• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/infiniband/hw/qib/
1/*
2 * Copyright (c) 2007, 2008, 2009 QLogic Corporation. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/mm.h>
33#include <linux/types.h>
34#include <linux/device.h>
35#include <linux/dmapool.h>
36#include <linux/slab.h>
37#include <linux/list.h>
38#include <linux/highmem.h>
39#include <linux/io.h>
40#include <linux/uio.h>
41#include <linux/rbtree.h>
42#include <linux/spinlock.h>
43#include <linux/delay.h>
44
45#include "qib.h"
46#include "qib_user_sdma.h"
47
48/* minimum size of header */
49#define QIB_USER_SDMA_MIN_HEADER_LENGTH 64
50/* expected size of headers (for dma_pool) */
51#define QIB_USER_SDMA_EXP_HEADER_LENGTH 64
52/* attempt to drain the queue for 5secs */
53#define QIB_USER_SDMA_DRAIN_TIMEOUT 500
54
55struct qib_user_sdma_pkt {
56	u8 naddr;               /* dimension of addr (1..3) ... */
57	u32 counter;            /* sdma pkts queued counter for this entry */
58	u64 added;              /* global descq number of entries */
59
60	struct {
61		u32 offset;                     /* offset for kvaddr, addr */
62		u32 length;                     /* length in page */
63		u8  put_page;                   /* should we put_page? */
64		u8  dma_mapped;                 /* is page dma_mapped? */
65		struct page *page;              /* may be NULL (coherent mem) */
66		void *kvaddr;
67		dma_addr_t addr;
68	} addr[4];   /* max pages, any more and we coalesce */
69	struct list_head list;  /* list element */
70};
71
72struct qib_user_sdma_queue {
73	/*
74	 * pkts sent to dma engine are queued on this
75	 * list head.  the type of the elements of this
76	 * list are struct qib_user_sdma_pkt...
77	 */
78	struct list_head sent;
79
80	/* headers with expected length are allocated from here... */
81	char header_cache_name[64];
82	struct dma_pool *header_cache;
83
84	/* packets are allocated from the slab cache... */
85	char pkt_slab_name[64];
86	struct kmem_cache *pkt_slab;
87
88	/* as packets go on the queued queue, they are counted... */
89	u32 counter;
90	u32 sent_counter;
91
92	/* dma page table */
93	struct rb_root dma_pages_root;
94
95	/* protect everything above... */
96	struct mutex lock;
97};
98
99struct qib_user_sdma_queue *
100qib_user_sdma_queue_create(struct device *dev, int unit, int ctxt, int sctxt)
101{
102	struct qib_user_sdma_queue *pq =
103		kmalloc(sizeof(struct qib_user_sdma_queue), GFP_KERNEL);
104
105	if (!pq)
106		goto done;
107
108	pq->counter = 0;
109	pq->sent_counter = 0;
110	INIT_LIST_HEAD(&pq->sent);
111
112	mutex_init(&pq->lock);
113
114	snprintf(pq->pkt_slab_name, sizeof(pq->pkt_slab_name),
115		 "qib-user-sdma-pkts-%u-%02u.%02u", unit, ctxt, sctxt);
116	pq->pkt_slab = kmem_cache_create(pq->pkt_slab_name,
117					 sizeof(struct qib_user_sdma_pkt),
118					 0, 0, NULL);
119
120	if (!pq->pkt_slab)
121		goto err_kfree;
122
123	snprintf(pq->header_cache_name, sizeof(pq->header_cache_name),
