
814	}
815	state1->overtemp = 0;
816	rc = do_read_one_cpu_values(state1, &temp1, &power1);
817	if (rc < 0) {
818	}
819	if (state1->overtemp)
820		state0->overtemp++;
821
822	temp_combi = max(temp0, temp1);
823	power_combi = max(power0, power1);
824
825	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
826	 * full blown immediately and try to trigger a shutdown
827	 */
828	if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
829		printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
830		       temp_combi >> 16);
831		state0->overtemp += CPU_MAX_OVERTEMP / 4;
832	} else if (temp_combi > (state0->mpu.tmax << 16)) {
833		state0->overtemp++;
834		printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
835		       temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
836	} else {
837		if (state0->overtemp)
838			printk(KERN_WARNING "Temperature back down to %d\n",
839			       temp_combi >> 16);
840		state0->overtemp = 0;
841	}
842	if (state0->overtemp >= CPU_MAX_OVERTEMP)
843		critical_state = 1;
844	if (state0->overtemp > 0) {
845		state0->rpm = state0->mpu.rmaxn_exhaust_fan;
846		state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
847		pump = state0->pump_max;
848		goto do_set_fans;
849	}
850
851	/* Do the PID */
852	do_cpu_pid(state0, temp_combi, power_combi);
853
854	/* Range check */
855	state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
856	state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
857
858	/* Calculate intake fan speed */
859	intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
860	intake = max(intake, (int)state0->mpu.rminn_intake_fan);
861	intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
862	state0->intake_rpm = intake;
863
864	/* Calculate pump speed */
865	pump = (state0->rpm * state0->pump_max) /
866		state0->mpu.rmaxn_exhaust_fan;
867	pump = min(pump, state0->pump_max);
868	pump = max(pump, state0->pump_min);
869
870 do_set_fans:
871	/* We copy values from state 0 to state 1 for /sysfs */
872	state1->rpm = state0->rpm;
873	state1->intake_rpm = state0->intake_rpm;
874
875	DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
876	    state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
877
878	/* We should check for errors, shouldn't we ? But then, what
879	 * do we do once the error occurs ? For FCU notified fan
880	 * failures (-EFAULT) we probably want to notify userland
881	 * some way...
882	 */
883	set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
884	set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
885	set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
886	set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
887
888	if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
889		set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
890	if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
891		set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
892}
893
894static void do_monitor_cpu_split(struct cpu_pid_state *state)
895{
896	s32 temp, power;
897	int rc, intake;
898
899	/* Read current fan status */
900	rc = do_read_one_cpu_values(state, &temp, &power);
901	if (rc < 0) {
902	}
903
904	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
905	 * full blown immediately and try to trigger a shutdown
906	 */
907	if (temp >= ((state->mpu.tmax + 8) << 16)) {
908		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
909		       " (%d) !\n",
910		       state->index, temp >> 16);
911		state->overtemp += CPU_MAX_OVERTEMP / 4;
912	} else if (temp > (state->mpu.tmax << 16)) {
913		state->overtemp++;
914		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
915		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
916	} else {
917		if (state->overtemp)
918			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
919			       state->index, temp >> 16);
920		state->overtemp = 0;
921	}
922	if (state->overtemp >= CPU_MAX_OVERTEMP)
923		critical_state = 1;
924	if (state->overtemp > 0) {
925		state->rpm = state->mpu.rmaxn_exhaust_fan;
926		state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
927		goto do_set_fans;
928	}
929
930	/* Do the PID */
931	do_cpu_pid(state, temp, power);
932
933	/* Range check */
934	state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
935	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
936
937	/* Calculate intake fan */
938	intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
939	intake = max(intake, (int)state->mpu.rminn_intake_fan);
940	intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
941	state->intake_rpm = intake;
942
943 do_set_fans:
944	DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
945	    state->index, (int)state->rpm, intake, state->overtemp);
946
947	/* We should check for errors, shouldn't we ? But then, what
948	 * do we do once the error occurs ? For FCU notified fan
949	 * failures (-EFAULT) we probably want to notify userland
950	 * some way...
