• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/isdn/hardware/mISDN/
1/*
2 * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3 *
4 * Author	Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 *		Peter Sprenger (sprengermoving-bytes.de)
7 *
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008  by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 *
28 * Thanks to Cologne Chip AG for this great controller!
29 */
30
31/*
32 * module parameters:
33 * type:
34 *	By default (0), the card is automatically detected.
35 *	Or use the following combinations:
36 *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
37 * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
38 * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
39 *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
40 *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 *	Bit 10    = spare
42 *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 *	Bit 13	  = spare
45 *	Bit 14    = 0x04000 = Use external ram (128K)
46 *	Bit 15    = 0x08000 = Use external ram (512K)
47 *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
48 * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
49 *	Bit 18    = spare
50 *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 *		 bus (PCM master)
54 *
55 * port: (optional or required for all ports on all installed cards)
56 *	HFC-4S/HFC-8S only bits:
57 *	Bit 0	  = 0x001 = Use master clock for this S/T interface
58 *			    (ony once per chip).
59 *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
60 *			    Don't use this unless you know what you are doing!
61 *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
62 *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 *		 received from port 1
64 *
65 *	HFC-E1 only bits:
66 *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
67 *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 *	Bit 2     = 0x0004 = Report LOS
69 *	Bit 3     = 0x0008 = Report AIS
70 *	Bit 4     = 0x0010 = Report SLIP
71 *	Bit 5     = 0x0020 = Report RDI
72 *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 *			     mode instead.
74 *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
75 * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
76 *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 *			     (E1 only)
78 *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 *			     for default.
80 * (all other bits are reserved and shall be 0)
81 *
82 * debug:
83 *	NOTE: only one debug value must be given for all cards
84 *	enable debugging (see hfc_multi.h for debug options)
85 *
86 * poll:
87 *	NOTE: only one poll value must be given for all cards
88 *	Give the number of samples for each fifo process.
89 *	By default 128 is used. Decrease to reduce delay, increase to
90 *	reduce cpu load. If unsure, don't mess with it!
91 *	Valid is 8, 16, 32, 64, 128, 256.
92 *
93 * pcm:
94 *	NOTE: only one pcm value must be given for every card.
95 *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 *	By default (0), the PCM bus id is 100 for the card that is PCM master.
97 *	If multiple cards are PCM master (because they are not interconnected),
98 *	each card with PCM master will have increasing PCM id.
99 *	All PCM busses with the same ID are expected to be connected and have
100 *	common time slots slots.
101 *	Only one chip of the PCM bus must be master, the others slave.
102 *	-1 means no support of PCM bus not even.
103 *	Omit this value, if all cards are interconnected or none is connected.
104 *	If unsure, don't give this parameter.
105 *
106 * dslot:
107 *	NOTE: only one dslot value must be given for every card.
108 *	Also this value must be given for non-E1 cards. If omitted, the E1
109 *	card has D-channel on time slot 16, which is default.
110 *	If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 *	In this case, the application must be able to handle this.
112 *	If -1 is given, the D-channel is disabled and all 31 slots can be used
113 *	for B-channel. (only for specific applications)
114 *	If you don't know how to use it, you don't need it!
115 *
116 * iomode:
117 *	NOTE: only one mode value must be given for every card.
118 *	-> See hfc_multi.h for HFC_IO_MODE_* values
119 *	By default, the IO mode is pci memory IO (MEMIO).
120 *	Some cards require specific IO mode, so it cannot be changed.
121 *	It may be usefull to set IO mode to register io (REGIO) to solve
122 *	PCI bridge problems.
123 *	If unsure, don't give this parameter.
124 *
125 * clockdelay_nt:
126 *	NOTE: only one clockdelay_nt value must be given once for all cards.
127 *	Give the value of the clock control register (A_ST_CLK_DLY)
128 *	of the S/T interfaces in NT mode.
129 *	This register is needed for the TBR3 certification, so don't change it.
130 *
131 * clockdelay_te:
132 *	NOTE: only one clockdelay_te value must be given once
133 *	Give the value of the clock control register (A_ST_CLK_DLY)
134 *	of the S/T interfaces in TE mode.
135 *	This register is needed for the TBR3 certification, so don't change it.
136 *
137 * clock:
138 *	NOTE: only one clock value must be given once
139 *	Selects interface with clock source for mISDN and applications.
140 *	Set to card number starting with 1. Set to -1 to disable.
141 *	By default, the first card is used as clock source.
142 *
143 * hwid:
144 *	NOTE: only one hwid value must be given once
145 * 	Enable special embedded devices with XHFC controllers.
146 */
147
148/*
149 * debug register access (never use this, it will flood your system log)
150 * #define HFC_REGISTER_DEBUG
151 */
152
153#define HFC_MULTI_VERSION	"2.03"
154
155#include <linux/module.h>
156#include <linux/slab.h>
157#include <linux/pci.h>
158#include <linux/delay.h>
159#include <linux/mISDNhw.h>
160#include <linux/mISDNdsp.h>
161
162/*
163#define IRQCOUNT_DEBUG
164#define IRQ_DEBUG
165*/
166
167#include "hfc_multi.h"
168#ifdef ECHOPREP
169#include "gaintab.h"
170#endif
171
172#define	MAX_CARDS	8
173#define	MAX_PORTS	(8 * MAX_CARDS)
174
175static LIST_HEAD(HFClist);
176static spinlock_t HFClock; /* global hfc list lock */
177
178static void ph_state_change(struct dchannel *);
179
180static struct hfc_multi *syncmaster;
181static int plxsd_master; /* if we have a master card (yet) */
182static spinlock_t plx_lock; /* may not acquire other lock inside */
183
184#define	TYP_E1		1
185#define	TYP_4S		4
186#define TYP_8S		8
187
188static int poll_timer = 6;	/* default = 128 samples = 16ms */
189/* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
191#define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
192#define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
193				   (0x60 MUST be included!) */
194
195#define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
196#define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
197#define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
198
199/*
200 * module stuff
201 */
202
203static uint	type[MAX_CARDS];
204static int	pcm[MAX_CARDS];
205static int	dslot[MAX_CARDS];
206static uint	iomode[MAX_CARDS];
207static uint	port[MAX_PORTS];
208static uint	debug;
209static uint	poll;
210static int	clock;
211static uint	timer;
212static uint	clockdelay_te = CLKDEL_TE;
213static uint	clockdelay_nt = CLKDEL_NT;
214#define HWID_NONE	0
215#define HWID_MINIP4	1
216#define HWID_MINIP8	2
217#define HWID_MINIP16	3
218static uint	hwid = HWID_NONE;
219
220static int	HFC_cnt, Port_cnt, PCM_cnt = 99;
221
222MODULE_AUTHOR("Andreas Eversberg");
223MODULE_LICENSE("GPL");
224MODULE_VERSION(HFC_MULTI_VERSION);
225module_param(debug, uint, S_IRUGO | S_IWUSR);
226module_param(poll, uint, S_IRUGO | S_IWUSR);
227module_param(clock, int, S_IRUGO | S_IWUSR);
228module_param(timer, uint, S_IRUGO | S_IWUSR);
229module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
230module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
231module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
232module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
233module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
234module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
235module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
236module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
237
238#ifdef HFC_REGISTER_DEBUG
239#define HFC_outb(hc, reg, val) \
240	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
241#define HFC_outb_nodebug(hc, reg, val) \
242	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
243#define HFC_inb(hc, reg) \
244	(hc->HFC_inb(hc, reg, __func__, __LINE__))
245#define HFC_inb_nodebug(hc, reg) \
246	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
247#define HFC_inw(hc, reg) \
248	(hc->HFC_inw(hc, reg, __func__, __LINE__))
249#define HFC_inw_nodebug(hc, reg) \
250	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
251#define HFC_wait(hc) \
252	(hc->HFC_wait(hc, __func__, __LINE__))
253#define HFC_wait_nodebug(hc) \
254	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
255#else
256#define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
257#define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
258#define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
259#define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
260#define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
261#define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
262#define HFC_wait(hc)			(hc->HFC_wait(hc))
263#define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
264#endif
265
266#ifdef CONFIG_MISDN_HFCMULTI_8xx
267#include "hfc_multi_8xx.h"
268#endif
269
270/* HFC_IO_MODE_PCIMEM */
271static void
272#ifdef HFC_REGISTER_DEBUG
273HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
274		const char *function, int line)
275#else
276HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
277#endif
278{
279	writeb(val, hc->pci_membase + reg);
280}
281static u_char
282#ifdef HFC_REGISTER_DEBUG
283HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
284#else
285HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
286#endif
287{
288	return readb(hc->pci_membase + reg);
289}
290static u_short
291#ifdef HFC_REGISTER_DEBUG
292HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
293#else
294HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
295#endif
296{
297	return readw(hc->pci_membase + reg);
298}
299static void
300#ifdef HFC_REGISTER_DEBUG
301HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
302#else
303HFC_wait_pcimem(struct hfc_multi *hc)
304#endif
305{
306	while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
307		cpu_relax();
308}
309
310/* HFC_IO_MODE_REGIO */
311static void
312#ifdef HFC_REGISTER_DEBUG
313HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
314	const char *function, int line)
315#else
316HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
317#endif
318{
319	outb(reg, hc->pci_iobase + 4);
320	outb(val, hc->pci_iobase);
321}
322static u_char
323#ifdef HFC_REGISTER_DEBUG
324HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
325#else
326HFC_inb_regio(struct hfc_multi *hc, u_char reg)
327#endif
328{
329	outb(reg, hc->pci_iobase + 4);
330	return inb(hc->pci_iobase);
331}
332static u_short
333#ifdef HFC_REGISTER_DEBUG
334HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
335#else
336HFC_inw_regio(struct hfc_multi *hc, u_char reg)
337#endif
338{
339	outb(reg, hc->pci_iobase + 4);
340	return inw(hc->pci_iobase);
341}
342static void
343#ifdef HFC_REGISTER_DEBUG
344HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
345#else
346HFC_wait_regio(struct hfc_multi *hc)
347#endif
348{
349	outb(R_STATUS, hc->pci_iobase + 4);
350	while (inb(hc->pci_iobase) & V_BUSY)
351		cpu_relax();
352}
353
354#ifdef HFC_REGISTER_DEBUG
355static void
356HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
357		const char *function, int line)
358{
359	char regname[256] = "", bits[9] = "xxxxxxxx";
360	int i;
361
362	i = -1;
363	while (hfc_register_names[++i].name) {
364		if (hfc_register_names[i].reg == reg)
365			strcat(regname, hfc_register_names[i].name);
366	}
367	if (regname[0] == '\0')
368		strcpy(regname, "register");
369
370	bits[7] = '0' + (!!(val & 1));
371	bits[6] = '0' + (!!(val & 2));
372	bits[5] = '0' + (!!(val & 4));
373	bits[4] = '0' + (!!(val & 8));
374	bits[3] = '0' + (!!(val & 16));
375	bits[2] = '0' + (!!(val & 32));
376	bits[1] = '0' + (!!(val & 64));
377	bits[0] = '0' + (!!(val & 128));
378	printk(KERN_DEBUG
379	    "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
380	    hc->id, reg, regname, val, bits, function, line);
381	HFC_outb_nodebug(hc, reg, val);
382}
383static u_char
384HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
385{
386	char regname[256] = "", bits[9] = "xxxxxxxx";
387	u_char val = HFC_inb_nodebug(hc, reg);
388	int i;
389
390	i = 0;
391	while (hfc_register_names[i++].name)
392		;
393	while (hfc_register_names[++i].name) {
394		if (hfc_register_names[i].reg == reg)
395			strcat(regname, hfc_register_names[i].name);
396	}
397	if (regname[0] == '\0')
398		strcpy(regname, "register");
399
400	bits[7] = '0' + (!!(val & 1));
401	bits[6] = '0' + (!!(val & 2));
402	bits[5] = '0' + (!!(val & 4));
403	bits[4] = '0' + (!!(val & 8));
404	bits[3] = '0' + (!!(val & 16));
405	bits[2] = '0' + (!!(val & 32));
406	bits[1] = '0' + (!!(val & 64));
407	bits[0] = '0' + (!!(val & 128));
408	printk(KERN_DEBUG
409	    "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
410	    hc->id, reg, regname, val, bits, function, line);
411	return val;
412}
413static u_short
414HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
415{
416	char regname[256] = "";
417	u_short val = HFC_inw_nodebug(hc, reg);
418	int i;
419
420	i = 0;
421	while (hfc_register_names[i++].name)
422		;
423	while (hfc_register_names[++i].name) {
424		if (hfc_register_names[i].reg == reg)
425			strcat(regname, hfc_register_names[i].name);
426	}
427	if (regname[0] == '\0')
428		strcpy(regname, "register");
429
430	printk(KERN_DEBUG
431	    "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
432	    hc->id, reg, regname, val, function, line);
433	return val;
434}
435static void
436HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
437{
438	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
439	    hc->id, function, line);
440	HFC_wait_nodebug(hc);
441}
442#endif
443
444/* write fifo data (REGIO) */
445static void
446write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
447{
448	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
449	while (len>>2) {
450		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
451		data += 4;
452		len -= 4;
453	}
454	while (len>>1) {
455		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
456		data += 2;
457		len -= 2;
458	}
459	while (len) {
460		outb(*data, hc->pci_iobase);
461		data++;
462		len--;
463	}
464}
465/* write fifo data (PCIMEM) */
466static void
467write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
468{
469	while (len>>2) {
470		writel(cpu_to_le32(*(u32 *)data),
471			hc->pci_membase + A_FIFO_DATA0);
472		data += 4;
473		len -= 4;
474	}
475	while (len>>1) {
476		writew(cpu_to_le16(*(u16 *)data),
477			hc->pci_membase + A_FIFO_DATA0);
478		data += 2;
479		len -= 2;
480	}
481	while (len) {
482		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
483		data++;
484		len--;
485	}
486}
487
488/* read fifo data (REGIO) */
489static void
490read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
491{
492	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
493	while (len>>2) {
494		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
495		data += 4;
496		len -= 4;
497	}
498	while (len>>1) {
499		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
500		data += 2;
501		len -= 2;
502	}
503	while (len) {
504		*data = inb(hc->pci_iobase);
505		data++;
506		len--;
507	}
508}
509
510/* read fifo data (PCIMEM) */
511static void
512read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
513{
514	while (len>>2) {
515		*(u32 *)data =
516			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
517		data += 4;
518		len -= 4;
519	}
520	while (len>>1) {
521		*(u16 *)data =
522			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
523		data += 2;
524		len -= 2;
525	}
526	while (len) {
527		*data = readb(hc->pci_membase + A_FIFO_DATA0);
528		data++;
529		len--;
530	}
531}
532
533static void
534enable_hwirq(struct hfc_multi *hc)
535{
536	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
537	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
538}
539
540static void
541disable_hwirq(struct hfc_multi *hc)
542{
543	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
544	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
545}
546
547#define	NUM_EC 2
548#define	MAX_TDM_CHAN 32
549
550
551inline void
552enablepcibridge(struct hfc_multi *c)
553{
554	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
555}
556
557inline void
558disablepcibridge(struct hfc_multi *c)
559{
560	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
561}
562
563inline unsigned char
564readpcibridge(struct hfc_multi *hc, unsigned char address)
565{
566	unsigned short cipv;
567	unsigned char data;
568
569	if (!hc->pci_iobase)
570		return 0;
571
572	/* slow down a PCI read access by 1 PCI clock cycle */
573	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
574
575	if (address == 0)
576		cipv = 0x4000;
577	else
578		cipv = 0x5800;
579
580	/* select local bridge port address by writing to CIP port */
581	/* data = HFC_inb(c, cipv); * was _io before */
582	outw(cipv, hc->pci_iobase + 4);
583	data = inb(hc->pci_iobase);
584
585	/* restore R_CTRL for normal PCI read cycle speed */
586	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
587
588	return data;
589}
590
591inline void
592writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
593{
594	unsigned short cipv;
595	unsigned int datav;
596
597	if (!hc->pci_iobase)
598		return;
599
600	if (address == 0)
601		cipv = 0x4000;
602	else
603		cipv = 0x5800;
604
605	/* select local bridge port address by writing to CIP port */
606	outw(cipv, hc->pci_iobase + 4);
607	/* define a 32 bit dword with 4 identical bytes for write sequence */
608	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
609	    ((__u32) data << 24);
610
611	/*
612	 * write this 32 bit dword to the bridge data port
613	 * this will initiate a write sequence of up to 4 writes to the same
614	 * address on the local bus interface the number of write accesses
615	 * is undefined but >=1 and depends on the next PCI transaction
616	 * during write sequence on the local bus
617	 */
618	outl(datav, hc->pci_iobase);
619}
620
621inline void
622cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
623{
624	/* Do data pin read low byte */
625	HFC_outb(hc, R_GPIO_OUT1, reg);
626}
627
628inline void
629cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
630{
631	cpld_set_reg(hc, reg);
632
633	enablepcibridge(hc);
634	writepcibridge(hc, 1, val);
635	disablepcibridge(hc);
636
637	return;
638}
639
640inline unsigned char
641cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
642{
643	unsigned char bytein;
644
645	cpld_set_reg(hc, reg);
646
647	/* Do data pin read low byte */
648	HFC_outb(hc, R_GPIO_OUT1, reg);
649
650	enablepcibridge(hc);
651	bytein = readpcibridge(hc, 1);
652	disablepcibridge(hc);
653
654	return bytein;
655}
656
657inline void
658vpm_write_address(struct hfc_multi *hc, unsigned short addr)
659{
660	cpld_write_reg(hc, 0, 0xff & addr);
661	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
662}
663
664inline unsigned short
665vpm_read_address(struct hfc_multi *c)
666{
667	unsigned short addr;
668	unsigned short highbit;
669
670	addr = cpld_read_reg(c, 0);
671	highbit = cpld_read_reg(c, 1);
672
673	addr = addr | (highbit << 8);
674
675	return addr & 0x1ff;
676}
677
678inline unsigned char
679vpm_in(struct hfc_multi *c, int which, unsigned short addr)
680{
681	unsigned char res;
682
683	vpm_write_address(c, addr);
684
685	if (!which)
686		cpld_set_reg(c, 2);
687	else
688		cpld_set_reg(c, 3);
689
690	enablepcibridge(c);
691	res = readpcibridge(c, 1);
692	disablepcibridge(c);
693
694	cpld_set_reg(c, 0);
695
696	return res;
697}
698
699inline void
700vpm_out(struct hfc_multi *c, int which, unsigned short addr,
701    unsigned char data)
702{
703	vpm_write_address(c, addr);
704
705	enablepcibridge(c);
706
707	if (!which)
708		cpld_set_reg(c, 2);
709	else
710		cpld_set_reg(c, 3);
711
712	writepcibridge(c, 1, data);
713
714	cpld_set_reg(c, 0);
715
716	disablepcibridge(c);
717
718	{
719	unsigned char regin;
720	regin = vpm_in(c, which, addr);
721	if (regin != data)
722		printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
723			"0x%x\n", data, addr, regin);
724	}
725
726}
727
728
729static void
730vpm_init(struct hfc_multi *wc)
731{
732	unsigned char reg;
733	unsigned int mask;
734	unsigned int i, x, y;
735	unsigned int ver;
736
737	for (x = 0; x < NUM_EC; x++) {
738		/* Setup GPIO's */
739		if (!x) {
740			ver = vpm_in(wc, x, 0x1a0);
741			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
742		}
743
744		for (y = 0; y < 4; y++) {
745			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
746			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
747			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
748		}
749
750		/* Setup TDM path - sets fsync and tdm_clk as inputs */
751		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
752		vpm_out(wc, x, 0x1a3, reg & ~2);
753
754		/* Setup Echo length (256 taps) */
755		vpm_out(wc, x, 0x022, 1);
756		vpm_out(wc, x, 0x023, 0xff);
757
758		/* Setup timeslots */
759		vpm_out(wc, x, 0x02f, 0x00);
760		mask = 0x02020202 << (x * 4);
761
762		/* Setup the tdm channel masks for all chips */
763		for (i = 0; i < 4; i++)
764			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
765
766		/* Setup convergence rate */
767		printk(KERN_DEBUG "VPM: A-law mode\n");
768		reg = 0x00 | 0x10 | 0x01;
769		vpm_out(wc, x, 0x20, reg);
770		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
771		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
772
773		vpm_out(wc, x, 0x24, 0x02);
774		reg = vpm_in(wc, x, 0x24);
775		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
776
777		/* Initialize echo cans */
778		for (i = 0; i < MAX_TDM_CHAN; i++) {
779			if (mask & (0x00000001 << i))
780				vpm_out(wc, x, i, 0x00);
781		}
782
783
784		udelay(2000);
785		udelay(2000);
786		udelay(2000);
787		udelay(2000);
788		udelay(2000);
789
790		/* Put in bypass mode */
791		for (i = 0; i < MAX_TDM_CHAN; i++) {
792			if (mask & (0x00000001 << i))
793				vpm_out(wc, x, i, 0x01);
794		}
795
796		/* Enable bypass */
797		for (i = 0; i < MAX_TDM_CHAN; i++) {
798			if (mask & (0x00000001 << i))
799				vpm_out(wc, x, 0x78 + i, 0x01);
800		}
801
802	}
803}
804
805#ifdef UNUSED
806static void
807vpm_check(struct hfc_multi *hctmp)
808{
809	unsigned char gpi2;
810
811	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
812
813	if ((gpi2 & 0x3) != 0x3)
814		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
815}
816#endif /* UNUSED */
817
818
819/*
820 * Interface to enable/disable the HW Echocan
821 *
822 * these functions are called within a spin_lock_irqsave on
823 * the channel instance lock, so we are not disturbed by irqs
824 *
825 * we can later easily change the interface to make  other
826 * things configurable, for now we configure the taps
827 *
828 */
829
830static void
831vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
832{
833	unsigned int timeslot;
834	unsigned int unit;
835	struct bchannel *bch = hc->chan[ch].bch;
836#ifdef TXADJ
837	int txadj = -4;
838	struct sk_buff *skb;
839#endif
840	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
841		return;
842
843	if (!bch)
844		return;
845
846#ifdef TXADJ
847	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
848		sizeof(int), &txadj, GFP_ATOMIC);
849	if (skb)
850		recv_Bchannel_skb(bch, skb);
851#endif
852
853	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
854	unit = ch % 4;
855
856	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
857	    taps, timeslot);
858
859	vpm_out(hc, unit, timeslot, 0x7e);
860}
861
862static void
863vpm_echocan_off(struct hfc_multi *hc, int ch)
864{
865	unsigned int timeslot;
866	unsigned int unit;
867	struct bchannel *bch = hc->chan[ch].bch;
868#ifdef TXADJ
869	int txadj = 0;
870	struct sk_buff *skb;
871#endif
872
873	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
874		return;
875
876	if (!bch)
877		return;
878
879#ifdef TXADJ
880	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
881		sizeof(int), &txadj, GFP_ATOMIC);
882	if (skb)
883		recv_Bchannel_skb(bch, skb);
884#endif
885
886	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
887	unit = ch % 4;
888
889	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
890	    timeslot);
891	/* FILLME */
892	vpm_out(hc, unit, timeslot, 0x01);
893}
894
895
896/*
897 * Speech Design resync feature
898 * NOTE: This is called sometimes outside interrupt handler.
