• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/firewire/
1/*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/compiler.h>
23#include <linux/delay.h>
24#include <linux/device.h>
25#include <linux/dma-mapping.h>
26#include <linux/firewire.h>
27#include <linux/firewire-constants.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kernel.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/moduleparam.h>
36#include <linux/mutex.h>
37#include <linux/pci.h>
38#include <linux/pci_ids.h>
39#include <linux/slab.h>
40#include <linux/spinlock.h>
41#include <linux/string.h>
42#include <linux/time.h>
43
44#include <asm/byteorder.h>
45#include <asm/page.h>
46#include <asm/system.h>
47
48#ifdef CONFIG_PPC_PMAC
49#include <asm/pmac_feature.h>
50#endif
51
52#include "core.h"
53#include "ohci.h"
54
55#define DESCRIPTOR_OUTPUT_MORE		0
56#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
57#define DESCRIPTOR_INPUT_MORE		(2 << 12)
58#define DESCRIPTOR_INPUT_LAST		(3 << 12)
59#define DESCRIPTOR_STATUS		(1 << 11)
60#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
61#define DESCRIPTOR_PING			(1 << 7)
62#define DESCRIPTOR_YY			(1 << 6)
63#define DESCRIPTOR_NO_IRQ		(0 << 4)
64#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
65#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
66#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
67#define DESCRIPTOR_WAIT			(3 << 0)
68
69struct descriptor {
70	__le16 req_count;
71	__le16 control;
72	__le32 data_address;
73	__le32 branch_address;
74	__le16 res_count;
75	__le16 transfer_status;
76} __attribute__((aligned(16)));
77
78#define CONTROL_SET(regs)	(regs)
79#define CONTROL_CLEAR(regs)	((regs) + 4)
80#define COMMAND_PTR(regs)	((regs) + 12)
81#define CONTEXT_MATCH(regs)	((regs) + 16)
82
83struct ar_buffer {
84	struct descriptor descriptor;
85	struct ar_buffer *next;
86	__le32 data[0];
87};
88
89struct ar_context {
90	struct fw_ohci *ohci;
91	struct ar_buffer *current_buffer;
92	struct ar_buffer *last_buffer;
93	void *pointer;
94	u32 regs;
95	struct tasklet_struct tasklet;
96};
97
98struct context;
99
100typedef int (*descriptor_callback_t)(struct context *ctx,
101				     struct descriptor *d,
102				     struct descriptor *last);
103
104/*
105 * A buffer that contains a block of DMA-able coherent memory used for
106 * storing a portion of a DMA descriptor program.
107 */
108struct descriptor_buffer {
109	struct list_head list;
110	dma_addr_t buffer_bus;
111	size_t buffer_size;
112	size_t used;
113	struct descriptor buffer[0];
114};
115
116struct context {
117	struct fw_ohci *ohci;
118	u32 regs;
119	int total_allocation;
120
121	/*
122	 * List of page-sized buffers for storing DMA descriptors.
123	 * Head of list contains buffers in use and tail of list contains
124	 * free buffers.
125	 */
126	struct list_head buffer_list;
127
128	/*
129	 * Pointer to a buffer inside buffer_list that contains the tail
130	 * end of the current DMA program.
131	 */
132	struct descriptor_buffer *buffer_tail;
133
134	/*
135	 * The descriptor containing the branch address of the first
136	 * descriptor that has not yet been filled by the device.
137	 */
138	struct descriptor *last;
139
140	/*
141	 * The last descriptor in the DMA program.  It contains the branch
142	 * address that must be updated upon appending a new descriptor.
143	 */
144	struct descriptor *prev;
145
146	descriptor_callback_t callback;
147
148	struct tasklet_struct tasklet;
149};
150
151#define IT_HEADER_SY(v)          ((v) <<  0)
152#define IT_HEADER_TCODE(v)       ((v) <<  4)
153#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
154#define IT_HEADER_TAG(v)         ((v) << 14)
155#define IT_HEADER_SPEED(v)       ((v) << 16)
156#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157
158struct iso_context {
159	struct fw_iso_context base;
160	struct context context;
161	int excess_bytes;
162	void *header;
163	size_t header_length;
164};
165
166#define CONFIG_ROM_SIZE 1024
167
168struct fw_ohci {
169	struct fw_card card;
170
171	__iomem char *registers;
172	int node_id;
173	int generation;
174	int request_generation;	/* for timestamping incoming requests */
175	unsigned quirks;
176	unsigned int pri_req_max;
177	u32 bus_time;
178	bool is_root;
179	bool csr_state_setclear_abdicate;
180
181	/*
182	 * Spinlock for accessing fw_ohci data.  Never call out of
183	 * this driver with this lock held.
184	 */
185	spinlock_t lock;
186
187	struct mutex phy_reg_mutex;
188
189	struct ar_context ar_request_ctx;
190	struct ar_context ar_response_ctx;
191	struct context at_request_ctx;
192	struct context at_response_ctx;
193
194	u32 it_context_mask;     /* unoccupied IT contexts */
195	struct iso_context *it_context_list;
196	u64 ir_context_channels; /* unoccupied channels */
197	u32 ir_context_mask;     /* unoccupied IR contexts */
198	struct iso_context *ir_context_list;
199	u64 mc_channels; /* channels in use by the multichannel IR context */
200	bool mc_allocated;
201
202	__be32    *config_rom;
203	dma_addr_t config_rom_bus;
204	__be32    *next_config_rom;
205	dma_addr_t next_config_rom_bus;
206	__be32     next_header;
207
208	__le32    *self_id_cpu;
209	dma_addr_t self_id_bus;
210	struct tasklet_struct bus_reset_tasklet;
211
212	u32 self_id_buffer[512];
213};
214
215static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216{
217	return container_of(card, struct fw_ohci, card);
218}
219
220#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
221#define IR_CONTEXT_BUFFER_FILL		0x80000000
222#define IR_CONTEXT_ISOCH_HEADER		0x40000000
223#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
224#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
225#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
226
227#define CONTEXT_RUN	0x8000
228#define CONTEXT_WAKE	0x1000
229#define CONTEXT_DEAD	0x0800
230#define CONTEXT_ACTIVE	0x0400
231
232#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
233#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
234#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
235
236#define OHCI1394_REGISTER_SIZE		0x800
237#define OHCI_LOOP_COUNT			500
238#define OHCI1394_PCI_HCI_Control	0x40
239#define SELF_ID_BUF_SIZE		0x800
240#define OHCI_TCODE_PHY_PACKET		0x0e
241#define OHCI_VERSION_1_1		0x010010
242
243static char ohci_driver_name[] = KBUILD_MODNAME;
244
245#define PCI_DEVICE_ID_AGERE_FW643	0x5901
246#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
247#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
248
249#define QUIRK_CYCLE_TIMER		1
250#define QUIRK_RESET_PACKET		2
251#define QUIRK_BE_HEADERS		4
252#define QUIRK_NO_1394A			8
253#define QUIRK_NO_MSI			16
254
255/* In case of multiple matches in ohci_quirks[], only the first one is used. */
256static const struct {
257	unsigned short vendor, device, revision, flags;
258} ohci_quirks[] = {
259	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
260		QUIRK_CYCLE_TIMER},
261
262	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
263		QUIRK_BE_HEADERS},
264
265	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
266		QUIRK_NO_MSI},
267
268	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
269		QUIRK_NO_MSI},
270
271	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
272		QUIRK_CYCLE_TIMER},
273
274	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
275		QUIRK_CYCLE_TIMER},
276
277	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
278		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
279
280	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
281		QUIRK_RESET_PACKET},
282
283	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
284		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
285};
286
287/* This overrides anything that was found in ohci_quirks[]. */
288static int param_quirks;
289module_param_named(quirks, param_quirks, int, 0644);
290MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
291	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
292	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
293	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
294	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
295	", disable MSI = "		__stringify(QUIRK_NO_MSI)
296	")");
297
298#define OHCI_PARAM_DEBUG_AT_AR		1
299#define OHCI_PARAM_DEBUG_SELFIDS	2
300#define OHCI_PARAM_DEBUG_IRQS		4
301#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
302
303#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
304
305static int param_debug;
306module_param_named(debug, param_debug, int, 0644);
307MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
308	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
309	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
310	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
311	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
312	", or a combination, or all = -1)");
313
314static void log_irqs(u32 evt)
315{
316	if (likely(!(param_debug &
317			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
318		return;
319
320	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
321	    !(evt & OHCI1394_busReset))
322		return;
323
324	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
325	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
326	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
327	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
328	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
329	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
330	    evt & OHCI1394_isochRx		? " IR"			: "",
331	    evt & OHCI1394_isochTx		? " IT"			: "",
332	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
333	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
334	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
335	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
336	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
337	    evt & OHCI1394_busReset		? " busReset"		: "",
338	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
339		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
340		    OHCI1394_respTxComplete | OHCI1394_isochRx |
341		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
342		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
343		    OHCI1394_cycleInconsistent |
344		    OHCI1394_regAccessFail | OHCI1394_busReset)
345						? " ?"			: "");
346}
347
348static const char *speed[] = {
349	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
350};
351static const char *power[] = {
352	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
353	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
354};
355static const char port[] = { '.', '-', 'p', 'c', };
356
357static char _p(u32 *s, int shift)
358{
359	return port[*s >> shift & 3];
360}
361
362static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
363{
364	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
365		return;
366
367	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
368		  self_id_count, generation, node_id);
369
370	for (; self_id_count--; ++s)
371		if ((*s & 1 << 23) == 0)
372			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
373			    "%s gc=%d %s %s%s%s\n",
374			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
375			    speed[*s >> 14 & 3], *s >> 16 & 63,
376			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
377			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
378		else
379			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
380			    *s, *s >> 24 & 63,
381			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
382			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
383}
384
385static const char *evts[] = {
386	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
387	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
388	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
389	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
390	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
391	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
392	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
393	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
394	[0x10] = "-reserved-",		[0x11] = "ack_complete",
395	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
396	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
397	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
398	[0x18] = "-reserved-",		[0x19] = "-reserved-",
399	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
400	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
401	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
402	[0x20] = "pending/cancelled",
403};
404static const char *tcodes[] = {
405	[0x0] = "QW req",		[0x1] = "BW req",
406	[0x2] = "W resp",		[0x3] = "-reserved-",
407	[0x4] = "QR req",		[0x5] = "BR req",
408	[0x6] = "QR resp",		[0x7] = "BR resp",
409	[0x8] = "cycle start",		[0x9] = "Lk req",
410	[0xa] = "async stream packet",	[0xb] = "Lk resp",
411	[0xc] = "-reserved-",		[0xd] = "-reserved-",
412	[0xe] = "link internal",	[0xf] = "-reserved-",
413};
414static const char *phys[] = {
415	[0x0] = "phy config packet",	[0x1] = "link-on packet",
416	[0x2] = "self-id packet",	[0x3] = "-reserved-",
417};
418
419static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
420{
421	int tcode = header[0] >> 4 & 0xf;
422	char specific[12];
423
424	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
425		return;
426
427	if (unlikely(evt >= ARRAY_SIZE(evts)))
428			evt = 0x1f;
429
430	if (evt == OHCI1394_evt_bus_reset) {
431		fw_notify("A%c evt_bus_reset, generation %d\n",
432		    dir, (header[2] >> 16) & 0xff);
433		return;
434	}
435
436	if (header[0] == ~header[1]) {
437		fw_notify("A%c %s, %s, %08x\n",
438		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
439		return;
440	}
441
442	switch (tcode) {
443	case 0x0: case 0x6: case 0x8:
444		snprintf(specific, sizeof(specific), " = %08x",
445			 be32_to_cpu((__force __be32)header[3]));
446		break;
447	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
448		snprintf(specific, sizeof(specific), " %x,%x",
449			 header[3] >> 16, header[3] & 0xffff);
450		break;
451	default:
452		specific[0] = '\0';
453	}
454
455	switch (tcode) {
456	case 0xe: case 0xa:
457		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
458		break;
459	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
460		fw_notify("A%c spd %x tl %02x, "
461		    "%04x -> %04x, %s, "
462		    "%s, %04x%08x%s\n",
463		    dir, speed, header[0] >> 10 & 0x3f,
464		    header[1] >> 16, header[0] >> 16, evts[evt],
465		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
466		break;
467	default:
468		fw_notify("A%c spd %x tl %02x, "
469		    "%04x -> %04x, %s, "
470		    "%s%s\n",
471		    dir, speed, header[0] >> 10 & 0x3f,
472		    header[1] >> 16, header[0] >> 16, evts[evt],
473		    tcodes[tcode], specific);
474	}
475}
476
477#else
478
479#define param_debug 0
480static inline void log_irqs(u32 evt) {}
481static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
482static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
483
484#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
485
486static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
487{
488	writel(data, ohci->registers + offset);
489}
490
491static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
492{
493	return readl(ohci->registers + offset);
494}
495
496static inline void flush_writes(const struct fw_ohci *ohci)
497{
498	/* Do a dummy read to flush writes. */
499	reg_read(ohci, OHCI1394_Version);
500}
501
502static int read_phy_reg(struct fw_ohci *ohci, int addr)
503{
504	u32 val;
505	int i;
506
507	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
508	for (i = 0; i < 3 + 100; i++) {
509		val = reg_read(ohci, OHCI1394_PhyControl);
510		if (val & OHCI1394_PhyControl_ReadDone)
511			return OHCI1394_PhyControl_ReadData(val);
512
513		/*
514		 * Try a few times without waiting.  Sleeping is necessary
515		 * only when the link/PHY interface is busy.
