• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/crypto/
1/*
2 * Intel IXP4xx NPE-C crypto driver
3 *
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
9 *
10 */
11
12#include <linux/platform_device.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmapool.h>
15#include <linux/crypto.h>
16#include <linux/kernel.h>
17#include <linux/rtnetlink.h>
18#include <linux/interrupt.h>
19#include <linux/spinlock.h>
20#include <linux/gfp.h>
21
22#include <crypto/ctr.h>
23#include <crypto/des.h>
24#include <crypto/aes.h>
25#include <crypto/sha.h>
26#include <crypto/algapi.h>
27#include <crypto/aead.h>
28#include <crypto/authenc.h>
29#include <crypto/scatterwalk.h>
30
31#include <mach/npe.h>
32#include <mach/qmgr.h>
33
34#define MAX_KEYLEN 32
35
36/* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
37#define NPE_CTX_LEN 80
38#define AES_BLOCK128 16
39
40#define NPE_OP_HASH_VERIFY   0x01
41#define NPE_OP_CCM_ENABLE    0x04
42#define NPE_OP_CRYPT_ENABLE  0x08
43#define NPE_OP_HASH_ENABLE   0x10
44#define NPE_OP_NOT_IN_PLACE  0x20
45#define NPE_OP_HMAC_DISABLE  0x40
46#define NPE_OP_CRYPT_ENCRYPT 0x80
47
48#define NPE_OP_CCM_GEN_MIC   0xcc
49#define NPE_OP_HASH_GEN_ICV  0x50
50#define NPE_OP_ENC_GEN_KEY   0xc9
51
52#define MOD_ECB     0x0000
53#define MOD_CTR     0x1000
54#define MOD_CBC_ENC 0x2000
55#define MOD_CBC_DEC 0x3000
56#define MOD_CCM_ENC 0x4000
57#define MOD_CCM_DEC 0x5000
58
59#define KEYLEN_128  4
60#define KEYLEN_192  6
61#define KEYLEN_256  8
62
63#define CIPH_DECR   0x0000
64#define CIPH_ENCR   0x0400
65
66#define MOD_DES     0x0000
67#define MOD_TDEA2   0x0100
68#define MOD_3DES   0x0200
69#define MOD_AES     0x0800
70#define MOD_AES128  (0x0800 | KEYLEN_128)
71#define MOD_AES192  (0x0900 | KEYLEN_192)
72#define MOD_AES256  (0x0a00 | KEYLEN_256)
73
74#define MAX_IVLEN   16
75#define NPE_ID      2  /* NPE C */
76#define NPE_QLEN    16
77/* Space for registering when the first
78 * NPE_QLEN crypt_ctl are busy */
79#define NPE_QLEN_TOTAL 64
80
81#define SEND_QID    29
82#define RECV_QID    30
83
84#define CTL_FLAG_UNUSED		0x0000
85#define CTL_FLAG_USED		0x1000
86#define CTL_FLAG_PERFORM_ABLK	0x0001
87#define CTL_FLAG_GEN_ICV	0x0002
88#define CTL_FLAG_GEN_REVAES	0x0004
89#define CTL_FLAG_PERFORM_AEAD	0x0008
90#define CTL_FLAG_MASK		0x000f
91
92#define HMAC_IPAD_VALUE   0x36
93#define HMAC_OPAD_VALUE   0x5C
94#define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95
96#define MD5_DIGEST_SIZE   16
97
98struct buffer_desc {
99	u32 phys_next;
100#ifdef __ARMEB__
101	u16 buf_len;
102	u16 pkt_len;
103#else
104	u16 pkt_len;
105	u16 buf_len;
106#endif
107	u32 phys_addr;
108	u32 __reserved[4];
109	struct buffer_desc *next;
110	enum dma_data_direction dir;
111};
112
113struct crypt_ctl {
114#ifdef __ARMEB__
115	u8 mode;		/* NPE_OP_*  operation mode */
116	u8 init_len;
117	u16 reserved;
118#else
119	u16 reserved;
120	u8 init_len;
121	u8 mode;		/* NPE_OP_*  operation mode */
122#endif
123	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
124	u32 icv_rev_aes;	/* icv or rev aes */
125	u32 src_buf;
126	u32 dst_buf;
127#ifdef __ARMEB__
128	u16 auth_offs;		/* Authentication start offset */
129	u16 auth_len;		/* Authentication data length */
130	u16 crypt_offs;		/* Cryption start offset */
131	u16 crypt_len;		/* Cryption data length */
132#else
133	u16 auth_len;		/* Authentication data length */
134	u16 auth_offs;		/* Authentication start offset */
135	u16 crypt_len;		/* Cryption data length */
136	u16 crypt_offs;		/* Cryption start offset */
137#endif
138	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
139	u32 crypto_ctx;		/* NPE Crypto Param structure address */
140
141	/* Used by Host: 4*4 bytes*/
142	unsigned ctl_flags;
143	union {
144		struct ablkcipher_request *ablk_req;
145		struct aead_request *aead_req;