124		 "qib-user-sdma-headers-%u-%02u.%02u", unit, ctxt, sctxt);
125	pq->header_cache = dma_pool_create(pq->header_cache_name,
126					   dev,
127					   QIB_USER_SDMA_EXP_HEADER_LENGTH,
128					   4, 0);
129	if (!pq->header_cache)
130		goto err_slab;
131
132	pq->dma_pages_root = RB_ROOT;
133
134	goto done;
135
136err_slab:
137	kmem_cache_destroy(pq->pkt_slab);
138err_kfree:
139	kfree(pq);
140	pq = NULL;
141
142done:
143	return pq;
144}
145
146static void qib_user_sdma_init_frag(struct qib_user_sdma_pkt *pkt,
147				    int i, size_t offset, size_t len,
148				    int put_page, int dma_mapped,
149				    struct page *page,
150				    void *kvaddr, dma_addr_t dma_addr)
151{
152	pkt->addr[i].offset = offset;
153	pkt->addr[i].length = len;
154	pkt->addr[i].put_page = put_page;
155	pkt->addr[i].dma_mapped = dma_mapped;
156	pkt->addr[i].page = page;
157	pkt->addr[i].kvaddr = kvaddr;
158	pkt->addr[i].addr = dma_addr;
159}
160
161static void qib_user_sdma_init_header(struct qib_user_sdma_pkt *pkt,
162				      u32 counter, size_t offset,
163				      size_t len, int dma_mapped,
164				      struct page *page,
165				      void *kvaddr, dma_addr_t dma_addr)
166{
167	pkt->naddr = 1;
168	pkt->counter = counter;
169	qib_user_sdma_init_frag(pkt, 0, offset, len, 0, dma_mapped, page,
170				kvaddr, dma_addr);
171}
172
173/* we've too many pages in the iovec, coalesce to a single page */
174static int qib_user_sdma_coalesce(const struct qib_devdata *dd,
175				  struct qib_user_sdma_pkt *pkt,
176				  const struct iovec *iov,
177				  unsigned long niov)
178{
179	int ret = 0;
180	struct page *page = alloc_page(GFP_KERNEL);
181	void *mpage_save;
182	char *mpage;
183	int i;
184	int len = 0;
185	dma_addr_t dma_addr;
186
187	if (!page) {
188		ret = -ENOMEM;
189		goto done;
190	}
191
192	mpage = kmap(page);
193	mpage_save = mpage;
194	for (i = 0; i < niov; i++) {
195		int cfur;
196
197		cfur = copy_from_user(mpage,
198				      iov[i].iov_base, iov[i].iov_len);
199		if (cfur) {
200			ret = -EFAULT;
201			goto free_unmap;
202		}
203
204		mpage += iov[i].iov_len;
205		len += iov[i].iov_len;
206	}
207
208	dma_addr = dma_map_page(&dd->pcidev->dev, page, 0, len,
209				DMA_TO_DEVICE);
210	if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
211		ret = -ENOMEM;
212		goto free_unmap;
213	}
214
215	qib_user_sdma_init_frag(pkt, 1, 0, len, 0, 1, page, mpage_save,
216				dma_addr);
217	pkt->naddr = 2;
218
219	goto done;
220
221free_unmap:
222	kunmap(page);
223	__free_page(page);
224done:
225	return ret;
226}
227
228/*
229 * How many pages in this iovec element?
230 */
231static int qib_user_sdma_num_pages(const struct iovec *iov)
232{
233	const unsigned long addr  = (unsigned long) iov->iov_base;
234	const unsigned long  len  = iov->iov_len;
235	const unsigned long spage = addr & PAGE_MASK;
236	const unsigned long epage = (addr + len - 1) & PAGE_MASK;
237
238	return 1 + ((epage - spage) >> PAGE_SHIFT);
239}
240
241/*
242 * Truncate length to page boundry.