516		 */
517		if (i >= 3)
518			msleep(1);
519	}
520	fw_error("failed to read phy reg\n");
521
522	return -EBUSY;
523}
524
525static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
526{
527	int i;
528
529	reg_write(ohci, OHCI1394_PhyControl,
530		  OHCI1394_PhyControl_Write(addr, val));
531	for (i = 0; i < 3 + 100; i++) {
532		val = reg_read(ohci, OHCI1394_PhyControl);
533		if (!(val & OHCI1394_PhyControl_WritePending))
534			return 0;
535
536		if (i >= 3)
537			msleep(1);
538	}
539	fw_error("failed to write phy reg\n");
540
541	return -EBUSY;
542}
543
544static int update_phy_reg(struct fw_ohci *ohci, int addr,
545			  int clear_bits, int set_bits)
546{
547	int ret = read_phy_reg(ohci, addr);
548	if (ret < 0)
549		return ret;
550
551	/*
552	 * The interrupt status bits are cleared by writing a one bit.
553	 * Avoid clearing them unless explicitly requested in set_bits.
554	 */
555	if (addr == 5)
556		clear_bits |= PHY_INT_STATUS_BITS;
557
558	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
559}
560
561static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
562{
563	int ret;
564
565	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
566	if (ret < 0)
567		return ret;
568
569	return read_phy_reg(ohci, addr);
570}
571
572static int ohci_read_phy_reg(struct fw_card *card, int addr)
573{
574	struct fw_ohci *ohci = fw_ohci(card);
575	int ret;
576
577	mutex_lock(&ohci->phy_reg_mutex);
578	ret = read_phy_reg(ohci, addr);
579	mutex_unlock(&ohci->phy_reg_mutex);
580
581	return ret;
582}
583
584static int ohci_update_phy_reg(struct fw_card *card, int addr,
585			       int clear_bits, int set_bits)
586{
587	struct fw_ohci *ohci = fw_ohci(card);
588	int ret;
589
590	mutex_lock(&ohci->phy_reg_mutex);
591	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
592	mutex_unlock(&ohci->phy_reg_mutex);
593
594	return ret;
595}
596
597static int ar_context_add_page(struct ar_context *ctx)
598{
599	struct device *dev = ctx->ohci->card.device;
600	struct ar_buffer *ab;
601	dma_addr_t uninitialized_var(ab_bus);
602	size_t offset;
603
604	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
605	if (ab == NULL)
606		return -ENOMEM;
607
608	ab->next = NULL;
609	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
610	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
611						    DESCRIPTOR_STATUS |
612						    DESCRIPTOR_BRANCH_ALWAYS);
613	offset = offsetof(struct ar_buffer, data);
614	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
615	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
616	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
617	ab->descriptor.branch_address = 0;
618
619	wmb(); /* finish init of new descriptors before branch_address update */
620	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
621	ctx->last_buffer->next = ab;
622	ctx->last_buffer = ab;
623
624	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
625	flush_writes(ctx->ohci);
626
627	return 0;
628}
629
630static void ar_context_release(struct ar_context *ctx)
631{
632	struct ar_buffer *ab, *ab_next;
633	size_t offset;
634	dma_addr_t ab_bus;
635
636	for (ab = ctx->current_buffer; ab; ab = ab_next) {
637		ab_next = ab->next;
638		offset = offsetof(struct ar_buffer, data);
639		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
640		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
641				  ab, ab_bus);
642	}
643}
644
645#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
646#define cond_le32_to_cpu(v) \
647	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
648#else
649#define cond_le32_to_cpu(v) le32_to_cpu(v)
650#endif
651
652static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
653{
654	struct fw_ohci *ohci = ctx->ohci;
655	struct fw_packet p;
656	u32 status, length, tcode;
657	int evt;
658
659	p.header[0] = cond_le32_to_cpu(buffer[0]);
660	p.header[1] = cond_le32_to_cpu(buffer[1]);
661	p.header[2] = cond_le32_to_cpu(buffer[2]);
662
663	tcode = (p.header[0] >> 4) & 0x0f;
664	switch (tcode) {
665	case TCODE_WRITE_QUADLET_REQUEST:
666	case TCODE_READ_QUADLET_RESPONSE:
667		p.header[3] = (__force __u32) buffer[3];
668		p.header_length = 16;
669		p.payload_length = 0;
670		break;
671
672	case TCODE_READ_BLOCK_REQUEST :
673		p.header[3] = cond_le32_to_cpu(buffer[3]);
674		p.header_length = 16;
675		p.payload_length = 0;
676		break;
677
678	case TCODE_WRITE_BLOCK_REQUEST:
679	case TCODE_READ_BLOCK_RESPONSE:
680	case TCODE_LOCK_REQUEST:
681	case TCODE_LOCK_RESPONSE:
682		p.header[3] = cond_le32_to_cpu(buffer[3]);
683		p.header_length = 16;
684		p.payload_length = p.header[3] >> 16;
685		break;
686
687	case TCODE_WRITE_RESPONSE:
688	case TCODE_READ_QUADLET_REQUEST:
689	case OHCI_TCODE_PHY_PACKET:
690		p.header_length = 12;
691		p.payload_length = 0;
692		break;
693
694	default:
695		p.header_length = 0;
696		p.payload_length = 0;
697	}
698
699	p.payload = (void *) buffer + p.header_length;
700
701	length = (p.header_length + p.payload_length + 3) / 4;
702	status = cond_le32_to_cpu(buffer[length]);
703	evt    = (status >> 16) & 0x1f;
704
705	p.ack        = evt - 16;
706	p.speed      = (status >> 21) & 0x7;
707	p.timestamp  = status & 0xffff;
708	p.generation = ohci->request_generation;
709
710	log_ar_at_event('R', p.speed, p.header, evt);
711
712	/*
713	 * Several controllers, notably from NEC and VIA, forget to
714	 * write ack_complete status at PHY packet reception.
715	 */
716	if (evt == OHCI1394_evt_no_status &&
717	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
718		p.ack = ACK_COMPLETE;
719
720	/*
721	 * The OHCI bus reset handler synthesizes a PHY packet with
722	 * the new generation number when a bus reset happens (see
723	 * section 8.4.2.3).  This helps us determine when a request
724	 * was received and make sure we send the response in the same
725	 * generation.  We only need this for requests; for responses
726	 * we use the unique tlabel for finding the matching
727	 * request.
728	 *
729	 * Alas some chips sometimes emit bus reset packets with a
730	 * wrong generation.  We set the correct generation for these
731	 * at a slightly incorrect time (in bus_reset_tasklet).
732	 */
733	if (evt == OHCI1394_evt_bus_reset) {
734		if (!(ohci->quirks & QUIRK_RESET_PACKET))
735			ohci->request_generation = (p.header[2] >> 16) & 0xff;
736	} else if (ctx == &ohci->ar_request_ctx) {
737		fw_core_handle_request(&ohci->card, &p);
738	} else {
739		fw_core_handle_response(&ohci->card, &p);
740	}
741
742	return buffer + length + 1;
743}
744
745static void ar_context_tasklet(unsigned long data)
746{
747	struct ar_context *ctx = (struct ar_context *)data;
748	struct fw_ohci *ohci = ctx->ohci;
749	struct ar_buffer *ab;
750	struct descriptor *d;
751	void *buffer, *end;
752
753	ab = ctx->current_buffer;
754	d = &ab->descriptor;
755
756	if (d->res_count == 0) {
757		size_t size, size2, rest, pktsize, size3, offset;
758		dma_addr_t start_bus;
759		void *start;
760
761		/*
762		 * This descriptor is finished and we may have a
763		 * packet split across this and the next buffer. We
764		 * reuse the page for reassembling the split packet.
765		 */
766
767		offset = offsetof(struct ar_buffer, data);
768		start = ab;
769		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
770		buffer = ab->data;
771
772		ab = ab->next;
773		d = &ab->descriptor;
774		size = start + PAGE_SIZE - ctx->pointer;
775		/* valid buffer data in the next page */
776		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
777		/* what actually fits in this page */
778		size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
779		memmove(buffer, ctx->pointer, size);
780		memcpy(buffer + size, ab->data, size2);
781
782		while (size > 0) {
783			void *next = handle_ar_packet(ctx, buffer);
784			pktsize = next - buffer;
785			if (pktsize >= size) {
786				/*
787				 * We have handled all the data that was
788				 * originally in this page, so we can now
789				 * continue in the next page.