899 * We must lock irqsave, so no other interrupt (other card) will occurr!
900 * Also multiple interrupts may nest, so must lock each access (lists, card)!
901 */
902static inline void
903hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
904{
905	struct hfc_multi *hc, *next, *pcmmaster = NULL;
906	void __iomem *plx_acc_32;
907	u_int pv;
908	u_long flags;
909
910	spin_lock_irqsave(&HFClock, flags);
911	spin_lock(&plx_lock); /* must be locked inside other locks */
912
913	if (debug & DEBUG_HFCMULTI_PLXSD)
914		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
915			__func__, syncmaster);
916
917	/* select new master */
918	if (newmaster) {
919		if (debug & DEBUG_HFCMULTI_PLXSD)
920			printk(KERN_DEBUG "using provided controller\n");
921	} else {
922		list_for_each_entry_safe(hc, next, &HFClist, list) {
923			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
924				if (hc->syncronized) {
925					newmaster = hc;
926					break;
927				}
928			}
929		}
930	}
931
932	/* Disable sync of all cards */
933	list_for_each_entry_safe(hc, next, &HFClist, list) {
934		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
935			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
936			pv = readl(plx_acc_32);
937			pv &= ~PLX_SYNC_O_EN;
938			writel(pv, plx_acc_32);
939			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
940				pcmmaster = hc;
941				if (hc->ctype == HFC_TYPE_E1) {
942					if (debug & DEBUG_HFCMULTI_PLXSD)
943						printk(KERN_DEBUG
944							"Schedule SYNC_I\n");
945					hc->e1_resync |= 1; /* get SYNC_I */
946				}
947			}
948		}
949	}
950
951	if (newmaster) {
952		hc = newmaster;
953		if (debug & DEBUG_HFCMULTI_PLXSD)
954			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
955				"interface.\n", hc->id, hc);
956		/* Enable new sync master */
957		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
958		pv = readl(plx_acc_32);
959		pv |= PLX_SYNC_O_EN;
960		writel(pv, plx_acc_32);
961		/* switch to jatt PLL, if not disabled by RX_SYNC */
962		if (hc->ctype == HFC_TYPE_E1
963				&& !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
964			if (debug & DEBUG_HFCMULTI_PLXSD)
965				printk(KERN_DEBUG "Schedule jatt PLL\n");
966			hc->e1_resync |= 2; /* switch to jatt */
967		}
968	} else {
969		if (pcmmaster) {
970			hc = pcmmaster;
971			if (debug & DEBUG_HFCMULTI_PLXSD)
972				printk(KERN_DEBUG
973					"id=%d (0x%p) = PCM master syncronized "
974					"with QUARTZ\n", hc->id, hc);
975			if (hc->ctype == HFC_TYPE_E1) {
976				/* Use the crystal clock for the PCM
977				   master card */
978				if (debug & DEBUG_HFCMULTI_PLXSD)
979					printk(KERN_DEBUG
980					    "Schedule QUARTZ for HFC-E1\n");
981				hc->e1_resync |= 4; /* switch quartz */
982			} else {
983				if (debug & DEBUG_HFCMULTI_PLXSD)
984					printk(KERN_DEBUG
985					    "QUARTZ is automatically "
986					    "enabled by HFC-%dS\n", hc->ctype);
987			}
988			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
989			pv = readl(plx_acc_32);
990			pv |= PLX_SYNC_O_EN;
991			writel(pv, plx_acc_32);
992		} else
993			if (!rm)
994				printk(KERN_ERR "%s no pcm master, this MUST "
995					"not happen!\n", __func__);
996	}
997	syncmaster = newmaster;
998
999	spin_unlock(&plx_lock);
1000	spin_unlock_irqrestore(&HFClock, flags);
1001}
1002
1003/* This must be called AND hc must be locked irqsave!!! */
1004inline void
1005plxsd_checksync(struct hfc_multi *hc, int rm)
1006{
1007	if (hc->syncronized) {
1008		if (syncmaster == NULL) {
1009			if (debug & DEBUG_HFCMULTI_PLXSD)
1010				printk(KERN_DEBUG "%s: GOT sync on card %d"
1011					" (id=%d)\n", __func__, hc->id + 1,
1012					hc->id);
1013			hfcmulti_resync(hc, hc, rm);
1014		}
1015	} else {
1016		if (syncmaster == hc) {
1017			if (debug & DEBUG_HFCMULTI_PLXSD)
1018				printk(KERN_DEBUG "%s: LOST sync on card %d"
1019					" (id=%d)\n", __func__, hc->id + 1,
1020					hc->id);
1021			hfcmulti_resync(hc, NULL, rm);
1022		}
1023	}
1024}
1025
1026
1027/*
1028 * free hardware resources used by driver
1029 */
1030static void
1031release_io_hfcmulti(struct hfc_multi *hc)
1032{
1033	void __iomem *plx_acc_32;
1034	u_int	pv;
1035	u_long	plx_flags;
1036
1037	if (debug & DEBUG_HFCMULTI_INIT)
1038		printk(KERN_DEBUG "%s: entered\n", __func__);
1039
1040	/* soft reset also masks all interrupts */
1041	hc->hw.r_cirm |= V_SRES;
1042	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1043	udelay(1000);
1044	hc->hw.r_cirm &= ~V_SRES;
1045	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1046	udelay(1000); /* instead of 'wait' that may cause locking */
1047
1048	/* release Speech Design card, if PLX was initialized */
1049	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1050		if (debug & DEBUG_HFCMULTI_PLXSD)
1051			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1052			    __func__, hc->id + 1);
1053		spin_lock_irqsave(&plx_lock, plx_flags);
1054		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1055		writel(PLX_GPIOC_INIT, plx_acc_32);
1056		pv = readl(plx_acc_32);
1057		/* Termination off */
1058		pv &= ~PLX_TERM_ON;
1059		/* Disconnect the PCM */
1060		pv |= PLX_SLAVE_EN_N;
1061		pv &= ~PLX_MASTER_EN;
1062		pv &= ~PLX_SYNC_O_EN;
1063		/* Put the DSP in Reset */
1064		pv &= ~PLX_DSP_RES_N;
1065		writel(pv, plx_acc_32);
1066		if (debug & DEBUG_HFCMULTI_INIT)
1067			printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1068				__func__, pv);
1069		spin_unlock_irqrestore(&plx_lock, plx_flags);
1070	}
1071
1072	/* disable memory mapped ports / io ports */
1073	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1074	if (hc->pci_dev)
1075		pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1076	if (hc->pci_membase)
1077		iounmap(hc->pci_membase);
1078	if (hc->plx_membase)
1079		iounmap(hc->plx_membase);
1080	if (hc->pci_iobase)
1081		release_region(hc->pci_iobase, 8);
1082	if (hc->xhfc_membase)
1083		iounmap((void *)hc->xhfc_membase);
1084
1085	if (hc->pci_dev) {
1086		pci_disable_device(hc->pci_dev);
1087		pci_set_drvdata(hc->pci_dev, NULL);
1088	}
1089	if (debug & DEBUG_HFCMULTI_INIT)
1090		printk(KERN_DEBUG "%s: done\n", __func__);
1091}
1092
1093/*
1094 * function called to reset the HFC chip. A complete software reset of chip
1095 * and fifos is done. All configuration of the chip is done.
1096 */
1097
1098static int
1099init_chip(struct hfc_multi *hc)
1100{
1101	u_long			flags, val, val2 = 0, rev;
1102	int			i, err = 0;
1103	u_char			r_conf_en, rval;
1104	void __iomem		*plx_acc_32;
1105	u_int			pv;
1106	u_long			plx_flags, hfc_flags;
1107	int			plx_count;
1108	struct hfc_multi	*pos, *next, *plx_last_hc;
1109
1110	spin_lock_irqsave(&hc->lock, flags);
1111	/* reset all registers */
1112	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1113
1114	/* revision check */
1115	if (debug & DEBUG_HFCMULTI_INIT)
1116		printk(KERN_DEBUG "%s: entered\n", __func__);
1117	val = HFC_inb(hc, R_CHIP_ID);
1118	if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1119	    (val >> 1) != 0x31) {
1120		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1121		err = -EIO;
1122		goto out;
1123	}
1124	rev = HFC_inb(hc, R_CHIP_RV);
1125	printk(KERN_INFO
1126	    "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1127	    val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1128		" (old FIFO handling)" : "");
1129	if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1130		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1131		printk(KERN_WARNING
1132		    "HFC_multi: NOTE: Your chip is revision 0, "
1133		    "ask Cologne Chip for update. Newer chips "
1134		    "have a better FIFO handling. Old chips "
1135		    "still work but may have slightly lower "
1136		    "HDLC transmit performance.\n");
1137	}
1138	if (rev > 1) {
1139		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1140		    "consider chip revision = %ld. The chip / "
1141		    "bridge may not work.\n", rev);
1142	}
1143
1144	/* set s-ram size */
1145	hc->Flen = 0x10;
1146	hc->Zmin = 0x80;
1147	hc->Zlen = 384;
1148	hc->DTMFbase = 0x1000;
1149	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1150		if (debug & DEBUG_HFCMULTI_INIT)
1151			printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1152			    __func__);
1153		hc->hw.r_ctrl |= V_EXT_RAM;
1154		hc->hw.r_ram_sz = 1;
1155		hc->Flen = 0x20;
1156		hc->Zmin = 0xc0;
1157		hc->Zlen = 1856;
1158		hc->DTMFbase = 0x2000;
1159	}
1160	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1161		if (debug & DEBUG_HFCMULTI_INIT)
1162			printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1163			    __func__);
1164		hc->hw.r_ctrl |= V_EXT_RAM;
1165		hc->hw.r_ram_sz = 2;
1166		hc->Flen = 0x20;
1167		hc->Zmin = 0xc0;
1168		hc->Zlen = 8000;
1169		hc->DTMFbase = 0x2000;
1170	}
1171	if (hc->ctype == HFC_TYPE_XHFC) {
1172		hc->Flen = 0x8;
1173		hc->Zmin = 0x0;
1174		hc->Zlen = 64;
1175		hc->DTMFbase = 0x0;
1176	}
1177	hc->max_trans = poll << 1;
1178	if (hc->max_trans > hc->Zlen)
1179		hc->max_trans = hc->Zlen;
1180
1181	/* Speech Design PLX bridge */
1182	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1183		if (debug & DEBUG_HFCMULTI_PLXSD)
1184			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1185			    __func__, hc->id + 1);
1186		spin_lock_irqsave(&plx_lock, plx_flags);
1187		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1188		writel(PLX_GPIOC_INIT, plx_acc_32);
1189		pv = readl(plx_acc_32);
1190		/* The first and the last cards are terminating the PCM bus */
1191		pv |= PLX_TERM_ON; /* hc is currently the last */
1192		/* Disconnect the PCM */
1193		pv |= PLX_SLAVE_EN_N;
1194		pv &= ~PLX_MASTER_EN;
1195		pv &= ~PLX_SYNC_O_EN;
1196		/* Put the DSP in Reset */
1197		pv &= ~PLX_DSP_RES_N;
1198		writel(pv, plx_acc_32);
1199		spin_unlock_irqrestore(&plx_lock, plx_flags);
1200		if (debug & DEBUG_HFCMULTI_INIT)
1201			printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1202				__func__, pv);
1203		/*
1204		 * If we are the 3rd PLXSD card or higher, we must turn
1205		 * termination of last PLXSD card off.
1206		 */
1207		spin_lock_irqsave(&HFClock, hfc_flags);
1208		plx_count = 0;
1209		plx_last_hc = NULL;
1210		list_for_each_entry_safe(pos, next, &HFClist, list) {
1211			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1212				plx_count++;
1213				if (pos != hc)
1214					plx_last_hc = pos;
1215			}
1216		}
1217		if (plx_count >= 3) {
1218			if (debug & DEBUG_HFCMULTI_PLXSD)
1219				printk(KERN_DEBUG "%s: card %d is between, so "
1220					"we disable termination\n",
1221				    __func__, plx_last_hc->id + 1);
1222			spin_lock_irqsave(&plx_lock, plx_flags);
1223			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1224			pv = readl(plx_acc_32);
1225			pv &= ~PLX_TERM_ON;
1226			writel(pv, plx_acc_32);
1227			spin_unlock_irqrestore(&plx_lock, plx_flags);
1228			if (debug & DEBUG_HFCMULTI_INIT)
1229				printk(KERN_DEBUG
1230				    "%s: term off: PLX_GPIO=%x\n",
1231				    __func__, pv);
1232		}
1233		spin_unlock_irqrestore(&HFClock, hfc_flags);
1234		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1235	}
1236
1237	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1238		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1239
1240	/* we only want the real Z2 read-pointer for revision > 0 */
1241	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1242		hc->hw.r_ram_sz |= V_FZ_MD;
1243
1244	/* select pcm mode */
1245	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1246		if (debug & DEBUG_HFCMULTI_INIT)
1247			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1248			    __func__);
1249	} else
1250	if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1251		if (debug & DEBUG_HFCMULTI_INIT)
1252			printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1253			    __func__);
1254		hc->hw.r_pcm_md0 |= V_PCM_MD;
1255	} else {
1256		if (debug & DEBUG_HFCMULTI_INIT)
1257			printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1258			    __func__);
1259	}
1260
1261	/* soft reset */
1262	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1263	if (hc->ctype == HFC_TYPE_XHFC)
1264		HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1265				0x11 /* 16 Bytes TX/RX */);
1266	else
1267		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1268	HFC_outb(hc, R_FIFO_MD, 0);
1269	if (hc->ctype == HFC_TYPE_XHFC)
1270		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1271	else
1272		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1273			| V_RLD_EPR;
1274	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1275	udelay(100);
1276	hc->hw.r_cirm = 0;
1277	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1278	udelay(100);
1279	if (hc->ctype != HFC_TYPE_XHFC)
1280		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1281
1282	/* Speech Design PLX bridge pcm and sync mode */
1283	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1284		spin_lock_irqsave(&plx_lock, plx_flags);
1285		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1286		pv = readl(plx_acc_32);
1287		/* Connect PCM */
1288		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1289			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1290			pv |= PLX_SYNC_O_EN;
1291			if (debug & DEBUG_HFCMULTI_INIT)
1292				printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1293					__func__, pv);
1294		} else {
1295			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1296			pv &= ~PLX_SYNC_O_EN;
1297			if (debug & DEBUG_HFCMULTI_INIT)
1298				printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1299					__func__, pv);
1300		}
1301		writel(pv, plx_acc_32);
1302		spin_unlock_irqrestore(&plx_lock, plx_flags);
1303	}
1304
1305	/* PCM setup */
1306	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1307	if (hc->slots == 32)
1308		HFC_outb(hc, R_PCM_MD1, 0x00);
1309	if (hc->slots == 64)
1310		HFC_outb(hc, R_PCM_MD1, 0x10);
1311	if (hc->slots == 128)
1312		HFC_outb(hc, R_PCM_MD1, 0x20);
1313	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1314	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1315		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1316	else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1317		HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1318	else
1319		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1320	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1321	for (i = 0; i < 256; i++) {
1322		HFC_outb_nodebug(hc, R_SLOT, i);
1323		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1324		if (hc->ctype != HFC_TYPE_XHFC)
1325			HFC_outb_nodebug(hc, A_CONF, 0);
1326		hc->slot_owner[i] = -1;
1327	}
1328
1329	/* set clock speed */
1330	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1331		if (debug & DEBUG_HFCMULTI_INIT)
1332			printk(KERN_DEBUG
1333			    "%s: setting double clock\n", __func__);
1334		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1335	}
1336
1337	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1338		HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1339
1340	/* B410P GPIO */
1341	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1342		printk(KERN_NOTICE "Setting GPIOs\n");
1343		HFC_outb(hc, R_GPIO_SEL, 0x30);
1344		HFC_outb(hc, R_GPIO_EN1, 0x3);
1345		udelay(1000);
1346		printk(KERN_NOTICE "calling vpm_init\n");
1347		vpm_init(hc);
1348	}
1349
1350	/* check if R_F0_CNT counts (8 kHz frame count) */
1351	val = HFC_inb(hc, R_F0_CNTL);
1352	val += HFC_inb(hc, R_F0_CNTH) << 8;
1353	if (debug & DEBUG_HFCMULTI_INIT)
1354		printk(KERN_DEBUG
1355		    "HFC_multi F0_CNT %ld after reset\n", val);
1356	spin_unlock_irqrestore(&hc->lock, flags);
1357	set_current_state(TASK_UNINTERRUPTIBLE);
1358	schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1359	spin_lock_irqsave(&hc->lock, flags);
1360	val2 = HFC_inb(hc, R_F0_CNTL);
1361	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1362	if (debug & DEBUG_HFCMULTI_INIT)
1363		printk(KERN_DEBUG
1364			"HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1365		    val2);
1366	if (val2 >= val+8) { /* 1 ms */
1367		/* it counts, so we keep the pcm mode */
1368		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1369			printk(KERN_INFO "controller is PCM bus MASTER\n");
1370		else
1371		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1372			printk(KERN_INFO "controller is PCM bus SLAVE\n");
1373		else {
1374			test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1375			printk(KERN_INFO "controller is PCM bus SLAVE "
1376				"(auto detected)\n");
1377		}
1378	} else {
1379		/* does not count */
1380		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1381controller_fail:
1382			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1383			    "pulse. Seems that controller fails.\n");
1384			err = -EIO;
1385			goto out;
1386		}
1387		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1388			printk(KERN_INFO "controller is PCM bus SLAVE "
1389				"(ignoring missing PCM clock)\n");
1390		} else {
1391			/* only one pcm master */
1392			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1393				&& plxsd_master) {
1394				printk(KERN_ERR "HFC_multi ERROR, no clock "
1395				    "on another Speech Design card found. "
1396				    "Please be sure to connect PCM cable.\n");
1397				err = -EIO;
1398				goto out;
1399			}
1400			/* retry with master clock */
1401			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1402				spin_lock_irqsave(&plx_lock, plx_flags);
1403				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1404				pv = readl(plx_acc_32);
1405				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1406				pv |= PLX_SYNC_O_EN;
1407				writel(pv, plx_acc_32);
1408				spin_unlock_irqrestore(&plx_lock, plx_flags);
1409				if (debug & DEBUG_HFCMULTI_INIT)
1410					printk(KERN_DEBUG "%s: master: "
1411					    "PLX_GPIO=%x\n", __func__, pv);
1412			}
1413			hc->hw.r_pcm_md0 |= V_PCM_MD;
1414			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1415			spin_unlock_irqrestore(&hc->lock, flags);
1416			set_current_state(TASK_UNINTERRUPTIBLE);
1417			schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1418			spin_lock_irqsave(&hc->lock, flags);
1419			val2 = HFC_inb(hc, R_F0_CNTL);
1420			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1421			if (debug & DEBUG_HFCMULTI_INIT)
1422				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1423					"10 ms (2nd try)\n", val2);
1424			if (val2 >= val+8) { /* 1 ms */
1425				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1426					&hc->chip);
1427				printk(KERN_INFO "controller is PCM bus MASTER "
1428					"(auto detected)\n");
1429			} else
1430				goto controller_fail;
1431		}
1432	}
1433
1434	/* Release the DSP Reset */
1435	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1436		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1437			plxsd_master = 1;
1438		spin_lock_irqsave(&plx_lock, plx_flags);
1439		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1440		pv = readl(plx_acc_32);
1441		pv |=  PLX_DSP_RES_N;
1442		writel(pv, plx_acc_32);
1443		spin_unlock_irqrestore(&plx_lock, plx_flags);
1444		if (debug & DEBUG_HFCMULTI_INIT)
1445			printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1446				__func__, pv);
1447	}
1448
1449	/* pcm id */
1450	if (hc->pcm)
1451		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1452			hc->pcm);
1453	else {
1454		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1455		 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1456			PCM_cnt++; /* SD has proprietary bridging */
1457		}
1458		hc->pcm = PCM_cnt;
1459		printk(KERN_INFO "controller has PCM BUS ID %d "
1460			"(auto selected)\n", hc->pcm);
1461	}
1462
1463	/* set up timer */
1464	HFC_outb(hc, R_TI_WD, poll_timer);
1465	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1466
1467	/* set E1 state machine IRQ */
1468	if (hc->ctype == HFC_TYPE_E1)
1469		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1470
1471	/* set DTMF detection */
1472	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1473		if (debug & DEBUG_HFCMULTI_INIT)
1474			printk(KERN_DEBUG "%s: enabling DTMF detection "
1475			    "for all B-channel\n", __func__);
1476		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1477		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1478			hc->hw.r_dtmf |= V_ULAW_SEL;
1479		HFC_outb(hc, R_DTMF_N, 102 - 1);