951	 */
952	if (state->index == 0) {
953		set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
954		set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
955	} else {
956		set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
957		set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
958	}
959}
960
961static void do_monitor_cpu_rack(struct cpu_pid_state *state)
962{
963	s32 temp, power, fan_min;
964	int rc;
965
966	/* Read current fan status */
967	rc = do_read_one_cpu_values(state, &temp, &power);
968	if (rc < 0) {
969	}
970
971	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
972	 * full blown immediately and try to trigger a shutdown
973	 */
974	if (temp >= ((state->mpu.tmax + 8) << 16)) {
975		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
976		       " (%d) !\n",
977		       state->index, temp >> 16);
978		state->overtemp = CPU_MAX_OVERTEMP / 4;
979	} else if (temp > (state->mpu.tmax << 16)) {
980		state->overtemp++;
981		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
982		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
983	} else {
984		if (state->overtemp)
985			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
986			       state->index, temp >> 16);
987		state->overtemp = 0;
988	}
989	if (state->overtemp >= CPU_MAX_OVERTEMP)
990		critical_state = 1;
991	if (state->overtemp > 0) {
992		state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
993		goto do_set_fans;
994	}
995
996	/* Do the PID */
997	do_cpu_pid(state, temp, power);
998
999	/* Check clamp from dimms */
1000	fan_min = dimm_output_clamp;
1001	fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1002
1003	DBG(" CPU min mpu = %d, min dimm = %d\n",
1004	    state->mpu.rminn_intake_fan, dimm_output_clamp);
1005
1006	state->rpm = max(state->rpm, (int)fan_min);
1007	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1008	state->intake_rpm = state->rpm;
1009
1010 do_set_fans:
1011	DBG("** CPU %d RPM: %d overtemp: %d\n",
1012	    state->index, (int)state->rpm, state->overtemp);
1013
1014	/* We should check for errors, shouldn't we ? But then, what
1015	 * do we do once the error occurs ? For FCU notified fan
1016	 * failures (-EFAULT) we probably want to notify userland
1017	 * some way...
1018	 */
1019	if (state->index == 0) {
1020		set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1021		set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1022		set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1023	} else {
1024		set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1025		set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1026		set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1027	}
1028}
1029
1030/*
1031 * Initialize the state structure for one CPU control loop
1032 */
1033static int init_cpu_state(struct cpu_pid_state *state, int index)
1034{
1035	int err;
1036
1037	state->index = index;
1038	state->first = 1;
1039	state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1040	state->overtemp = 0;
1041	state->adc_config = 0x00;
1042
1043
1044	if (index == 0)
1045		state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1046	else if (index == 1)
1047		state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1048	if (state->monitor == NULL)
1049		goto fail;
1050
1051	if (read_eeprom(index, &state->mpu))
1052		goto fail;
1053
1054	state->count_power = state->mpu.tguardband;
1055	if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1056		printk(KERN_WARNING "Warning ! too many power history slots\n");
1057		state->count_power = CPU_POWER_HISTORY_SIZE;
1058	}
1059	DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1060
1061	if (index == 0) {
1062		err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1063		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1064		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1065		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1066		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1067	} else {
1068		err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1069		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1070		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1071		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1072		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1073	}
1074	if (err)
1075		printk(KERN_WARNING "Failed to create some of the atribute"
1076			"files for CPU %d\n", index);
1077
1078	return 0;
1079 fail:
1080	state->monitor = NULL;
1081
1082	return -ENODEV;
1083}
1084
1085/*
1086 * Dispose of the state data for one CPU control loop
1087 */
1088static void dispose_cpu_state(struct cpu_pid_state *state)
1089{
1090	if (state->monitor == NULL)
1091		return;
1092
1093	if (state->index == 0) {
1094		device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1095		device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1096		device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1097		device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1098		device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1099	} else {
1100		device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1101		device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1102		device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1103		device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1104		device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1105	}
