• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/gpu/drm/i915/
1/*
2 * Copyright �� 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "linux/string.h"
29#include "linux/bitops.h"
30#include "drmP.h"
31#include "drm.h"
32#include "i915_drm.h"
33#include "i915_drv.h"
34
35/** @file i915_gem_tiling.c
36 *
37 * Support for managing tiling state of buffer objects.
38 *
39 * The idea behind tiling is to increase cache hit rates by rearranging
40 * pixel data so that a group of pixel accesses are in the same cacheline.
41 * Performance improvement from doing this on the back/depth buffer are on
42 * the order of 30%.
43 *
44 * Intel architectures make this somewhat more complicated, though, by
45 * adjustments made to addressing of data when the memory is in interleaved
46 * mode (matched pairs of DIMMS) to improve memory bandwidth.
47 * For interleaved memory, the CPU sends every sequential 64 bytes
48 * to an alternate memory channel so it can get the bandwidth from both.
49 *
50 * The GPU also rearranges its accesses for increased bandwidth to interleaved
51 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
52 * it does it a little differently, since one walks addresses not just in the
53 * X direction but also Y.  So, along with alternating channels when bit
54 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
55 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
56 * are common to both the 915 and 965-class hardware.
57 *
58 * The CPU also sometimes XORs in higher bits as well, to improve
59 * bandwidth doing strided access like we do so frequently in graphics.  This
60 * is called "Channel XOR Randomization" in the MCH documentation.  The result
61 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
62 * decode.
63 *
64 * All of this bit 6 XORing has an effect on our memory management,
65 * as we need to make sure that the 3d driver can correctly address object
66 * contents.
67 *
68 * If we don't have interleaved memory, all tiling is safe and no swizzling is
69 * required.
70 *
71 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
72 * 17 is not just a page offset, so as we page an objet out and back in,
73 * individual pages in it will have different bit 17 addresses, resulting in
74 * each 64 bytes being swapped with its neighbor!
75 *
76 * Otherwise, if interleaved, we have to tell the 3d driver what the address
77 * swizzling it needs to do is, since it's writing with the CPU to the pages
78 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
79 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
80 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
81 * to match what the GPU expects.
82 */
83
84/**
85 * Detects bit 6 swizzling of address lookup between IGD access and CPU
86 * access through main memory.
87 */
88void
89i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
90{
91	drm_i915_private_t *dev_priv = dev->dev_private;
92	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
93	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
94
95	if (IS_IRONLAKE(dev) || IS_GEN6(dev)) {
96		/* On Ironlake whatever DRAM config, GPU always do
97		 * same swizzling setup.
98		 */
99		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
100		swizzle_y = I915_BIT_6_SWIZZLE_9;
101	} else if (!IS_I9XX(dev)) {
102		/* As far as we know, the 865 doesn't have these bit 6
103		 * swizzling issues.
104		 */
105		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
106		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
107	} else if (IS_MOBILE(dev)) {
108		uint32_t dcc;
109
110		/* On mobile 9xx chipsets, channel interleave by the CPU is
111		 * determined by DCC.  For single-channel, neither the CPU
112		 * nor the GPU do swizzling.  For dual channel interleaved,
113		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
114		 * 9 for Y tiled.  The CPU's interleave is independent, and
115		 * can be based on either bit 11 (haven't seen this yet) or
116		 * bit 17 (common).
117		 */
118		dcc = I915_READ(DCC);
119		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
120		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
121		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
122			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
123			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
124			break;
125		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
126			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
127				/* This is the base swizzling by the GPU for
128				 * tiled buffers.
129				 */
130				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
131				swizzle_y = I915_BIT_6_SWIZZLE_9;
132			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
133				/* Bit 11 swizzling by the CPU in addition. */
134				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
135				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
136			} else {
137				/* Bit 17 swizzling by the CPU in addition. */
138				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
139				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
140			}
141			break;
142		}
143		if (dcc == 0xffffffff) {
144			DRM_ERROR("Couldn't read from MCHBAR.  "
145				  "Disabling tiling.\n");
146			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
147			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
148		}
149	} else {
150		/* The 965, G33, and newer, have a very flexible memory
151		 * configuration.  It will enable dual-channel mode
152		 * (interleaving) on as much memory as it can, and the GPU
153		 * will additionally sometimes enable different bit 6
154		 * swizzling for tiled objects from the CPU.