1480		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1481	}
1482
1483	/* conference engine */
1484	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1485		r_conf_en = V_CONF_EN | V_ULAW;
1486	else
1487		r_conf_en = V_CONF_EN;
1488	if (hc->ctype != HFC_TYPE_XHFC)
1489		HFC_outb(hc, R_CONF_EN, r_conf_en);
1490
1491	/* setting leds */
1492	switch (hc->leds) {
1493	case 1: /* HFC-E1 OEM */
1494		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1495			HFC_outb(hc, R_GPIO_SEL, 0x32);
1496		else
1497			HFC_outb(hc, R_GPIO_SEL, 0x30);
1498
1499		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1500		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1501
1502		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1503		break;
1504
1505	case 2: /* HFC-4S OEM */
1506	case 3:
1507		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1508		HFC_outb(hc, R_GPIO_EN1, 0xff);
1509		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1510		break;
1511	}
1512
1513	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1514		hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1515		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1516	}
1517
1518	/* set master clock */
1519	if (hc->masterclk >= 0) {
1520		if (debug & DEBUG_HFCMULTI_INIT)
1521			printk(KERN_DEBUG "%s: setting ST master clock "
1522			    "to port %d (0..%d)\n",
1523			    __func__, hc->masterclk, hc->ports-1);
1524		hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1525		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1526	}
1527
1528
1529
1530	/* setting misc irq */
1531	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1532	if (debug & DEBUG_HFCMULTI_INIT)
1533		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1534		    hc->hw.r_irqmsk_misc);
1535
1536	/* RAM access test */
1537	HFC_outb(hc, R_RAM_ADDR0, 0);
1538	HFC_outb(hc, R_RAM_ADDR1, 0);
1539	HFC_outb(hc, R_RAM_ADDR2, 0);
1540	for (i = 0; i < 256; i++) {
1541		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1542		HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1543	}
1544	for (i = 0; i < 256; i++) {
1545		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1546		HFC_inb_nodebug(hc, R_RAM_DATA);
1547		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1548		if (rval != ((i * 3) & 0xff)) {
1549			printk(KERN_DEBUG
1550			    "addr:%x val:%x should:%x\n", i, rval,
1551			    (i * 3) & 0xff);
1552			err++;
1553		}
1554	}
1555	if (err) {
1556		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1557		err = -EIO;
1558		goto out;
1559	}
1560
1561	if (debug & DEBUG_HFCMULTI_INIT)
1562		printk(KERN_DEBUG "%s: done\n", __func__);
1563out:
1564	spin_unlock_irqrestore(&hc->lock, flags);
1565	return err;
1566}
1567
1568
1569/*
1570 * control the watchdog
1571 */
1572static void
1573hfcmulti_watchdog(struct hfc_multi *hc)
1574{
1575	hc->wdcount++;
1576
1577	if (hc->wdcount > 10) {
1578		hc->wdcount = 0;
1579		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1580		    V_GPIO_OUT3 : V_GPIO_OUT2;
1581
1582	/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1583		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1584		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1585	}
1586}
1587
1588
1589
1590/*
1591 * output leds
1592 */
1593static void
1594hfcmulti_leds(struct hfc_multi *hc)
1595{
1596	unsigned long lled;
1597	unsigned long leddw;
1598	int i, state, active, leds;
1599	struct dchannel *dch;
1600	int led[4];
1601
1602	hc->ledcount += poll;
1603	if (hc->ledcount > 4096) {
1604		hc->ledcount -= 4096;
1605		hc->ledstate = 0xAFFEAFFE;
1606	}
1607
1608	switch (hc->leds) {
1609	case 1: /* HFC-E1 OEM */
1610		/* 2 red blinking: NT mode deactivate
1611		 * 2 red steady:   TE mode deactivate
1612		 * left green:     L1 active
1613		 * left red:       frame sync, but no L1
1614		 * right green:    L2 active
1615		 */
1616		if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1617			if (hc->chan[hc->dslot].dch->dev.D.protocol
1618				!= ISDN_P_NT_E1) {
1619				led[0] = 1;
1620				led[1] = 1;
1621			} else if (hc->ledcount>>11) {
1622				led[0] = 1;
1623				led[1] = 1;
1624			} else {
1625				led[0] = 0;
1626				led[1] = 0;
1627			}
1628			led[2] = 0;
1629			led[3] = 0;
1630		} else { /* with frame sync */
1631			/* TODO make it work */
1632			led[0] = 0;
1633			led[1] = 0;
1634			led[2] = 0;
1635			led[3] = 1;
1636		}
1637		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1638			/* leds are inverted */
1639		if (leds != (int)hc->ledstate) {
1640			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1641			hc->ledstate = leds;
1642		}
1643		break;
1644
1645	case 2: /* HFC-4S OEM */
1646		/* red blinking = PH_DEACTIVATE NT Mode
1647		 * red steady   = PH_DEACTIVATE TE Mode
1648		 * green steady = PH_ACTIVATE
1649		 */
1650		for (i = 0; i < 4; i++) {
1651			state = 0;
1652			active = -1;
1653			dch = hc->chan[(i << 2) | 2].dch;
1654			if (dch) {
1655				state = dch->state;
1656				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1657					active = 3;
1658				else
1659					active = 7;
1660			}
1661			if (state) {
1662				if (state == active) {
1663					led[i] = 1; /* led green */
1664				} else
1665					if (dch->dev.D.protocol == ISDN_P_TE_S0)
1666						/* TE mode: led red */
1667						led[i] = 2;
1668					else
1669						if (hc->ledcount>>11)
1670							/* led red */
1671							led[i] = 2;
1672						else
1673							/* led off */
1674							led[i] = 0;
1675			} else
1676				led[i] = 0; /* led off */
1677		}
1678		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1679			leds = 0;
1680			for (i = 0; i < 4; i++) {
1681				if (led[i] == 1) {
1682					/*green*/
1683					leds |= (0x2 << (i * 2));
1684				} else if (led[i] == 2) {
1685					/*red*/
1686					leds |= (0x1 << (i * 2));
1687				}
1688			}
1689			if (leds != (int)hc->ledstate) {
1690				vpm_out(hc, 0, 0x1a8 + 3, leds);
1691				hc->ledstate = leds;
1692			}
1693		} else {
1694			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1695			    ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1696			    ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1697			    ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1698			if (leds != (int)hc->ledstate) {
1699				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1700				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1701				hc->ledstate = leds;
1702			}
1703		}
1704		break;
1705
1706	case 3: /* HFC 1S/2S Beronet */
1707		/* red blinking = PH_DEACTIVATE NT Mode
1708		 * red steady   = PH_DEACTIVATE TE Mode
1709		 * green steady = PH_ACTIVATE
1710		 */
1711		for (i = 0; i < 2; i++) {
1712			state = 0;
1713			active = -1;
1714			dch = hc->chan[(i << 2) | 2].dch;
1715			if (dch) {
1716				state = dch->state;
1717				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1718					active = 3;
1719				else
1720					active = 7;
1721			}
1722			if (state) {
1723				if (state == active) {
1724					led[i] = 1; /* led green */
1725				} else
1726					if (dch->dev.D.protocol == ISDN_P_TE_S0)
1727						/* TE mode: led red */
1728						led[i] = 2;
1729					else
1730						if (hc->ledcount >> 11)
1731							/* led red */
1732							led[i] = 2;
1733						else
1734							/* led off */
1735							led[i] = 0;
1736			} else
1737				led[i] = 0; /* led off */
1738		}
1739
1740
1741		leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1742			| ((led[1]&1)<<3);
1743		if (leds != (int)hc->ledstate) {
1744			HFC_outb_nodebug(hc, R_GPIO_EN1,
1745			    ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1746			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1747			    ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1748			hc->ledstate = leds;
1749		}
1750		break;
1751	case 8: /* HFC 8S+ Beronet */
1752		lled = 0;
1753
1754		for (i = 0; i < 8; i++) {
1755			state = 0;
1756			active = -1;
1757			dch = hc->chan[(i << 2) | 2].dch;
1758			if (dch) {
1759				state = dch->state;
1760				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1761					active = 3;
1762				else
1763					active = 7;
1764			}
1765			if (state) {
1766				if (state == active) {
1767					lled |= 0 << i;
1768				} else
1769					if (hc->ledcount >> 11)
1770						lled |= 0 << i;
1771					else
1772						lled |= 1 << i;
1773			} else
1774				lled |= 1 << i;
1775		}
1776		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1777		if (leddw != hc->ledstate) {
1778			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1779			HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1780			/* was _io before */
1781			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1782			outw(0x4000, hc->pci_iobase + 4);
1783			outl(leddw, hc->pci_iobase);
1784			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1785			hc->ledstate = leddw;
1786		}
1787		break;
1788	}
1789}
1790/*
1791 * read dtmf coefficients
1792 */
1793
1794static void
1795hfcmulti_dtmf(struct hfc_multi *hc)
1796{
1797	s32		*coeff;
1798	u_int		mantissa;
1799	int		co, ch;
1800	struct bchannel	*bch = NULL;
1801	u8		exponent;
1802	int		dtmf = 0;
1803	int		addr;
1804	u16		w_float;
1805	struct sk_buff	*skb;
1806	struct mISDNhead *hh;
1807
1808	if (debug & DEBUG_HFCMULTI_DTMF)
1809		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1810	for (ch = 0; ch <= 31; ch++) {
1811		/* only process enabled B-channels */
1812		bch = hc->chan[ch].bch;
1813		if (!bch)
1814			continue;
1815		if (!hc->created[hc->chan[ch].port])
1816			continue;
1817		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1818			continue;
1819		if (debug & DEBUG_HFCMULTI_DTMF)
1820			printk(KERN_DEBUG "%s: dtmf channel %d:",
1821				__func__, ch);
1822		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1823		dtmf = 1;
1824		for (co = 0; co < 8; co++) {
1825			/* read W(n-1) coefficient */
1826			addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1827			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1828			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1829			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1830				| V_ADDR_INC);
1831			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1832			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1833			if (debug & DEBUG_HFCMULTI_DTMF)
1834				printk(" %04x", w_float);
1835
1836			/* decode float (see chip doc) */
1837			mantissa = w_float & 0x0fff;
1838			if (w_float & 0x8000)
1839				mantissa |= 0xfffff000;
1840			exponent = (w_float>>12) & 0x7;
1841			if (exponent) {
1842				mantissa ^= 0x1000;
1843				mantissa <<= (exponent-1);
1844			}
1845
1846			/* store coefficient */
1847			coeff[co<<1] = mantissa;
1848
1849			/* read W(n) coefficient */
1850			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1851			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1852			if (debug & DEBUG_HFCMULTI_DTMF)
1853				printk(" %04x", w_float);
1854
1855			/* decode float (see chip doc) */
1856			mantissa = w_float & 0x0fff;
1857			if (w_float & 0x8000)
1858				mantissa |= 0xfffff000;
1859			exponent = (w_float>>12) & 0x7;
1860			if (exponent) {
1861				mantissa ^= 0x1000;
1862				mantissa <<= (exponent-1);
1863			}
1864
1865			/* store coefficient */
1866			coeff[(co<<1)|1] = mantissa;
1867		}
1868		if (debug & DEBUG_HFCMULTI_DTMF)
1869			printk(" DTMF ready %08x %08x %08x %08x "
1870			    "%08x %08x %08x %08x\n",
1871			    coeff[0], coeff[1], coeff[2], coeff[3],
1872			    coeff[4], coeff[5], coeff[6], coeff[7]);
1873		hc->chan[ch].coeff_count++;
1874		if (hc->chan[ch].coeff_count == 8) {
1875			hc->chan[ch].coeff_count = 0;
1876			skb = mI_alloc_skb(512, GFP_ATOMIC);
1877			if (!skb) {
1878				printk(KERN_DEBUG "%s: No memory for skb\n",
1879				    __func__);
1880				continue;
1881			}
1882			hh = mISDN_HEAD_P(skb);
1883			hh->prim = PH_CONTROL_IND;
1884			hh->id = DTMF_HFC_COEF;
1885			memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1886			recv_Bchannel_skb(bch, skb);
1887		}
1888	}
1889
1890	/* restart DTMF processing */
1891	hc->dtmf = dtmf;
1892	if (dtmf)
1893		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1894}
1895
1896
1897/*
1898 * fill fifo as much as possible
1899 */
1900
1901static void
1902hfcmulti_tx(struct hfc_multi *hc, int ch)
1903{
1904	int i, ii, temp, len = 0;
1905	int Zspace, z1, z2; /* must be int for calculation */
1906	int Fspace, f1, f2;
1907	u_char *d;
1908	int *txpending, slot_tx;
1909	struct	bchannel *bch;
1910	struct  dchannel *dch;
1911	struct  sk_buff **sp = NULL;
1912	int *idxp;
1913
1914	bch = hc->chan[ch].bch;
1915	dch = hc->chan[ch].dch;
1916	if ((!dch) && (!bch))
1917		return;
1918
1919	txpending = &hc->chan[ch].txpending;
1920	slot_tx = hc->chan[ch].slot_tx;
1921	if (dch) {
1922		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1923			return;
1924		sp = &dch->tx_skb;
1925		idxp = &dch->tx_idx;
1926	} else {
1927		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1928			return;
1929		sp = &bch->tx_skb;
1930		idxp = &bch->tx_idx;
1931	}
1932	if (*sp)
1933		len = (*sp)->len;
1934
1935	if ((!len) && *txpending != 1)
1936		return; /* no data */
1937
1938	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1939	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1940	    (hc->chan[ch].slot_rx < 0) &&
1941	    (hc->chan[ch].slot_tx < 0))
1942		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1943	else
1944		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1945	HFC_wait_nodebug(hc);
1946
1947	if (*txpending == 2) {
1948		/* reset fifo */
1949		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1950		HFC_wait_nodebug(hc);
1951		HFC_outb(hc, A_SUBCH_CFG, 0);
1952		*txpending = 1;
1953	}
1954next_frame:
1955	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1956		f1 = HFC_inb_nodebug(hc, A_F1);
1957		f2 = HFC_inb_nodebug(hc, A_F2);
1958		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1959			if (debug & DEBUG_HFCMULTI_FIFO)
1960				printk(KERN_DEBUG
1961				    "%s(card %d): reread f2 because %d!=%d\n",
1962				    __func__, hc->id + 1, temp, f2);
1963			f2 = temp; /* repeat until F2 is equal */
1964		}
1965		Fspace = f2 - f1 - 1;
1966		if (Fspace < 0)
1967			Fspace += hc->Flen;
1968		/*
1969		 * Old FIFO handling doesn't give us the current Z2 read
1970		 * pointer, so we cannot send the next frame before the fifo
1971		 * is empty. It makes no difference except for a slightly
1972		 * lower performance.
1973		 */
1974		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1975			if (f1 != f2)
1976				Fspace = 0;
1977			else
1978				Fspace = 1;
1979		}
1980		/* one frame only for ST D-channels, to allow resending */
1981		if (hc->ctype != HFC_TYPE_E1 && dch) {
1982			if (f1 != f2)
1983				Fspace = 0;
1984		}
1985		/* F-counter full condition */
1986		if (Fspace == 0)
1987			return;
1988	}
1989	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1990	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1991	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1992		if (debug & DEBUG_HFCMULTI_FIFO)
1993			printk(KERN_DEBUG "%s(card %d): reread z2 because "
1994				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
1995		z2 = temp; /* repeat unti Z2 is equal */
1996	}
1997	hc->chan[ch].Zfill = z1 - z2;
1998	if (hc->chan[ch].Zfill < 0)
1999		hc->chan[ch].Zfill += hc->Zlen;
2000	Zspace = z2 - z1;
2001	if (Zspace <= 0)
2002		Zspace += hc->Zlen;
2003	Zspace -= 4; /* keep not too full, so pointers will not overrun */
2004	/* fill transparent data only to maxinum transparent load (minus 4) */
2005	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2006		Zspace = Zspace - hc->Zlen + hc->max_trans;
2007	if (Zspace <= 0) /* no space of 4 bytes */
2008		return;
2009
2010	/* if no data */
2011	if (!len) {
2012		if (z1 == z2) { /* empty */
2013			/* if done with FIFO audio data during PCM connection */
2014			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2015			    *txpending && slot_tx >= 0) {
2016				if (debug & DEBUG_HFCMULTI_MODE)
2017					printk(KERN_DEBUG
2018					    "%s: reconnecting PCM due to no "
2019					    "more FIFO data: channel %d "
2020					    "slot_tx %d\n",
2021					    __func__, ch, slot_tx);
2022				/* connect slot */
2023				if (hc->ctype == HFC_TYPE_XHFC)
2024					HFC_outb(hc, A_CON_HDLC, 0xc0
2025					    | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2026						/* Enable FIFO, no interrupt */
2027				else
2028					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2029					    V_HDLC_TRP | V_IFF);
2030				HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2031				HFC_wait_nodebug(hc);
2032				if (hc->ctype == HFC_TYPE_XHFC)
2033					HFC_outb(hc, A_CON_HDLC, 0xc0
2034					    | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2035						/* Enable FIFO, no interrupt */
2036				else
2037					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2038					    V_HDLC_TRP | V_IFF);
2039				HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2040				HFC_wait_nodebug(hc);
2041			}
2042			*txpending = 0;
2043		}
2044		return; /* no data */
2045	}
2046
2047	/* "fill fifo if empty" feature */
2048	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2049		&& !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2050		if (debug & DEBUG_HFCMULTI_FILL)
2051			printk(KERN_DEBUG "%s: buffer empty, so we have "
2052				"underrun\n", __func__);
2053		/* fill buffer, to prevent future underrun */
2054		hc->write_fifo(hc, hc->silence_data, poll >> 1);
2055		Zspace -= (poll >> 1);
2056	}
2057
2058	/* if audio data and connected slot */
2059	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2060		&& slot_tx >= 0) {
2061		if (debug & DEBUG_HFCMULTI_MODE)
2062			printk(KERN_DEBUG "%s: disconnecting PCM due to "
2063			    "FIFO data: channel %d slot_tx %d\n",
2064			    __func__, ch, slot_tx);
2065		/* disconnect slot */
2066		if (hc->ctype == HFC_TYPE_XHFC)
2067			HFC_outb(hc, A_CON_HDLC, 0x80
2068			    | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2069				/* Enable FIFO, no interrupt */
2070		else
2071			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2072			    V_HDLC_TRP | V_IFF);
2073		HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2074		HFC_wait_nodebug(hc);
2075		if (hc->ctype == HFC_TYPE_XHFC)
2076			HFC_outb(hc, A_CON_HDLC, 0x80
2077			    | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2078				/* Enable FIFO, no interrupt */
2079		else
2080			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2081			    V_HDLC_TRP | V_IFF);
2082		HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2083		HFC_wait_nodebug(hc);
2084	}
2085	*txpending = 1;
2086
2087	/* show activity */
2088	hc->activity[hc->chan[ch].port] = 1;
2089
2090	/* fill fifo to what we have left */
2091	ii = len;
2092	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2093		temp = 1;
2094	else
2095		temp = 0;
2096	i = *idxp;
2097	d = (*sp)->data + i;
2098	if (ii - i > Zspace)
2099		ii = Zspace + i;
2100	if (debug & DEBUG_HFCMULTI_FIFO)
2101		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2102		    "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2103			__func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2104			temp ? "HDLC" : "TRANS");
2105
2106	/* Have to prep the audio data */
2107	hc->write_fifo(hc, d, ii - i);
2108	hc->chan[ch].Zfill += ii - i;
2109	*idxp = ii;
2110
2111	/* if not all data has been written */
2112	if (ii != len) {
2113		/* NOTE: fifo is started by the calling function */
2114		return;
2115	}
2116
2117	/* if all data has been written, terminate frame */
2118	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2119		/* increment f-counter */
2120		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2121		HFC_wait_nodebug(hc);
2122	}
2123
2124	/* send confirm, since get_net_bframe will not do it with trans */
2125	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2126		confirm_Bsend(bch);
2127
2128	/* check for next frame */
2129	dev_kfree_skb(*sp);
2130	if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2131		len = (*sp)->len;
2132		goto next_frame;
2133	}
2134	if (dch && get_next_dframe(dch)) {
2135		len = (*sp)->len;
2136		goto next_frame;
2137	}
2138
2139	/*
2140	 * now we have no more data, so in case of transparent,
2141	 * we set the last byte in fifo to 'silence' in case we will get
2142	 * no more data at all. this prevents sending an undefined value.