1106
1107	state->monitor = NULL;
1108}
1109
1110/*
1111 * Motherboard backside & U3 heatsink fan control loop
1112 */
1113static void do_monitor_backside(struct backside_pid_state *state)
1114{
1115	s32 temp, integral, derivative, fan_min;
1116	s64 integ_p, deriv_p, prop_p, sum;
1117	int i, rc;
1118
1119	if (--state->ticks != 0)
1120		return;
1121	state->ticks = backside_params.interval;
1122
1123	DBG("backside:\n");
1124
1125	/* Check fan status */
1126	rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1127	if (rc < 0) {
1128		printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1129	} else
1130		state->pwm = rc;
1131	DBG("  current pwm: %d\n", state->pwm);
1132
1133	/* Get some sensor readings */
1134	temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1135	state->last_temp = temp;
1136	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1137	    FIX32TOPRINT(backside_params.input_target));
1138
1139	/* Store temperature and error in history array */
1140	state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1141	state->sample_history[state->cur_sample] = temp;
1142	state->error_history[state->cur_sample] = temp - backside_params.input_target;
1143
1144	/* If first loop, fill the history table */
1145	if (state->first) {
1146		for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1147			state->cur_sample = (state->cur_sample + 1) %
1148				BACKSIDE_PID_HISTORY_SIZE;
1149			state->sample_history[state->cur_sample] = temp;
1150			state->error_history[state->cur_sample] =
1151				temp - backside_params.input_target;
1152		}
1153		state->first = 0;
1154	}
1155
1156	/* Calculate the integral term */
1157	sum = 0;
1158	integral = 0;
1159	for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1160		integral += state->error_history[i];
1161	integral *= backside_params.interval;
1162	DBG("  integral: %08x\n", integral);
1163	integ_p = ((s64)backside_params.G_r) * (s64)integral;
1164	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1165	sum += integ_p;
1166
1167	/* Calculate the derivative term */
1168	derivative = state->error_history[state->cur_sample] -
1169		state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1170				    % BACKSIDE_PID_HISTORY_SIZE];
1171	derivative /= backside_params.interval;
1172	deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1173	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1174	sum += deriv_p;
1175
1176	/* Calculate the proportional term */
1177	prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1178	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1179	sum += prop_p;
1180
1181	/* Scale sum */
1182	sum >>= 36;
1183
1184	DBG("   sum: %d\n", (int)sum);
1185	if (backside_params.additive)
1186		state->pwm += (s32)sum;
1187	else
1188		state->pwm = sum;
1189
1190	/* Check for clamp */
1191	fan_min = (dimm_output_clamp * 100) / 14000;
1192	fan_min = max(fan_min, backside_params.output_min);
1193
1194	state->pwm = max(state->pwm, fan_min);
1195	state->pwm = min(state->pwm, backside_params.output_max);
1196
1197	DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1198	set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1199}
1200
1201/*
1202 * Initialize the state structure for the backside fan control loop
1203 */
1204static int init_backside_state(struct backside_pid_state *state)
1205{
1206	struct device_node *u3;
1207	int u3h = 1; /* conservative by default */
1208	int err;
1209
1210	/*
1211	 * There are different PID params for machines with U3 and machines
1212	 * with U3H, pick the right ones now
1213	 */
1214	u3 = of_find_node_by_path("/u3@0,f8000000");
1215	if (u3 != NULL) {
1216		const u32 *vers = of_get_property(u3, "device-rev", NULL);
1217		if (vers)
1218			if (((*vers) & 0x3f) < 0x34)
1219				u3h = 0;
1220		of_node_put(u3);
1221	}
1222
1223	if (rackmac) {
1224		backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1225		backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1226		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1227		backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1228		backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1229		backside_params.G_r = BACKSIDE_PID_G_r;
1230		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1231		backside_params.additive = 0;
1232	} else if (u3h) {
1233		backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1234		backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1235		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1236		backside_params.interval = BACKSIDE_PID_INTERVAL;
1237		backside_params.G_p = BACKSIDE_PID_G_p;
1238		backside_params.G_r = BACKSIDE_PID_G_r;
1239		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1240		backside_params.additive = 1;
1241	} else {
1242		backside_params.G_d = BACKSIDE_PID_U3_G_d;
1243		backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1244		backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1245		backside_params.interval = BACKSIDE_PID_INTERVAL;
1246		backside_params.G_p = BACKSIDE_PID_G_p;
1247		backside_params.G_r = BACKSIDE_PID_G_r;
1248		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1249		backside_params.additive = 1;
1250	}
1251
1252	state->ticks = 1;
1253	state->first = 1;
1254	state->pwm = 50;
1255
1256	state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1257	if (state->monitor == NULL)
1258		return -ENODEV;