790				 */
791				buffer = next;
792				break;
793			}
794			/* move the next packet to the start of the buffer */
795			memmove(buffer, next, size + size2 - pktsize);
796			size -= pktsize;
797			/* fill up this page again */
798			size3 = min(rest - size2,
799				    (size_t)PAGE_SIZE - offset - size - size2);
800			memcpy(buffer + size + size2,
801			       (void *) ab->data + size2, size3);
802			size2 += size3;
803		}
804
805		if (rest > 0) {
806			/* handle the packets that are fully in the next page */
807			buffer = (void *) ab->data +
808					(buffer - (start + offset + size));
809			end = (void *) ab->data + rest;
810
811			while (buffer < end)
812				buffer = handle_ar_packet(ctx, buffer);
813
814			ctx->current_buffer = ab;
815			ctx->pointer = end;
816
817			dma_free_coherent(ohci->card.device, PAGE_SIZE,
818					  start, start_bus);
819			ar_context_add_page(ctx);
820		} else {
821			ctx->pointer = start + PAGE_SIZE;
822		}
823	} else {
824		buffer = ctx->pointer;
825		ctx->pointer = end =
826			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
827
828		while (buffer < end)
829			buffer = handle_ar_packet(ctx, buffer);
830	}
831}
832
833static int ar_context_init(struct ar_context *ctx,
834			   struct fw_ohci *ohci, u32 regs)
835{
836	struct ar_buffer ab;
837
838	ctx->regs        = regs;
839	ctx->ohci        = ohci;
840	ctx->last_buffer = &ab;
841	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
842
843	ar_context_add_page(ctx);
844	ar_context_add_page(ctx);
845	ctx->current_buffer = ab.next;
846	ctx->pointer = ctx->current_buffer->data;
847
848	return 0;
849}
850
851static void ar_context_run(struct ar_context *ctx)
852{
853	struct ar_buffer *ab = ctx->current_buffer;
854	dma_addr_t ab_bus;
855	size_t offset;
856
857	offset = offsetof(struct ar_buffer, data);
858	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
859
860	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
861	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
862	flush_writes(ctx->ohci);
863}
864
865static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
866{
867	int b, key;
868
869	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
870	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
871
872	/* figure out which descriptor the branch address goes in */
873	if (z == 2 && (b == 3 || key == 2))
874		return d;
875	else
876		return d + z - 1;
877}
878
879static void context_tasklet(unsigned long data)
880{
881	struct context *ctx = (struct context *) data;
882	struct descriptor *d, *last;
883	u32 address;
884	int z;
885	struct descriptor_buffer *desc;
886
887	desc = list_entry(ctx->buffer_list.next,
888			struct descriptor_buffer, list);
889	last = ctx->last;
890	while (last->branch_address != 0) {
891		struct descriptor_buffer *old_desc = desc;
892		address = le32_to_cpu(last->branch_address);
893		z = address & 0xf;
894		address &= ~0xf;
895
896		/* If the branch address points to a buffer outside of the
897		 * current buffer, advance to the next buffer. */
898		if (address < desc->buffer_bus ||
899				address >= desc->buffer_bus + desc->used)
900			desc = list_entry(desc->list.next,
901					struct descriptor_buffer, list);
902		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
903		last = find_branch_descriptor(d, z);
904
905		if (!ctx->callback(ctx, d, last))
906			break;
907
908		if (old_desc != desc) {
909			/* If we've advanced to the next buffer, move the
910			 * previous buffer to the free list. */
911			unsigned long flags;
912			old_desc->used = 0;
913			spin_lock_irqsave(&ctx->ohci->lock, flags);
914			list_move_tail(&old_desc->list, &ctx->buffer_list);
915			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
916		}
917		ctx->last = last;
918	}
919}
920
921/*
922 * Allocate a new buffer and add it to the list of free buffers for this
923 * context.  Must be called with ohci->lock held.
924 */
925static int context_add_buffer(struct context *ctx)
926{
927	struct descriptor_buffer *desc;
928	dma_addr_t uninitialized_var(bus_addr);
929	int offset;
930
931	/*
932	 * 16MB of descriptors should be far more than enough for any DMA
933	 * program.  This will catch run-away userspace or DoS attacks.
934	 */
935	if (ctx->total_allocation >= 16*1024*1024)
936		return -ENOMEM;
937
938	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
939			&bus_addr, GFP_ATOMIC);
940	if (!desc)
941		return -ENOMEM;
942
943	offset = (void *)&desc->buffer - (void *)desc;
944	desc->buffer_size = PAGE_SIZE - offset;
945	desc->buffer_bus = bus_addr + offset;
946	desc->used = 0;
947
948	list_add_tail(&desc->list, &ctx->buffer_list);
949	ctx->total_allocation += PAGE_SIZE;
950
951	return 0;
952}
953
954static int context_init(struct context *ctx, struct fw_ohci *ohci,
955			u32 regs, descriptor_callback_t callback)
956{
957	ctx->ohci = ohci;
958	ctx->regs = regs;
959	ctx->total_allocation = 0;
960
961	INIT_LIST_HEAD(&ctx->buffer_list);
962	if (context_add_buffer(ctx) < 0)
963		return -ENOMEM;
964
965	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
966			struct descriptor_buffer, list);
967
968	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
969	ctx->callback = callback;
970
971	/*
972	 * We put a dummy descriptor in the buffer that has a NULL
973	 * branch address and looks like it's been sent.  That way we
974	 * have a descriptor to append DMA programs to.
975	 */
976	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
977	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
978	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
979	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
980	ctx->last = ctx->buffer_tail->buffer;
981	ctx->prev = ctx->buffer_tail->buffer;
982
983	return 0;
984}
985
986static void context_release(struct context *ctx)
987{
988	struct fw_card *card = &ctx->ohci->card;
989	struct descriptor_buffer *desc, *tmp;
990
991	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
992		dma_free_coherent(card->device, PAGE_SIZE, desc,
993			desc->buffer_bus -
994			((void *)&desc->buffer - (void *)desc));
995}
996
997/* Must be called with ohci->lock held */
998static struct descriptor *context_get_descriptors(struct context *ctx,
999						  int z, dma_addr_t *d_bus)
1000{
1001	struct descriptor *d = NULL;
1002	struct descriptor_buffer *desc = ctx->buffer_tail;
1003
1004	if (z * sizeof(*d) > desc->buffer_size)
1005		return NULL;
1006
1007	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1008		/* No room for the descriptor in this buffer, so advance to the
1009		 * next one. */
1010
1011		if (desc->list.next == &ctx->buffer_list) {
1012			/* If there is no free buffer next in the list,
1013			 * allocate one. */
1014			if (context_add_buffer(ctx) < 0)
1015				return NULL;
1016		}
1017		desc = list_entry(desc->list.next,
1018				struct descriptor_buffer, list);
1019		ctx->buffer_tail = desc;
1020	}
1021
1022	d = desc->buffer + desc->used / sizeof(*d);
1023	memset(d, 0, z * sizeof(*d));
1024	*d_bus = desc->buffer_bus + desc->used;
1025
1026	return d;
1027}
1028
1029static void context_run(struct context *ctx, u32 extra)
1030{
1031	struct fw_ohci *ohci = ctx->ohci;
1032
1033	reg_write(ohci, COMMAND_PTR(ctx->regs),
1034		  le32_to_cpu(ctx->last->branch_address));
1035	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1036	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1037	flush_writes(ohci);
1038}
1039
1040static void context_append(struct context *ctx,
1041			   struct descriptor *d, int z, int extra)
1042{
1043	dma_addr_t d_bus;
1044	struct descriptor_buffer *desc = ctx->buffer_tail;
1045
1046	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1047
1048	desc->used += (z + extra) * sizeof(*d);
1049
1050	wmb(); /* finish init of new descriptors before branch_address update */
1051	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1052	ctx->prev = find_branch_descriptor(d, z);
1053
1054	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1055	flush_writes(ctx->ohci);
1056}
1057
1058static void context_stop(struct context *ctx)
1059{
1060	u32 reg;
1061	int i;
1062
1063	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1064	flush_writes(ctx->ohci);
1065
1066	for (i = 0; i < 10; i++) {
1067		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1068		if ((reg & CONTEXT_ACTIVE) == 0)
1069			return;
1070
1071		mdelay(1);
1072	}
1073	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1074}
1075
1076struct driver_data {
1077	struct fw_packet *packet;
1078};
1079
1080/*
1081 * This function apppends a packet to the DMA queue for transmission.
1082 * Must always be called with the ochi->lock held to ensure proper
1083 * generation handling and locking around packet queue manipulation.
1084 */
1085static int at_context_queue_packet(struct context *ctx,
1086				   struct fw_packet *packet)
1087{
1088	struct fw_ohci *ohci = ctx->ohci;
1089	dma_addr_t d_bus, uninitialized_var(payload_bus);
1090	struct driver_data *driver_data;
1091	struct descriptor *d, *last;
1092	__le32 *header;
1093	int z, tcode;
1094	u32 reg;
1095
1096	d = context_get_descriptors(ctx, 4, &d_bus);
1097	if (d == NULL) {
1098		packet->ack = RCODE_SEND_ERROR;
1099		return -1;
1100	}
1101
1102	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1103	d[0].res_count = cpu_to_le16(packet->timestamp);
1104
1105	/*
1106	 * The DMA format for asyncronous link packets is different
1107	 * from the IEEE1394 layout, so shift the fields around
1108	 * accordingly.  If header_length is 8, it's a PHY packet, to
1109	 * which we need to prepend an extra quadlet.
1110	 */
1111
1112	header = (__le32 *) &d[1];
1113	switch (packet->header_length) {
1114	case 16:
1115	case 12:
1116		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1117					(packet->speed << 16));
1118		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1119					(packet->header[0] & 0xffff0000));
1120		header[2] = cpu_to_le32(packet->header[2]);
1121
1122		tcode = (packet->header[0] >> 4) & 0x0f;
1123		if (TCODE_IS_BLOCK_PACKET(tcode))
1124			header[3] = cpu_to_le32(packet->header[3]);
1125		else
1126			header[3] = (__force __le32) packet->header[3];
1127
1128		d[0].req_count = cpu_to_le16(packet->header_length);
1129		break;
1130
1131	case 8:
1132		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1133					(packet->speed << 16));
1134		header[1] = cpu_to_le32(packet->header[0]);
1135		header[2] = cpu_to_le32(packet->header[1]);
1136		d[0].req_count = cpu_to_le16(12);
1137
1138		if (is_ping_packet(packet->header))
1139			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1140		break;
1141
1142	case 4:
1143		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1144					(packet->speed << 16));
1145		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1146		d[0].req_count = cpu_to_le16(8);
1147		break;
1148
1149	default:
1150		/* BUG(); */
1151		packet->ack = RCODE_SEND_ERROR;
1152		return -1;
1153	}
1154
1155	driver_data = (struct driver_data *) &d[3];
1156	driver_data->packet = packet;
1157	packet->driver_data = driver_data;
1158
1159	if (packet->payload_length > 0) {
1160		payload_bus =
1161			dma_map_single(ohci->card.device, packet->payload,
1162				       packet->payload_length, DMA_TO_DEVICE);
1163		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1164			packet->ack = RCODE_SEND_ERROR;
1165			return -1;
1166		}
1167		packet->payload_bus	= payload_bus;
1168		packet->payload_mapped	= true;
1169
1170		d[2].req_count    = cpu_to_le16(packet->payload_length);
1171		d[2].data_address = cpu_to_le32(payload_bus);
1172		last = &d[2];
1173		z = 3;
1174	} else {
1175		last = &d[0];
1176		z = 2;
1177	}
1178
1179	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1180				     DESCRIPTOR_IRQ_ALWAYS |
1181				     DESCRIPTOR_BRANCH_ALWAYS);
1182
1183	if (ohci->generation != packet->generation ||
1184	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1185		if (packet->payload_mapped)
1186			dma_unmap_single(ohci->card.device, payload_bus,
1187					 packet->payload_length, DMA_TO_DEVICE);
1188		packet->ack = RCODE_GENERATION;
1189		return -1;
1190	}
1191
1192	context_append(ctx, d, z, 4 - z);
1193
1194	/* If the context isn't already running, start it up. */
1195	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1196	if ((reg & CONTEXT_RUN) == 0)
1197		context_run(ctx, 0);
1198
1199	return 0;
1200}
1201
1202static int handle_at_packet(struct context *context,
1203			    struct descriptor *d,
1204			    struct descriptor *last)
1205{
1206	struct driver_data *driver_data;
1207	struct fw_packet *packet;
1208	struct fw_ohci *ohci = context->ohci;
1209	int evt;
1210
1211	if (last->transfer_status == 0)
1212		/* This descriptor isn't done yet, stop iteration. */
1213		return 0;
1214
1215	driver_data = (struct driver_data *) &d[3];
1216	packet = driver_data->packet;
1217	if (packet == NULL)
1218		/* This packet was cancelled, just continue. */
1219		return 1;
1220
1221	if (packet->payload_mapped)
1222		dma_unmap_single(ohci->card.device, packet->payload_bus,
1223				 packet->payload_length, DMA_TO_DEVICE);
1224
1225	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1226	packet->timestamp = le16_to_cpu(last->res_count);
1227
1228	log_ar_at_event('T', packet->speed, packet->header, evt);
1229
1230	switch (evt) {
1231	case OHCI1394_evt_timeout:
1232		/* Async response transmit timed out. */
1233		packet->ack = RCODE_CANCELLED;
1234		break;
1235
1236	case OHCI1394_evt_flushed:
1237		/*
1238		 * The packet was flushed should give same error as
1239		 * when we try to use a stale generation count.