2143	 */
2144	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2145		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2146}
2147
2148
2149/* NOTE: only called if E1 card is in active state */
2150static void
2151hfcmulti_rx(struct hfc_multi *hc, int ch)
2152{
2153	int temp;
2154	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2155	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2156	int again = 0;
2157	struct	bchannel *bch;
2158	struct  dchannel *dch;
2159	struct sk_buff	*skb, **sp = NULL;
2160	int	maxlen;
2161
2162	bch = hc->chan[ch].bch;
2163	dch = hc->chan[ch].dch;
2164	if ((!dch) && (!bch))
2165		return;
2166	if (dch) {
2167		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2168			return;
2169		sp = &dch->rx_skb;
2170		maxlen = dch->maxlen;
2171	} else {
2172		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2173			return;
2174		sp = &bch->rx_skb;
2175		maxlen = bch->maxlen;
2176	}
2177next_frame:
2178	/* on first AND before getting next valid frame, R_FIFO must be written
2179	   to. */
2180	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2181	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2182	    (hc->chan[ch].slot_rx < 0) &&
2183	    (hc->chan[ch].slot_tx < 0))
2184		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2185	else
2186		HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2187	HFC_wait_nodebug(hc);
2188
2189	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2190	if (hc->chan[ch].rx_off)
2191		return;
2192
2193	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2194		f1 = HFC_inb_nodebug(hc, A_F1);
2195		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2196			if (debug & DEBUG_HFCMULTI_FIFO)
2197				printk(KERN_DEBUG
2198				    "%s(card %d): reread f1 because %d!=%d\n",
2199				    __func__, hc->id + 1, temp, f1);
2200			f1 = temp; /* repeat until F1 is equal */
2201		}
2202		f2 = HFC_inb_nodebug(hc, A_F2);
2203	}
2204	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2205	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2206		if (debug & DEBUG_HFCMULTI_FIFO)
2207			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2208				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
2209		z1 = temp; /* repeat until Z1 is equal */
2210	}
2211	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2212	Zsize = z1 - z2;
2213	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2214		/* complete hdlc frame */
2215		Zsize++;
2216	if (Zsize < 0)
2217		Zsize += hc->Zlen;
2218	/* if buffer is empty */
2219	if (Zsize <= 0)
2220		return;
2221
2222	if (*sp == NULL) {
2223		*sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2224		if (*sp == NULL) {
2225			printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2226			    __func__);
2227			return;
2228		}
2229	}
2230	/* show activity */
2231	hc->activity[hc->chan[ch].port] = 1;
2232
2233	/* empty fifo with what we have */
2234	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2235		if (debug & DEBUG_HFCMULTI_FIFO)
2236			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2237			    "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2238			    "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2239			    Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2240			    f1, f2, Zsize + (*sp)->len, again);
2241		/* HDLC */
2242		if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2243			if (debug & DEBUG_HFCMULTI_FIFO)
2244				printk(KERN_DEBUG
2245				    "%s(card %d): hdlc-frame too large.\n",
2246				    __func__, hc->id + 1);
2247			skb_trim(*sp, 0);
2248			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2249			HFC_wait_nodebug(hc);
2250			return;
2251		}
2252
2253		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2254
2255		if (f1 != f2) {
2256			/* increment Z2,F2-counter */
2257			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2258			HFC_wait_nodebug(hc);
2259			/* check size */
2260			if ((*sp)->len < 4) {
2261				if (debug & DEBUG_HFCMULTI_FIFO)
2262					printk(KERN_DEBUG
2263					    "%s(card %d): Frame below minimum "
2264					    "size\n", __func__, hc->id + 1);
2265				skb_trim(*sp, 0);
2266				goto next_frame;
2267			}
2268			/* there is at least one complete frame, check crc */
2269			if ((*sp)->data[(*sp)->len - 1]) {
2270				if (debug & DEBUG_HFCMULTI_CRC)
2271					printk(KERN_DEBUG
2272					    "%s: CRC-error\n", __func__);
2273				skb_trim(*sp, 0);
2274				goto next_frame;
2275			}
2276			skb_trim(*sp, (*sp)->len - 3);
2277			if ((*sp)->len < MISDN_COPY_SIZE) {
2278				skb = *sp;
2279				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2280				if (*sp) {
2281					memcpy(skb_put(*sp, skb->len),
2282					    skb->data, skb->len);
2283					skb_trim(skb, 0);
2284				} else {
2285					printk(KERN_DEBUG "%s: No mem\n",
2286					    __func__);
2287					*sp = skb;
2288					skb = NULL;
2289				}
2290			} else {
2291				skb = NULL;
2292			}
2293			if (debug & DEBUG_HFCMULTI_FIFO) {
2294				printk(KERN_DEBUG "%s(card %d):",
2295					__func__, hc->id + 1);
2296				temp = 0;
2297				while (temp < (*sp)->len)
2298					printk(" %02x", (*sp)->data[temp++]);
2299				printk("\n");
2300			}
2301			if (dch)
2302				recv_Dchannel(dch);
2303			else
2304				recv_Bchannel(bch, MISDN_ID_ANY);
2305			*sp = skb;
2306			again++;
2307			goto next_frame;
2308		}
2309		/* there is an incomplete frame */
2310	} else {
2311		/* transparent */
2312		if (Zsize > skb_tailroom(*sp))
2313			Zsize = skb_tailroom(*sp);
2314		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2315		if (((*sp)->len) < MISDN_COPY_SIZE) {
2316			skb = *sp;
2317			*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2318			if (*sp) {
2319				memcpy(skb_put(*sp, skb->len),
2320				    skb->data, skb->len);
2321				skb_trim(skb, 0);
2322			} else {
2323				printk(KERN_DEBUG "%s: No mem\n", __func__);
2324				*sp = skb;
2325				skb = NULL;
2326			}
2327		} else {
2328			skb = NULL;
2329		}
2330		if (debug & DEBUG_HFCMULTI_FIFO)
2331			printk(KERN_DEBUG
2332			    "%s(card %d): fifo(%d) reading %d bytes "
2333			    "(z1=%04x, z2=%04x) TRANS\n",
2334				__func__, hc->id + 1, ch, Zsize, z1, z2);
2335		/* only bch is transparent */
2336		recv_Bchannel(bch, hc->chan[ch].Zfill);
2337		*sp = skb;
2338	}
2339}
2340
2341
2342/*
2343 * Interrupt handler
2344 */
2345static void
2346signal_state_up(struct dchannel *dch, int info, char *msg)
2347{
2348	struct sk_buff	*skb;
2349	int		id, data = info;
2350
2351	if (debug & DEBUG_HFCMULTI_STATE)
2352		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2353
2354	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2355
2356	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2357		GFP_ATOMIC);
2358	if (!skb)
2359		return;
2360	recv_Dchannel_skb(dch, skb);
2361}
2362
2363static inline void
2364handle_timer_irq(struct hfc_multi *hc)
2365{
2366	int		ch, temp;
2367	struct dchannel	*dch;
2368	u_long		flags;
2369
2370	/* process queued resync jobs */
2371	if (hc->e1_resync) {
2372		/* lock, so e1_resync gets not changed */
2373		spin_lock_irqsave(&HFClock, flags);
2374		if (hc->e1_resync & 1) {
2375			if (debug & DEBUG_HFCMULTI_PLXSD)
2376				printk(KERN_DEBUG "Enable SYNC_I\n");
2377			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2378			/* disable JATT, if RX_SYNC is set */
2379			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2380				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2381		}
2382		if (hc->e1_resync & 2) {
2383			if (debug & DEBUG_HFCMULTI_PLXSD)
2384				printk(KERN_DEBUG "Enable jatt PLL\n");
2385			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2386		}
2387		if (hc->e1_resync & 4) {
2388			if (debug & DEBUG_HFCMULTI_PLXSD)
2389				printk(KERN_DEBUG
2390				    "Enable QUARTZ for HFC-E1\n");
2391			/* set jatt to quartz */
2392			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2393				| V_JATT_OFF);
2394			/* switch to JATT, in case it is not already */
2395			HFC_outb(hc, R_SYNC_OUT, 0);
2396		}
2397		hc->e1_resync = 0;
2398		spin_unlock_irqrestore(&HFClock, flags);
2399	}
2400
2401	if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2402		for (ch = 0; ch <= 31; ch++) {
2403			if (hc->created[hc->chan[ch].port]) {
2404				hfcmulti_tx(hc, ch);
2405				/* fifo is started when switching to rx-fifo */
2406				hfcmulti_rx(hc, ch);
2407				if (hc->chan[ch].dch &&
2408				    hc->chan[ch].nt_timer > -1) {
2409					dch = hc->chan[ch].dch;
2410					if (!(--hc->chan[ch].nt_timer)) {
2411						schedule_event(dch,
2412						    FLG_PHCHANGE);
2413						if (debug &
2414						    DEBUG_HFCMULTI_STATE)
2415							printk(KERN_DEBUG
2416							    "%s: nt_timer at "
2417							    "state %x\n",
2418							    __func__,
2419							    dch->state);
2420					}
2421				}
2422			}
2423		}
2424	if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2425		dch = hc->chan[hc->dslot].dch;
2426		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2427			/* LOS */
2428			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2429			if (!temp && hc->chan[hc->dslot].los)
2430				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2431				    "LOS detected");
2432			if (temp && !hc->chan[hc->dslot].los)
2433				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2434				    "LOS gone");
2435			hc->chan[hc->dslot].los = temp;
2436		}
2437		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2438			/* AIS */
2439			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2440			if (!temp && hc->chan[hc->dslot].ais)
2441				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2442				    "AIS detected");
2443			if (temp && !hc->chan[hc->dslot].ais)
2444				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2445				    "AIS gone");
2446			hc->chan[hc->dslot].ais = temp;
2447		}
2448		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2449			/* SLIP */
2450			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2451			if (!temp && hc->chan[hc->dslot].slip_rx)
2452				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2453				    " bit SLIP detected RX");
2454			hc->chan[hc->dslot].slip_rx = temp;
2455			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2456			if (!temp && hc->chan[hc->dslot].slip_tx)
2457				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2458				    " bit SLIP detected TX");
2459			hc->chan[hc->dslot].slip_tx = temp;
2460		}
2461		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2462			/* RDI */
2463			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2464			if (!temp && hc->chan[hc->dslot].rdi)
2465				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2466				    "RDI detected");
2467			if (temp && !hc->chan[hc->dslot].rdi)
2468				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2469				    "RDI gone");
2470			hc->chan[hc->dslot].rdi = temp;
2471		}
2472		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2473		switch (hc->chan[hc->dslot].sync) {
2474		case 0:
2475			if ((temp & 0x60) == 0x60) {
2476				if (debug & DEBUG_HFCMULTI_SYNC)
2477					printk(KERN_DEBUG
2478					    "%s: (id=%d) E1 now "
2479					    "in clock sync\n",
2480					    __func__, hc->id);
2481				HFC_outb(hc, R_RX_OFF,
2482				    hc->chan[hc->dslot].jitter | V_RX_INIT);
2483				HFC_outb(hc, R_TX_OFF,
2484				    hc->chan[hc->dslot].jitter | V_RX_INIT);
2485				hc->chan[hc->dslot].sync = 1;
2486				goto check_framesync;
2487			}
2488			break;
2489		case 1:
2490			if ((temp & 0x60) != 0x60) {
2491				if (debug & DEBUG_HFCMULTI_SYNC)
2492					printk(KERN_DEBUG
2493					    "%s: (id=%d) E1 "
2494					    "lost clock sync\n",
2495					    __func__, hc->id);
2496				hc->chan[hc->dslot].sync = 0;
2497				break;
2498			}
2499check_framesync:
2500			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2501			if (temp == 0x27) {
2502				if (debug & DEBUG_HFCMULTI_SYNC)
2503					printk(KERN_DEBUG
2504					    "%s: (id=%d) E1 "
2505					    "now in frame sync\n",
2506					    __func__, hc->id);
2507				hc->chan[hc->dslot].sync = 2;
2508			}
2509			break;
2510		case 2:
2511			if ((temp & 0x60) != 0x60) {
2512				if (debug & DEBUG_HFCMULTI_SYNC)
2513					printk(KERN_DEBUG
2514					    "%s: (id=%d) E1 lost "
2515					    "clock & frame sync\n",
2516					    __func__, hc->id);
2517				hc->chan[hc->dslot].sync = 0;
2518				break;
2519			}
2520			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2521			if (temp != 0x27) {
2522				if (debug & DEBUG_HFCMULTI_SYNC)
2523					printk(KERN_DEBUG
2524					    "%s: (id=%d) E1 "
2525					    "lost frame sync\n",
2526					    __func__, hc->id);
2527				hc->chan[hc->dslot].sync = 1;
2528			}
2529			break;
2530		}
2531	}
2532
2533	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2534		hfcmulti_watchdog(hc);
2535
2536	if (hc->leds)
2537		hfcmulti_leds(hc);
2538}
2539
2540static void
2541ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2542{
2543	struct dchannel	*dch;
2544	int		ch;
2545	int		active;
2546	u_char		st_status, temp;
2547
2548	/* state machine */
2549	for (ch = 0; ch <= 31; ch++) {
2550		if (hc->chan[ch].dch) {
2551			dch = hc->chan[ch].dch;
2552			if (r_irq_statech & 1) {
2553				HFC_outb_nodebug(hc, R_ST_SEL,
2554					hc->chan[ch].port);
2555				/* undocumented: delay after R_ST_SEL */
2556				udelay(1);
2557				/* undocumented: status changes during read */
2558				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2559				while (st_status != (temp =
2560					HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2561					if (debug & DEBUG_HFCMULTI_STATE)
2562						printk(KERN_DEBUG "%s: reread "
2563						    "STATE because %d!=%d\n",
2564						    __func__, temp,
2565						    st_status);
2566					st_status = temp; /* repeat */
2567				}
2568
2569				/* Speech Design TE-sync indication */
2570				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2571					dch->dev.D.protocol == ISDN_P_TE_S0) {
2572					if (st_status & V_FR_SYNC_ST)
2573						hc->syncronized |=
2574						    (1 << hc->chan[ch].port);
2575					else
2576						hc->syncronized &=
2577						   ~(1 << hc->chan[ch].port);
2578				}
2579				dch->state = st_status & 0x0f;
2580				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2581					active = 3;
2582				else
2583					active = 7;
2584				if (dch->state == active) {
2585					HFC_outb_nodebug(hc, R_FIFO,
2586						(ch << 1) | 1);
2587					HFC_wait_nodebug(hc);
2588					HFC_outb_nodebug(hc,
2589						R_INC_RES_FIFO, V_RES_F);
2590					HFC_wait_nodebug(hc);
2591					dch->tx_idx = 0;
2592				}
2593				schedule_event(dch, FLG_PHCHANGE);
2594				if (debug & DEBUG_HFCMULTI_STATE)
2595					printk(KERN_DEBUG
2596					    "%s: S/T newstate %x port %d\n",
2597					    __func__, dch->state,
2598					    hc->chan[ch].port);
2599			}
2600			r_irq_statech >>= 1;
2601		}
2602	}
2603	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2604		plxsd_checksync(hc, 0);
2605}
2606
2607static void
2608fifo_irq(struct hfc_multi *hc, int block)
2609{
2610	int	ch, j;
2611	struct dchannel	*dch;
2612	struct bchannel	*bch;
2613	u_char r_irq_fifo_bl;
2614
2615	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2616	j = 0;
2617	while (j < 8) {
2618		ch = (block << 2) + (j >> 1);
2619		dch = hc->chan[ch].dch;
2620		bch = hc->chan[ch].bch;
2621		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2622			j += 2;
2623			continue;
2624		}
2625		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2626		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2627			hfcmulti_tx(hc, ch);
2628			/* start fifo */
2629			HFC_outb_nodebug(hc, R_FIFO, 0);
2630			HFC_wait_nodebug(hc);
2631		}
2632		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2633		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2634			hfcmulti_tx(hc, ch);
2635			/* start fifo */
2636			HFC_outb_nodebug(hc, R_FIFO, 0);
2637			HFC_wait_nodebug(hc);
2638		}
2639		j++;
2640		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2641		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2642			hfcmulti_rx(hc, ch);
2643		}
2644		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2645		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2646			hfcmulti_rx(hc, ch);
2647		}
2648		j++;
2649	}
2650}
2651
2652#ifdef IRQ_DEBUG
2653int irqsem;
2654#endif
2655static irqreturn_t
2656hfcmulti_interrupt(int intno, void *dev_id)
2657{
2658#ifdef IRQCOUNT_DEBUG
2659	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2660	    iq5 = 0, iq6 = 0, iqcnt = 0;
2661#endif
2662	struct hfc_multi	*hc = dev_id;
2663	struct dchannel		*dch;
2664	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2665	int			i;
2666	void __iomem		*plx_acc;
2667	u_short			wval;
2668	u_char			e1_syncsta, temp;
2669	u_long			flags;
2670
2671	if (!hc) {
2672		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2673		return IRQ_NONE;
2674	}
2675
2676	spin_lock(&hc->lock);
2677
2678#ifdef IRQ_DEBUG
2679	if (irqsem)
2680		printk(KERN_ERR "irq for card %d during irq from "
2681		"card %d, this is no bug.\n", hc->id + 1, irqsem);
2682	irqsem = hc->id + 1;
2683#endif
2684#ifdef CONFIG_MISDN_HFCMULTI_8xx
2685	if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2686		goto irq_notforus;
2687#endif
2688	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2689		spin_lock_irqsave(&plx_lock, flags);
2690		plx_acc = hc->plx_membase + PLX_INTCSR;
2691		wval = readw(plx_acc);
2692		spin_unlock_irqrestore(&plx_lock, flags);
2693		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2694			goto irq_notforus;
2695	}
2696
2697	status = HFC_inb_nodebug(hc, R_STATUS);
2698	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2699#ifdef IRQCOUNT_DEBUG
2700	if (r_irq_statech)
2701		iq1++;
2702	if (status & V_DTMF_STA)
2703		iq2++;
2704	if (status & V_LOST_STA)
2705		iq3++;
2706	if (status & V_EXT_IRQSTA)
2707		iq4++;
2708	if (status & V_MISC_IRQSTA)
2709		iq5++;
2710	if (status & V_FR_IRQSTA)
2711		iq6++;
2712	if (iqcnt++ > 5000) {
2713		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2714		    iq1, iq2, iq3, iq4, iq5, iq6);
2715		iqcnt = 0;
2716	}
2717#endif
2718
2719	if (!r_irq_statech &&
2720	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2721	    V_MISC_IRQSTA | V_FR_IRQSTA))) {
2722		/* irq is not for us */
2723		goto irq_notforus;
2724	}
2725	hc->irqcnt++;
2726	if (r_irq_statech) {
2727		if (hc->ctype != HFC_TYPE_E1)
2728			ph_state_irq(hc, r_irq_statech);
2729	}
2730	if (status & V_EXT_IRQSTA)
2731		; /* external IRQ */
2732	if (status & V_LOST_STA) {
2733		/* LOST IRQ */
2734		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2735	}
2736	if (status & V_MISC_IRQSTA) {
2737		/* misc IRQ */
2738		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2739		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2740		if (r_irq_misc & V_STA_IRQ) {
2741			if (hc->ctype == HFC_TYPE_E1) {
2742				/* state machine */
2743				dch = hc->chan[hc->dslot].dch;
2744				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2745				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2746				 && hc->e1_getclock) {
2747					if (e1_syncsta & V_FR_SYNC_E1)
2748						hc->syncronized = 1;
2749					else
2750						hc->syncronized = 0;
2751				}
2752				/* undocumented: status changes during read */
2753				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2754				while (dch->state != (temp =
2755					HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2756					if (debug & DEBUG_HFCMULTI_STATE)
2757						printk(KERN_DEBUG "%s: reread "
2758						    "STATE because %d!=%d\n",
2759						    __func__, temp,
2760						    dch->state);
2761					dch->state = temp; /* repeat */
2762				}
2763				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2764					& 0x7;
2765				schedule_event(dch, FLG_PHCHANGE);
2766				if (debug & DEBUG_HFCMULTI_STATE)
2767					printk(KERN_DEBUG
2768					    "%s: E1 (id=%d) newstate %x\n",
2769					    __func__, hc->id, dch->state);
2770				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2771					plxsd_checksync(hc, 0);
2772			}
2773		}
2774		if (r_irq_misc & V_TI_IRQ) {
2775			if (hc->iclock_on)
2776				mISDN_clock_update(hc->iclock, poll, NULL);
2777			handle_timer_irq(hc);
2778		}
2779
2780		if (r_irq_misc & V_DTMF_IRQ)
2781			hfcmulti_dtmf(hc);
2782
2783		if (r_irq_misc & V_IRQ_PROC) {
2784			static int irq_proc_cnt;
2785			if (!irq_proc_cnt++)
2786				printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2787				    " this should not happen\n", __func__);
2788		}
2789
2790	}
2791	if (status & V_FR_IRQSTA) {
2792		/* FIFO IRQ */
2793		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2794		for (i = 0; i < 8; i++) {
2795			if (r_irq_oview & (1 << i))
2796				fifo_irq(hc, i);
2797		}
2798	}
2799
2800#ifdef IRQ_DEBUG
2801	irqsem = 0;
2802#endif
2803	spin_unlock(&hc->lock);
2804	return IRQ_HANDLED;
2805
2806irq_notforus:
2807#ifdef IRQ_DEBUG
2808	irqsem = 0;
2809#endif
2810	spin_unlock(&hc->lock);
2811	return IRQ_NONE;
2812}
2813
2814
2815/*
2816 * timer callback for D-chan busy resolution. Currently no function
2817 */
2818
2819static void
2820hfcmulti_dbusy_timer(struct hfc_multi *hc)
2821{
2822}
2823
2824
2825/*
2826 * activate/deactivate hardware for selected channels and mode
2827 *
2828 * configure B-channel with the given protocol
2829 * ch eqals to the HFC-channel (0-31)
2830 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2831 * for S/T, 1-31 for E1)
2832 * the hdlc interrupts will be set/unset
2833 */
2834static int
2835mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2836    int bank_tx, int slot_rx, int bank_rx)
2837{
2838	int flow_tx = 0, flow_rx = 0, routing = 0;
2839	int oslot_tx, oslot_rx;
2840	int conf;
2841
2842	if (ch < 0 || ch > 31)
2843		return -EINVAL;
2844	oslot_tx = hc->chan[ch].slot_tx;
2845	oslot_rx = hc->chan[ch].slot_rx;
2846	conf = hc->chan[ch].conf;
2847
2848	if (debug & DEBUG_HFCMULTI_MODE)
2849		printk(KERN_DEBUG
2850		    "%s: card %d channel %d protocol %x slot old=%d new=%d "
2851		    "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2852		    __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2853		    bank_tx, oslot_rx, slot_rx, bank_rx);
2854
2855	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2856		/* remove from slot */
2857		if (debug & DEBUG_HFCMULTI_MODE)
2858			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2859			    __func__, oslot_tx);
2860		if (hc->slot_owner[oslot_tx<<1] == ch) {
2861			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2862			HFC_outb(hc, A_SL_CFG, 0);
2863			if (hc->ctype != HFC_TYPE_XHFC)