1259
1260	err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1261	err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1262	if (err)
1263		printk(KERN_WARNING "Failed to create attribute file(s)"
1264			" for backside fan\n");
1265
1266	return 0;
1267}
1268
1269/*
1270 * Dispose of the state data for the backside control loop
1271 */
1272static void dispose_backside_state(struct backside_pid_state *state)
1273{
1274	if (state->monitor == NULL)
1275		return;
1276
1277	device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1278	device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1279
1280	state->monitor = NULL;
1281}
1282
1283/*
1284 * Drives bay fan control loop
1285 */
1286static void do_monitor_drives(struct drives_pid_state *state)
1287{
1288	s32 temp, integral, derivative;
1289	s64 integ_p, deriv_p, prop_p, sum;
1290	int i, rc;
1291
1292	if (--state->ticks != 0)
1293		return;
1294	state->ticks = DRIVES_PID_INTERVAL;
1295
1296	DBG("drives:\n");
1297
1298	/* Check fan status */
1299	rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1300	if (rc < 0) {
1301		printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1302	} else
1303		state->rpm = rc;
1304	DBG("  current rpm: %d\n", state->rpm);
1305
1306	/* Get some sensor readings */
1307	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1308						    DS1775_TEMP)) << 8;
1309	state->last_temp = temp;
1310	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1311	    FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1312
1313	/* Store temperature and error in history array */
1314	state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1315	state->sample_history[state->cur_sample] = temp;
1316	state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1317
1318	/* If first loop, fill the history table */
1319	if (state->first) {
1320		for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1321			state->cur_sample = (state->cur_sample + 1) %
1322				DRIVES_PID_HISTORY_SIZE;
1323			state->sample_history[state->cur_sample] = temp;
1324			state->error_history[state->cur_sample] =
1325				temp - DRIVES_PID_INPUT_TARGET;
1326		}
1327		state->first = 0;
1328	}
1329
1330	/* Calculate the integral term */
1331	sum = 0;
1332	integral = 0;
1333	for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1334		integral += state->error_history[i];
1335	integral *= DRIVES_PID_INTERVAL;
1336	DBG("  integral: %08x\n", integral);
1337	integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1338	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1339	sum += integ_p;
1340
1341	/* Calculate the derivative term */
1342	derivative = state->error_history[state->cur_sample] -
1343		state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1344				    % DRIVES_PID_HISTORY_SIZE];
1345	derivative /= DRIVES_PID_INTERVAL;
1346	deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1347	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1348	sum += deriv_p;
1349
1350	/* Calculate the proportional term */
1351	prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1352	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1353	sum += prop_p;
1354
1355	/* Scale sum */
1356	sum >>= 36;
1357
1358	DBG("   sum: %d\n", (int)sum);
1359	state->rpm += (s32)sum;
1360
1361	state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1362	state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1363
1364	DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1365	set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1366}
1367
1368/*
1369 * Initialize the state structure for the drives bay fan control loop
1370 */
1371static int init_drives_state(struct drives_pid_state *state)
1372{
1373	int err;
1374
1375	state->ticks = 1;
1376	state->first = 1;
1377	state->rpm = 1000;
1378
1379	state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1380	if (state->monitor == NULL)
1381		return -ENODEV;
1382
1383	err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1384	err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1385	if (err)
1386		printk(KERN_WARNING "Failed to create attribute file(s)"
1387			" for drives bay fan\n");
1388
1389	return 0;
1390}
1391
1392/*
1393 * Dispose of the state data for the drives control loop
1394 */
1395static void dispose_drives_state(struct drives_pid_state *state)
1396{
1397	if (state->monitor == NULL)
1398		return;
1399
1400	device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1401	device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1402
1403	state->monitor = NULL;
1404}
1405
1406/*
1407 * DIMMs temp control loop
1408 */
1409static void do_monitor_dimms(struct dimm_pid_state *state)
1410{
1411	s32 temp, integral, derivative, fan_min;
1412	s64 integ_p, deriv_p, prop_p, sum;
1413	int i;
1414
1415	if (--state->ticks != 0)
1416		return;
1417	state->ticks = DIMM_PID_INTERVAL;
1418
1419	DBG("DIMM:\n");
1420
1421	DBG("  current value: %d\n", state->output);
1422
1423	temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1424	if (temp < 0)
1425		return;
1426	temp <<= 16;
1427	state->last_temp = temp;
1428	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1429	    FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1430
1431	/* Store temperature and error in history array */
1432	state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1433	state->sample_history[state->cur_sample] = temp;