243 */
244static int qib_user_sdma_page_length(unsigned long addr, unsigned long len)
245{
246	const unsigned long offset = addr & ~PAGE_MASK;
247
248	return ((offset + len) > PAGE_SIZE) ? (PAGE_SIZE - offset) : len;
249}
250
251static void qib_user_sdma_free_pkt_frag(struct device *dev,
252					struct qib_user_sdma_queue *pq,
253					struct qib_user_sdma_pkt *pkt,
254					int frag)
255{
256	const int i = frag;
257
258	if (pkt->addr[i].page) {
259		if (pkt->addr[i].dma_mapped)
260			dma_unmap_page(dev,
261				       pkt->addr[i].addr,
262				       pkt->addr[i].length,
263				       DMA_TO_DEVICE);
264
265		if (pkt->addr[i].kvaddr)
266			kunmap(pkt->addr[i].page);
267
268		if (pkt->addr[i].put_page)
269			put_page(pkt->addr[i].page);
270		else
271			__free_page(pkt->addr[i].page);
272	} else if (pkt->addr[i].kvaddr)
273		/* free coherent mem from cache... */
274		dma_pool_free(pq->header_cache,
275			      pkt->addr[i].kvaddr, pkt->addr[i].addr);
276}
277
278/* return number of pages pinned... */
279static int qib_user_sdma_pin_pages(const struct qib_devdata *dd,
280				   struct qib_user_sdma_pkt *pkt,
281				   unsigned long addr, int tlen, int npages)
282{
283	struct page *pages[2];
284	int j;
285	int ret;
286
287	ret = get_user_pages(current, current->mm, addr,
288			     npages, 0, 1, pages, NULL);
289
290	if (ret != npages) {
291		int i;
292
293		for (i = 0; i < ret; i++)
294			put_page(pages[i]);
295
296		ret = -ENOMEM;
297		goto done;
298	}
299
300	for (j = 0; j < npages; j++) {
301		/* map the pages... */
302		const int flen = qib_user_sdma_page_length(addr, tlen);
303		dma_addr_t dma_addr =
304			dma_map_page(&dd->pcidev->dev,
305				     pages[j], 0, flen, DMA_TO_DEVICE);
306		unsigned long fofs = addr & ~PAGE_MASK;
307
308		if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
309			ret = -ENOMEM;
310			goto done;
311		}
312
313		qib_user_sdma_init_frag(pkt, pkt->naddr, fofs, flen, 1, 1,
314					pages[j], kmap(pages[j]), dma_addr);
315
316		pkt->naddr++;
317		addr += flen;
318		tlen -= flen;
319	}
320
321done:
322	return ret;
323}
324
325static int qib_user_sdma_pin_pkt(const struct qib_devdata *dd,
326				 struct qib_user_sdma_queue *pq,
327				 struct qib_user_sdma_pkt *pkt,
328				 const struct iovec *iov,
329				 unsigned long niov)
330{
331	int ret = 0;
332	unsigned long idx;
333
334	for (idx = 0; idx < niov; idx++) {
335		const int npages = qib_user_sdma_num_pages(iov + idx);
336		const unsigned long addr = (unsigned long) iov[idx].iov_base;
337
338		ret = qib_user_sdma_pin_pages(dd, pkt, addr,
339					      iov[idx].iov_len, npages);
340		if (ret < 0)
341			goto free_pkt;
342	}
343
344	goto done;
345
346free_pkt:
347	for (idx = 0; idx < pkt->naddr; idx++)
348		qib_user_sdma_free_pkt_frag(&dd->pcidev->dev, pq, pkt, idx);
349
350done:
351	return ret;
352}
353
354static int qib_user_sdma_init_payload(const struct qib_devdata *dd,
355				      struct qib_user_sdma_queue *pq,
356				      struct qib_user_sdma_pkt *pkt,
357				      const struct iovec *iov,
358				      unsigned long niov, int npages)
359{
360	int ret = 0;
361
362	if (npages >= ARRAY_SIZE(pkt->addr))
363		ret = qib_user_sdma_coalesce(dd, pkt, iov, niov);
364	else
365		ret = qib_user_sdma_pin_pkt(dd, pq, pkt, iov, niov);
366
367	return ret;
368}
369
370/* free a packet list -- return counter value of last packet */
371static void qib_user_sdma_free_pkt_list(struct device *dev,
372					struct qib_user_sdma_queue *pq,
373					struct list_head *list)
374{
375	struct qib_user_sdma_pkt *pkt, *pkt_next;
376
377	list_for_each_entry_safe(pkt, pkt_next, list, list) {
378		int i;
379
380		for (i = 0; i < pkt->naddr; i++)
381			qib_user_sdma_free_pkt_frag(dev, pq, pkt, i);
382
383		kmem_cache_free(pq->pkt_slab, pkt);
384	}
385}
386
387/*
388 * copy headers, coalesce etc -- pq->lock must be held
389 *
390 * we queue all the packets to list, returning the
391 * number of bytes total.  list must be empty initially,
392 * as, if there is an error we clean it...