146		struct crypto_tfm *tfm;
147	} data;
148	struct buffer_desc *regist_buf;
149	u8 *regist_ptr;
150};
151
152struct ablk_ctx {
153	struct buffer_desc *src;
154	struct buffer_desc *dst;
155};
156
157struct aead_ctx {
158	struct buffer_desc *buffer;
159	struct scatterlist ivlist;
160	/* used when the hmac is not on one sg entry */
161	u8 *hmac_virt;
162	int encrypt;
163};
164
165struct ix_hash_algo {
166	u32 cfgword;
167	unsigned char *icv;
168};
169
170struct ix_sa_dir {
171	unsigned char *npe_ctx;
172	dma_addr_t npe_ctx_phys;
173	int npe_ctx_idx;
174	u8 npe_mode;
175};
176
177struct ixp_ctx {
178	struct ix_sa_dir encrypt;
179	struct ix_sa_dir decrypt;
180	int authkey_len;
181	u8 authkey[MAX_KEYLEN];
182	int enckey_len;
183	u8 enckey[MAX_KEYLEN];
184	u8 salt[MAX_IVLEN];
185	u8 nonce[CTR_RFC3686_NONCE_SIZE];
186	unsigned salted;
187	atomic_t configuring;
188	struct completion completion;
189};
190
191struct ixp_alg {
192	struct crypto_alg crypto;
193	const struct ix_hash_algo *hash;
194	u32 cfg_enc;
195	u32 cfg_dec;
196
197	int registered;
198};
199
200static const struct ix_hash_algo hash_alg_md5 = {
201	.cfgword	= 0xAA010004,
202	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
203			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
204};
205static const struct ix_hash_algo hash_alg_sha1 = {
206	.cfgword	= 0x00000005,
207	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
208			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
209};
210
211static struct npe *npe_c;
212static struct dma_pool *buffer_pool = NULL;
213static struct dma_pool *ctx_pool = NULL;
214
215static struct crypt_ctl *crypt_virt = NULL;
216static dma_addr_t crypt_phys;
217
218static int support_aes = 1;
219
220static void dev_release(struct device *dev)
221{
222	return;
223}
224
225#define DRIVER_NAME "ixp4xx_crypto"
226static struct platform_device pseudo_dev = {
227	.name = DRIVER_NAME,
228	.id   = 0,
229	.num_resources = 0,
230	.dev  = {
231		.coherent_dma_mask = DMA_BIT_MASK(32),
232		.release = dev_release,
233	}
234};
235
236static struct device *dev = &pseudo_dev.dev;
237
238static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
239{
240	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
241}
242
243static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
244{
245	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
246}
247
248static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
249{
250	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
251}
252
253static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
254{
255	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
256}
257
258static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
259{
260	return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
261}
262
263static int setup_crypt_desc(void)
264{
265	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
266	crypt_virt = dma_alloc_coherent(dev,
267			NPE_QLEN * sizeof(struct crypt_ctl),
268			&crypt_phys, GFP_KERNEL);
269	if (!crypt_virt)
270		return -ENOMEM;
271	memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
272	return 0;
273}
274
275static spinlock_t desc_lock;
276static struct crypt_ctl *get_crypt_desc(void)
277{
278	int i;
279	static int idx = 0;
280	unsigned long flags;
281
282	spin_lock_irqsave(&desc_lock, flags);
283
284	if (unlikely(!crypt_virt))
285		setup_crypt_desc();
286	if (unlikely(!crypt_virt)) {
287		spin_unlock_irqrestore(&desc_lock, flags);
288		return NULL;
289	}
290	i = idx;
291	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
292		if (++idx >= NPE_QLEN)
293			idx = 0;
294		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
295		spin_unlock_irqrestore(&desc_lock, flags);
296		return crypt_virt +i;
297	} else {
298		spin_unlock_irqrestore(&desc_lock, flags);