2864				HFC_outb(hc, A_CONF, 0);
2865			hc->slot_owner[oslot_tx<<1] = -1;
2866		} else {
2867			if (debug & DEBUG_HFCMULTI_MODE)
2868				printk(KERN_DEBUG
2869				    "%s: we are not owner of this tx slot "
2870				    "anymore, channel %d is.\n",
2871				    __func__, hc->slot_owner[oslot_tx<<1]);
2872		}
2873	}
2874
2875	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2876		/* remove from slot */
2877		if (debug & DEBUG_HFCMULTI_MODE)
2878			printk(KERN_DEBUG
2879			    "%s: remove from slot %d (RX)\n",
2880			    __func__, oslot_rx);
2881		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2882			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2883			HFC_outb(hc, A_SL_CFG, 0);
2884			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2885		} else {
2886			if (debug & DEBUG_HFCMULTI_MODE)
2887				printk(KERN_DEBUG
2888				    "%s: we are not owner of this rx slot "
2889				    "anymore, channel %d is.\n",
2890				    __func__,
2891				    hc->slot_owner[(oslot_rx << 1) | 1]);
2892		}
2893	}
2894
2895	if (slot_tx < 0) {
2896		flow_tx = 0x80; /* FIFO->ST */
2897		/* disable pcm slot */
2898		hc->chan[ch].slot_tx = -1;
2899		hc->chan[ch].bank_tx = 0;
2900	} else {
2901		/* set pcm slot */
2902		if (hc->chan[ch].txpending)
2903			flow_tx = 0x80; /* FIFO->ST */
2904		else
2905			flow_tx = 0xc0; /* PCM->ST */
2906		/* put on slot */
2907		routing = bank_tx ? 0xc0 : 0x80;
2908		if (conf >= 0 || bank_tx > 1)
2909			routing = 0x40; /* loop */
2910		if (debug & DEBUG_HFCMULTI_MODE)
2911			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2912			    " %d flow %02x routing %02x conf %d (TX)\n",
2913			    __func__, ch, slot_tx, bank_tx,
2914			    flow_tx, routing, conf);
2915		HFC_outb(hc, R_SLOT, slot_tx << 1);
2916		HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2917		if (hc->ctype != HFC_TYPE_XHFC)
2918			HFC_outb(hc, A_CONF,
2919				(conf < 0) ? 0 : (conf | V_CONF_SL));
2920		hc->slot_owner[slot_tx << 1] = ch;
2921		hc->chan[ch].slot_tx = slot_tx;
2922		hc->chan[ch].bank_tx = bank_tx;
2923	}
2924	if (slot_rx < 0) {
2925		/* disable pcm slot */
2926		flow_rx = 0x80; /* ST->FIFO */
2927		hc->chan[ch].slot_rx = -1;
2928		hc->chan[ch].bank_rx = 0;
2929	} else {
2930		/* set pcm slot */
2931		if (hc->chan[ch].txpending)
2932			flow_rx = 0x80; /* ST->FIFO */
2933		else
2934			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2935		/* put on slot */
2936		routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2937		if (conf >= 0 || bank_rx > 1)
2938			routing = 0x40; /* loop */
2939		if (debug & DEBUG_HFCMULTI_MODE)
2940			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2941			    " %d flow %02x routing %02x conf %d (RX)\n",
2942			    __func__, ch, slot_rx, bank_rx,
2943			    flow_rx, routing, conf);
2944		HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2945		HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2946		hc->slot_owner[(slot_rx<<1)|1] = ch;
2947		hc->chan[ch].slot_rx = slot_rx;
2948		hc->chan[ch].bank_rx = bank_rx;
2949	}
2950
2951	switch (protocol) {
2952	case (ISDN_P_NONE):
2953		/* disable TX fifo */
2954		HFC_outb(hc, R_FIFO, ch << 1);
2955		HFC_wait(hc);
2956		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2957		HFC_outb(hc, A_SUBCH_CFG, 0);
2958		HFC_outb(hc, A_IRQ_MSK, 0);
2959		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2960		HFC_wait(hc);
2961		/* disable RX fifo */
2962		HFC_outb(hc, R_FIFO, (ch<<1)|1);
2963		HFC_wait(hc);
2964		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2965		HFC_outb(hc, A_SUBCH_CFG, 0);
2966		HFC_outb(hc, A_IRQ_MSK, 0);
2967		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2968		HFC_wait(hc);
2969		if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2970			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2971			    ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2972			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2973			/* undocumented: delay after R_ST_SEL */
2974			udelay(1);
2975			HFC_outb(hc, A_ST_CTRL0,
2976			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2977		}
2978		if (hc->chan[ch].bch) {
2979			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2980			test_and_clear_bit(FLG_TRANSPARENT,
2981			    &hc->chan[ch].bch->Flags);
2982		}
2983		break;
2984	case (ISDN_P_B_RAW): /* B-channel */
2985
2986		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2987		    (hc->chan[ch].slot_rx < 0) &&
2988		    (hc->chan[ch].slot_tx < 0)) {
2989
2990			printk(KERN_DEBUG
2991			    "Setting B-channel %d to echo cancelable "
2992			    "state on PCM slot %d\n", ch,
2993			    ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2994			printk(KERN_DEBUG
2995			    "Enabling pass through for channel\n");
2996			vpm_out(hc, ch, ((ch / 4) * 8) +
2997			    ((ch % 4) * 4) + 1, 0x01);
2998			/* rx path */
2999			/* S/T -> PCM */
3000			HFC_outb(hc, R_FIFO, (ch << 1));
3001			HFC_wait(hc);
3002			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3003			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3004			    ((ch % 4) * 4) + 1) << 1);
3005			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3006
3007			/* PCM -> FIFO */
3008			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3009			HFC_wait(hc);
3010			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3011			HFC_outb(hc, A_SUBCH_CFG, 0);
3012			HFC_outb(hc, A_IRQ_MSK, 0);
3013			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3014			HFC_wait(hc);
3015			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3016			    ((ch % 4) * 4) + 1) << 1) | 1);
3017			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3018
3019			/* tx path */
3020			/* PCM -> S/T */
3021			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3022			HFC_wait(hc);
3023			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3024			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3025			    ((ch % 4) * 4)) << 1) | 1);
3026			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3027
3028			/* FIFO -> PCM */
3029			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3030			HFC_wait(hc);
3031			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3032			HFC_outb(hc, A_SUBCH_CFG, 0);
3033			HFC_outb(hc, A_IRQ_MSK, 0);
3034			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3035			HFC_wait(hc);
3036			/* tx silence */
3037			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3038			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3039			    ((ch % 4) * 4)) << 1);
3040			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3041		} else {
3042			/* enable TX fifo */
3043			HFC_outb(hc, R_FIFO, ch << 1);
3044			HFC_wait(hc);
3045			if (hc->ctype == HFC_TYPE_XHFC)
3046				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3047					V_HDLC_TRP | V_IFF);
3048					/* Enable FIFO, no interrupt */
3049			else
3050				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3051					V_HDLC_TRP | V_IFF);
3052			HFC_outb(hc, A_SUBCH_CFG, 0);
3053			HFC_outb(hc, A_IRQ_MSK, 0);
3054			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3055			HFC_wait(hc);
3056			/* tx silence */
3057			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3058			/* enable RX fifo */
3059			HFC_outb(hc, R_FIFO, (ch<<1)|1);
3060			HFC_wait(hc);
3061			if (hc->ctype == HFC_TYPE_XHFC)
3062				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3063					V_HDLC_TRP);
3064					/* Enable FIFO, no interrupt*/
3065			else
3066				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3067						V_HDLC_TRP);
3068			HFC_outb(hc, A_SUBCH_CFG, 0);
3069			HFC_outb(hc, A_IRQ_MSK, 0);
3070			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3071			HFC_wait(hc);
3072		}
3073		if (hc->ctype != HFC_TYPE_E1) {
3074			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3075			    ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3076			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3077			/* undocumented: delay after R_ST_SEL */
3078			udelay(1);
3079			HFC_outb(hc, A_ST_CTRL0,
3080			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3081		}
3082		if (hc->chan[ch].bch)
3083			test_and_set_bit(FLG_TRANSPARENT,
3084			    &hc->chan[ch].bch->Flags);
3085		break;
3086	case (ISDN_P_B_HDLC): /* B-channel */
3087	case (ISDN_P_TE_S0): /* D-channel */
3088	case (ISDN_P_NT_S0):
3089	case (ISDN_P_TE_E1):
3090	case (ISDN_P_NT_E1):
3091		/* enable TX fifo */
3092		HFC_outb(hc, R_FIFO, ch<<1);
3093		HFC_wait(hc);
3094		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3095			/* E1 or B-channel */
3096			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3097			HFC_outb(hc, A_SUBCH_CFG, 0);
3098		} else {
3099			/* D-Channel without HDLC fill flags */
3100			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3101			HFC_outb(hc, A_SUBCH_CFG, 2);
3102		}
3103		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3104		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3105		HFC_wait(hc);
3106		/* enable RX fifo */
3107		HFC_outb(hc, R_FIFO, (ch<<1)|1);
3108		HFC_wait(hc);
3109		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3110		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3111			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3112		else
3113			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3114		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3115		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3116		HFC_wait(hc);
3117		if (hc->chan[ch].bch) {
3118			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3119			if (hc->ctype != HFC_TYPE_E1) {
3120				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3121				  ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3122				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3123				/* undocumented: delay after R_ST_SEL */
3124				udelay(1);
3125				HFC_outb(hc, A_ST_CTRL0,
3126				  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3127			}
3128		}
3129		break;
3130	default:
3131		printk(KERN_DEBUG "%s: protocol not known %x\n",
3132		    __func__, protocol);
3133		hc->chan[ch].protocol = ISDN_P_NONE;
3134		return -ENOPROTOOPT;
3135	}
3136	hc->chan[ch].protocol = protocol;
3137	return 0;
3138}
3139
3140
3141/*
3142 * connect/disconnect PCM
3143 */
3144
3145static void
3146hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3147    int slot_rx, int bank_rx)
3148{
3149	if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3150		/* disable PCM */
3151		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3152		return;
3153	}
3154
3155	/* enable pcm */
3156	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3157		slot_rx, bank_rx);
3158}
3159
3160/*
3161 * set/disable conference
3162 */
3163
3164static void
3165hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3166{
3167	if (num >= 0 && num <= 7)
3168		hc->chan[ch].conf = num;
3169	else
3170		hc->chan[ch].conf = -1;
3171	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3172	    hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3173	    hc->chan[ch].bank_rx);
3174}
3175
3176
3177/*
3178 * set/disable sample loop
3179 */
3180
3181/* NOTE: this function is experimental and therefore disabled */
3182
3183/*
3184 * Layer 1 callback function
3185 */
3186static int
3187hfcm_l1callback(struct dchannel *dch, u_int cmd)
3188{
3189	struct hfc_multi	*hc = dch->hw;
3190	u_long	flags;
3191
3192	switch (cmd) {
3193	case INFO3_P8:
3194	case INFO3_P10:
3195		break;
3196	case HW_RESET_REQ:
3197		/* start activation */
3198		spin_lock_irqsave(&hc->lock, flags);
3199		if (hc->ctype == HFC_TYPE_E1) {
3200			if (debug & DEBUG_HFCMULTI_MSG)
3201				printk(KERN_DEBUG
3202				    "%s: HW_RESET_REQ no BRI\n",
3203				    __func__);
3204		} else {
3205			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3206			/* undocumented: delay after R_ST_SEL */
3207			udelay(1);
3208			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3209			udelay(6); /* wait at least 5,21us */
3210			HFC_outb(hc, A_ST_WR_STATE, 3);
3211			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3212				/* activate */
3213		}
3214		spin_unlock_irqrestore(&hc->lock, flags);
3215		l1_event(dch->l1, HW_POWERUP_IND);
3216		break;
3217	case HW_DEACT_REQ:
3218		/* start deactivation */
3219		spin_lock_irqsave(&hc->lock, flags);
3220		if (hc->ctype == HFC_TYPE_E1) {
3221			if (debug & DEBUG_HFCMULTI_MSG)
3222				printk(KERN_DEBUG
3223				    "%s: HW_DEACT_REQ no BRI\n",
3224				    __func__);
3225		} else {
3226			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3227			/* undocumented: delay after R_ST_SEL */
3228			udelay(1);
3229			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3230				/* deactivate */
3231			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3232				hc->syncronized &=
3233				   ~(1 << hc->chan[dch->slot].port);
3234				plxsd_checksync(hc, 0);
3235			}
3236		}
3237		skb_queue_purge(&dch->squeue);
3238		if (dch->tx_skb) {
3239			dev_kfree_skb(dch->tx_skb);
3240			dch->tx_skb = NULL;
3241		}
3242		dch->tx_idx = 0;
3243		if (dch->rx_skb) {
3244			dev_kfree_skb(dch->rx_skb);
3245			dch->rx_skb = NULL;
3246		}
3247		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3248		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3249			del_timer(&dch->timer);
3250		spin_unlock_irqrestore(&hc->lock, flags);
3251		break;
3252	case HW_POWERUP_REQ:
3253		spin_lock_irqsave(&hc->lock, flags);
3254		if (hc->ctype == HFC_TYPE_E1) {
3255			if (debug & DEBUG_HFCMULTI_MSG)
3256				printk(KERN_DEBUG
3257				    "%s: HW_POWERUP_REQ no BRI\n",
3258				    __func__);
3259		} else {
3260			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3261			/* undocumented: delay after R_ST_SEL */
3262			udelay(1);
3263			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3264			udelay(6); /* wait at least 5,21us */
3265			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3266		}
3267		spin_unlock_irqrestore(&hc->lock, flags);
3268		break;
3269	case PH_ACTIVATE_IND:
3270		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3271		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3272			GFP_ATOMIC);
3273		break;
3274	case PH_DEACTIVATE_IND:
3275		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3276		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3277			GFP_ATOMIC);
3278		break;
3279	default:
3280		if (dch->debug & DEBUG_HW)
3281			printk(KERN_DEBUG "%s: unknown command %x\n",
3282			    __func__, cmd);
3283		return -1;
3284	}
3285	return 0;
3286}
3287
3288/*
3289 * Layer2 -> Layer 1 Transfer
3290 */
3291
3292static int
3293handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3294{
3295	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3296	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3297	struct hfc_multi	*hc = dch->hw;
3298	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3299	int			ret = -EINVAL;
3300	unsigned int		id;
3301	u_long			flags;
3302
3303	switch (hh->prim) {
3304	case PH_DATA_REQ:
3305		if (skb->len < 1)
3306			break;
3307		spin_lock_irqsave(&hc->lock, flags);
3308		ret = dchannel_senddata(dch, skb);
3309		if (ret > 0) { /* direct TX */
3310			id = hh->id; /* skb can be freed */
3311			hfcmulti_tx(hc, dch->slot);
3312			ret = 0;
3313			/* start fifo */
3314			HFC_outb(hc, R_FIFO, 0);
3315			HFC_wait(hc);
3316			spin_unlock_irqrestore(&hc->lock, flags);
3317			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3318		} else
3319			spin_unlock_irqrestore(&hc->lock, flags);
3320		return ret;
3321	case PH_ACTIVATE_REQ:
3322		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3323			spin_lock_irqsave(&hc->lock, flags);
3324			ret = 0;
3325			if (debug & DEBUG_HFCMULTI_MSG)
3326				printk(KERN_DEBUG
3327				    "%s: PH_ACTIVATE port %d (0..%d)\n",
3328				    __func__, hc->chan[dch->slot].port,
3329				    hc->ports-1);
3330			/* start activation */
3331			if (hc->ctype == HFC_TYPE_E1) {
3332				ph_state_change(dch);
3333				if (debug & DEBUG_HFCMULTI_STATE)
3334					printk(KERN_DEBUG
3335					    "%s: E1 report state %x \n",
3336					    __func__, dch->state);
3337			} else {
3338				HFC_outb(hc, R_ST_SEL,
3339				    hc->chan[dch->slot].port);
3340				/* undocumented: delay after R_ST_SEL */
3341				udelay(1);
3342				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3343				    /* G1 */
3344				udelay(6); /* wait at least 5,21us */
3345				HFC_outb(hc, A_ST_WR_STATE, 1);
3346				HFC_outb(hc, A_ST_WR_STATE, 1 |
3347				    (V_ST_ACT*3)); /* activate */
3348				dch->state = 1;
3349			}
3350			spin_unlock_irqrestore(&hc->lock, flags);
3351		} else
3352			ret = l1_event(dch->l1, hh->prim);
3353		break;
3354	case PH_DEACTIVATE_REQ:
3355		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3356		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3357			spin_lock_irqsave(&hc->lock, flags);
3358			if (debug & DEBUG_HFCMULTI_MSG)
3359				printk(KERN_DEBUG
3360				    "%s: PH_DEACTIVATE port %d (0..%d)\n",
3361				    __func__, hc->chan[dch->slot].port,
3362				    hc->ports-1);
3363			/* start deactivation */
3364			if (hc->ctype == HFC_TYPE_E1) {
3365				if (debug & DEBUG_HFCMULTI_MSG)
3366					printk(KERN_DEBUG
3367					    "%s: PH_DEACTIVATE no BRI\n",
3368					    __func__);
3369			} else {
3370				HFC_outb(hc, R_ST_SEL,
3371				    hc->chan[dch->slot].port);
3372				/* undocumented: delay after R_ST_SEL */
3373				udelay(1);
3374				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3375				    /* deactivate */
3376				dch->state = 1;
3377			}
3378			skb_queue_purge(&dch->squeue);
3379			if (dch->tx_skb) {
3380				dev_kfree_skb(dch->tx_skb);
3381				dch->tx_skb = NULL;
3382			}
3383			dch->tx_idx = 0;
3384			if (dch->rx_skb) {
3385				dev_kfree_skb(dch->rx_skb);
3386				dch->rx_skb = NULL;
3387			}
3388			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3389			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3390				del_timer(&dch->timer);
3391#ifdef FIXME
3392			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3393				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3394#endif
3395			ret = 0;
3396			spin_unlock_irqrestore(&hc->lock, flags);
3397		} else
3398			ret = l1_event(dch->l1, hh->prim);
3399		break;
3400	}
3401	if (!ret)
3402		dev_kfree_skb(skb);
3403	return ret;
3404}
3405
3406static void
3407deactivate_bchannel(struct bchannel *bch)
3408{
3409	struct hfc_multi	*hc = bch->hw;
3410	u_long			flags;
3411
3412	spin_lock_irqsave(&hc->lock, flags);
3413	mISDN_clear_bchannel(bch);
3414	hc->chan[bch->slot].coeff_count = 0;
3415	hc->chan[bch->slot].rx_off = 0;
3416	hc->chan[bch->slot].conf = -1;
3417	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3418	spin_unlock_irqrestore(&hc->lock, flags);
3419}
3420
3421static int
3422handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3423{
3424	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3425	struct hfc_multi	*hc = bch->hw;
3426	int			ret = -EINVAL;
3427	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3428	unsigned int		id;
3429	u_long			flags;
3430
3431	switch (hh->prim) {
3432	case PH_DATA_REQ:
3433		if (!skb->len)
3434			break;
3435		spin_lock_irqsave(&hc->lock, flags);
3436		ret = bchannel_senddata(bch, skb);
3437		if (ret > 0) { /* direct TX */
3438			id = hh->id; /* skb can be freed */
3439			hfcmulti_tx(hc, bch->slot);
3440			ret = 0;
3441			/* start fifo */
3442			HFC_outb_nodebug(hc, R_FIFO, 0);
3443			HFC_wait_nodebug(hc);
3444			if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3445				spin_unlock_irqrestore(&hc->lock, flags);
3446				queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3447			} else
3448				spin_unlock_irqrestore(&hc->lock, flags);
3449		} else
3450			spin_unlock_irqrestore(&hc->lock, flags);
3451		return ret;
3452	case PH_ACTIVATE_REQ:
3453		if (debug & DEBUG_HFCMULTI_MSG)
3454			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3455				__func__, bch->slot);
3456		spin_lock_irqsave(&hc->lock, flags);
3457		/* activate B-channel if not already activated */
3458		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3459			hc->chan[bch->slot].txpending = 0;
3460			ret = mode_hfcmulti(hc, bch->slot,
3461				ch->protocol,
3462				hc->chan[bch->slot].slot_tx,
3463				hc->chan[bch->slot].bank_tx,
3464				hc->chan[bch->slot].slot_rx,
3465				hc->chan[bch->slot].bank_rx);
3466			if (!ret) {
3467				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3468					&& test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3469					/* start decoder */
3470					hc->dtmf = 1;
3471					if (debug & DEBUG_HFCMULTI_DTMF)
3472						printk(KERN_DEBUG
3473						    "%s: start dtmf decoder\n",
3474							__func__);
3475					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3476					    V_RST_DTMF);
3477				}
3478			}
3479		} else
3480			ret = 0;
3481		spin_unlock_irqrestore(&hc->lock, flags);
3482		if (!ret)
3483			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3484				GFP_KERNEL);
3485		break;
3486	case PH_CONTROL_REQ:
3487		spin_lock_irqsave(&hc->lock, flags);
3488		switch (hh->id) {
3489		case HFC_SPL_LOOP_ON: /* set sample loop */
3490			if (debug & DEBUG_HFCMULTI_MSG)
3491				printk(KERN_DEBUG
3492				    "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3493				    __func__, skb->len);
3494			ret = 0;
3495			break;
3496		case HFC_SPL_LOOP_OFF: /* set silence */
3497			if (debug & DEBUG_HFCMULTI_MSG)
3498				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3499				    __func__);
3500			ret = 0;
3501			break;
3502		default:
3503			printk(KERN_ERR
3504			     "%s: unknown PH_CONTROL_REQ info %x\n",
3505			     __func__, hh->id);
3506			ret = -EINVAL;
3507		}
3508		spin_unlock_irqrestore(&hc->lock, flags);
3509		break;
3510	case PH_DEACTIVATE_REQ:
3511		deactivate_bchannel(bch); /* locked there */
3512		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3513			GFP_KERNEL);
3514		ret = 0;
3515		break;
3516	}
3517	if (!ret)
3518		dev_kfree_skb(skb);
3519	return ret;
3520}
3521
3522/*
3523 * bchannel control function
3524 */
3525static int
3526channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3527{
3528	int			ret = 0;
3529	struct dsp_features	*features =
3530		(struct dsp_features *)(*((u_long *)&cq->p1));
3531	struct hfc_multi	*hc = bch->hw;
3532	int			slot_tx;
3533	int			bank_tx;
3534	int			slot_rx;
3535	int			bank_rx;
3536	int			num;
3537
3538	switch (cq->op) {
3539	case MISDN_CTRL_GETOP:
3540		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3541			| MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3542		break;