393 */
394static int qib_user_sdma_queue_pkts(const struct qib_devdata *dd,
395				    struct qib_user_sdma_queue *pq,
396				    struct list_head *list,
397				    const struct iovec *iov,
398				    unsigned long niov,
399				    int maxpkts)
400{
401	unsigned long idx = 0;
402	int ret = 0;
403	int npkts = 0;
404	struct page *page = NULL;
405	__le32 *pbc;
406	dma_addr_t dma_addr;
407	struct qib_user_sdma_pkt *pkt = NULL;
408	size_t len;
409	size_t nw;
410	u32 counter = pq->counter;
411	int dma_mapped = 0;
412
413	while (idx < niov && npkts < maxpkts) {
414		const unsigned long addr = (unsigned long) iov[idx].iov_base;
415		const unsigned long idx_save = idx;
416		unsigned pktnw;
417		unsigned pktnwc;
418		int nfrags = 0;
419		int npages = 0;
420		int cfur;
421
422		dma_mapped = 0;
423		len = iov[idx].iov_len;
424		nw = len >> 2;
425		page = NULL;
426
427		pkt = kmem_cache_alloc(pq->pkt_slab, GFP_KERNEL);
428		if (!pkt) {
429			ret = -ENOMEM;
430			goto free_list;
431		}
432
433		if (len < QIB_USER_SDMA_MIN_HEADER_LENGTH ||
434		    len > PAGE_SIZE || len & 3 || addr & 3) {
435			ret = -EINVAL;
436			goto free_pkt;
437		}
438
439		if (len == QIB_USER_SDMA_EXP_HEADER_LENGTH)
440			pbc = dma_pool_alloc(pq->header_cache, GFP_KERNEL,
441					     &dma_addr);
442		else
443			pbc = NULL;
444
445		if (!pbc) {
446			page = alloc_page(GFP_KERNEL);
447			if (!page) {
448				ret = -ENOMEM;
449				goto free_pkt;
450			}
451			pbc = kmap(page);
452		}
453
454		cfur = copy_from_user(pbc, iov[idx].iov_base, len);
455		if (cfur) {
456			ret = -EFAULT;
457			goto free_pbc;
458		}
459
460		/*
461		 * This assignment is a bit strange.  it's because the
462		 * the pbc counts the number of 32 bit words in the full
463		 * packet _except_ the first word of the pbc itself...
464		 */
465		pktnwc = nw - 1;
466
467		/*
468		 * pktnw computation yields the number of 32 bit words
469		 * that the caller has indicated in the PBC.  note that
470		 * this is one less than the total number of words that
471		 * goes to the send DMA engine as the first 32 bit word
472		 * of the PBC itself is not counted.  Armed with this count,
473		 * we can verify that the packet is consistent with the
474		 * iovec lengths.
475		 */
476		pktnw = le32_to_cpu(*pbc) & QIB_PBC_LENGTH_MASK;
477		if (pktnw < pktnwc || pktnw > pktnwc + (PAGE_SIZE >> 2)) {
478			ret = -EINVAL;
479			goto free_pbc;
480		}
481
482		idx++;
483		while (pktnwc < pktnw && idx < niov) {
484			const size_t slen = iov[idx].iov_len;
485			const unsigned long faddr =
486				(unsigned long) iov[idx].iov_base;
487
488			if (slen & 3 || faddr & 3 || !slen ||
489			    slen > PAGE_SIZE) {
490				ret = -EINVAL;
491				goto free_pbc;
492			}
493
494			npages++;
495			if ((faddr & PAGE_MASK) !=
496			    ((faddr + slen - 1) & PAGE_MASK))
497				npages++;
498
499			pktnwc += slen >> 2;
500			idx++;
501			nfrags++;
502		}
503
504		if (pktnwc != pktnw) {
505			ret = -EINVAL;
506			goto free_pbc;
507		}
508
509		if (page) {
510			dma_addr = dma_map_page(&dd->pcidev->dev,
511						page, 0, len, DMA_TO_DEVICE);
512			if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
513				ret = -ENOMEM;
514				goto free_pbc;
515			}
516
517			dma_mapped = 1;
518		}
519
520		qib_user_sdma_init_header(pkt, counter, 0, len, dma_mapped,