299		return NULL;
300	}
301}
302
303static spinlock_t emerg_lock;
304static struct crypt_ctl *get_crypt_desc_emerg(void)
305{
306	int i;
307	static int idx = NPE_QLEN;
308	struct crypt_ctl *desc;
309	unsigned long flags;
310
311	desc = get_crypt_desc();
312	if (desc)
313		return desc;
314	if (unlikely(!crypt_virt))
315		return NULL;
316
317	spin_lock_irqsave(&emerg_lock, flags);
318	i = idx;
319	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
320		if (++idx >= NPE_QLEN_TOTAL)
321			idx = NPE_QLEN;
322		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
323		spin_unlock_irqrestore(&emerg_lock, flags);
324		return crypt_virt +i;
325	} else {
326		spin_unlock_irqrestore(&emerg_lock, flags);
327		return NULL;
328	}
329}
330
331static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
332{
333	while (buf) {
334		struct buffer_desc *buf1;
335		u32 phys1;
336
337		buf1 = buf->next;
338		phys1 = buf->phys_next;
339		dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
340		dma_pool_free(buffer_pool, buf, phys);
341		buf = buf1;
342		phys = phys1;
343	}
344}
345
346static struct tasklet_struct crypto_done_tasklet;
347
348static void finish_scattered_hmac(struct crypt_ctl *crypt)
349{
350	struct aead_request *req = crypt->data.aead_req;
351	struct aead_ctx *req_ctx = aead_request_ctx(req);
352	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
353	int authsize = crypto_aead_authsize(tfm);
354	int decryptlen = req->cryptlen - authsize;
355
356	if (req_ctx->encrypt) {
357		scatterwalk_map_and_copy(req_ctx->hmac_virt,
358			req->src, decryptlen, authsize, 1);
359	}
360	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
361}
362
363static void one_packet(dma_addr_t phys)
364{
365	struct crypt_ctl *crypt;
366	struct ixp_ctx *ctx;
367	int failed;
368
369	failed = phys & 0x1 ? -EBADMSG : 0;
370	phys &= ~0x3;
371	crypt = crypt_phys2virt(phys);
372
373	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
374	case CTL_FLAG_PERFORM_AEAD: {
375		struct aead_request *req = crypt->data.aead_req;
376		struct aead_ctx *req_ctx = aead_request_ctx(req);
377
378		free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
379		if (req_ctx->hmac_virt) {
380			finish_scattered_hmac(crypt);
381		}
382		req->base.complete(&req->base, failed);
383		break;
384	}
385	case CTL_FLAG_PERFORM_ABLK: {
386		struct ablkcipher_request *req = crypt->data.ablk_req;
387		struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
388
389		if (req_ctx->dst) {
390			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
391		}
392		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393		req->base.complete(&req->base, failed);
394		break;
395	}
396	case CTL_FLAG_GEN_ICV:
397		ctx = crypto_tfm_ctx(crypt->data.tfm);
398		dma_pool_free(ctx_pool, crypt->regist_ptr,
399				crypt->regist_buf->phys_addr);
400		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401		if (atomic_dec_and_test(&ctx->configuring))
402			complete(&ctx->completion);
403		break;
404	case CTL_FLAG_GEN_REVAES:
405		ctx = crypto_tfm_ctx(crypt->data.tfm);
406		*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407		if (atomic_dec_and_test(&ctx->configuring))
408			complete(&ctx->completion);
409		break;
410	default:
411		BUG();
412	}
413	crypt->ctl_flags = CTL_FLAG_UNUSED;
414}
415
416static void irqhandler(void *_unused)
417{
418	tasklet_schedule(&crypto_done_tasklet);
419}
420
421static void crypto_done_action(unsigned long arg)
422{
423	int i;
424
425	for(i=0; i<4; i++) {
426		dma_addr_t phys = qmgr_get_entry(RECV_QID);
427		if (!phys)
428			return;
429		one_packet(phys);
430	}
431	tasklet_schedule(&crypto_done_tasklet);
432}
433
434static int init_ixp_crypto(void)
435{
436	int ret = -ENODEV;
437	u32 msg[2] = { 0, 0 };
438