1240		 */
1241		packet->ack = RCODE_GENERATION;
1242		break;
1243
1244	case OHCI1394_evt_missing_ack:
1245		/*
1246		 * Using a valid (current) generation count, but the
1247		 * node is not on the bus or not sending acks.
1248		 */
1249		packet->ack = RCODE_NO_ACK;
1250		break;
1251
1252	case ACK_COMPLETE + 0x10:
1253	case ACK_PENDING + 0x10:
1254	case ACK_BUSY_X + 0x10:
1255	case ACK_BUSY_A + 0x10:
1256	case ACK_BUSY_B + 0x10:
1257	case ACK_DATA_ERROR + 0x10:
1258	case ACK_TYPE_ERROR + 0x10:
1259		packet->ack = evt - 0x10;
1260		break;
1261
1262	default:
1263		packet->ack = RCODE_SEND_ERROR;
1264		break;
1265	}
1266
1267	packet->callback(packet, &ohci->card, packet->ack);
1268
1269	return 1;
1270}
1271
1272#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1273#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1274#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1275#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1276#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1277
1278static void handle_local_rom(struct fw_ohci *ohci,
1279			     struct fw_packet *packet, u32 csr)
1280{
1281	struct fw_packet response;
1282	int tcode, length, i;
1283
1284	tcode = HEADER_GET_TCODE(packet->header[0]);
1285	if (TCODE_IS_BLOCK_PACKET(tcode))
1286		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1287	else
1288		length = 4;
1289
1290	i = csr - CSR_CONFIG_ROM;
1291	if (i + length > CONFIG_ROM_SIZE) {
1292		fw_fill_response(&response, packet->header,
1293				 RCODE_ADDRESS_ERROR, NULL, 0);
1294	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1295		fw_fill_response(&response, packet->header,
1296				 RCODE_TYPE_ERROR, NULL, 0);
1297	} else {
1298		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1299				 (void *) ohci->config_rom + i, length);
1300	}
1301
1302	fw_core_handle_response(&ohci->card, &response);
1303}
1304
1305static void handle_local_lock(struct fw_ohci *ohci,
1306			      struct fw_packet *packet, u32 csr)
1307{
1308	struct fw_packet response;
1309	int tcode, length, ext_tcode, sel, try;
1310	__be32 *payload, lock_old;
1311	u32 lock_arg, lock_data;
1312
1313	tcode = HEADER_GET_TCODE(packet->header[0]);
1314	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1315	payload = packet->payload;
1316	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1317
1318	if (tcode == TCODE_LOCK_REQUEST &&
1319	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1320		lock_arg = be32_to_cpu(payload[0]);
1321		lock_data = be32_to_cpu(payload[1]);
1322	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1323		lock_arg = 0;
1324		lock_data = 0;
1325	} else {
1326		fw_fill_response(&response, packet->header,
1327				 RCODE_TYPE_ERROR, NULL, 0);
1328		goto out;
1329	}
1330
1331	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1332	reg_write(ohci, OHCI1394_CSRData, lock_data);
1333	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1334	reg_write(ohci, OHCI1394_CSRControl, sel);
1335
1336	for (try = 0; try < 20; try++)
1337		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1338			lock_old = cpu_to_be32(reg_read(ohci,
1339							OHCI1394_CSRData));
1340			fw_fill_response(&response, packet->header,
1341					 RCODE_COMPLETE,
1342					 &lock_old, sizeof(lock_old));
1343			goto out;
1344		}
1345
1346	fw_error("swap not done (CSR lock timeout)\n");
1347	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1348
1349 out:
1350	fw_core_handle_response(&ohci->card, &response);
1351}
1352
1353static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1354{
1355	u64 offset, csr;
1356
1357	if (ctx == &ctx->ohci->at_request_ctx) {
1358		packet->ack = ACK_PENDING;
1359		packet->callback(packet, &ctx->ohci->card, packet->ack);
1360	}
1361
1362	offset =
1363		((unsigned long long)
1364		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1365		packet->header[2];
1366	csr = offset - CSR_REGISTER_BASE;
1367
1368	/* Handle config rom reads. */
1369	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1370		handle_local_rom(ctx->ohci, packet, csr);
1371	else switch (csr) {
1372	case CSR_BUS_MANAGER_ID:
1373	case CSR_BANDWIDTH_AVAILABLE:
1374	case CSR_CHANNELS_AVAILABLE_HI:
1375	case CSR_CHANNELS_AVAILABLE_LO:
1376		handle_local_lock(ctx->ohci, packet, csr);
1377		break;
1378	default:
1379		if (ctx == &ctx->ohci->at_request_ctx)
1380			fw_core_handle_request(&ctx->ohci->card, packet);
1381		else
1382			fw_core_handle_response(&ctx->ohci->card, packet);
1383		break;
1384	}
1385
1386	if (ctx == &ctx->ohci->at_response_ctx) {
1387		packet->ack = ACK_COMPLETE;
1388		packet->callback(packet, &ctx->ohci->card, packet->ack);
1389	}
1390}
1391
1392static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1393{
1394	unsigned long flags;
1395	int ret;
1396
1397	spin_lock_irqsave(&ctx->ohci->lock, flags);
1398
1399	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1400	    ctx->ohci->generation == packet->generation) {
1401		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1402		handle_local_request(ctx, packet);
1403		return;
1404	}
1405
1406	ret = at_context_queue_packet(ctx, packet);
1407	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1408
1409	if (ret < 0)
1410		packet->callback(packet, &ctx->ohci->card, packet->ack);
1411
1412}
1413
1414static u32 cycle_timer_ticks(u32 cycle_timer)
1415{
1416	u32 ticks;
1417
1418	ticks = cycle_timer & 0xfff;
1419	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1420	ticks += (3072 * 8000) * (cycle_timer >> 25);
1421
1422	return ticks;
1423}
1424
1425/*
1426 * Some controllers exhibit one or more of the following bugs when updating the
1427 * iso cycle timer register:
1428 *  - When the lowest six bits are wrapping around to zero, a read that happens
1429 *    at the same time will return garbage in the lowest ten bits.
1430 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1431 *    not incremented for about 60 ns.
1432 *  - Occasionally, the entire register reads zero.
1433 *
1434 * To catch these, we read the register three times and ensure that the
1435 * difference between each two consecutive reads is approximately the same, i.e.
1436 * less than twice the other.  Furthermore, any negative difference indicates an
1437 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1438 * execute, so we have enough precision to compute the ratio of the differences.)
1439 */
1440static u32 get_cycle_time(struct fw_ohci *ohci)
1441{
1442	u32 c0, c1, c2;
1443	u32 t0, t1, t2;
1444	s32 diff01, diff12;
1445	int i;
1446
1447	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1448
1449	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1450		i = 0;
1451		c1 = c2;
1452		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1453		do {
1454			c0 = c1;
1455			c1 = c2;
1456			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1457			t0 = cycle_timer_ticks(c0);
1458			t1 = cycle_timer_ticks(c1);
1459			t2 = cycle_timer_ticks(c2);
1460			diff01 = t1 - t0;
1461			diff12 = t2 - t1;
1462		} while ((diff01 <= 0 || diff12 <= 0 ||
1463			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1464			 && i++ < 20);
1465	}
1466
1467	return c2;
1468}
1469
1470/*
1471 * This function has to be called at least every 64 seconds.  The bus_time
1472 * field stores not only the upper 25 bits of the BUS_TIME register but also
1473 * the most significant bit of the cycle timer in bit 6 so that we can detect
1474 * changes in this bit.
1475 */
1476static u32 update_bus_time(struct fw_ohci *ohci)
1477{
1478	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1479
1480	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1481		ohci->bus_time += 0x40;
1482
1483	return ohci->bus_time | cycle_time_seconds;
1484}
1485
1486static void bus_reset_tasklet(unsigned long data)
1487{
1488	struct fw_ohci *ohci = (struct fw_ohci *)data;
1489	int self_id_count, i, j, reg;
1490	int generation, new_generation;
1491	unsigned long flags;
1492	void *free_rom = NULL;
1493	dma_addr_t free_rom_bus = 0;
1494	bool is_new_root;
1495
1496	reg = reg_read(ohci, OHCI1394_NodeID);
1497	if (!(reg & OHCI1394_NodeID_idValid)) {
1498		fw_notify("node ID not valid, new bus reset in progress\n");
1499		return;
1500	}
1501	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1502		fw_notify("malconfigured bus\n");
1503		return;
1504	}
1505	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1506			       OHCI1394_NodeID_nodeNumber);
1507
1508	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1509	if (!(ohci->is_root && is_new_root))
1510		reg_write(ohci, OHCI1394_LinkControlSet,
1511			  OHCI1394_LinkControl_cycleMaster);
1512	ohci->is_root = is_new_root;
1513
1514	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1515	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1516		fw_notify("inconsistent self IDs\n");
1517		return;
1518	}
1519	/*
1520	 * The count in the SelfIDCount register is the number of
1521	 * bytes in the self ID receive buffer.  Since we also receive
1522	 * the inverted quadlets and a header quadlet, we shift one
1523	 * bit extra to get the actual number of self IDs.
1524	 */
1525	self_id_count = (reg >> 3) & 0xff;
1526	if (self_id_count == 0 || self_id_count > 252) {
1527		fw_notify("inconsistent self IDs\n");
1528		return;
1529	}
1530	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1531	rmb();
1532
1533	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1534		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1535			fw_notify("inconsistent self IDs\n");
1536			return;
1537		}
1538		ohci->self_id_buffer[j] =
1539				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1540	}
1541	rmb();
1542
1543	/*
1544	 * Check the consistency of the self IDs we just read.  The
1545	 * problem we face is that a new bus reset can start while we
1546	 * read out the self IDs from the DMA buffer. If this happens,
1547	 * the DMA buffer will be overwritten with new self IDs and we
1548	 * will read out inconsistent data.  The OHCI specification
1549	 * (section 11.2) recommends a technique similar to
1550	 * linux/seqlock.h, where we remember the generation of the
1551	 * self IDs in the buffer before reading them out and compare
1552	 * it to the current generation after reading them out.  If
1553	 * the two generations match we know we have a consistent set
1554	 * of self IDs.
1555	 */
1556
1557	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1558	if (new_generation != generation) {
1559		fw_notify("recursive bus reset detected, "
1560			  "discarding self ids\n");
1561		return;
1562	}
1563
1564	spin_lock_irqsave(&ohci->lock, flags);
1565
1566	ohci->generation = generation;
1567	context_stop(&ohci->at_request_ctx);
1568	context_stop(&ohci->at_response_ctx);
1569	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1570
1571	if (ohci->quirks & QUIRK_RESET_PACKET)
1572		ohci->request_generation = generation;
1573
1574	/*
1575	 * This next bit is unrelated to the AT context stuff but we
1576	 * have to do it under the spinlock also.  If a new config rom
1577	 * was set up before this reset, the old one is now no longer
1578	 * in use and we can free it. Update the config rom pointers
1579	 * to point to the current config rom and clear the
1580	 * next_config_rom pointer so a new update can take place.