521					  page, pbc, dma_addr);
522
523		if (nfrags) {
524			ret = qib_user_sdma_init_payload(dd, pq, pkt,
525							 iov + idx_save + 1,
526							 nfrags, npages);
527			if (ret < 0)
528				goto free_pbc_dma;
529		}
530
531		counter++;
532		npkts++;
533
534		list_add_tail(&pkt->list, list);
535	}
536
537	ret = idx;
538	goto done;
539
540free_pbc_dma:
541	if (dma_mapped)
542		dma_unmap_page(&dd->pcidev->dev, dma_addr, len, DMA_TO_DEVICE);
543free_pbc:
544	if (page) {
545		kunmap(page);
546		__free_page(page);
547	} else
548		dma_pool_free(pq->header_cache, pbc, dma_addr);
549free_pkt:
550	kmem_cache_free(pq->pkt_slab, pkt);
551free_list:
552	qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, list);
553done:
554	return ret;
555}
556
557static void qib_user_sdma_set_complete_counter(struct qib_user_sdma_queue *pq,
558					       u32 c)
559{
560	pq->sent_counter = c;
561}
562
563/* try to clean out queue -- needs pq->lock */
564static int qib_user_sdma_queue_clean(struct qib_pportdata *ppd,
565				     struct qib_user_sdma_queue *pq)
566{
567	struct qib_devdata *dd = ppd->dd;
568	struct list_head free_list;
569	struct qib_user_sdma_pkt *pkt;
570	struct qib_user_sdma_pkt *pkt_prev;
571	int ret = 0;
572
573	INIT_LIST_HEAD(&free_list);
574
575	list_for_each_entry_safe(pkt, pkt_prev, &pq->sent, list) {
576		s64 descd = ppd->sdma_descq_removed - pkt->added;
577
578		if (descd < 0)
579			break;
580
581		list_move_tail(&pkt->list, &free_list);
582
583		/* one more packet cleaned */
584		ret++;
585	}
586
587	if (!list_empty(&free_list)) {
588		u32 counter;
589
590		pkt = list_entry(free_list.prev,
591				 struct qib_user_sdma_pkt, list);
592		counter = pkt->counter;
593
594		qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list);
595		qib_user_sdma_set_complete_counter(pq, counter);
596	}
597
598	return ret;
599}
600
601void qib_user_sdma_queue_destroy(struct qib_user_sdma_queue *pq)
602{
603	if (!pq)
604		return;
605
606	kmem_cache_destroy(pq->pkt_slab);
607	dma_pool_destroy(pq->header_cache);
608	kfree(pq);
609}
610
611/* clean descriptor queue, returns > 0 if some elements cleaned */
612static int qib_user_sdma_hwqueue_clean(struct qib_pportdata *ppd)
613{
614	int ret;
615	unsigned long flags;
616
617	spin_lock_irqsave(&ppd->sdma_lock, flags);
618	ret = qib_sdma_make_progress(ppd);
619	spin_unlock_irqrestore(&ppd->sdma_lock, flags);
620
621	return ret;
622}
623
624/* we're in close, drain packets so that we can cleanup successfully... */
625void qib_user_sdma_queue_drain(struct qib_pportdata *ppd,
626			       struct qib_user_sdma_queue *pq)
627{
628	struct qib_devdata *dd = ppd->dd;
629	int i;
630
631	if (!pq)
632		return;
633
634	for (i = 0; i < QIB_USER_SDMA_DRAIN_TIMEOUT; i++) {
635		mutex_lock(&pq->lock);
636		if (list_empty(&pq->sent)) {
637			mutex_unlock(&pq->lock);
638			break;
639		}
640		qib_user_sdma_hwqueue_clean(ppd);
641		qib_user_sdma_queue_clean(ppd, pq);
642		mutex_unlock(&pq->lock);
643		msleep(10);
644	}
645
646	if (!list_empty(&pq->sent)) {
647		struct list_head free_list;
648
649		qib_dev_err(dd, "user sdma lists not empty: forcing!\n");
650		INIT_LIST_HEAD(&free_list);
651		mutex_lock(&pq->lock);
652		list_splice_init(&pq->sent, &free_list);