155		 *
156		 * Here's what I found on the G965:
157		 *    slot fill         memory size  swizzling
158		 * 0A   0B   1A   1B    1-ch   2-ch
159		 * 512  0    0    0     512    0     O
160		 * 512  0    512  0     16     1008  X
161		 * 512  0    0    512   16     1008  X
162		 * 0    512  0    512   16     1008  X
163		 * 1024 1024 1024 0     2048   1024  O
164		 *
165		 * We could probably detect this based on either the DRB
166		 * matching, which was the case for the swizzling required in
167		 * the table above, or from the 1-ch value being less than
168		 * the minimum size of a rank.
169		 */
170		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
171			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
172			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
173		} else {
174			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
175			swizzle_y = I915_BIT_6_SWIZZLE_9;
176		}
177	}
178
179	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
180	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
181}
182
183/* Check pitch constriants for all chips & tiling formats */
184bool
185i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
186{
187	int tile_width;
188
189	/* Linear is always fine */
190	if (tiling_mode == I915_TILING_NONE)
191		return true;
192
193	if (!IS_I9XX(dev) ||
194	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
195		tile_width = 128;
196	else
197		tile_width = 512;
198
199	/* check maximum stride & object size */
200	if (IS_I965G(dev)) {
201		/* i965 stores the end address of the gtt mapping in the fence
202		 * reg, so dont bother to check the size */
203		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
204			return false;
205	} else if (IS_GEN3(dev) || IS_GEN2(dev)) {
206		if (stride > 8192)
207			return false;
208
209		if (IS_GEN3(dev)) {
210			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
211				return false;
212		} else {
213			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
214				return false;
215		}
216	}
217
218	/* 965+ just needs multiples of tile width */
219	if (IS_I965G(dev)) {
220		if (stride & (tile_width - 1))
221			return false;
222		return true;
223	}
224
225	/* Pre-965 needs power of two tile widths */
226	if (stride < tile_width)
227		return false;
228
229	if (stride & (stride - 1))
230		return false;
231
232	return true;
233}
234
235bool
236i915_gem_object_fence_offset_ok(struct drm_gem_object *obj, int tiling_mode)
237{
238	struct drm_device *dev = obj->dev;
239	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
240
241	if (obj_priv->gtt_space == NULL)
242		return true;
243
244	if (tiling_mode == I915_TILING_NONE)
245		return true;
246
247	if (!IS_I965G(dev)) {
248		if (obj_priv->gtt_offset & (obj->size - 1))
249			return false;
250		if (IS_I9XX(dev)) {
251			if (obj_priv->gtt_offset & ~I915_FENCE_START_MASK)
252				return false;
253		} else {
254			if (obj_priv->gtt_offset & ~I830_FENCE_START_MASK)
255				return false;
256		}
257	}
258
259	return true;
260}
261
262/**
263 * Sets the tiling mode of an object, returning the required swizzling of
264 * bit 6 of addresses in the object.
265 */
266int
267i915_gem_set_tiling(struct drm_device *dev, void *data,
268		   struct drm_file *file_priv)
269{
270	struct drm_i915_gem_set_tiling *args = data;
271	drm_i915_private_t *dev_priv = dev->dev_private;
272	struct drm_gem_object *obj;
273	struct drm_i915_gem_object *obj_priv;
274	int ret = 0;
275
276	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
277	if (obj == NULL)
278		return -ENOENT;
279	obj_priv = to_intel_bo(obj);
280
281	if (!i915_tiling_ok(dev, args->stride, obj->size, args->tiling_mode)) {
282		drm_gem_object_unreference_unlocked(obj);
283		return -EINVAL;
284	}
285
286	if (obj_priv->pin_count) {
287		drm_gem_object_unreference_unlocked(obj);
288		return -EBUSY;
289	}
290
291	if (args->tiling_mode == I915_TILING_NONE) {
292		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
293		args->stride = 0;
294	} else {
295		if (args->tiling_mode == I915_TILING_X)
296			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
297		else
298			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
299
300		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
301		 * from aborting the application on sw fallbacks to bit 17,
302		 * and we use the pread/pwrite bit17 paths to swizzle for it.
303		 * If there was a user that was relying on the swizzle
304		 * information for drm_intel_bo_map()ed reads/writes this would
305		 * break it, but we don't have any of those.
306		 */
307		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
308			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
309		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
310			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
311
312		/* If we can't handle the swizzling, make it untiled. */
313		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
314			args->tiling_mode = I915_TILING_NONE;
315			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
316			args->stride = 0;
317		}
318	}
319
320	mutex_lock(&dev->struct_mutex);
321	if (args->tiling_mode != obj_priv->tiling_mode ||
322	    args->stride != obj_priv->stride) {
323		/* We need to rebind the object if its current allocation
324		 * no longer meets the alignment restrictions for its new
325		 * tiling mode. Otherwise we can just leave it alone, but
326		 * need to ensure that any fence register is cleared.