1581	 */
1582
1583	if (ohci->next_config_rom != NULL) {
1584		if (ohci->next_config_rom != ohci->config_rom) {
1585			free_rom      = ohci->config_rom;
1586			free_rom_bus  = ohci->config_rom_bus;
1587		}
1588		ohci->config_rom      = ohci->next_config_rom;
1589		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1590		ohci->next_config_rom = NULL;
1591
1592		/*
1593		 * Restore config_rom image and manually update
1594		 * config_rom registers.  Writing the header quadlet
1595		 * will indicate that the config rom is ready, so we
1596		 * do that last.
1597		 */
1598		reg_write(ohci, OHCI1394_BusOptions,
1599			  be32_to_cpu(ohci->config_rom[2]));
1600		ohci->config_rom[0] = ohci->next_header;
1601		reg_write(ohci, OHCI1394_ConfigROMhdr,
1602			  be32_to_cpu(ohci->next_header));
1603	}
1604
1605#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1606	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1607	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1608#endif
1609
1610	spin_unlock_irqrestore(&ohci->lock, flags);
1611
1612	if (free_rom)
1613		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1614				  free_rom, free_rom_bus);
1615
1616	log_selfids(ohci->node_id, generation,
1617		    self_id_count, ohci->self_id_buffer);
1618
1619	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1620				 self_id_count, ohci->self_id_buffer,
1621				 ohci->csr_state_setclear_abdicate);
1622	ohci->csr_state_setclear_abdicate = false;
1623}
1624
1625static irqreturn_t irq_handler(int irq, void *data)
1626{
1627	struct fw_ohci *ohci = data;
1628	u32 event, iso_event;
1629	int i;
1630
1631	event = reg_read(ohci, OHCI1394_IntEventClear);
1632
1633	if (!event || !~event)
1634		return IRQ_NONE;
1635
1636	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1637	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1638	log_irqs(event);
1639
1640	if (event & OHCI1394_selfIDComplete)
1641		tasklet_schedule(&ohci->bus_reset_tasklet);
1642
1643	if (event & OHCI1394_RQPkt)
1644		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1645
1646	if (event & OHCI1394_RSPkt)
1647		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1648
1649	if (event & OHCI1394_reqTxComplete)
1650		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1651
1652	if (event & OHCI1394_respTxComplete)
1653		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1654
1655	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1656	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1657
1658	while (iso_event) {
1659		i = ffs(iso_event) - 1;
1660		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1661		iso_event &= ~(1 << i);
1662	}
1663
1664	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1665	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1666
1667	while (iso_event) {
1668		i = ffs(iso_event) - 1;
1669		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1670		iso_event &= ~(1 << i);
1671	}
1672
1673	if (unlikely(event & OHCI1394_regAccessFail))
1674		fw_error("Register access failure - "
1675			 "please notify linux1394-devel@lists.sf.net\n");
1676
1677	if (unlikely(event & OHCI1394_postedWriteErr))
1678		fw_error("PCI posted write error\n");
1679
1680	if (unlikely(event & OHCI1394_cycleTooLong)) {
1681		if (printk_ratelimit())
1682			fw_notify("isochronous cycle too long\n");
1683		reg_write(ohci, OHCI1394_LinkControlSet,
1684			  OHCI1394_LinkControl_cycleMaster);
1685	}
1686
1687	if (unlikely(event & OHCI1394_cycleInconsistent)) {
1688		if (printk_ratelimit())
1689			fw_notify("isochronous cycle inconsistent\n");
1690	}
1691
1692	if (event & OHCI1394_cycle64Seconds) {
1693		spin_lock(&ohci->lock);
1694		update_bus_time(ohci);
1695		spin_unlock(&ohci->lock);
1696	}
1697
1698	return IRQ_HANDLED;
1699}
1700
1701static int software_reset(struct fw_ohci *ohci)
1702{
1703	int i;
1704
1705	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1706
1707	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1708		if ((reg_read(ohci, OHCI1394_HCControlSet) &
1709		     OHCI1394_HCControl_softReset) == 0)
1710			return 0;
1711		msleep(1);
1712	}
1713
1714	return -EBUSY;
1715}
1716
1717static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1718{
1719	size_t size = length * 4;
1720
1721	memcpy(dest, src, size);
1722	if (size < CONFIG_ROM_SIZE)
1723		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1724}
1725
1726static int configure_1394a_enhancements(struct fw_ohci *ohci)
1727{
1728	bool enable_1394a;
1729	int ret, clear, set, offset;
1730
1731	/* Check if the driver should configure link and PHY. */
1732	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1733	      OHCI1394_HCControl_programPhyEnable))
1734		return 0;
1735
1736	/* Paranoia: check whether the PHY supports 1394a, too. */
1737	enable_1394a = false;
1738	ret = read_phy_reg(ohci, 2);
1739	if (ret < 0)
1740		return ret;
1741	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1742		ret = read_paged_phy_reg(ohci, 1, 8);
1743		if (ret < 0)
1744			return ret;
1745		if (ret >= 1)
1746			enable_1394a = true;
1747	}
1748
1749	if (ohci->quirks & QUIRK_NO_1394A)
1750		enable_1394a = false;
1751
1752	/* Configure PHY and link consistently. */
1753	if (enable_1394a) {
1754		clear = 0;
1755		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1756	} else {
1757		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1758		set = 0;
1759	}
1760	ret = update_phy_reg(ohci, 5, clear, set);
1761	if (ret < 0)
1762		return ret;
1763
1764	if (enable_1394a)
1765		offset = OHCI1394_HCControlSet;
1766	else
1767		offset = OHCI1394_HCControlClear;
1768	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1769
1770	/* Clean up: configuration has been taken care of. */
1771	reg_write(ohci, OHCI1394_HCControlClear,
1772		  OHCI1394_HCControl_programPhyEnable);
1773
1774	return 0;
1775}
1776
1777static int ohci_enable(struct fw_card *card,
1778		       const __be32 *config_rom, size_t length)
1779{
1780	struct fw_ohci *ohci = fw_ohci(card);
1781	struct pci_dev *dev = to_pci_dev(card->device);
1782	u32 lps, seconds, version, irqs;
1783	int i, ret;
1784
1785	if (software_reset(ohci)) {
1786		fw_error("Failed to reset ohci card.\n");
1787		return -EBUSY;
1788	}
1789
1790	/*
1791	 * Now enable LPS, which we need in order to start accessing
1792	 * most of the registers.  In fact, on some cards (ALI M5251),
1793	 * accessing registers in the SClk domain without LPS enabled
1794	 * will lock up the machine.  Wait 50msec to make sure we have
1795	 * full link enabled.  However, with some cards (well, at least
1796	 * a JMicron PCIe card), we have to try again sometimes.
1797	 */
1798	reg_write(ohci, OHCI1394_HCControlSet,
1799		  OHCI1394_HCControl_LPS |
1800		  OHCI1394_HCControl_postedWriteEnable);
1801	flush_writes(ohci);
1802
1803	for (lps = 0, i = 0; !lps && i < 3; i++) {
1804		msleep(50);
1805		lps = reg_read(ohci, OHCI1394_HCControlSet) &
1806		      OHCI1394_HCControl_LPS;
1807	}
1808
1809	if (!lps) {
1810		fw_error("Failed to set Link Power Status\n");
1811		return -EIO;
1812	}
1813
1814	reg_write(ohci, OHCI1394_HCControlClear,
1815		  OHCI1394_HCControl_noByteSwapData);
1816
1817	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1818	reg_write(ohci, OHCI1394_LinkControlSet,
1819		  OHCI1394_LinkControl_rcvSelfID |
1820		  OHCI1394_LinkControl_rcvPhyPkt |
1821		  OHCI1394_LinkControl_cycleTimerEnable |
1822		  OHCI1394_LinkControl_cycleMaster);
1823
1824	reg_write(ohci, OHCI1394_ATRetries,
1825		  OHCI1394_MAX_AT_REQ_RETRIES |
1826		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1827		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1828		  (200 << 16));
1829
1830	seconds = lower_32_bits(get_seconds());
1831	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1832	ohci->bus_time = seconds & ~0x3f;
1833
1834	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1835	if (version >= OHCI_VERSION_1_1) {
1836		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1837			  0xfffffffe);
1838		card->broadcast_channel_auto_allocated = true;
1839	}
1840
1841	/* Get implemented bits of the priority arbitration request counter. */
1842	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1843	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1844	reg_write(ohci, OHCI1394_FairnessControl, 0);
1845	card->priority_budget_implemented = ohci->pri_req_max != 0;
1846
1847	ar_context_run(&ohci->ar_request_ctx);
1848	ar_context_run(&ohci->ar_response_ctx);
1849
1850	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1851	reg_write(ohci, OHCI1394_IntEventClear, ~0);
1852	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1853
1854	ret = configure_1394a_enhancements(ohci);
1855	if (ret < 0)
1856		return ret;
1857
1858	/* Activate link_on bit and contender bit in our self ID packets.*/
1859	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1860	if (ret < 0)
1861		return ret;
1862
1863
1864	if (config_rom) {
1865		ohci->next_config_rom =
1866			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1867					   &ohci->next_config_rom_bus,
1868					   GFP_KERNEL);
1869		if (ohci->next_config_rom == NULL)
1870			return -ENOMEM;
1871
1872		copy_config_rom(ohci->next_config_rom, config_rom, length);
1873	} else {
1874		/*
1875		 * In the suspend case, config_rom is NULL, which
1876		 * means that we just reuse the old config rom.
1877		 */
1878		ohci->next_config_rom = ohci->config_rom;
1879		ohci->next_config_rom_bus = ohci->config_rom_bus;
1880	}
1881
1882	ohci->next_header = ohci->next_config_rom[0];
1883	ohci->next_config_rom[0] = 0;
1884	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1885	reg_write(ohci, OHCI1394_BusOptions,
1886		  be32_to_cpu(ohci->next_config_rom[2]));
1887	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1888
1889	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1890
1891	if (!(ohci->quirks & QUIRK_NO_MSI))
1892		pci_enable_msi(dev);
1893	if (request_irq(dev->irq, irq_handler,
1894			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1895			ohci_driver_name, ohci)) {
1896		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1897		pci_disable_msi(dev);
1898		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1899				  ohci->config_rom, ohci->config_rom_bus);
1900		return -EIO;
1901	}
1902
1903	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1904		OHCI1394_RQPkt | OHCI1394_RSPkt |
1905		OHCI1394_isochTx | OHCI1394_isochRx |
1906		OHCI1394_postedWriteErr |
1907		OHCI1394_selfIDComplete |
1908		OHCI1394_regAccessFail |
1909		OHCI1394_cycle64Seconds |
1910		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1911		OHCI1394_masterIntEnable;
1912	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1913		irqs |= OHCI1394_busReset;
1914	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1915
1916	reg_write(ohci, OHCI1394_HCControlSet,
1917		  OHCI1394_HCControl_linkEnable |
1918		  OHCI1394_HCControl_BIBimageValid);
1919	flush_writes(ohci);
1920
1921	/* We are ready to go, reset bus to finish initialization. */
1922	fw_schedule_bus_reset(&ohci->card, false, true);
1923
1924	return 0;
1925}
1926
1927static int ohci_set_config_rom(struct fw_card *card,
1928			       const __be32 *config_rom, size_t length)
1929{
1930	struct fw_ohci *ohci;
1931	unsigned long flags;
1932	int ret = -EBUSY;
1933	__be32 *next_config_rom;
1934	dma_addr_t uninitialized_var(next_config_rom_bus);
1935
1936	ohci = fw_ohci(card);
1937
1938
1939	next_config_rom =
1940		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1941				   &next_config_rom_bus, GFP_KERNEL);
1942	if (next_config_rom == NULL)
1943		return -ENOMEM;
1944
1945	spin_lock_irqsave(&ohci->lock, flags);
1946
1947	if (ohci->next_config_rom == NULL) {
1948		ohci->next_config_rom = next_config_rom;
1949		ohci->next_config_rom_bus = next_config_rom_bus;
1950
1951		copy_config_rom(ohci->next_config_rom, config_rom, length);
1952
1953		ohci->next_header = config_rom[0];
1954		ohci->next_config_rom[0] = 0;
1955
1956		reg_write(ohci, OHCI1394_ConfigROMmap,
1957			  ohci->next_config_rom_bus);
1958		ret = 0;
1959	}
1960
1961	spin_unlock_irqrestore(&ohci->lock, flags);
1962
1963	/*
1964	 * Now initiate a bus reset to have the changes take
1965	 * effect. We clean up the old config rom memory and DMA
1966	 * mappings in the bus reset tasklet, since the OHCI
1967	 * controller could need to access it before the bus reset
1968	 * takes effect.