3543	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3544		hc->chan[bch->slot].rx_off = !!cq->p1;
3545		if (!hc->chan[bch->slot].rx_off) {
3546			/* reset fifo on rx on */
3547			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3548			HFC_wait_nodebug(hc);
3549			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3550			HFC_wait_nodebug(hc);
3551		}
3552		if (debug & DEBUG_HFCMULTI_MSG)
3553			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3554			    __func__, bch->nr, hc->chan[bch->slot].rx_off);
3555		break;
3556	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3557		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3558		if (debug & DEBUG_HFCMULTI_MSG)
3559			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3560				"off=%d)\n", __func__, bch->nr, !!cq->p1);
3561		break;
3562	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3563		if (debug & DEBUG_HFCMULTI_MSG)
3564			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3565			    __func__);
3566		/* create confirm */
3567		features->hfc_id = hc->id;
3568		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3569			features->hfc_dtmf = 1;
3570		if (test_bit(HFC_CHIP_CONF, &hc->chip))
3571			features->hfc_conf = 1;
3572		features->hfc_loops = 0;
3573		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3574			features->hfc_echocanhw = 1;
3575		} else {
3576			features->pcm_id = hc->pcm;
3577			features->pcm_slots = hc->slots;
3578			features->pcm_banks = 2;
3579		}
3580		break;
3581	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3582		slot_tx = cq->p1 & 0xff;
3583		bank_tx = cq->p1 >> 8;
3584		slot_rx = cq->p2 & 0xff;
3585		bank_rx = cq->p2 >> 8;
3586		if (debug & DEBUG_HFCMULTI_MSG)
3587			printk(KERN_DEBUG
3588			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3589			    "slot %d bank %d (RX)\n",
3590			    __func__, slot_tx, bank_tx,
3591			    slot_rx, bank_rx);
3592		if (slot_tx < hc->slots && bank_tx <= 2 &&
3593		    slot_rx < hc->slots && bank_rx <= 2)
3594			hfcmulti_pcm(hc, bch->slot,
3595			    slot_tx, bank_tx, slot_rx, bank_rx);
3596		else {
3597			printk(KERN_WARNING
3598			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3599			    "slot %d bank %d (RX) out of range\n",
3600			    __func__, slot_tx, bank_tx,
3601			    slot_rx, bank_rx);
3602			ret = -EINVAL;
3603		}
3604		break;
3605	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3606		if (debug & DEBUG_HFCMULTI_MSG)
3607			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3608			    __func__);
3609		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3610		break;
3611	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3612		num = cq->p1 & 0xff;
3613		if (debug & DEBUG_HFCMULTI_MSG)
3614			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3615			    __func__, num);
3616		if (num <= 7)
3617			hfcmulti_conf(hc, bch->slot, num);
3618		else {
3619			printk(KERN_WARNING
3620			    "%s: HW_CONF_JOIN conf %d out of range\n",
3621			    __func__, num);
3622			ret = -EINVAL;
3623		}
3624		break;
3625	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3626		if (debug & DEBUG_HFCMULTI_MSG)
3627			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3628		hfcmulti_conf(hc, bch->slot, -1);
3629		break;
3630	case MISDN_CTRL_HFC_ECHOCAN_ON:
3631		if (debug & DEBUG_HFCMULTI_MSG)
3632			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3633		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3634			vpm_echocan_on(hc, bch->slot, cq->p1);
3635		else
3636			ret = -EINVAL;
3637		break;
3638
3639	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3640		if (debug & DEBUG_HFCMULTI_MSG)
3641			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3642				__func__);
3643		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3644			vpm_echocan_off(hc, bch->slot);
3645		else
3646			ret = -EINVAL;
3647		break;
3648	default:
3649		printk(KERN_WARNING "%s: unknown Op %x\n",
3650		    __func__, cq->op);
3651		ret = -EINVAL;
3652		break;
3653	}
3654	return ret;
3655}
3656
3657static int
3658hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3659{
3660	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3661	struct hfc_multi	*hc = bch->hw;
3662	int			err = -EINVAL;
3663	u_long	flags;
3664
3665	if (bch->debug & DEBUG_HW)
3666		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3667		    __func__, cmd, arg);
3668	switch (cmd) {
3669	case CLOSE_CHANNEL:
3670		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3671		if (test_bit(FLG_ACTIVE, &bch->Flags))
3672			deactivate_bchannel(bch); /* locked there */
3673		ch->protocol = ISDN_P_NONE;
3674		ch->peer = NULL;
3675		module_put(THIS_MODULE);
3676		err = 0;
3677		break;
3678	case CONTROL_CHANNEL:
3679		spin_lock_irqsave(&hc->lock, flags);
3680		err = channel_bctrl(bch, arg);
3681		spin_unlock_irqrestore(&hc->lock, flags);
3682		break;
3683	default:
3684		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3685			__func__, cmd);
3686	}
3687	return err;
3688}
3689
3690/*
3691 * handle D-channel events
3692 *
3693 * handle state change event
3694 */
3695static void
3696ph_state_change(struct dchannel *dch)
3697{
3698	struct hfc_multi *hc;
3699	int ch, i;
3700
3701	if (!dch) {
3702		printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3703		return;
3704	}
3705	hc = dch->hw;
3706	ch = dch->slot;
3707
3708	if (hc->ctype == HFC_TYPE_E1) {
3709		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3710			if (debug & DEBUG_HFCMULTI_STATE)
3711				printk(KERN_DEBUG
3712				    "%s: E1 TE (id=%d) newstate %x\n",
3713				    __func__, hc->id, dch->state);
3714		} else {
3715			if (debug & DEBUG_HFCMULTI_STATE)
3716				printk(KERN_DEBUG
3717				    "%s: E1 NT (id=%d) newstate %x\n",
3718				    __func__, hc->id, dch->state);
3719		}
3720		switch (dch->state) {
3721		case (1):
3722			if (hc->e1_state != 1) {
3723				for (i = 1; i <= 31; i++) {
3724					/* reset fifos on e1 activation */
3725					HFC_outb_nodebug(hc, R_FIFO,
3726						(i << 1) | 1);
3727					HFC_wait_nodebug(hc);
3728					HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3729						V_RES_F);
3730					HFC_wait_nodebug(hc);
3731				}
3732			}
3733			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3734			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3735			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3736			break;
3737
3738		default:
3739			if (hc->e1_state != 1)
3740				return;
3741			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3742			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3743			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3744		}
3745		hc->e1_state = dch->state;
3746	} else {
3747		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3748			if (debug & DEBUG_HFCMULTI_STATE)
3749				printk(KERN_DEBUG
3750				    "%s: S/T TE newstate %x\n",
3751				    __func__, dch->state);
3752			switch (dch->state) {
3753			case (0):
3754				l1_event(dch->l1, HW_RESET_IND);
3755				break;
3756			case (3):
3757				l1_event(dch->l1, HW_DEACT_IND);
3758				break;
3759			case (5):
3760			case (8):
3761				l1_event(dch->l1, ANYSIGNAL);
3762				break;
3763			case (6):
3764				l1_event(dch->l1, INFO2);
3765				break;
3766			case (7):
3767				l1_event(dch->l1, INFO4_P8);
3768				break;
3769			}
3770		} else {
3771			if (debug & DEBUG_HFCMULTI_STATE)
3772				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3773				    __func__, dch->state);
3774			switch (dch->state) {
3775			case (2):
3776				if (hc->chan[ch].nt_timer == 0) {
3777					hc->chan[ch].nt_timer = -1;
3778					HFC_outb(hc, R_ST_SEL,
3779					    hc->chan[ch].port);
3780					/* undocumented: delay after R_ST_SEL */
3781					udelay(1);
3782					HFC_outb(hc, A_ST_WR_STATE, 4 |
3783					    V_ST_LD_STA); /* G4 */
3784					udelay(6); /* wait at least 5,21us */
3785					HFC_outb(hc, A_ST_WR_STATE, 4);
3786					dch->state = 4;
3787				} else {
3788					/* one extra count for the next event */
3789					hc->chan[ch].nt_timer =
3790					    nt_t1_count[poll_timer] + 1;
3791					HFC_outb(hc, R_ST_SEL,
3792					    hc->chan[ch].port);
3793					/* undocumented: delay after R_ST_SEL */
3794					udelay(1);
3795					/* allow G2 -> G3 transition */
3796					HFC_outb(hc, A_ST_WR_STATE, 2 |
3797					    V_SET_G2_G3);
3798				}
3799				break;
3800			case (1):
3801				hc->chan[ch].nt_timer = -1;
3802				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3803				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3804				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3805				break;
3806			case (4):
3807				hc->chan[ch].nt_timer = -1;
3808				break;
3809			case (3):
3810				hc->chan[ch].nt_timer = -1;
3811				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3812				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3813				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3814				break;
3815			}
3816		}
3817	}
3818}
3819
3820/*
3821 * called for card mode init message
3822 */
3823
3824static void
3825hfcmulti_initmode(struct dchannel *dch)
3826{
3827	struct hfc_multi *hc = dch->hw;
3828	u_char		a_st_wr_state, r_e1_wr_sta;
3829	int		i, pt;
3830
3831	if (debug & DEBUG_HFCMULTI_INIT)
3832		printk(KERN_DEBUG "%s: entered\n", __func__);
3833
3834	if (hc->ctype == HFC_TYPE_E1) {
3835		hc->chan[hc->dslot].slot_tx = -1;
3836		hc->chan[hc->dslot].slot_rx = -1;
3837		hc->chan[hc->dslot].conf = -1;
3838		if (hc->dslot) {
3839			mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3840				-1, 0, -1, 0);
3841			dch->timer.function = (void *) hfcmulti_dbusy_timer;
3842			dch->timer.data = (long) dch;
3843			init_timer(&dch->timer);
3844		}
3845		for (i = 1; i <= 31; i++) {
3846			if (i == hc->dslot)
3847				continue;
3848			hc->chan[i].slot_tx = -1;
3849			hc->chan[i].slot_rx = -1;
3850			hc->chan[i].conf = -1;
3851			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3852		}
3853		/* E1 */
3854		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3855			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3856			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3857		}
3858		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3859			HFC_outb(hc, R_RX0, 0);
3860			hc->hw.r_tx0 = 0 | V_OUT_EN;
3861		} else {
3862			HFC_outb(hc, R_RX0, 1);
3863			hc->hw.r_tx0 = 1 | V_OUT_EN;
3864		}
3865		hc->hw.r_tx1 = V_ATX | V_NTRI;
3866		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3867		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3868		HFC_outb(hc, R_TX_FR0, 0x00);
3869		HFC_outb(hc, R_TX_FR1, 0xf8);
3870
3871		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3872			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3873
3874		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3875
3876		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3877			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3878
3879		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3880			if (debug & DEBUG_HFCMULTI_INIT)
3881				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3882				    __func__);
3883			r_e1_wr_sta = 0; /* G0 */
3884			hc->e1_getclock = 0;
3885		} else {
3886			if (debug & DEBUG_HFCMULTI_INIT)
3887				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3888				    __func__);
3889			r_e1_wr_sta = 0; /* F0 */
3890			hc->e1_getclock = 1;
3891		}
3892		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3893			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3894		else
3895			HFC_outb(hc, R_SYNC_OUT, 0);
3896		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3897			hc->e1_getclock = 1;
3898		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3899			hc->e1_getclock = 0;
3900		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3901			/* SLAVE (clock master) */
3902			if (debug & DEBUG_HFCMULTI_INIT)
3903				printk(KERN_DEBUG
3904				    "%s: E1 port is clock master "
3905				    "(clock from PCM)\n", __func__);
3906			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3907		} else {
3908			if (hc->e1_getclock) {
3909				/* MASTER (clock slave) */
3910				if (debug & DEBUG_HFCMULTI_INIT)
3911					printk(KERN_DEBUG
3912					    "%s: E1 port is clock slave "
3913					    "(clock to PCM)\n", __func__);
3914				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3915			} else {
3916				/* MASTER (clock master) */
3917				if (debug & DEBUG_HFCMULTI_INIT)
3918					printk(KERN_DEBUG "%s: E1 port is "
3919					    "clock master "
3920					    "(clock from QUARTZ)\n",
3921					    __func__);
3922				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3923				    V_PCM_SYNC | V_JATT_OFF);
3924				HFC_outb(hc, R_SYNC_OUT, 0);
3925			}
3926		}
3927		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3928		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3929		HFC_outb(hc, R_PWM0, 0x50);
3930		HFC_outb(hc, R_PWM1, 0xff);
3931		/* state machine setup */
3932		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3933		udelay(6); /* wait at least 5,21us */
3934		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3935		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3936			hc->syncronized = 0;
3937			plxsd_checksync(hc, 0);
3938		}
3939	} else {
3940		i = dch->slot;
3941		hc->chan[i].slot_tx = -1;
3942		hc->chan[i].slot_rx = -1;
3943		hc->chan[i].conf = -1;
3944		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3945		dch->timer.function = (void *)hfcmulti_dbusy_timer;
3946		dch->timer.data = (long) dch;
3947		init_timer(&dch->timer);
3948		hc->chan[i - 2].slot_tx = -1;
3949		hc->chan[i - 2].slot_rx = -1;
3950		hc->chan[i - 2].conf = -1;
3951		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3952		hc->chan[i - 1].slot_tx = -1;
3953		hc->chan[i - 1].slot_rx = -1;
3954		hc->chan[i - 1].conf = -1;
3955		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3956		/* ST */
3957		pt = hc->chan[i].port;
3958		/* select interface */
3959		HFC_outb(hc, R_ST_SEL, pt);
3960		/* undocumented: delay after R_ST_SEL */
3961		udelay(1);
3962		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3963			if (debug & DEBUG_HFCMULTI_INIT)
3964				printk(KERN_DEBUG
3965				    "%s: ST port %d is NT-mode\n",
3966				    __func__, pt);
3967			/* clock delay */
3968			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3969			a_st_wr_state = 1; /* G1 */
3970			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3971		} else {
3972			if (debug & DEBUG_HFCMULTI_INIT)
3973				printk(KERN_DEBUG
3974				    "%s: ST port %d is TE-mode\n",
3975				    __func__, pt);
3976			/* clock delay */
3977			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3978			a_st_wr_state = 2; /* F2 */
3979			hc->hw.a_st_ctrl0[pt] = 0;
3980		}
3981		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3982			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3983		if (hc->ctype == HFC_TYPE_XHFC) {
3984			hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3985			HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3986				0x7c << 1 /* V_ST_PULSE */);
3987		}
3988		/* line setup */
3989		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3990		/* disable E-channel */
3991		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3992		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3993			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3994		else
3995			HFC_outb(hc, A_ST_CTRL1, 0);
3996		/* enable B-channel receive */
3997		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3998		/* state machine setup */
3999		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4000		udelay(6); /* wait at least 5,21us */
4001		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4002		hc->hw.r_sci_msk |= 1 << pt;
4003		/* state machine interrupts */
4004		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4005		/* unset sync on port */
4006		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4007			hc->syncronized &=
4008			   ~(1 << hc->chan[dch->slot].port);
4009			plxsd_checksync(hc, 0);
4010		}
4011	}
4012	if (debug & DEBUG_HFCMULTI_INIT)
4013		printk("%s: done\n", __func__);
4014}
4015
4016
4017static int
4018open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4019    struct channel_req *rq)
4020{
4021	int	err = 0;
4022	u_long	flags;
4023
4024	if (debug & DEBUG_HW_OPEN)
4025		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4026		    dch->dev.id, __builtin_return_address(0));
4027	if (rq->protocol == ISDN_P_NONE)
4028		return -EINVAL;
4029	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4030	    (dch->dev.D.protocol != rq->protocol)) {
4031		if (debug & DEBUG_HFCMULTI_MODE)
4032			printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4033			    __func__, dch->dev.D.protocol, rq->protocol);
4034	}
4035	if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4036	    (rq->protocol != ISDN_P_TE_S0))
4037		l1_event(dch->l1, CLOSE_CHANNEL);
4038	if (dch->dev.D.protocol != rq->protocol) {
4039		if (rq->protocol == ISDN_P_TE_S0) {
4040			err = create_l1(dch, hfcm_l1callback);
4041			if (err)
4042				return err;
4043		}
4044		dch->dev.D.protocol = rq->protocol;
4045		spin_lock_irqsave(&hc->lock, flags);
4046		hfcmulti_initmode(dch);
4047		spin_unlock_irqrestore(&hc->lock, flags);
4048	}
4049
4050	if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
4051	    ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
4052	    ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
4053	    ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
4054		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4055		    0, NULL, GFP_KERNEL);
4056	}
4057	rq->ch = &dch->dev.D;
4058	if (!try_module_get(THIS_MODULE))
4059		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4060	return 0;
4061}
4062
4063static int
4064open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4065    struct channel_req *rq)
4066{
4067	struct bchannel	*bch;
4068	int		ch;
4069
4070	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4071		return -EINVAL;
4072	if (rq->protocol == ISDN_P_NONE)
4073		return -EINVAL;
4074	if (hc->ctype == HFC_TYPE_E1)
4075		ch = rq->adr.channel;
4076	else
4077		ch = (rq->adr.channel - 1) + (dch->slot - 2);
4078	bch = hc->chan[ch].bch;
4079	if (!bch) {
4080		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4081		    __func__, ch);
4082		return -EINVAL;
4083	}
4084	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4085		return -EBUSY; /* b-channel can be only open once */
4086	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4087	bch->ch.protocol = rq->protocol;
4088	hc->chan[ch].rx_off = 0;
4089	rq->ch = &bch->ch;
4090	if (!try_module_get(THIS_MODULE))
4091		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4092	return 0;
4093}
4094
4095/*
4096 * device control function
4097 */
4098static int
4099channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4100{
4101	struct hfc_multi	*hc = dch->hw;
4102	int	ret = 0;
4103	int	wd_mode, wd_cnt;
4104
4105	switch (cq->op) {
4106	case MISDN_CTRL_GETOP:
4107		cq->op = MISDN_CTRL_HFC_OP;
4108		break;
4109	case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4110		wd_cnt = cq->p1 & 0xf;
4111		wd_mode = !!(cq->p1 >> 4);
4112		if (debug & DEBUG_HFCMULTI_MSG)
4113			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4114			    ", counter 0x%x\n", __func__,
4115			    wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4116		/* set the watchdog timer */
4117		HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4118		hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4119		if (hc->ctype == HFC_TYPE_XHFC)
4120			hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4121		/* init the watchdog register and reset the counter */
4122		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4123		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4124			/* enable the watchdog output for Speech-Design */
4125			HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4126			HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4127			HFC_outb(hc, R_GPIO_OUT1, 0);
4128			HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4129		}
4130		break;
4131	case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4132		if (debug & DEBUG_HFCMULTI_MSG)
4133			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4134			    __func__);
4135		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4136		break;
4137	default:
4138		printk(KERN_WARNING "%s: unknown Op %x\n",
4139		    __func__, cq->op);
4140		ret = -EINVAL;
4141		break;
4142	}
4143	return ret;
4144}
4145
4146static int
4147hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4148{
4149	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4150	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4151	struct hfc_multi	*hc = dch->hw;
4152	struct channel_req	*rq;
4153	int			err = 0;
4154	u_long			flags;
4155
4156	if (dch->debug & DEBUG_HW)
4157		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4158		    __func__, cmd, arg);
4159	switch (cmd) {
4160	case OPEN_CHANNEL:
4161		rq = arg;
4162		switch (rq->protocol) {
4163		case ISDN_P_TE_S0:
4164		case ISDN_P_NT_S0:
4165			if (hc->ctype == HFC_TYPE_E1) {
4166				err = -EINVAL;
4167				break;
4168			}
4169			err = open_dchannel(hc, dch, rq); /* locked there */
4170			break;
4171		case ISDN_P_TE_E1:
4172		case ISDN_P_NT_E1:
4173			if (hc->ctype != HFC_TYPE_E1) {
4174				err = -EINVAL;
4175				break;
4176			}
4177			err = open_dchannel(hc, dch, rq); /* locked there */
4178			break;
4179		default:
4180			spin_lock_irqsave(&hc->lock, flags);
4181			err = open_bchannel(hc, dch, rq);
4182			spin_unlock_irqrestore(&hc->lock, flags);
4183		}
4184		break;
4185	case CLOSE_CHANNEL:
4186		if (debug & DEBUG_HW_OPEN)
4187			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4188			    __func__, dch->dev.id,
4189			    __builtin_return_address(0));
4190		module_put(THIS_MODULE);
4191		break;
4192	case CONTROL_CHANNEL:
4193		spin_lock_irqsave(&hc->lock, flags);
4194		err = channel_dctrl(dch, arg);
4195		spin_unlock_irqrestore(&hc->lock, flags);
4196		break;
4197	default:
4198		if (dch->debug & DEBUG_HW)
4199			printk(KERN_DEBUG "%s: unknown command %x\n",
4200			    __func__, cmd);
4201		err = -EINVAL;
4202	}
4203	return err;
4204}
4205
4206static int
4207clockctl(void *priv, int enable)
4208{
4209	struct hfc_multi *hc = priv;
4210
4211	hc->iclock_on = enable;
4212	return 0;
4213}
4214
4215/*
4216 * initialize the card
4217 */
4218
4219/*
4220 * start timer irq, wait some time and check if we have interrupts.