1434	state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1435
1436	/* If first loop, fill the history table */
1437	if (state->first) {
1438		for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1439			state->cur_sample = (state->cur_sample + 1) %
1440				DIMM_PID_HISTORY_SIZE;
1441			state->sample_history[state->cur_sample] = temp;
1442			state->error_history[state->cur_sample] =
1443				temp - DIMM_PID_INPUT_TARGET;
1444		}
1445		state->first = 0;
1446	}
1447
1448	/* Calculate the integral term */
1449	sum = 0;
1450	integral = 0;
1451	for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1452		integral += state->error_history[i];
1453	integral *= DIMM_PID_INTERVAL;
1454	DBG("  integral: %08x\n", integral);
1455	integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1456	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1457	sum += integ_p;
1458
1459	/* Calculate the derivative term */
1460	derivative = state->error_history[state->cur_sample] -
1461		state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1462				    % DIMM_PID_HISTORY_SIZE];
1463	derivative /= DIMM_PID_INTERVAL;
1464	deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1465	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1466	sum += deriv_p;
1467
1468	/* Calculate the proportional term */
1469	prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1470	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1471	sum += prop_p;
1472
1473	/* Scale sum */
1474	sum >>= 36;
1475
1476	DBG("   sum: %d\n", (int)sum);
1477	state->output = (s32)sum;
1478	state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1479	state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1480	dimm_output_clamp = state->output;
1481
1482	DBG("** DIMM clamp value: %d\n", (int)state->output);
1483
1484	/* Backside PID is only every 5 seconds, force backside fan clamping now */
1485	fan_min = (dimm_output_clamp * 100) / 14000;
1486	fan_min = max(fan_min, backside_params.output_min);
1487	if (backside_state.pwm < fan_min) {
1488		backside_state.pwm = fan_min;
1489		DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1490		set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1491	}
1492}
1493
1494/*
1495 * Initialize the state structure for the DIMM temp control loop
1496 */
1497static int init_dimms_state(struct dimm_pid_state *state)
1498{
1499	state->ticks = 1;
1500	state->first = 1;
1501	state->output = 4000;
1502
1503	state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1504	if (state->monitor == NULL)
1505		return -ENODEV;
1506
1507	if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1508		printk(KERN_WARNING "Failed to create attribute file"
1509			" for DIMM temperature\n");
1510
1511	return 0;
1512}
1513
1514/*
1515 * Dispose of the state data for the DIMM control loop
1516 */
1517static void dispose_dimms_state(struct dimm_pid_state *state)
1518{
1519	if (state->monitor == NULL)
1520		return;
1521
1522	device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1523
1524	state->monitor = NULL;
1525}
1526
1527/*
1528 * Slots fan control loop
1529 */
1530static void do_monitor_slots(struct slots_pid_state *state)
1531{
1532	s32 temp, integral, derivative;
1533	s64 integ_p, deriv_p, prop_p, sum;
1534	int i, rc;
1535
1536	if (--state->ticks != 0)
1537		return;
1538	state->ticks = SLOTS_PID_INTERVAL;
1539
1540	DBG("slots:\n");
1541
1542	/* Check fan status */
1543	rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1544	if (rc < 0) {
1545		printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1546	} else
1547		state->pwm = rc;
1548	DBG("  current pwm: %d\n", state->pwm);
1549
1550	/* Get some sensor readings */
1551	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1552						    DS1775_TEMP)) << 8;
1553	state->last_temp = temp;
1554	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1555	    FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1556
1557	/* Store temperature and error in history array */
1558	state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1559	state->sample_history[state->cur_sample] = temp;
1560	state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1561
1562	/* If first loop, fill the history table */
1563	if (state->first) {
1564		for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1565			state->cur_sample = (state->cur_sample + 1) %
1566				SLOTS_PID_HISTORY_SIZE;
1567			state->sample_history[state->cur_sample] = temp;
1568			state->error_history[state->cur_sample] =
1569				temp - SLOTS_PID_INPUT_TARGET;
1570		}
1571		state->first = 0;
1572	}
1573
1574	/* Calculate the integral term */
1575	sum = 0;
1576	integral = 0;
1577	for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1578		integral += state->error_history[i];
1579	integral *= SLOTS_PID_INTERVAL;
1580	DBG("  integral: %08x\n", integral);
1581	integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1582	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1583	sum += integ_p;
1584
1585	/* Calculate the derivative term */
1586	derivative = state->error_history[state->cur_sample] -
1587		state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1588				    % SLOTS_PID_HISTORY_SIZE];
1589	derivative /= SLOTS_PID_INTERVAL;
1590	deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1591	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1592	sum += deriv_p;