1969	 */
1970	if (ret == 0)
1971		fw_schedule_bus_reset(&ohci->card, true, true);
1972	else
1973		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1974				  next_config_rom, next_config_rom_bus);
1975
1976	return ret;
1977}
1978
1979static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1980{
1981	struct fw_ohci *ohci = fw_ohci(card);
1982
1983	at_context_transmit(&ohci->at_request_ctx, packet);
1984}
1985
1986static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1987{
1988	struct fw_ohci *ohci = fw_ohci(card);
1989
1990	at_context_transmit(&ohci->at_response_ctx, packet);
1991}
1992
1993static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1994{
1995	struct fw_ohci *ohci = fw_ohci(card);
1996	struct context *ctx = &ohci->at_request_ctx;
1997	struct driver_data *driver_data = packet->driver_data;
1998	int ret = -ENOENT;
1999
2000	tasklet_disable(&ctx->tasklet);
2001
2002	if (packet->ack != 0)
2003		goto out;
2004
2005	if (packet->payload_mapped)
2006		dma_unmap_single(ohci->card.device, packet->payload_bus,
2007				 packet->payload_length, DMA_TO_DEVICE);
2008
2009	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2010	driver_data->packet = NULL;
2011	packet->ack = RCODE_CANCELLED;
2012	packet->callback(packet, &ohci->card, packet->ack);
2013	ret = 0;
2014 out:
2015	tasklet_enable(&ctx->tasklet);
2016
2017	return ret;
2018}
2019
2020static int ohci_enable_phys_dma(struct fw_card *card,
2021				int node_id, int generation)
2022{
2023#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2024	return 0;
2025#else
2026	struct fw_ohci *ohci = fw_ohci(card);
2027	unsigned long flags;
2028	int n, ret = 0;
2029
2030
2031	spin_lock_irqsave(&ohci->lock, flags);
2032
2033	if (ohci->generation != generation) {
2034		ret = -ESTALE;
2035		goto out;
2036	}
2037
2038	/*
2039	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2040	 * enabled for _all_ nodes on remote buses.
2041	 */
2042
2043	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2044	if (n < 32)
2045		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2046	else
2047		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2048
2049	flush_writes(ohci);
2050 out:
2051	spin_unlock_irqrestore(&ohci->lock, flags);
2052
2053	return ret;
2054#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2055}
2056
2057static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2058{
2059	struct fw_ohci *ohci = fw_ohci(card);
2060	unsigned long flags;
2061	u32 value;
2062
2063	switch (csr_offset) {
2064	case CSR_STATE_CLEAR:
2065	case CSR_STATE_SET:
2066		if (ohci->is_root &&
2067		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2068		     OHCI1394_LinkControl_cycleMaster))
2069			value = CSR_STATE_BIT_CMSTR;
2070		else
2071			value = 0;
2072		if (ohci->csr_state_setclear_abdicate)
2073			value |= CSR_STATE_BIT_ABDICATE;
2074
2075		return value;
2076
2077	case CSR_NODE_IDS:
2078		return reg_read(ohci, OHCI1394_NodeID) << 16;
2079
2080	case CSR_CYCLE_TIME:
2081		return get_cycle_time(ohci);
2082
2083	case CSR_BUS_TIME:
2084		/*
2085		 * We might be called just after the cycle timer has wrapped
2086		 * around but just before the cycle64Seconds handler, so we
2087		 * better check here, too, if the bus time needs to be updated.
2088		 */
2089		spin_lock_irqsave(&ohci->lock, flags);
2090		value = update_bus_time(ohci);
2091		spin_unlock_irqrestore(&ohci->lock, flags);
2092		return value;
2093
2094	case CSR_BUSY_TIMEOUT:
2095		value = reg_read(ohci, OHCI1394_ATRetries);
2096		return (value >> 4) & 0x0ffff00f;
2097
2098	case CSR_PRIORITY_BUDGET:
2099		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2100			(ohci->pri_req_max << 8);
2101
2102	default:
2103		WARN_ON(1);
2104		return 0;
2105	}
2106}
2107
2108static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2109{
2110	struct fw_ohci *ohci = fw_ohci(card);
2111	unsigned long flags;
2112
2113	switch (csr_offset) {
2114	case CSR_STATE_CLEAR:
2115		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2116			reg_write(ohci, OHCI1394_LinkControlClear,
2117				  OHCI1394_LinkControl_cycleMaster);
2118			flush_writes(ohci);
2119		}
2120		if (value & CSR_STATE_BIT_ABDICATE)
2121			ohci->csr_state_setclear_abdicate = false;
2122		break;
2123
2124	case CSR_STATE_SET:
2125		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2126			reg_write(ohci, OHCI1394_LinkControlSet,
2127				  OHCI1394_LinkControl_cycleMaster);
2128			flush_writes(ohci);
2129		}
2130		if (value & CSR_STATE_BIT_ABDICATE)
2131			ohci->csr_state_setclear_abdicate = true;
2132		break;
2133
2134	case CSR_NODE_IDS:
2135		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2136		flush_writes(ohci);
2137		break;
2138
2139	case CSR_CYCLE_TIME:
2140		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2141		reg_write(ohci, OHCI1394_IntEventSet,
2142			  OHCI1394_cycleInconsistent);
2143		flush_writes(ohci);
2144		break;
2145
2146	case CSR_BUS_TIME:
2147		spin_lock_irqsave(&ohci->lock, flags);
2148		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2149		spin_unlock_irqrestore(&ohci->lock, flags);
2150		break;
2151
2152	case CSR_BUSY_TIMEOUT:
2153		value = (value & 0xf) | ((value & 0xf) << 4) |
2154			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2155		reg_write(ohci, OHCI1394_ATRetries, value);
2156		flush_writes(ohci);
2157		break;
2158
2159	case CSR_PRIORITY_BUDGET:
2160		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2161		flush_writes(ohci);
2162		break;
2163
2164	default:
2165		WARN_ON(1);
2166		break;
2167	}
2168}
2169
2170static void copy_iso_headers(struct iso_context *ctx, void *p)
2171{
2172	int i = ctx->header_length;
2173
2174	if (i + ctx->base.header_size > PAGE_SIZE)
2175		return;
2176
2177	/*
2178	 * The iso header is byteswapped to little endian by
2179	 * the controller, but the remaining header quadlets
2180	 * are big endian.  We want to present all the headers
2181	 * as big endian, so we have to swap the first quadlet.
2182	 */
2183	if (ctx->base.header_size > 0)
2184		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2185	if (ctx->base.header_size > 4)
2186		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2187	if (ctx->base.header_size > 8)
2188		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2189	ctx->header_length += ctx->base.header_size;
2190}
2191
2192static int handle_ir_packet_per_buffer(struct context *context,
2193				       struct descriptor *d,
2194				       struct descriptor *last)
2195{
2196	struct iso_context *ctx =
2197		container_of(context, struct iso_context, context);
2198	struct descriptor *pd;
2199	__le32 *ir_header;
2200	void *p;
2201
2202	for (pd = d; pd <= last; pd++)
2203		if (pd->transfer_status)
2204			break;
2205	if (pd > last)
2206		/* Descriptor(s) not done yet, stop iteration */
2207		return 0;
2208
2209	p = last + 1;
2210	copy_iso_headers(ctx, p);
2211
2212	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2213		ir_header = (__le32 *) p;
2214		ctx->base.callback.sc(&ctx->base,
2215				      le32_to_cpu(ir_header[0]) & 0xffff,
2216				      ctx->header_length, ctx->header,
2217				      ctx->base.callback_data);
2218		ctx->header_length = 0;
2219	}
2220
2221	return 1;
2222}
2223
2224/* d == last because each descriptor block is only a single descriptor. */
2225static int handle_ir_buffer_fill(struct context *context,
2226				 struct descriptor *d,
2227				 struct descriptor *last)
2228{
2229	struct iso_context *ctx =
2230		container_of(context, struct iso_context, context);
2231
2232	if (!last->transfer_status)
2233		/* Descriptor(s) not done yet, stop iteration */
2234		return 0;
2235
2236	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2237		ctx->base.callback.mc(&ctx->base,
2238				      le32_to_cpu(last->data_address) +
2239				      le16_to_cpu(last->req_count) -
2240				      le16_to_cpu(last->res_count),
2241				      ctx->base.callback_data);
2242
2243	return 1;
2244}
2245
2246static int handle_it_packet(struct context *context,
2247			    struct descriptor *d,
2248			    struct descriptor *last)
2249{
2250	struct iso_context *ctx =
2251		container_of(context, struct iso_context, context);
2252	int i;
2253	struct descriptor *pd;
2254
2255	for (pd = d; pd <= last; pd++)
2256		if (pd->transfer_status)
2257			break;
2258	if (pd > last)
2259		/* Descriptor(s) not done yet, stop iteration */
2260		return 0;
2261
2262	i = ctx->header_length;
2263	if (i + 4 < PAGE_SIZE) {
2264		/* Present this value as big-endian to match the receive code */
2265		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2266				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2267				le16_to_cpu(pd->res_count));
2268		ctx->header_length += 4;
2269	}
2270	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2271		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2272				      ctx->header_length, ctx->header,
2273				      ctx->base.callback_data);
2274		ctx->header_length = 0;
2275	}
2276	return 1;
2277}
2278
2279static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2280{
2281	u32 hi = channels >> 32, lo = channels;
2282
2283	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2284	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2285	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2286	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2287	mmiowb();
2288	ohci->mc_channels = channels;
2289}
2290
2291static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2292				int type, int channel, size_t header_size)
2293{
2294	struct fw_ohci *ohci = fw_ohci(card);
2295	struct iso_context *uninitialized_var(ctx);
2296	descriptor_callback_t uninitialized_var(callback);
2297	u64 *uninitialized_var(channels);
2298	u32 *uninitialized_var(mask), uninitialized_var(regs);
2299	unsigned long flags;