4221 * if not, reset chip and try again.
4222 */
4223static int
4224init_card(struct hfc_multi *hc)
4225{
4226	int	err = -EIO;
4227	u_long	flags;
4228	void	__iomem *plx_acc;
4229	u_long	plx_flags;
4230
4231	if (debug & DEBUG_HFCMULTI_INIT)
4232		printk(KERN_DEBUG "%s: entered\n", __func__);
4233
4234	spin_lock_irqsave(&hc->lock, flags);
4235	/* set interrupts but leave global interrupt disabled */
4236	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4237	disable_hwirq(hc);
4238	spin_unlock_irqrestore(&hc->lock, flags);
4239
4240	if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4241	    "HFC-multi", hc)) {
4242		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4243		    hc->irq);
4244		hc->irq = 0;
4245		return -EIO;
4246	}
4247
4248	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4249		spin_lock_irqsave(&plx_lock, plx_flags);
4250		plx_acc = hc->plx_membase + PLX_INTCSR;
4251		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4252			plx_acc); /* enable PCI & LINT1 irq */
4253		spin_unlock_irqrestore(&plx_lock, plx_flags);
4254	}
4255
4256	if (debug & DEBUG_HFCMULTI_INIT)
4257		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4258		    __func__, hc->irq, hc->irqcnt);
4259	err = init_chip(hc);
4260	if (err)
4261		goto error;
4262	/*
4263	 * Finally enable IRQ output
4264	 * this is only allowed, if an IRQ routine is already
4265	 * established for this HFC, so don't do that earlier
4266	 */
4267	spin_lock_irqsave(&hc->lock, flags);
4268	enable_hwirq(hc);
4269	spin_unlock_irqrestore(&hc->lock, flags);
4270	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4271	set_current_state(TASK_UNINTERRUPTIBLE);
4272	schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4273	/* turn IRQ off until chip is completely initialized */
4274	spin_lock_irqsave(&hc->lock, flags);
4275	disable_hwirq(hc);
4276	spin_unlock_irqrestore(&hc->lock, flags);
4277	if (debug & DEBUG_HFCMULTI_INIT)
4278		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4279		    __func__, hc->irq, hc->irqcnt);
4280	if (hc->irqcnt) {
4281		if (debug & DEBUG_HFCMULTI_INIT)
4282			printk(KERN_DEBUG "%s: done\n", __func__);
4283
4284		return 0;
4285	}
4286	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4287		printk(KERN_INFO "ignoring missing interrupts\n");
4288		return 0;
4289	}
4290
4291	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4292		hc->irq);
4293
4294	err = -EIO;
4295
4296error:
4297	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4298		spin_lock_irqsave(&plx_lock, plx_flags);
4299		plx_acc = hc->plx_membase + PLX_INTCSR;
4300		writew(0x00, plx_acc); /*disable IRQs*/
4301		spin_unlock_irqrestore(&plx_lock, plx_flags);
4302	}
4303
4304	if (debug & DEBUG_HFCMULTI_INIT)
4305		printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4306	if (hc->irq) {
4307		free_irq(hc->irq, hc);
4308		hc->irq = 0;
4309	}
4310
4311	if (debug & DEBUG_HFCMULTI_INIT)
4312		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4313	return err;
4314}
4315
4316/*
4317 * find pci device and set it up
4318 */
4319
4320static int
4321setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4322		const struct pci_device_id *ent)
4323{
4324	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4325
4326	printk(KERN_INFO
4327	    "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4328	    m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4329
4330	hc->pci_dev = pdev;
4331	if (m->clock2)
4332		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4333
4334	if (ent->device == 0xB410) {
4335		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4336		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4337		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4338		hc->slots = 32;
4339	}
4340
4341	if (hc->pci_dev->irq <= 0) {
4342		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4343		return -EIO;
4344	}
4345	if (pci_enable_device(hc->pci_dev)) {
4346		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4347		return -EIO;
4348	}
4349	hc->leds = m->leds;
4350	hc->ledstate = 0xAFFEAFFE;
4351	hc->opticalsupport = m->opticalsupport;
4352
4353	hc->pci_iobase = 0;
4354	hc->pci_membase = NULL;
4355	hc->plx_membase = NULL;
4356
4357	/* set memory access methods */
4358	if (m->io_mode) /* use mode from card config */
4359		hc->io_mode = m->io_mode;
4360	switch (hc->io_mode) {
4361	case HFC_IO_MODE_PLXSD:
4362		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4363		hc->slots = 128; /* required */
4364		hc->HFC_outb = HFC_outb_pcimem;
4365		hc->HFC_inb = HFC_inb_pcimem;
4366		hc->HFC_inw = HFC_inw_pcimem;
4367		hc->HFC_wait = HFC_wait_pcimem;
4368		hc->read_fifo = read_fifo_pcimem;
4369		hc->write_fifo = write_fifo_pcimem;
4370		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4371		/* MEMBASE 1 is PLX PCI Bridge */
4372
4373		if (!hc->plx_origmembase) {
4374			printk(KERN_WARNING
4375			  "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4376			pci_disable_device(hc->pci_dev);
4377			return -EIO;
4378		}
4379
4380		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4381		if (!hc->plx_membase) {
4382			printk(KERN_WARNING
4383			    "HFC-multi: failed to remap plx address space. "
4384			    "(internal error)\n");
4385			pci_disable_device(hc->pci_dev);
4386			return -EIO;
4387		}
4388		printk(KERN_INFO
4389		    "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4390		    (u_long)hc->plx_membase, hc->plx_origmembase);
4391
4392		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4393		    /* MEMBASE 1 is PLX PCI Bridge */
4394		if (!hc->pci_origmembase) {
4395			printk(KERN_WARNING
4396			    "HFC-multi: No IO-Memory for PCI card found\n");
4397			pci_disable_device(hc->pci_dev);
4398			return -EIO;
4399		}
4400
4401		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4402		if (!hc->pci_membase) {
4403			printk(KERN_WARNING "HFC-multi: failed to remap io "
4404			    "address space. (internal error)\n");
4405			pci_disable_device(hc->pci_dev);
4406			return -EIO;
4407		}
4408
4409		printk(KERN_INFO
4410		    "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4411		    "leds-type %d\n",
4412		    hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4413		    hc->pci_dev->irq, HZ, hc->leds);
4414		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4415		break;
4416	case HFC_IO_MODE_PCIMEM:
4417		hc->HFC_outb = HFC_outb_pcimem;
4418		hc->HFC_inb = HFC_inb_pcimem;
4419		hc->HFC_inw = HFC_inw_pcimem;
4420		hc->HFC_wait = HFC_wait_pcimem;
4421		hc->read_fifo = read_fifo_pcimem;
4422		hc->write_fifo = write_fifo_pcimem;
4423		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4424		if (!hc->pci_origmembase) {
4425			printk(KERN_WARNING
4426			    "HFC-multi: No IO-Memory for PCI card found\n");
4427			pci_disable_device(hc->pci_dev);
4428			return -EIO;
4429		}
4430
4431		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4432		if (!hc->pci_membase) {
4433			printk(KERN_WARNING
4434			    "HFC-multi: failed to remap io address space. "
4435			    "(internal error)\n");
4436			pci_disable_device(hc->pci_dev);
4437			return -EIO;
4438		}
4439		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4440		    "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4441		    hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4442		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4443		break;
4444	case HFC_IO_MODE_REGIO:
4445		hc->HFC_outb = HFC_outb_regio;
4446		hc->HFC_inb = HFC_inb_regio;
4447		hc->HFC_inw = HFC_inw_regio;
4448		hc->HFC_wait = HFC_wait_regio;
4449		hc->read_fifo = read_fifo_regio;
4450		hc->write_fifo = write_fifo_regio;
4451		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4452		if (!hc->pci_iobase) {
4453			printk(KERN_WARNING
4454				"HFC-multi: No IO for PCI card found\n");
4455			pci_disable_device(hc->pci_dev);
4456			return -EIO;
4457		}
4458
4459		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4460			printk(KERN_WARNING "HFC-multi: failed to request "
4461			    "address space at 0x%08lx (internal error)\n",
4462			    hc->pci_iobase);
4463			pci_disable_device(hc->pci_dev);
4464			return -EIO;
4465		}
4466
4467		printk(KERN_INFO
4468		    "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4469		    m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4470		    hc->pci_dev->irq, HZ, hc->leds);
4471		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4472		break;
4473	default:
4474		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4475		pci_disable_device(hc->pci_dev);
4476		return -EIO;
4477	}
4478
4479	pci_set_drvdata(hc->pci_dev, hc);
4480
4481	/* At this point the needed PCI config is done */
4482	/* fifos are still not enabled */
4483	return 0;
4484}
4485
4486
4487/*
4488 * remove port
4489 */
4490
4491static void
4492release_port(struct hfc_multi *hc, struct dchannel *dch)
4493{
4494	int	pt, ci, i = 0;
4495	u_long	flags;
4496	struct bchannel *pb;
4497
4498	ci = dch->slot;
4499	pt = hc->chan[ci].port;
4500
4501	if (debug & DEBUG_HFCMULTI_INIT)
4502		printk(KERN_DEBUG "%s: entered for port %d\n",
4503			__func__, pt + 1);
4504
4505	if (pt >= hc->ports) {
4506		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4507		     __func__, pt + 1);
4508		return;
4509	}
4510
4511	if (debug & DEBUG_HFCMULTI_INIT)
4512		printk(KERN_DEBUG "%s: releasing port=%d\n",
4513		    __func__, pt + 1);
4514
4515	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4516		l1_event(dch->l1, CLOSE_CHANNEL);
4517
4518	hc->chan[ci].dch = NULL;
4519
4520	if (hc->created[pt]) {
4521		hc->created[pt] = 0;
4522		mISDN_unregister_device(&dch->dev);
4523	}
4524
4525	spin_lock_irqsave(&hc->lock, flags);
4526
4527	if (dch->timer.function) {
4528		del_timer(&dch->timer);
4529		dch->timer.function = NULL;
4530	}
4531
4532	if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4533		/* remove sync */
4534		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4535			hc->syncronized = 0;
4536			plxsd_checksync(hc, 1);
4537		}
4538		/* free channels */
4539		for (i = 0; i <= 31; i++) {
4540			if (hc->chan[i].bch) {
4541				if (debug & DEBUG_HFCMULTI_INIT)
4542					printk(KERN_DEBUG
4543					    "%s: free port %d channel %d\n",
4544					    __func__, hc->chan[i].port+1, i);
4545				pb = hc->chan[i].bch;
4546				hc->chan[i].bch = NULL;
4547				spin_unlock_irqrestore(&hc->lock, flags);
4548				mISDN_freebchannel(pb);
4549				kfree(pb);
4550				kfree(hc->chan[i].coeff);
4551				spin_lock_irqsave(&hc->lock, flags);
4552			}
4553		}
4554	} else {
4555		/* remove sync */
4556		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4557			hc->syncronized &=
4558			   ~(1 << hc->chan[ci].port);
4559			plxsd_checksync(hc, 1);
4560		}
4561		/* free channels */
4562		if (hc->chan[ci - 2].bch) {
4563			if (debug & DEBUG_HFCMULTI_INIT)
4564				printk(KERN_DEBUG
4565				    "%s: free port %d channel %d\n",
4566				    __func__, hc->chan[ci - 2].port+1,
4567				    ci - 2);
4568			pb = hc->chan[ci - 2].bch;
4569			hc->chan[ci - 2].bch = NULL;
4570			spin_unlock_irqrestore(&hc->lock, flags);
4571			mISDN_freebchannel(pb);
4572			kfree(pb);
4573			kfree(hc->chan[ci - 2].coeff);
4574			spin_lock_irqsave(&hc->lock, flags);
4575		}
4576		if (hc->chan[ci - 1].bch) {
4577			if (debug & DEBUG_HFCMULTI_INIT)
4578				printk(KERN_DEBUG
4579				    "%s: free port %d channel %d\n",
4580				    __func__, hc->chan[ci - 1].port+1,
4581				    ci - 1);
4582			pb = hc->chan[ci - 1].bch;
4583			hc->chan[ci - 1].bch = NULL;
4584			spin_unlock_irqrestore(&hc->lock, flags);
4585			mISDN_freebchannel(pb);
4586			kfree(pb);
4587			kfree(hc->chan[ci - 1].coeff);
4588			spin_lock_irqsave(&hc->lock, flags);
4589		}
4590	}
4591
4592	spin_unlock_irqrestore(&hc->lock, flags);
4593
4594	if (debug & DEBUG_HFCMULTI_INIT)
4595		printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4596	mISDN_freedchannel(dch);
4597	kfree(dch);
4598
4599	if (debug & DEBUG_HFCMULTI_INIT)
4600		printk(KERN_DEBUG "%s: done!\n", __func__);
4601}
4602
4603static void
4604release_card(struct hfc_multi *hc)
4605{
4606	u_long	flags;
4607	int	ch;
4608
4609	if (debug & DEBUG_HFCMULTI_INIT)
4610		printk(KERN_DEBUG "%s: release card (%d) entered\n",
4611		    __func__, hc->id);
4612
4613	/* unregister clock source */
4614	if (hc->iclock)
4615		mISDN_unregister_clock(hc->iclock);
4616
4617	/* disable irq */
4618	spin_lock_irqsave(&hc->lock, flags);
4619	disable_hwirq(hc);
4620	spin_unlock_irqrestore(&hc->lock, flags);
4621	udelay(1000);
4622
4623	/* dimm leds */
4624	if (hc->leds)
4625		hfcmulti_leds(hc);
4626
4627	/* disable D-channels & B-channels */
4628	if (debug & DEBUG_HFCMULTI_INIT)
4629		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4630		    __func__);
4631	for (ch = 0; ch <= 31; ch++) {
4632		if (hc->chan[ch].dch)
4633			release_port(hc, hc->chan[ch].dch);
4634	}
4635
4636	/* release hardware & irq */
4637	if (hc->irq) {
4638		if (debug & DEBUG_HFCMULTI_INIT)
4639			printk(KERN_DEBUG "%s: free irq %d\n",
4640			    __func__, hc->irq);
4641		free_irq(hc->irq, hc);
4642		hc->irq = 0;
4643
4644	}
4645	release_io_hfcmulti(hc);
4646
4647	if (debug & DEBUG_HFCMULTI_INIT)
4648		printk(KERN_DEBUG "%s: remove instance from list\n",
4649		     __func__);
4650	list_del(&hc->list);
4651
4652	if (debug & DEBUG_HFCMULTI_INIT)
4653		printk(KERN_DEBUG "%s: delete instance\n", __func__);
4654	if (hc == syncmaster)
4655		syncmaster = NULL;
4656	kfree(hc);
4657	if (debug & DEBUG_HFCMULTI_INIT)
4658		printk(KERN_DEBUG "%s: card successfully removed\n",
4659		    __func__);
4660}
4661
4662static int
4663init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4664{
4665	struct dchannel	*dch;
4666	struct bchannel	*bch;
4667	int		ch, ret = 0;
4668	char		name[MISDN_MAX_IDLEN];
4669
4670	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4671	if (!dch)
4672		return -ENOMEM;
4673	dch->debug = debug;
4674	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4675	dch->hw = hc;
4676	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4677	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4678	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4679	dch->dev.D.send = handle_dmsg;
4680	dch->dev.D.ctrl = hfcm_dctrl;
4681	dch->dev.nrbchan = (hc->dslot) ? 30 : 31;
4682	dch->slot = hc->dslot;
4683	hc->chan[hc->dslot].dch = dch;
4684	hc->chan[hc->dslot].port = 0;
4685	hc->chan[hc->dslot].nt_timer = -1;
4686	for (ch = 1; ch <= 31; ch++) {
4687		if (ch == hc->dslot) /* skip dchannel */
4688			continue;
4689		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4690		if (!bch) {
4691			printk(KERN_ERR "%s: no memory for bchannel\n",
4692			    __func__);
4693			ret = -ENOMEM;
4694			goto free_chan;
4695		}
4696		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4697		if (!hc->chan[ch].coeff) {
4698			printk(KERN_ERR "%s: no memory for coeffs\n",
4699			    __func__);
4700			ret = -ENOMEM;
4701			kfree(bch);
4702			goto free_chan;
4703		}
4704		bch->nr = ch;
4705		bch->slot = ch;
4706		bch->debug = debug;
4707		mISDN_initbchannel(bch, MAX_DATA_MEM);
4708		bch->hw = hc;
4709		bch->ch.send = handle_bmsg;
4710		bch->ch.ctrl = hfcm_bctrl;
4711		bch->ch.nr = ch;
4712		list_add(&bch->ch.list, &dch->dev.bchannels);
4713		hc->chan[ch].bch = bch;
4714		hc->chan[ch].port = 0;
4715		set_channelmap(bch->nr, dch->dev.channelmap);
4716	}
4717	/* set optical line type */
4718	if (port[Port_cnt] & 0x001) {
4719		if (!m->opticalsupport)  {
4720			printk(KERN_INFO
4721			    "This board has no optical "
4722			    "support\n");
4723		} else {
4724			if (debug & DEBUG_HFCMULTI_INIT)
4725				printk(KERN_DEBUG
4726				    "%s: PORT set optical "
4727				    "interfacs: card(%d) "
4728				    "port(%d)\n",
4729				    __func__,
4730				    HFC_cnt + 1, 1);
4731			test_and_set_bit(HFC_CFG_OPTICAL,
4732			    &hc->chan[hc->dslot].cfg);
4733		}
4734	}
4735	/* set LOS report */
4736	if (port[Port_cnt] & 0x004) {
4737		if (debug & DEBUG_HFCMULTI_INIT)
4738			printk(KERN_DEBUG "%s: PORT set "
4739			    "LOS report: card(%d) port(%d)\n",
4740			    __func__, HFC_cnt + 1, 1);
4741		test_and_set_bit(HFC_CFG_REPORT_LOS,
4742		    &hc->chan[hc->dslot].cfg);
4743	}
4744	/* set AIS report */
4745	if (port[Port_cnt] & 0x008) {
4746		if (debug & DEBUG_HFCMULTI_INIT)
4747			printk(KERN_DEBUG "%s: PORT set "
4748			    "AIS report: card(%d) port(%d)\n",
4749			    __func__, HFC_cnt + 1, 1);
4750		test_and_set_bit(HFC_CFG_REPORT_AIS,
4751		    &hc->chan[hc->dslot].cfg);
4752	}
4753	/* set SLIP report */
4754	if (port[Port_cnt] & 0x010) {
4755		if (debug & DEBUG_HFCMULTI_INIT)
4756			printk(KERN_DEBUG
4757			    "%s: PORT set SLIP report: "
4758			    "card(%d) port(%d)\n",
4759			    __func__, HFC_cnt + 1, 1);
4760		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4761		    &hc->chan[hc->dslot].cfg);
4762	}
4763	/* set RDI report */
4764	if (port[Port_cnt] & 0x020) {
4765		if (debug & DEBUG_HFCMULTI_INIT)
4766			printk(KERN_DEBUG
4767			    "%s: PORT set RDI report: "
4768			    "card(%d) port(%d)\n",
4769			    __func__, HFC_cnt + 1, 1);
4770		test_and_set_bit(HFC_CFG_REPORT_RDI,
4771		    &hc->chan[hc->dslot].cfg);
4772	}
4773	/* set CRC-4 Mode */
4774	if (!(port[Port_cnt] & 0x100)) {
4775		if (debug & DEBUG_HFCMULTI_INIT)
4776			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4777				" card(%d) port(%d)\n",
4778				__func__, HFC_cnt + 1, 1);
4779		test_and_set_bit(HFC_CFG_CRC4,
4780		    &hc->chan[hc->dslot].cfg);
4781	} else {
4782		if (debug & DEBUG_HFCMULTI_INIT)
4783			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4784				" report: card(%d) port(%d)\n",
4785				__func__, HFC_cnt + 1, 1);
4786	}
4787	/* set forced clock */
4788	if (port[Port_cnt] & 0x0200) {
4789		if (debug & DEBUG_HFCMULTI_INIT)
4790			printk(KERN_DEBUG "%s: PORT force getting clock from "
4791				"E1: card(%d) port(%d)\n",
4792				__func__, HFC_cnt + 1, 1);
4793		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4794	} else
4795	if (port[Port_cnt] & 0x0400) {
4796		if (debug & DEBUG_HFCMULTI_INIT)
4797			printk(KERN_DEBUG "%s: PORT force putting clock to "
4798				"E1: card(%d) port(%d)\n",
4799				__func__, HFC_cnt + 1, 1);
4800		test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4801	}
4802	/* set JATT PLL */
4803	if (port[Port_cnt] & 0x0800) {
4804		if (debug & DEBUG_HFCMULTI_INIT)
4805			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4806				"E1: card(%d) port(%d)\n",
4807				__func__, HFC_cnt + 1, 1);
4808		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4809	}
4810	/* set elastic jitter buffer */
4811	if (port[Port_cnt] & 0x3000) {
4812		hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4813		if (debug & DEBUG_HFCMULTI_INIT)
4814			printk(KERN_DEBUG
4815			    "%s: PORT set elastic "
4816			    "buffer to %d: card(%d) port(%d)\n",
4817			    __func__, hc->chan[hc->dslot].jitter,
4818			    HFC_cnt + 1, 1);
4819	} else
4820		hc->chan[hc->dslot].jitter = 2; /* default */
4821	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4822	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4823	if (ret)
4824		goto free_chan;
4825	hc->created[0] = 1;
4826	return ret;
4827free_chan:
4828	release_port(hc, dch);
4829	return ret;
4830}
4831
4832static int
4833init_multi_port(struct hfc_multi *hc, int pt)
4834{
4835	struct dchannel	*dch;
4836	struct bchannel	*bch;
4837	int		ch, i, ret = 0;
4838	char		name[MISDN_MAX_IDLEN];
4839
4840	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4841	if (!dch)
4842		return -ENOMEM;
4843	dch->debug = debug;
4844	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4845	dch->hw = hc;
4846	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4847	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4848	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4849	dch->dev.D.send = handle_dmsg;
4850	dch->dev.D.ctrl = hfcm_dctrl;
4851	dch->dev.nrbchan = 2;
4852	i = pt << 2;
4853	dch->slot = i + 2;
4854	hc->chan[i + 2].dch = dch;
4855	hc->chan[i + 2].port = pt;
4856	hc->chan[i + 2].nt_timer = -1;
4857	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4858		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4859		if (!bch) {
4860			printk(KERN_ERR "%s: no memory for bchannel\n",
4861			    __func__);
4862			ret = -ENOMEM;
4863			goto free_chan;
4864		}
4865		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4866		if (!hc->chan[i + ch].coeff) {
4867			printk(KERN_ERR "%s: no memory for coeffs\n",
4868			    __func__);
4869			ret = -ENOMEM;
4870			kfree(bch);
4871			goto free_chan;
4872		}
4873		bch->nr = ch + 1;
4874		bch->slot = i + ch;
4875		bch->debug = debug;
4876		mISDN_initbchannel(bch, MAX_DATA_MEM);
4877		bch->hw = hc;
4878		bch->ch.send = handle_bmsg;
4879		bch->ch.ctrl = hfcm_bctrl;
4880		bch->ch.nr = ch + 1;
4881		list_add(&bch->ch.list, &dch->dev.bchannels);
4882		hc->chan[i + ch].bch = bch;
4883		hc->chan[i + ch].port = pt;
4884		set_channelmap(bch->nr, dch->dev.channelmap);
4885	}