653		qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list);
654		mutex_unlock(&pq->lock);
655	}
656}
657
658static inline __le64 qib_sdma_make_desc0(struct qib_pportdata *ppd,
659					 u64 addr, u64 dwlen, u64 dwoffset)
660{
661	u8 tmpgen;
662
663	tmpgen = ppd->sdma_generation;
664
665	return cpu_to_le64(/* SDmaPhyAddr[31:0] */
666			   ((addr & 0xfffffffcULL) << 32) |
667			   /* SDmaGeneration[1:0] */
668			   ((tmpgen & 3ULL) << 30) |
669			   /* SDmaDwordCount[10:0] */
670			   ((dwlen & 0x7ffULL) << 16) |
671			   /* SDmaBufOffset[12:2] */
672			   (dwoffset & 0x7ffULL));
673}
674
675static inline __le64 qib_sdma_make_first_desc0(__le64 descq)
676{
677	return descq | cpu_to_le64(1ULL << 12);
678}
679
680static inline __le64 qib_sdma_make_last_desc0(__le64 descq)
681{
682					      /* last */  /* dma head */
683	return descq | cpu_to_le64(1ULL << 11 | 1ULL << 13);
684}
685
686static inline __le64 qib_sdma_make_desc1(u64 addr)
687{
688	/* SDmaPhyAddr[47:32] */
689	return cpu_to_le64(addr >> 32);
690}
691
692static void qib_user_sdma_send_frag(struct qib_pportdata *ppd,
693				    struct qib_user_sdma_pkt *pkt, int idx,
694				    unsigned ofs, u16 tail)
695{
696	const u64 addr = (u64) pkt->addr[idx].addr +
697		(u64) pkt->addr[idx].offset;
698	const u64 dwlen = (u64) pkt->addr[idx].length / 4;
699	__le64 *descqp;
700	__le64 descq0;
701
702	descqp = &ppd->sdma_descq[tail].qw[0];
703
704	descq0 = qib_sdma_make_desc0(ppd, addr, dwlen, ofs);
705	if (idx == 0)
706		descq0 = qib_sdma_make_first_desc0(descq0);
707	if (idx == pkt->naddr - 1)
708		descq0 = qib_sdma_make_last_desc0(descq0);
709
710	descqp[0] = descq0;
711	descqp[1] = qib_sdma_make_desc1(addr);
712}
713
714/* pq->lock must be held, get packets on the wire... */
715static int qib_user_sdma_push_pkts(struct qib_pportdata *ppd,
716				   struct qib_user_sdma_queue *pq,
717				   struct list_head *pktlist)
718{
719	struct qib_devdata *dd = ppd->dd;
720	int ret = 0;
721	unsigned long flags;
722	u16 tail;
723	u8 generation;
724	u64 descq_added;
725
726	if (list_empty(pktlist))
727		return 0;
728
729	if (unlikely(!(ppd->lflags & QIBL_LINKACTIVE)))
730		return -ECOMM;
731
732	spin_lock_irqsave(&ppd->sdma_lock, flags);
733
734	/* keep a copy for restoring purposes in case of problems */
735	generation = ppd->sdma_generation;
736	descq_added = ppd->sdma_descq_added;
737
738	if (unlikely(!__qib_sdma_running(ppd))) {
739		ret = -ECOMM;
740		goto unlock;
741	}
742
743	tail = ppd->sdma_descq_tail;
744	while (!list_empty(pktlist)) {
745		struct qib_user_sdma_pkt *pkt =
746			list_entry(pktlist->next, struct qib_user_sdma_pkt,
747				   list);
748		int i;
749		unsigned ofs = 0;
750		u16 dtail = tail;
751
752		if (pkt->naddr > qib_sdma_descq_freecnt(ppd))
753			goto unlock_check_tail;
754
755		for (i = 0; i < pkt->naddr; i++) {
756			qib_user_sdma_send_frag(ppd, pkt, i, ofs, tail);
757			ofs += pkt->addr[i].length >> 2;
758
759			if (++tail == ppd->sdma_descq_cnt) {
760				tail = 0;
761				++ppd->sdma_generation;
762			}
763		}
764
765		if ((ofs << 2) > ppd->ibmaxlen) {
766			ret = -EMSGSIZE;
767			goto unlock;
768		}
769
770		/*
771		 * If the packet is >= 2KB mtu equivalent, we have to use
772		 * the large buffers, and have to mark each descriptor as
773		 * part of a large buffer packet.