2300	int index, ret = -EBUSY;
2301
2302	spin_lock_irqsave(&ohci->lock, flags);
2303
2304	switch (type) {
2305	case FW_ISO_CONTEXT_TRANSMIT:
2306		mask     = &ohci->it_context_mask;
2307		callback = handle_it_packet;
2308		index    = ffs(*mask) - 1;
2309		if (index >= 0) {
2310			*mask &= ~(1 << index);
2311			regs = OHCI1394_IsoXmitContextBase(index);
2312			ctx  = &ohci->it_context_list[index];
2313		}
2314		break;
2315
2316	case FW_ISO_CONTEXT_RECEIVE:
2317		channels = &ohci->ir_context_channels;
2318		mask     = &ohci->ir_context_mask;
2319		callback = handle_ir_packet_per_buffer;
2320		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2321		if (index >= 0) {
2322			*channels &= ~(1ULL << channel);
2323			*mask     &= ~(1 << index);
2324			regs = OHCI1394_IsoRcvContextBase(index);
2325			ctx  = &ohci->ir_context_list[index];
2326		}
2327		break;
2328
2329	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2330		mask     = &ohci->ir_context_mask;
2331		callback = handle_ir_buffer_fill;
2332		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2333		if (index >= 0) {
2334			ohci->mc_allocated = true;
2335			*mask &= ~(1 << index);
2336			regs = OHCI1394_IsoRcvContextBase(index);
2337			ctx  = &ohci->ir_context_list[index];
2338		}
2339		break;
2340
2341	default:
2342		index = -1;
2343		ret = -ENOSYS;
2344	}
2345
2346	spin_unlock_irqrestore(&ohci->lock, flags);
2347
2348	if (index < 0)
2349		return ERR_PTR(ret);
2350
2351	memset(ctx, 0, sizeof(*ctx));
2352	ctx->header_length = 0;
2353	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2354	if (ctx->header == NULL) {
2355		ret = -ENOMEM;
2356		goto out;
2357	}
2358	ret = context_init(&ctx->context, ohci, regs, callback);
2359	if (ret < 0)
2360		goto out_with_header;
2361
2362	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2363		set_multichannel_mask(ohci, 0);
2364
2365	return &ctx->base;
2366
2367 out_with_header:
2368	free_page((unsigned long)ctx->header);
2369 out:
2370	spin_lock_irqsave(&ohci->lock, flags);
2371
2372	switch (type) {
2373	case FW_ISO_CONTEXT_RECEIVE:
2374		*channels |= 1ULL << channel;
2375		break;
2376
2377	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2378		ohci->mc_allocated = false;
2379		break;
2380	}
2381	*mask |= 1 << index;
2382
2383	spin_unlock_irqrestore(&ohci->lock, flags);
2384
2385	return ERR_PTR(ret);
2386}
2387
2388static int ohci_start_iso(struct fw_iso_context *base,
2389			  s32 cycle, u32 sync, u32 tags)
2390{
2391	struct iso_context *ctx = container_of(base, struct iso_context, base);
2392	struct fw_ohci *ohci = ctx->context.ohci;
2393	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2394	int index;
2395
2396	switch (ctx->base.type) {
2397	case FW_ISO_CONTEXT_TRANSMIT:
2398		index = ctx - ohci->it_context_list;
2399		match = 0;
2400		if (cycle >= 0)
2401			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2402				(cycle & 0x7fff) << 16;
2403
2404		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2405		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2406		context_run(&ctx->context, match);
2407		break;
2408
2409	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2410		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2411		/* fall through */
2412	case FW_ISO_CONTEXT_RECEIVE:
2413		index = ctx - ohci->ir_context_list;
2414		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2415		if (cycle >= 0) {
2416			match |= (cycle & 0x07fff) << 12;
2417			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2418		}
2419
2420		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2421		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2422		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2423		context_run(&ctx->context, control);
2424		break;
2425	}
2426
2427	return 0;
2428}
2429
2430static int ohci_stop_iso(struct fw_iso_context *base)
2431{
2432	struct fw_ohci *ohci = fw_ohci(base->card);
2433	struct iso_context *ctx = container_of(base, struct iso_context, base);
2434	int index;
2435
2436	switch (ctx->base.type) {
2437	case FW_ISO_CONTEXT_TRANSMIT:
2438		index = ctx - ohci->it_context_list;
2439		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2440		break;
2441
2442	case FW_ISO_CONTEXT_RECEIVE:
2443	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2444		index = ctx - ohci->ir_context_list;
2445		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2446		break;
2447	}
2448	flush_writes(ohci);
2449	context_stop(&ctx->context);
2450
2451	return 0;
2452}
2453
2454static void ohci_free_iso_context(struct fw_iso_context *base)
2455{
2456	struct fw_ohci *ohci = fw_ohci(base->card);
2457	struct iso_context *ctx = container_of(base, struct iso_context, base);
2458	unsigned long flags;
2459	int index;
2460
2461	ohci_stop_iso(base);
2462	context_release(&ctx->context);
2463	free_page((unsigned long)ctx->header);
2464
2465	spin_lock_irqsave(&ohci->lock, flags);
2466
2467	switch (base->type) {
2468	case FW_ISO_CONTEXT_TRANSMIT:
2469		index = ctx - ohci->it_context_list;
2470		ohci->it_context_mask |= 1 << index;
2471		break;
2472
2473	case FW_ISO_CONTEXT_RECEIVE:
2474		index = ctx - ohci->ir_context_list;
2475		ohci->ir_context_mask |= 1 << index;
2476		ohci->ir_context_channels |= 1ULL << base->channel;
2477		break;
2478
2479	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2480		index = ctx - ohci->ir_context_list;
2481		ohci->ir_context_mask |= 1 << index;
2482		ohci->ir_context_channels |= ohci->mc_channels;
2483		ohci->mc_channels = 0;
2484		ohci->mc_allocated = false;
2485		break;
2486	}
2487
2488	spin_unlock_irqrestore(&ohci->lock, flags);
2489}
2490
2491static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2492{
2493	struct fw_ohci *ohci = fw_ohci(base->card);
2494	unsigned long flags;
2495	int ret;
2496
2497	switch (base->type) {
2498	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2499
2500		spin_lock_irqsave(&ohci->lock, flags);
2501
2502		/* Don't allow multichannel to grab other contexts' channels. */
2503		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2504			*channels = ohci->ir_context_channels;
2505			ret = -EBUSY;
2506		} else {
2507			set_multichannel_mask(ohci, *channels);
2508			ret = 0;
2509		}
2510
2511		spin_unlock_irqrestore(&ohci->lock, flags);
2512
2513		break;
2514	default:
2515		ret = -EINVAL;
2516	}
2517
2518	return ret;
2519}
2520
2521static int queue_iso_transmit(struct iso_context *ctx,
2522			      struct fw_iso_packet *packet,
2523			      struct fw_iso_buffer *buffer,
2524			      unsigned long payload)
2525{
2526	struct descriptor *d, *last, *pd;
2527	struct fw_iso_packet *p;
2528	__le32 *header;
2529	dma_addr_t d_bus, page_bus;
2530	u32 z, header_z, payload_z, irq;
2531	u32 payload_index, payload_end_index, next_page_index;
2532	int page, end_page, i, length, offset;
2533
2534	p = packet;
2535	payload_index = payload;
2536
2537	if (p->skip)
2538		z = 1;
2539	else
2540		z = 2;
2541	if (p->header_length > 0)
2542		z++;
2543
2544	/* Determine the first page the payload isn't contained in. */
2545	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2546	if (p->payload_length > 0)
2547		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2548	else
2549		payload_z = 0;
2550
2551	z += payload_z;
2552
2553	/* Get header size in number of descriptors. */
2554	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2555
2556	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2557	if (d == NULL)
2558		return -ENOMEM;
2559
2560	if (!p->skip) {
2561		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2562		d[0].req_count = cpu_to_le16(8);
2563		d[0].branch_address = cpu_to_le32(d_bus | z);
2564
2565		header = (__le32 *) &d[1];
2566		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2567					IT_HEADER_TAG(p->tag) |
2568					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2569					IT_HEADER_CHANNEL(ctx->base.channel) |
2570					IT_HEADER_SPEED(ctx->base.speed));
2571		header[1] =
2572			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2573							  p->payload_length));
2574	}
2575
2576	if (p->header_length > 0) {
2577		d[2].req_count    = cpu_to_le16(p->header_length);
2578		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2579		memcpy(&d[z], p->header, p->header_length);
2580	}
2581
2582	pd = d + z - payload_z;
2583	payload_end_index = payload_index + p->payload_length;
2584	for (i = 0; i < payload_z; i++) {
2585		page               = payload_index >> PAGE_SHIFT;
2586		offset             = payload_index & ~PAGE_MASK;
2587		next_page_index    = (page + 1) << PAGE_SHIFT;
2588		length             =
2589			min(next_page_index, payload_end_index) - payload_index;
2590		pd[i].req_count    = cpu_to_le16(length);
2591
2592		page_bus = page_private(buffer->pages[page]);
2593		pd[i].data_address = cpu_to_le32(page_bus + offset);
2594
2595		payload_index += length;
2596	}
2597
2598	if (p->interrupt)
2599		irq = DESCRIPTOR_IRQ_ALWAYS;
2600	else
2601		irq = DESCRIPTOR_NO_IRQ;
2602
2603	last = z == 2 ? d : d + z - 1;
2604	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2605				     DESCRIPTOR_STATUS |
2606				     DESCRIPTOR_BRANCH_ALWAYS |
2607				     irq);
2608
2609	context_append(&ctx->context, d, z, header_z);
2610
2611	return 0;
2612}
2613
2614static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2615				       struct fw_iso_packet *packet,
2616				       struct fw_iso_buffer *buffer,
2617				       unsigned long payload)
2618{
2619	struct descriptor *d, *pd;
2620	dma_addr_t d_bus, page_bus;
2621	u32 z, header_z, rest;
2622	int i, j, length;
2623	int page, offset, packet_count, header_size, payload_per_buffer;
2624
2625	/*
2626	 * The OHCI controller puts the isochronous header and trailer in the
2627	 * buffer, so we need at least 8 bytes.