4886	/* set master clock */
4887	if (port[Port_cnt] & 0x001) {
4888		if (debug & DEBUG_HFCMULTI_INIT)
4889			printk(KERN_DEBUG
4890			    "%s: PROTOCOL set master clock: "
4891			    "card(%d) port(%d)\n",
4892			    __func__, HFC_cnt + 1, pt + 1);
4893		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4894			printk(KERN_ERR "Error: Master clock "
4895			    "for port(%d) of card(%d) is only"
4896			    " possible with TE-mode\n",
4897			    pt + 1, HFC_cnt + 1);
4898			ret = -EINVAL;
4899			goto free_chan;
4900		}
4901		if (hc->masterclk >= 0) {
4902			printk(KERN_ERR "Error: Master clock "
4903			    "for port(%d) of card(%d) already "
4904			    "defined for port(%d)\n",
4905			    pt + 1, HFC_cnt + 1, hc->masterclk+1);
4906			ret = -EINVAL;
4907			goto free_chan;
4908		}
4909		hc->masterclk = pt;
4910	}
4911	/* set transmitter line to non capacitive */
4912	if (port[Port_cnt] & 0x002) {
4913		if (debug & DEBUG_HFCMULTI_INIT)
4914			printk(KERN_DEBUG
4915			    "%s: PROTOCOL set non capacitive "
4916			    "transmitter: card(%d) port(%d)\n",
4917			    __func__, HFC_cnt + 1, pt + 1);
4918		test_and_set_bit(HFC_CFG_NONCAP_TX,
4919		    &hc->chan[i + 2].cfg);
4920	}
4921	/* disable E-channel */
4922	if (port[Port_cnt] & 0x004) {
4923		if (debug & DEBUG_HFCMULTI_INIT)
4924			printk(KERN_DEBUG
4925			    "%s: PROTOCOL disable E-channel: "
4926			    "card(%d) port(%d)\n",
4927			    __func__, HFC_cnt + 1, pt + 1);
4928		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4929		    &hc->chan[i + 2].cfg);
4930	}
4931	if (hc->ctype == HFC_TYPE_XHFC) {
4932		snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4933			HFC_cnt + 1, pt + 1);
4934		ret = mISDN_register_device(&dch->dev, NULL, name);
4935	} else {
4936		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4937			hc->ctype, HFC_cnt + 1, pt + 1);
4938		ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4939	}
4940	if (ret)
4941		goto free_chan;
4942	hc->created[pt] = 1;
4943	return ret;
4944free_chan:
4945	release_port(hc, dch);
4946	return ret;
4947}
4948
4949static int
4950hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4951    const struct pci_device_id *ent)
4952{
4953	int		ret_err = 0;
4954	int		pt;
4955	struct hfc_multi	*hc;
4956	u_long		flags;
4957	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4958	int		i;
4959
4960	if (HFC_cnt >= MAX_CARDS) {
4961		printk(KERN_ERR "too many cards (max=%d).\n",
4962			MAX_CARDS);
4963		return -EINVAL;
4964	}
4965	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4966		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4967		    "type[%d] %d was supplied as module parameter\n",
4968		    m->vendor_name, m->card_name, m->type, HFC_cnt,
4969		    type[HFC_cnt] & 0xff);
4970		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4971			"first, to see cards and their types.");
4972		return -EINVAL;
4973	}
4974	if (debug & DEBUG_HFCMULTI_INIT)
4975		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4976		    __func__, m->vendor_name, m->card_name, m->type,
4977		    type[HFC_cnt]);
4978
4979	/* allocate card+fifo structure */
4980	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4981	if (!hc) {
4982		printk(KERN_ERR "No kmem for HFC-Multi card\n");
4983		return -ENOMEM;
4984	}
4985	spin_lock_init(&hc->lock);
4986	hc->mtyp = m;
4987	hc->ctype =  m->type;
4988	hc->ports = m->ports;
4989	hc->id = HFC_cnt;
4990	hc->pcm = pcm[HFC_cnt];
4991	hc->io_mode = iomode[HFC_cnt];
4992	if (dslot[HFC_cnt] < 0 && hc->ctype == HFC_TYPE_E1) {
4993		hc->dslot = 0;
4994		printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4995			"31 B-channels\n");
4996	}
4997	if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32
4998	    && hc->ctype == HFC_TYPE_E1) {
4999		hc->dslot = dslot[HFC_cnt];
5000		printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
5001			"time slot %d\n", dslot[HFC_cnt]);
5002	} else
5003		hc->dslot = 16;
5004
5005	/* set chip specific features */
5006	hc->masterclk = -1;
5007	if (type[HFC_cnt] & 0x100) {
5008		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5009		hc->silence = 0xff; /* ulaw silence */
5010	} else
5011		hc->silence = 0x2a; /* alaw silence */
5012	if ((poll >> 1) > sizeof(hc->silence_data)) {
5013		printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5014			"please fix\n");
5015		return -EINVAL;
5016	}
5017	for (i = 0; i < (poll >> 1); i++)
5018		hc->silence_data[i] = hc->silence;
5019
5020	if (hc->ctype != HFC_TYPE_XHFC) {
5021		if (!(type[HFC_cnt] & 0x200))
5022			test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5023		test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5024	}
5025
5026	if (type[HFC_cnt] & 0x800)
5027		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5028	if (type[HFC_cnt] & 0x1000) {
5029		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5030		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5031	}
5032	if (type[HFC_cnt] & 0x4000)
5033		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5034	if (type[HFC_cnt] & 0x8000)
5035		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5036	hc->slots = 32;
5037	if (type[HFC_cnt] & 0x10000)
5038		hc->slots = 64;
5039	if (type[HFC_cnt] & 0x20000)
5040		hc->slots = 128;
5041	if (type[HFC_cnt] & 0x80000) {
5042		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5043		hc->wdcount = 0;
5044		hc->wdbyte = V_GPIO_OUT2;
5045		printk(KERN_NOTICE "Watchdog enabled\n");
5046	}
5047
5048	if (pdev && ent)
5049		/* setup pci, hc->slots may change due to PLXSD */
5050		ret_err = setup_pci(hc, pdev, ent);
5051	else
5052#ifdef CONFIG_MISDN_HFCMULTI_8xx
5053		ret_err = setup_embedded(hc, m);
5054#else
5055	{
5056		printk(KERN_WARNING "Embedded IO Mode not selected\n");
5057		ret_err = -EIO;
5058	}
5059#endif
5060	if (ret_err) {
5061		if (hc == syncmaster)
5062			syncmaster = NULL;
5063		kfree(hc);
5064		return ret_err;
5065	}
5066
5067	hc->HFC_outb_nodebug = hc->HFC_outb;
5068	hc->HFC_inb_nodebug = hc->HFC_inb;
5069	hc->HFC_inw_nodebug = hc->HFC_inw;
5070	hc->HFC_wait_nodebug = hc->HFC_wait;
5071#ifdef HFC_REGISTER_DEBUG
5072	hc->HFC_outb = HFC_outb_debug;
5073	hc->HFC_inb = HFC_inb_debug;
5074	hc->HFC_inw = HFC_inw_debug;
5075	hc->HFC_wait = HFC_wait_debug;
5076#endif
5077	/* create channels */
5078	for (pt = 0; pt < hc->ports; pt++) {
5079		if (Port_cnt >= MAX_PORTS) {
5080			printk(KERN_ERR "too many ports (max=%d).\n",
5081				MAX_PORTS);
5082			ret_err = -EINVAL;
5083			goto free_card;
5084		}
5085		if (hc->ctype == HFC_TYPE_E1)
5086			ret_err = init_e1_port(hc, m);
5087		else
5088			ret_err = init_multi_port(hc, pt);
5089		if (debug & DEBUG_HFCMULTI_INIT)
5090			printk(KERN_DEBUG
5091			    "%s: Registering D-channel, card(%d) port(%d)"
5092			    "result %d\n",
5093			    __func__, HFC_cnt + 1, pt, ret_err);
5094
5095		if (ret_err) {
5096			while (pt) { /* release already registered ports */
5097				pt--;
5098				release_port(hc, hc->chan[(pt << 2) + 2].dch);
5099			}
5100			goto free_card;
5101		}
5102		Port_cnt++;
5103	}
5104
5105	/* disp switches */
5106	switch (m->dip_type) {
5107	case DIP_4S:
5108		/*
5109		 * Get DIP setting for beroNet 1S/2S/4S cards
5110		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5111		 * GPI 19/23 (R_GPI_IN2))
5112		 */
5113		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5114			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5115			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
5116
5117		/* Port mode (TE/NT) jumpers */
5118		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5119
5120		if (test_bit(HFC_CHIP_B410P, &hc->chip))
5121			pmj = ~pmj & 0xf;
5122
5123		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5124			m->vendor_name, m->card_name, dips, pmj);
5125		break;
5126	case DIP_8S:
5127		/*
5128		 * Get DIP Setting for beroNet 8S0+ cards
5129		 * Enable PCI auxbridge function
5130		 */
5131		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5132		/* prepare access to auxport */
5133		outw(0x4000, hc->pci_iobase + 4);
5134		/*
5135		 * some dummy reads are required to
5136		 * read valid DIP switch data
5137		 */
5138		dips = inb(hc->pci_iobase);
5139		dips = inb(hc->pci_iobase);
5140		dips = inb(hc->pci_iobase);
5141		dips = ~inb(hc->pci_iobase) & 0x3F;
5142		outw(0x0, hc->pci_iobase + 4);
5143		/* disable PCI auxbridge function */
5144		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5145		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5146		    m->vendor_name, m->card_name, dips);
5147		break;
5148	case DIP_E1:
5149		/*
5150		 * get DIP Setting for beroNet E1 cards
5151		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5152		 */
5153		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
5154		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5155		    m->vendor_name, m->card_name, dips);
5156		break;
5157	}
5158
5159	/* add to list */
5160	spin_lock_irqsave(&HFClock, flags);
5161	list_add_tail(&hc->list, &HFClist);
5162	spin_unlock_irqrestore(&HFClock, flags);
5163
5164	/* use as clock source */
5165	if (clock == HFC_cnt + 1)
5166		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5167
5168	/* initialize hardware */
5169	hc->irq = (m->irq) ? : hc->pci_dev->irq;
5170	ret_err = init_card(hc);
5171	if (ret_err) {
5172		printk(KERN_ERR "init card returns %d\n", ret_err);
5173		release_card(hc);
5174		return ret_err;
5175	}
5176
5177	/* start IRQ and return */
5178	spin_lock_irqsave(&hc->lock, flags);
5179	enable_hwirq(hc);
5180	spin_unlock_irqrestore(&hc->lock, flags);
5181	return 0;
5182
5183free_card:
5184	release_io_hfcmulti(hc);
5185	if (hc == syncmaster)
5186		syncmaster = NULL;
5187	kfree(hc);
5188	return ret_err;
5189}
5190
5191static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5192{
5193	struct hfc_multi	*card = pci_get_drvdata(pdev);
5194	u_long			flags;
5195
5196	if (debug)
5197		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5198		    "device:%x subvendor:%x subdevice:%x\n",
5199		    pdev->vendor, pdev->device,
5200		    pdev->subsystem_vendor, pdev->subsystem_device);
5201
5202	if (card) {
5203		spin_lock_irqsave(&HFClock, flags);
5204		release_card(card);
5205		spin_unlock_irqrestore(&HFClock, flags);
5206	}  else {
5207		if (debug)
5208			printk(KERN_DEBUG "%s: drvdata already removed\n",
5209			    __func__);
5210	}
5211}
5212
5213#define	VENDOR_CCD	"Cologne Chip AG"
5214#define	VENDOR_BN	"beroNet GmbH"
5215#define	VENDOR_DIG	"Digium Inc."
5216#define VENDOR_JH	"Junghanns.NET GmbH"
5217#define VENDOR_PRIM	"PrimuX"
5218
5219static const struct hm_map hfcm_map[] = {
5220/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5221/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5222/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5223/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5224/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5225/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5226/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5227/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5228/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5229/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5230/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5231/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5232
5233/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5234/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5235		HFC_IO_MODE_REGIO, 0},
5236/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5237/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5238
5239/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5240/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5241/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5242
5243/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5244/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5245/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5246/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5247
5248/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5249/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5250/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5251
5252/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5253		HFC_IO_MODE_PLXSD, 0},
5254/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5255		HFC_IO_MODE_PLXSD, 0},
5256/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5257/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5258/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5259/*31*/	{VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5260		HFC_IO_MODE_EMBSD, XHFC_IRQ},
5261/*32*/	{VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5262/*33*/	{VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5263/*34*/	{VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5264};
5265
5266#undef H
5267#define H(x)	((unsigned long)&hfcm_map[x])
5268static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5269
5270	/* Cards with HFC-4S Chip */
5271	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5272		PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5273	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5274		PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5275	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5276		PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5277	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5278		PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5279	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5280		PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5281	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5282		PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5283	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5284		PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5285	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5286		PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5287	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5288		PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5289	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5290		PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5291	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5292		PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5293	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5294		PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5295	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5296		PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5297	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5298		PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5299	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5300		0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5301	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5302		0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5303
5304	/* Cards with HFC-8S Chip */
5305	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5306	PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5307	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5308	PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5309	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5310	PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5311	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5312	PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5313	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5314		PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5315	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5316		PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5317	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5318		PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5319	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5320		PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5321	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5322		PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5323
5324
5325	/* Cards with HFC-E1 Chip */
5326	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5327		PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5328	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5329		PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5330	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5331		PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5332	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5333		PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5334
5335	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5336		PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5337	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5338		PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5339	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5340		PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5341
5342	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5343		PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5344	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5345		PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5346
5347	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5348		PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5349
5350	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5351	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5352	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5353	{0, }
5354};
5355#undef H
5356
5357MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5358
5359static int
5360hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5361{
5362	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5363	int		ret;
5364
5365	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5366	    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5367	    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5368	    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5369		printk(KERN_ERR
5370		    "Unknown HFC multiport controller (vendor:%04x device:%04x "
5371		    "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5372		    pdev->device, pdev->subsystem_vendor,
5373		    pdev->subsystem_device);
5374		printk(KERN_ERR
5375		    "Please contact the driver maintainer for support.\n");
5376		return -ENODEV;
5377	}
5378	ret = hfcmulti_init(m, pdev, ent);
5379	if (ret)
5380		return ret;
5381	HFC_cnt++;
5382	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5383	return 0;
5384}
5385
5386static struct pci_driver hfcmultipci_driver = {
5387	.name		= "hfc_multi",
5388	.probe		= hfcmulti_probe,
5389	.remove		= __devexit_p(hfc_remove_pci),
5390	.id_table	= hfmultipci_ids,
5391};
5392
5393static void __exit
5394HFCmulti_cleanup(void)
5395{
5396	struct hfc_multi *card, *next;
5397
5398	/* get rid of all devices of this driver */
5399	list_for_each_entry_safe(card, next, &HFClist, list)
5400		release_card(card);
5401	pci_unregister_driver(&hfcmultipci_driver);
5402}
5403
5404static int __init
5405HFCmulti_init(void)
5406{
5407	int err;
5408	int i, xhfc = 0;
5409	struct hm_map m;
5410
5411	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5412
5413#ifdef IRQ_DEBUG
5414	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5415#endif
5416
5417	spin_lock_init(&HFClock);
5418	spin_lock_init(&plx_lock);
5419
5420	if (debug & DEBUG_HFCMULTI_INIT)
5421		printk(KERN_DEBUG "%s: init entered\n", __func__);
5422
5423	switch (poll) {
5424	case 0:
5425		poll_timer = 6;
5426		poll = 128;
5427		break;
5428	case 8:
5429		poll_timer = 2;
5430		break;
5431	case 16:
5432		poll_timer = 3;
5433		break;
5434	case 32:
5435		poll_timer = 4;
5436		break;
5437	case 64:
5438		poll_timer = 5;
5439		break;
5440	case 128:
5441		poll_timer = 6;
5442		break;
5443	case 256:
5444		poll_timer = 7;
5445		break;
5446	default:
5447		printk(KERN_ERR
5448		    "%s: Wrong poll value (%d).\n", __func__, poll);
5449		err = -EINVAL;
5450		return err;
5451
5452	}
5453
5454	if (!clock)
5455		clock = 1;
5456
5457	/* Register the embedded devices.
5458	 * This should be done before the PCI cards registration */
5459	switch (hwid) {
5460	case HWID_MINIP4:
5461		xhfc = 1;
5462		m = hfcm_map[31];
5463		break;
5464	case HWID_MINIP8:
5465		xhfc = 2;
5466		m = hfcm_map[31];
5467		break;
5468	case HWID_MINIP16:
5469		xhfc = 4;
5470		m = hfcm_map[31];
5471		break;
5472	default:
5473		xhfc = 0;
5474	}
5475
5476	for (i = 0; i < xhfc; ++i) {
5477		err = hfcmulti_init(&m, NULL, NULL);
5478		if (err) {
5479			printk(KERN_ERR "error registering embedded driver: "
5480				"%x\n", err);
5481			return err;
5482		}
5483		HFC_cnt++;
5484		printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5485	}
5486
5487	/* Register the PCI cards */
5488	err = pci_register_driver(&hfcmultipci_driver);
5489	if (err < 0) {
5490		printk(KERN_ERR "error registering pci driver: %x\n", err);
5491		return err;
5492	}
5493
5494	return 0;
5495}
5496
5497
5498module_init(HFCmulti_init);
5499module_exit(HFCmulti_cleanup);
5500