327		 */
328		if (!i915_gem_object_fence_offset_ok(obj, args->tiling_mode))
329			ret = i915_gem_object_unbind(obj);
330		else if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
331			ret = i915_gem_object_put_fence_reg(obj);
332		else
333			i915_gem_release_mmap(obj);
334
335		if (ret != 0) {
336			args->tiling_mode = obj_priv->tiling_mode;
337			args->stride = obj_priv->stride;
338			goto err;
339		}
340
341		obj_priv->tiling_mode = args->tiling_mode;
342		obj_priv->stride = args->stride;
343	}
344err:
345	drm_gem_object_unreference(obj);
346	mutex_unlock(&dev->struct_mutex);
347
348	return ret;
349}
350
351/**
352 * Returns the current tiling mode and required bit 6 swizzling for the object.
353 */
354int
355i915_gem_get_tiling(struct drm_device *dev, void *data,
356		   struct drm_file *file_priv)
357{
358	struct drm_i915_gem_get_tiling *args = data;
359	drm_i915_private_t *dev_priv = dev->dev_private;
360	struct drm_gem_object *obj;
361	struct drm_i915_gem_object *obj_priv;
362
363	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
364	if (obj == NULL)
365		return -ENOENT;
366	obj_priv = to_intel_bo(obj);
367
368	mutex_lock(&dev->struct_mutex);
369
370	args->tiling_mode = obj_priv->tiling_mode;
371	switch (obj_priv->tiling_mode) {
372	case I915_TILING_X:
373		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
374		break;
375	case I915_TILING_Y:
376		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
377		break;
378	case I915_TILING_NONE:
379		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
380		break;
381	default:
382		DRM_ERROR("unknown tiling mode\n");
383	}
384
385	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
386	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
387		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
388	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
389		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
390
391	drm_gem_object_unreference(obj);
392	mutex_unlock(&dev->struct_mutex);
393
394	return 0;
395}
396
397/**
398 * Swap every 64 bytes of this page around, to account for it having a new
399 * bit 17 of its physical address and therefore being interpreted differently
400 * by the GPU.
401 */
402static int
403i915_gem_swizzle_page(struct page *page)
404{
405	char *vaddr;
406	int i;
407	char temp[64];
408
409	vaddr = kmap(page);
410	if (vaddr == NULL)
411		return -ENOMEM;
412
413	for (i = 0; i < PAGE_SIZE; i += 128) {
414		memcpy(temp, &vaddr[i], 64);
415		memcpy(&vaddr[i], &vaddr[i + 64], 64);
416		memcpy(&vaddr[i + 64], temp, 64);
417	}
418
419	kunmap(page);
420
421	return 0;
422}
423
424void
425i915_gem_object_do_bit_17_swizzle(struct drm_gem_object *obj)
426{
427	struct drm_device *dev = obj->dev;
428	drm_i915_private_t *dev_priv = dev->dev_private;
429	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
430	int page_count = obj->size >> PAGE_SHIFT;
431	int i;
432
433	if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
434		return;
435
436	if (obj_priv->bit_17 == NULL)
437		return;
438
439	for (i = 0; i < page_count; i++) {
440		char new_bit_17 = page_to_phys(obj_priv->pages[i]) >> 17;
441		if ((new_bit_17 & 0x1) !=
442		    (test_bit(i, obj_priv->bit_17) != 0)) {
443			int ret = i915_gem_swizzle_page(obj_priv->pages[i]);
444			if (ret != 0) {
445				DRM_ERROR("Failed to swizzle page\n");
446				return;
447			}
448			set_page_dirty(obj_priv->pages[i]);
449		}
450	}
451}
452
453void
454i915_gem_object_save_bit_17_swizzle(struct drm_gem_object *obj)
455{
456	struct drm_device *dev = obj->dev;
457	drm_i915_private_t *dev_priv = dev->dev_private;
458	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
459	int page_count = obj->size >> PAGE_SHIFT;
460	int i;
461
462	if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
463		return;
464
465	if (obj_priv->bit_17 == NULL) {
466		obj_priv->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
467					   sizeof(long), GFP_KERNEL);
468		if (obj_priv->bit_17 == NULL) {
469			DRM_ERROR("Failed to allocate memory for bit 17 "
470				  "record\n");
471			return;
472		}
473	}
474
475	for (i = 0; i < page_count; i++) {
476		if (page_to_phys(obj_priv->pages[i]) & (1 << 17))
477			__set_bit(i, obj_priv->bit_17);
478		else
479			__clear_bit(i, obj_priv->bit_17);
480	}
481}
482