2628	 */
2629	packet_count = packet->header_length / ctx->base.header_size;
2630	header_size  = max(ctx->base.header_size, (size_t)8);
2631
2632	/* Get header size in number of descriptors. */
2633	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2634	page     = payload >> PAGE_SHIFT;
2635	offset   = payload & ~PAGE_MASK;
2636	payload_per_buffer = packet->payload_length / packet_count;
2637
2638	for (i = 0; i < packet_count; i++) {
2639		/* d points to the header descriptor */
2640		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2641		d = context_get_descriptors(&ctx->context,
2642				z + header_z, &d_bus);
2643		if (d == NULL)
2644			return -ENOMEM;
2645
2646		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2647					      DESCRIPTOR_INPUT_MORE);
2648		if (packet->skip && i == 0)
2649			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2650		d->req_count    = cpu_to_le16(header_size);
2651		d->res_count    = d->req_count;
2652		d->transfer_status = 0;
2653		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2654
2655		rest = payload_per_buffer;
2656		pd = d;
2657		for (j = 1; j < z; j++) {
2658			pd++;
2659			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2660						  DESCRIPTOR_INPUT_MORE);
2661
2662			if (offset + rest < PAGE_SIZE)
2663				length = rest;
2664			else
2665				length = PAGE_SIZE - offset;
2666			pd->req_count = cpu_to_le16(length);
2667			pd->res_count = pd->req_count;
2668			pd->transfer_status = 0;
2669
2670			page_bus = page_private(buffer->pages[page]);
2671			pd->data_address = cpu_to_le32(page_bus + offset);
2672
2673			offset = (offset + length) & ~PAGE_MASK;
2674			rest -= length;
2675			if (offset == 0)
2676				page++;
2677		}
2678		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2679					  DESCRIPTOR_INPUT_LAST |
2680					  DESCRIPTOR_BRANCH_ALWAYS);
2681		if (packet->interrupt && i == packet_count - 1)
2682			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2683
2684		context_append(&ctx->context, d, z, header_z);
2685	}
2686
2687	return 0;
2688}
2689
2690static int queue_iso_buffer_fill(struct iso_context *ctx,
2691				 struct fw_iso_packet *packet,
2692				 struct fw_iso_buffer *buffer,
2693				 unsigned long payload)
2694{
2695	struct descriptor *d;
2696	dma_addr_t d_bus, page_bus;
2697	int page, offset, rest, z, i, length;
2698
2699	page   = payload >> PAGE_SHIFT;
2700	offset = payload & ~PAGE_MASK;
2701	rest   = packet->payload_length;
2702
2703	/* We need one descriptor for each page in the buffer. */
2704	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2705
2706	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2707		return -EFAULT;
2708
2709	for (i = 0; i < z; i++) {
2710		d = context_get_descriptors(&ctx->context, 1, &d_bus);
2711		if (d == NULL)
2712			return -ENOMEM;
2713
2714		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2715					 DESCRIPTOR_BRANCH_ALWAYS);
2716		if (packet->skip && i == 0)
2717			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2718		if (packet->interrupt && i == z - 1)
2719			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2720
2721		if (offset + rest < PAGE_SIZE)
2722			length = rest;
2723		else
2724			length = PAGE_SIZE - offset;
2725		d->req_count = cpu_to_le16(length);
2726		d->res_count = d->req_count;
2727		d->transfer_status = 0;
2728
2729		page_bus = page_private(buffer->pages[page]);
2730		d->data_address = cpu_to_le32(page_bus + offset);
2731
2732		rest -= length;
2733		offset = 0;
2734		page++;
2735
2736		context_append(&ctx->context, d, 1, 0);
2737	}
2738
2739	return 0;
2740}
2741
2742static int ohci_queue_iso(struct fw_iso_context *base,
2743			  struct fw_iso_packet *packet,
2744			  struct fw_iso_buffer *buffer,
2745			  unsigned long payload)
2746{
2747	struct iso_context *ctx = container_of(base, struct iso_context, base);
2748	unsigned long flags;
2749	int ret = -ENOSYS;
2750
2751	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2752	switch (base->type) {
2753	case FW_ISO_CONTEXT_TRANSMIT:
2754		ret = queue_iso_transmit(ctx, packet, buffer, payload);
2755		break;
2756	case FW_ISO_CONTEXT_RECEIVE:
2757		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2758		break;
2759	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2760		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2761		break;
2762	}
2763	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2764
2765	return ret;
2766}
2767
2768static const struct fw_card_driver ohci_driver = {
2769	.enable			= ohci_enable,
2770	.read_phy_reg		= ohci_read_phy_reg,
2771	.update_phy_reg		= ohci_update_phy_reg,
2772	.set_config_rom		= ohci_set_config_rom,
2773	.send_request		= ohci_send_request,
2774	.send_response		= ohci_send_response,
2775	.cancel_packet		= ohci_cancel_packet,
2776	.enable_phys_dma	= ohci_enable_phys_dma,
2777	.read_csr		= ohci_read_csr,
2778	.write_csr		= ohci_write_csr,
2779
2780	.allocate_iso_context	= ohci_allocate_iso_context,
2781	.free_iso_context	= ohci_free_iso_context,
2782	.set_iso_channels	= ohci_set_iso_channels,
2783	.queue_iso		= ohci_queue_iso,
2784	.start_iso		= ohci_start_iso,
2785	.stop_iso		= ohci_stop_iso,
2786};
2787
2788#ifdef CONFIG_PPC_PMAC
2789static void pmac_ohci_on(struct pci_dev *dev)
2790{
2791	if (machine_is(powermac)) {
2792		struct device_node *ofn = pci_device_to_OF_node(dev);
2793
2794		if (ofn) {
2795			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2796			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2797		}
2798	}
2799}
2800
2801static void pmac_ohci_off(struct pci_dev *dev)
2802{
2803	if (machine_is(powermac)) {
2804		struct device_node *ofn = pci_device_to_OF_node(dev);
2805
2806		if (ofn) {
2807			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2808			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2809		}
2810	}
2811}
2812#else
2813static inline void pmac_ohci_on(struct pci_dev *dev) {}
2814static inline void pmac_ohci_off(struct pci_dev *dev) {}
2815#endif /* CONFIG_PPC_PMAC */
2816
2817static int __devinit pci_probe(struct pci_dev *dev,
2818			       const struct pci_device_id *ent)
2819{
2820	struct fw_ohci *ohci;
2821	u32 bus_options, max_receive, link_speed, version;
2822	u64 guid;
2823	int i, err, n_ir, n_it;
2824	size_t size;
2825
2826	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2827	if (ohci == NULL) {
2828		err = -ENOMEM;
2829		goto fail;
2830	}
2831
2832	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2833
2834	pmac_ohci_on(dev);
2835
2836	err = pci_enable_device(dev);
2837	if (err) {
2838		fw_error("Failed to enable OHCI hardware\n");
2839		goto fail_free;
2840	}
2841
2842	pci_set_master(dev);
2843	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2844	pci_set_drvdata(dev, ohci);
2845
2846	spin_lock_init(&ohci->lock);
2847	mutex_init(&ohci->phy_reg_mutex);
2848
2849	tasklet_init(&ohci->bus_reset_tasklet,
2850		     bus_reset_tasklet, (unsigned long)ohci);
2851
2852	err = pci_request_region(dev, 0, ohci_driver_name);
2853	if (err) {
2854		fw_error("MMIO resource unavailable\n");
2855		goto fail_disable;
2856	}
2857
2858	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2859	if (ohci->registers == NULL) {
2860		fw_error("Failed to remap registers\n");
2861		err = -ENXIO;
2862		goto fail_iomem;
2863	}
2864
2865	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2866		if ((ohci_quirks[i].vendor == dev->vendor) &&
2867		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
2868		     ohci_quirks[i].device == dev->device) &&
2869		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
2870		     ohci_quirks[i].revision >= dev->revision)) {
2871			ohci->quirks = ohci_quirks[i].flags;
2872			break;
2873		}
2874	if (param_quirks)
2875		ohci->quirks = param_quirks;
2876
2877	ar_context_init(&ohci->ar_request_ctx, ohci,
2878			OHCI1394_AsReqRcvContextControlSet);
2879
2880	ar_context_init(&ohci->ar_response_ctx, ohci,
2881			OHCI1394_AsRspRcvContextControlSet);
2882
2883	context_init(&ohci->at_request_ctx, ohci,
2884		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2885
2886	context_init(&ohci->at_response_ctx, ohci,
2887		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2888
2889	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2890	ohci->ir_context_channels = ~0ULL;
2891	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2892	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2893	n_ir = hweight32(ohci->ir_context_mask);
2894	size = sizeof(struct iso_context) * n_ir;
2895	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2896
2897	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2898	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2899	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2900	n_it = hweight32(ohci->it_context_mask);
2901	size = sizeof(struct iso_context) * n_it;
2902	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2903
2904	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2905		err = -ENOMEM;
2906		goto fail_contexts;
2907	}
2908
2909	/* self-id dma buffer allocation */
2910	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2911					       SELF_ID_BUF_SIZE,
2912					       &ohci->self_id_bus,
2913					       GFP_KERNEL);
2914	if (ohci->self_id_cpu == NULL) {
2915		err = -ENOMEM;
2916		goto fail_contexts;
2917	}
2918
2919	bus_options = reg_read(ohci, OHCI1394_BusOptions);
2920	max_receive = (bus_options >> 12) & 0xf;
2921	link_speed = bus_options & 0x7;
2922	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2923		reg_read(ohci, OHCI1394_GUIDLo);
2924
2925	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2926	if (err)
2927		goto fail_self_id;
2928
2929	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2930	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2931		  "%d IR + %d IT contexts, quirks 0x%x\n",
2932		  dev_name(&dev->dev), version >> 16, version & 0xff,
2933		  n_ir, n_it, ohci->quirks);
2934
2935	return 0;
2936
2937 fail_self_id:
2938	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2939			  ohci->self_id_cpu, ohci->self_id_bus);
2940 fail_contexts:
2941	kfree(ohci->ir_context_list);
2942	kfree(ohci->it_context_list);
2943	context_release(&ohci->at_response_ctx);
2944	context_release(&ohci->at_request_ctx);
2945	ar_context_release(&ohci->ar_response_ctx);
2946	ar_context_release(&ohci->ar_request_ctx);
2947	pci_iounmap(dev, ohci->registers);
2948 fail_iomem:
2949	pci_release_region(dev, 0);
2950 fail_disable:
2951	pci_disable_device(dev);
2952 fail_free:
2953	kfree(&ohci->card);
2954	pmac_ohci_off(dev);
2955 fail:
2956	if (err == -ENOMEM)
2957		fw_error("Out of memory\n");
2958
2959	return err;
2960}
2961
2962static void pci_remove(struct pci_dev *dev)
2963{
2964	struct fw_ohci *ohci;
2965
2966	ohci = pci_get_drvdata(dev);
2967	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2968	flush_writes(ohci);
2969	fw_core_remove_card(&ohci->card);
2970
2971
2972	software_reset(ohci);
2973	free_irq(dev->irq, ohci);
2974
2975	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2976		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2977				  ohci->next_config_rom, ohci->next_config_rom_bus);
2978	if (ohci->config_rom)
2979		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2980				  ohci->config_rom, ohci->config_rom_bus);
2981	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2982			  ohci->self_id_cpu, ohci->self_id_bus);
2983	ar_context_release(&ohci->ar_request_ctx);
2984	ar_context_release(&ohci->ar_response_ctx);
2985	context_release(&ohci->at_request_ctx);
2986	context_release(&ohci->at_response_ctx);
2987	kfree(ohci->it_context_list);
2988	kfree(ohci->ir_context_list);
2989	pci_disable_msi(dev);
2990	pci_iounmap(dev, ohci->registers);
2991	pci_release_region(dev, 0);
2992	pci_disable_device(dev);
2993	kfree(&ohci->card);
2994	pmac_ohci_off(dev);
2995
2996	fw_notify("Removed fw-ohci device.\n");
2997}
2998
2999#ifdef CONFIG_PM
3000static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3001{
3002	struct fw_ohci *ohci = pci_get_drvdata(dev);
3003	int err;
3004
3005	software_reset(ohci);
3006	free_irq(dev->irq, ohci);
3007	pci_disable_msi(dev);
3008	err = pci_save_state(dev);
3009	if (err) {
3010		fw_error("pci_save_state failed\n");
3011		return err;
3012	}
3013	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3014	if (err)
3015		fw_error("pci_set_power_state failed with %d\n", err);
3016	pmac_ohci_off(dev);
3017
3018	return 0;
3019}
3020
3021static int pci_resume(struct pci_dev *dev)
3022{
3023	struct fw_ohci *ohci = pci_get_drvdata(dev);
3024	int err;
3025
3026	pmac_ohci_on(dev);
3027	pci_set_power_state(dev, PCI_D0);
3028	pci_restore_state(dev);
3029	err = pci_enable_device(dev);
3030	if (err) {
3031		fw_error("pci_enable_device failed\n");
3032		return err;
3033	}
3034
3035	return ohci_enable(&ohci->card, NULL, 0);
3036}
3037#endif
3038
3039static const struct pci_device_id pci_table[] = {
3040	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3041	{ }
3042};
3043
3044MODULE_DEVICE_TABLE(pci, pci_table);
3045
3046static struct pci_driver fw_ohci_pci_driver = {
3047	.name		= ohci_driver_name,
3048	.id_table	= pci_table,
3049	.probe		= pci_probe,
3050	.remove		= pci_remove,
3051#ifdef CONFIG_PM
3052	.resume		= pci_resume,
3053	.suspend	= pci_suspend,
3054#endif
3055};
3056
3057MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3058MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3059MODULE_LICENSE("GPL");
3060
3061/* Provide a module alias so root-on-sbp2 initrds don't break. */
3062#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3063MODULE_ALIAS("ohci1394");
3064#endif
3065
3066static int __init fw_ohci_init(void)
3067{
3068	return pci_register_driver(&fw_ohci_pci_driver);
3069}
3070
3071static void __exit fw_ohci_cleanup(void)
3072{
3073	pci_unregister_driver(&fw_ohci_pci_driver);
3074}
3075
3076module_init(fw_ohci_init);
3077module_exit(fw_ohci_cleanup);
3078