1593
1594	/* Calculate the proportional term */
1595	prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1596	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1597	sum += prop_p;
1598
1599	/* Scale sum */
1600	sum >>= 36;
1601
1602	DBG("   sum: %d\n", (int)sum);
1603	state->pwm = (s32)sum;
1604
1605	state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1606	state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1607
1608	DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1609	set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1610}
1611
1612/*
1613 * Initialize the state structure for the slots bay fan control loop
1614 */
1615static int init_slots_state(struct slots_pid_state *state)
1616{
1617	int err;
1618
1619	state->ticks = 1;
1620	state->first = 1;
1621	state->pwm = 50;
1622
1623	state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1624	if (state->monitor == NULL)
1625		return -ENODEV;
1626
1627	err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1628	err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1629	if (err)
1630		printk(KERN_WARNING "Failed to create attribute file(s)"
1631			" for slots bay fan\n");
1632
1633	return 0;
1634}
1635
1636/*
1637 * Dispose of the state data for the slots control loop
1638 */
1639static void dispose_slots_state(struct slots_pid_state *state)
1640{
1641	if (state->monitor == NULL)
1642		return;
1643
1644	device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1645	device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1646
1647	state->monitor = NULL;
1648}
1649
1650
1651static int call_critical_overtemp(void)
1652{
1653	char *argv[] = { critical_overtemp_path, NULL };
1654	static char *envp[] = { "HOME=/",
1655				"TERM=linux",
1656				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1657				NULL };
1658
1659	return call_usermodehelper(critical_overtemp_path,
1660				   argv, envp, UMH_WAIT_EXEC);
1661}
1662
1663
1664/*
1665 * Here's the kernel thread that calls the various control loops
1666 */
1667static int main_control_loop(void *x)
1668{
1669	DBG("main_control_loop started\n");
1670
1671	mutex_lock(&driver_lock);
1672
1673	if (start_fcu() < 0) {
1674		printk(KERN_ERR "kfand: failed to start FCU\n");
1675		mutex_unlock(&driver_lock);
1676		goto out;
1677	}
1678
1679	/* Set the PCI fan once for now on non-RackMac */
1680	if (!rackmac)
1681		set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1682
1683	/* Initialize ADCs */
1684	initialize_adc(&cpu_state[0]);
1685	if (cpu_state[1].monitor != NULL)
1686		initialize_adc(&cpu_state[1]);
1687
1688	fcu_tickle_ticks = FCU_TICKLE_TICKS;
1689
1690	mutex_unlock(&driver_lock);
1691
1692	while (state == state_attached) {
1693		unsigned long elapsed, start;
1694
1695		start = jiffies;
1696
1697		mutex_lock(&driver_lock);
1698
1699		/* Tickle the FCU just in case */
1700		if (--fcu_tickle_ticks < 0) {
1701			fcu_tickle_ticks = FCU_TICKLE_TICKS;
1702			tickle_fcu();
1703		}
1704
1705		/* First, we always calculate the new DIMMs state on an Xserve */
1706		if (rackmac)
1707			do_monitor_dimms(&dimms_state);
1708
1709		/* Then, the CPUs */
1710		if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1711			do_monitor_cpu_combined();
1712		else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1713			do_monitor_cpu_rack(&cpu_state[0]);
1714			if (cpu_state[1].monitor != NULL)
1715				do_monitor_cpu_rack(&cpu_state[1]);
1716			// better deal with UP
1717		} else {
1718			do_monitor_cpu_split(&cpu_state[0]);
1719			if (cpu_state[1].monitor != NULL)
1720				do_monitor_cpu_split(&cpu_state[1]);
1721			// better deal with UP
1722		}
1723		/* Then, the rest */
1724		do_monitor_backside(&backside_state);
1725		if (rackmac)
1726			do_monitor_slots(&slots_state);
1727		else
1728			do_monitor_drives(&drives_state);
1729		mutex_unlock(&driver_lock);
1730
1731		if (critical_state == 1) {
1732			printk(KERN_WARNING "Temperature control detected a critical condition\n");
1733			printk(KERN_WARNING "Attempting to shut down...\n");
1734			if (call_critical_overtemp()) {
1735				printk(KERN_WARNING "Can't call %s, power off now!\n",
1736				       critical_overtemp_path);
1737				machine_power_off();
1738			}
1739		}
1740		if (critical_state > 0)
1741			critical_state++;
1742		if (critical_state > MAX_CRITICAL_STATE) {
1743			printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1744			machine_power_off();
1745		}
1746
1747		elapsed = jiffies - start;
1748		if (elapsed < HZ)
1749			schedule_timeout_interruptible(HZ - elapsed);
1750	}
1751
1752 out:
1753	DBG("main_control_loop ended\n");
1754
1755	ctrl_task = 0;
1756	complete_and_exit(&ctrl_complete, 0);
1757}
1758
1759/*
1760 * Dispose the control loops when tearing down
1761 */
1762static void dispose_control_loops(void)
1763{
1764	dispose_cpu_state(&cpu_state[0]);
1765	dispose_cpu_state(&cpu_state[1]);
1766	dispose_backside_state(&backside_state);
1767	dispose_drives_state(&drives_state);
1768	dispose_slots_state(&slots_state);
1769	dispose_dimms_state(&dimms_state);
1770}
1771
1772/*
1773 * Create the control loops. U3-0 i2c bus is up, so we can now
1774 * get to the various sensors
1775 */
1776static int create_control_loops(void)
1777{
1778	struct device_node *np;
1779
1780	/* Count CPUs from the device-tree, we don't care how many are
1781	 * actually used by Linux
1782	 */
1783	cpu_count = 0;