774		 */
775		if (ofs > dd->piosize2kmax_dwords) {
776			for (i = 0; i < pkt->naddr; i++) {
777				ppd->sdma_descq[dtail].qw[0] |=
778					cpu_to_le64(1ULL << 14);
779				if (++dtail == ppd->sdma_descq_cnt)
780					dtail = 0;
781			}
782		}
783
784		ppd->sdma_descq_added += pkt->naddr;
785		pkt->added = ppd->sdma_descq_added;
786		list_move_tail(&pkt->list, &pq->sent);
787		ret++;
788	}
789
790unlock_check_tail:
791	/* advance the tail on the chip if necessary */
792	if (ppd->sdma_descq_tail != tail)
793		dd->f_sdma_update_tail(ppd, tail);
794
795unlock:
796	if (unlikely(ret < 0)) {
797		ppd->sdma_generation = generation;
798		ppd->sdma_descq_added = descq_added;
799	}
800	spin_unlock_irqrestore(&ppd->sdma_lock, flags);
801
802	return ret;
803}
804
805int qib_user_sdma_writev(struct qib_ctxtdata *rcd,
806			 struct qib_user_sdma_queue *pq,
807			 const struct iovec *iov,
808			 unsigned long dim)
809{
810	struct qib_devdata *dd = rcd->dd;
811	struct qib_pportdata *ppd = rcd->ppd;
812	int ret = 0;
813	struct list_head list;
814	int npkts = 0;
815
816	INIT_LIST_HEAD(&list);
817
818	mutex_lock(&pq->lock);
819
820	/* why not -ECOMM like qib_user_sdma_push_pkts() below? */
821	if (!qib_sdma_running(ppd))
822		goto done_unlock;
823
824	if (ppd->sdma_descq_added != ppd->sdma_descq_removed) {
825		qib_user_sdma_hwqueue_clean(ppd);
826		qib_user_sdma_queue_clean(ppd, pq);
827	}
828
829	while (dim) {
830		const int mxp = 8;
831
832		down_write(&current->mm->mmap_sem);
833		ret = qib_user_sdma_queue_pkts(dd, pq, &list, iov, dim, mxp);
834		up_write(&current->mm->mmap_sem);
835
836		if (ret <= 0)
837			goto done_unlock;
838		else {
839			dim -= ret;
840			iov += ret;
841		}
842
843		/* force packets onto the sdma hw queue... */
844		if (!list_empty(&list)) {
845			/*
846			 * Lazily clean hw queue.  the 4 is a guess of about
847			 * how many sdma descriptors a packet will take (it
848			 * doesn't have to be perfect).
849			 */
850			if (qib_sdma_descq_freecnt(ppd) < ret * 4) {
851				qib_user_sdma_hwqueue_clean(ppd);
852				qib_user_sdma_queue_clean(ppd, pq);
853			}
854
855			ret = qib_user_sdma_push_pkts(ppd, pq, &list);
856			if (ret < 0)
857				goto done_unlock;
858			else {
859				npkts += ret;
860				pq->counter += ret;
861
862				if (!list_empty(&list))
863					goto done_unlock;
864			}
865		}
866	}
867
868done_unlock:
869	if (!list_empty(&list))
870		qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &list);
871	mutex_unlock(&pq->lock);
872
873	return (ret < 0) ? ret : npkts;
874}
875
876int qib_user_sdma_make_progress(struct qib_pportdata *ppd,
877				struct qib_user_sdma_queue *pq)
878{
879	int ret = 0;
880
881	mutex_lock(&pq->lock);
882	qib_user_sdma_hwqueue_clean(ppd);
883	ret = qib_user_sdma_queue_clean(ppd, pq);
884	mutex_unlock(&pq->lock);
885
886	return ret;
887}
888
889u32 qib_user_sdma_complete_counter(const struct qib_user_sdma_queue *pq)
890{
891	return pq ? pq->sent_counter : 0;
892}
893
894u32 qib_user_sdma_inflight_counter(struct qib_user_sdma_queue *pq)
895{
896	return pq ? pq->counter : 0;
897}
898