1784	for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1785		cpu_count++;
1786
1787	DBG("counted %d CPUs in the device-tree\n", cpu_count);
1788
1789	/* Decide the type of PID algorithm to use based on the presence of
1790	 * the pumps, though that may not be the best way, that is good enough
1791	 * for now
1792	 */
1793	if (rackmac)
1794		cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1795	else if (of_machine_is_compatible("PowerMac7,3")
1796	    && (cpu_count > 1)
1797	    && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1798	    && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1799		printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1800		cpu_pid_type = CPU_PID_TYPE_COMBINED;
1801	} else
1802		cpu_pid_type = CPU_PID_TYPE_SPLIT;
1803
1804	/* Create control loops for everything. If any fail, everything
1805	 * fails
1806	 */
1807	if (init_cpu_state(&cpu_state[0], 0))
1808		goto fail;
1809	if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1810		fetch_cpu_pumps_minmax();
1811
1812	if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1813		goto fail;
1814	if (init_backside_state(&backside_state))
1815		goto fail;
1816	if (rackmac && init_dimms_state(&dimms_state))
1817		goto fail;
1818	if (rackmac && init_slots_state(&slots_state))
1819		goto fail;
1820	if (!rackmac && init_drives_state(&drives_state))
1821		goto fail;
1822
1823	DBG("all control loops up !\n");
1824
1825	return 0;
1826
1827 fail:
1828	DBG("failure creating control loops, disposing\n");
1829
1830	dispose_control_loops();
1831
1832	return -ENODEV;
1833}
1834
1835/*
1836 * Start the control loops after everything is up, that is create
1837 * the thread that will make them run
1838 */
1839static void start_control_loops(void)
1840{
1841	init_completion(&ctrl_complete);
1842
1843	ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1844}
1845
1846/*
1847 * Stop the control loops when tearing down
1848 */
1849static void stop_control_loops(void)
1850{
1851	if (ctrl_task)
1852		wait_for_completion(&ctrl_complete);
1853}
1854
1855/*
1856 * Attach to the i2c FCU after detecting U3-1 bus
1857 */
1858static int attach_fcu(void)
1859{
1860	fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1861	if (fcu == NULL)
1862		return -ENODEV;
1863
1864	DBG("FCU attached\n");
1865
1866	return 0;
1867}
1868
1869/*
1870 * Detach from the i2c FCU when tearing down
1871 */
1872static void detach_fcu(void)
1873{
1874	fcu = NULL;
1875}
1876
1877/*
1878 * Attach to the i2c controller. We probe the various chips based
1879 * on the device-tree nodes and build everything for the driver to
1880 * run, we then kick the driver monitoring thread
1881 */
1882static int therm_pm72_attach(struct i2c_adapter *adapter)
1883{
1884	mutex_lock(&driver_lock);
1885
1886	/* Check state */
1887	if (state == state_detached)
1888		state = state_attaching;
1889	if (state != state_attaching) {
1890		mutex_unlock(&driver_lock);
1891		return 0;
1892	}
1893
1894	/* Check if we are looking for one of these */
1895	if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
1896		u3_0 = adapter;
1897		DBG("found U3-0\n");
1898		if (k2 || !rackmac)
1899			if (create_control_loops())
1900				u3_0 = NULL;
1901	} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
1902		u3_1 = adapter;
1903		DBG("found U3-1, attaching FCU\n");
1904		if (attach_fcu())
1905			u3_1 = NULL;
1906	} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
1907		k2 = adapter;
1908		DBG("Found K2\n");
1909		if (u3_0 && rackmac)
1910			if (create_control_loops())
1911				k2 = NULL;
1912	}
1913	/* We got all we need, start control loops */
1914	if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
1915		DBG("everything up, starting control loops\n");
1916		state = state_attached;
1917		start_control_loops();
1918	}
1919	mutex_unlock(&driver_lock);
1920
1921	return 0;
1922}
1923
1924static int therm_pm72_probe(struct i2c_client *client,
1925			    const struct i2c_device_id *id)
1926{
1927	/* Always succeed, the real work was done in therm_pm72_attach() */
1928	return 0;
1929}
1930
1931/*
1932 * Called when any of the devices which participates into thermal management
1933 * is going away.
1934 */
1935static int therm_pm72_remove(struct i2c_client *client)
1936{
1937	struct i2c_adapter *adapter = client->adapter;
1938
1939	mutex_lock(&driver_lock);
1940
1941	if (state != state_detached)
1942		state = state_detaching;
1943
1944	/* Stop control loops if any */
1945	DBG("stopping control loops\n");
1946	mutex_unlock(&driver_lock);
1947	stop_control_loops();
1948	mutex_lock(&driver_lock);
1949
1950	if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
1951		DBG("lost U3-0, disposing control loops\n");
1952		dispose_control_loops();
1953		u3_0 = NULL;
1954	}
1955
1956	if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
1957		DBG("lost U3-1, detaching FCU\n");
1958		detach_fcu();
1959		u3_1 = NULL;
1960	}
1961	if (u3_0 == NULL && u3_1 == NULL)
1962		state = state_detached;
1963
1964	mutex_unlock(&driver_lock);
1965
1966	return 0;
1967}
1968
1969/*
1970 * i2c_driver structure to attach to the host i2c controller
1971 */
1972
1973static const struct i2c_device_id therm_pm72_id[] = {
1974	/*
1975	 * Fake device name, thermal management is done by several
1976	 * chips but we don't need to differentiate between them at
1977	 * this point.
1978	 */
1979	{ "therm_pm72", 0 },
1980	{ }
1981};
1982
1983static struct i2c_driver therm_pm72_driver = {
1984	.driver = {
1985		.name	= "therm_pm72",
1986	},
1987	.attach_adapter	= therm_pm72_attach,
1988	.probe		= therm_pm72_probe,
1989	.remove		= therm_pm72_remove,
1990	.id_table	= therm_pm72_id,
1991};
1992
1993static int fan_check_loc_match(const char *loc, int fan)
1994{
1995	char	tmp[64];
1996	char	*c, *e;
1997
1998	strlcpy(tmp, fcu_fans[fan].loc, 64);
1999
2000	c = tmp;
2001	for (;;) {
2002		e = strchr(c, ',');
2003		if (e)
2004			*e = 0;
2005		if (strcmp(loc, c) == 0)
2006			return 1;
2007		if (e == NULL)
2008			break;
2009		c = e + 1;
2010	}
2011	return 0;
2012}
2013
2014static void fcu_lookup_fans(struct device_node *fcu_node)
2015{
2016	struct device_node *np = NULL;
2017	int i;
2018
2019	/* The table is filled by default with values that are suitable
2020	 * for the old machines without device-tree informations. We scan
2021	 * the device-tree and override those values with whatever is
2022	 * there
2023	 */
2024
2025	DBG("Looking up FCU controls in device-tree...\n");
2026
2027	while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2028		int type = -1;
2029		const char *loc;
2030		const u32 *reg;
2031
2032		DBG(" control: %s, type: %s\n", np->name, np->type);
2033
2034		/* Detect control type */
2035		if (!strcmp(np->type, "fan-rpm-control") ||
2036		    !strcmp(np->type, "fan-rpm"))
2037			type = FCU_FAN_RPM;
2038		if (!strcmp(np->type, "fan-pwm-control") ||
2039		    !strcmp(np->type, "fan-pwm"))
2040			type = FCU_FAN_PWM;
2041		/* Only care about fans for now */
2042		if (type == -1)
2043			continue;
2044
2045		/* Lookup for a matching location */
2046		loc = of_get_property(np, "location", NULL);
2047		reg = of_get_property(np, "reg", NULL);
2048		if (loc == NULL || reg == NULL)
2049			continue;
2050		DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2051
2052		for (i = 0; i < FCU_FAN_COUNT; i++) {
2053			int fan_id;
2054
2055			if (!fan_check_loc_match(loc, i))
2056				continue;
2057			DBG(" location match, index: %d\n", i);
2058			fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2059			if (type != fcu_fans[i].type) {
2060				printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2061				       "in device-tree for %s\n", np->full_name);
2062				break;
2063			}
2064			if (type == FCU_FAN_RPM)
2065				fan_id = ((*reg) - 0x10) / 2;
2066			else
2067				fan_id = ((*reg) - 0x30) / 2;
2068			if (fan_id > 7) {
2069				printk(KERN_WARNING "therm_pm72: Can't parse "
2070				       "fan ID in device-tree for %s\n", np->full_name);
2071				break;
2072			}
2073			DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2074			fcu_fans[i].id = fan_id;
2075		}
2076	}
2077
2078	/* Now dump the array */
2079	printk(KERN_INFO "Detected fan controls:\n");
2080	for (i = 0; i < FCU_FAN_COUNT; i++) {
2081		if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2082			continue;
2083		printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2084		       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2085		       fcu_fans[i].id, fcu_fans[i].loc);
2086	}
2087}
2088
2089static int fcu_of_probe(struct platform_device* dev, const struct of_device_id *match)
2090{
2091	state = state_detached;
2092
2093	/* Lookup the fans in the device tree */
2094	fcu_lookup_fans(dev->dev.of_node);
2095
2096	/* Add the driver */
2097	return i2c_add_driver(&therm_pm72_driver);
2098}
2099
2100static int fcu_of_remove(struct platform_device* dev)
2101{
2102	i2c_del_driver(&therm_pm72_driver);
2103
2104	return 0;
2105}
2106
2107static const struct of_device_id fcu_match[] =
2108{
2109	{
2110	.type		= "fcu",
2111	},
2112	{},
2113};
2114
2115static struct of_platform_driver fcu_of_platform_driver =
2116{
2117	.driver = {
2118		.name = "temperature",
2119		.owner = THIS_MODULE,
2120		.of_match_table = fcu_match,
2121	},
2122	.probe		= fcu_of_probe,
2123	.remove		= fcu_of_remove
2124};
2125
2126/*
2127 * Check machine type, attach to i2c controller
2128 */
2129static int __init therm_pm72_init(void)
2130{
2131	struct device_node *np;
2132
2133	rackmac = of_machine_is_compatible("RackMac3,1");
2134
2135	if (!of_machine_is_compatible("PowerMac7,2") &&
2136	    !of_machine_is_compatible("PowerMac7,3") &&
2137	    !rackmac)
2138	    	return -ENODEV;
2139
2140	printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2141
2142	np = of_find_node_by_type(NULL, "fcu");
2143	if (np == NULL) {
2144		/* Some machines have strangely broken device-tree */
2145		np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2146		if (np == NULL) {
2147			    printk(KERN_ERR "Can't find FCU in device-tree !\n");
2148			    return -ENODEV;
2149		}
2150	}
2151	of_dev = of_platform_device_create(np, "temperature", NULL);
2152	if (of_dev == NULL) {
2153		printk(KERN_ERR "Can't register FCU platform device !\n");
2154		return -ENODEV;
2155	}
2156
2157	of_register_platform_driver(&fcu_of_platform_driver);
2158
2159	return 0;
2160}
2161
2162static void __exit therm_pm72_exit(void)
2163{
2164	of_unregister_platform_driver(&fcu_of_platform_driver);
2165
2166	if (of_dev)
2167		of_device_unregister(of_dev);
2168}
2169
2170module_init(therm_pm72_init);
2171module_exit(therm_pm72_exit);
2172
2173MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2174MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2175MODULE_LICENSE("GPL");
2176