439	if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440				IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441		printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442		return ret;
443	}
444	npe_c = npe_request(NPE_ID);
445	if (!npe_c)
446		return ret;
447
448	if (!npe_running(npe_c)) {
449		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450		if (ret) {
451			return ret;
452		}
453		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454			goto npe_error;
455	} else {
456		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
457			goto npe_error;
458
459		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
460			goto npe_error;
461	}
462
463	switch ((msg[1]>>16) & 0xff) {
464	case 3:
465		printk(KERN_WARNING "Firmware of %s lacks AES support\n",
466				npe_name(npe_c));
467		support_aes = 0;
468		break;
469	case 4:
470	case 5:
471		support_aes = 1;
472		break;
473	default:
474		printk(KERN_ERR "Firmware of %s lacks crypto support\n",
475			npe_name(npe_c));
476		return -ENODEV;
477	}
478	/* buffer_pool will also be used to sometimes store the hmac,
479	 * so assure it is large enough
480	 */
481	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482	buffer_pool = dma_pool_create("buffer", dev,
483			sizeof(struct buffer_desc), 32, 0);
484	ret = -ENOMEM;
485	if (!buffer_pool) {
486		goto err;
487	}
488	ctx_pool = dma_pool_create("context", dev,
489			NPE_CTX_LEN, 16, 0);
490	if (!ctx_pool) {
491		goto err;
492	}
493	ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494				 "ixp_crypto:out", NULL);
495	if (ret)
496		goto err;
497	ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498				 "ixp_crypto:in", NULL);
499	if (ret) {
500		qmgr_release_queue(SEND_QID);
501		goto err;
502	}
503	qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
505
506	qmgr_enable_irq(RECV_QID);
507	return 0;
508
509npe_error:
510	printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511	ret = -EIO;
512err:
513	if (ctx_pool)
514		dma_pool_destroy(ctx_pool);
515	if (buffer_pool)
516		dma_pool_destroy(buffer_pool);
517	npe_release(npe_c);
518	return ret;
519}
520
521static void release_ixp_crypto(void)
522{
523	qmgr_disable_irq(RECV_QID);
524	tasklet_kill(&crypto_done_tasklet);
525
526	qmgr_release_queue(SEND_QID);
527	qmgr_release_queue(RECV_QID);
528
529	dma_pool_destroy(ctx_pool);
530	dma_pool_destroy(buffer_pool);
531
532	npe_release(npe_c);
533
534	if (crypt_virt) {
535		dma_free_coherent(dev,
536			NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
537			crypt_virt, crypt_phys);
538	}
539	return;
540}
541
542static void reset_sa_dir(struct ix_sa_dir *dir)
543{
544	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
545	dir->npe_ctx_idx = 0;
546	dir->npe_mode = 0;
547}
548
549static int init_sa_dir(struct ix_sa_dir *dir)
550{
551	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
552	if (!dir->npe_ctx) {
553		return -ENOMEM;
554	}
555	reset_sa_dir(dir);
556	return 0;
557}
558
559static void free_sa_dir(struct ix_sa_dir *dir)
560{
561	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
562	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
563}
564
565static int init_tfm(struct crypto_tfm *tfm)
566{
567	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
568	int ret;
569
570	atomic_set(&ctx->configuring, 0);
571	ret = init_sa_dir(&ctx->encrypt);
572	if (ret)
573		return ret;
574	ret = init_sa_dir(&ctx->decrypt);
575	if (ret) {
576		free_sa_dir(&ctx->encrypt);
577	}
578	return ret;
579}
580
581static int init_tfm_ablk(struct crypto_tfm *tfm)
582{
583	tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
584	return init_tfm(tfm);
585}
586
587static int init_tfm_aead(struct crypto_tfm *tfm)
588{
589	tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
590	return init_tfm(tfm);
591}
592
593static void exit_tfm(struct crypto_tfm *tfm)
594{
595	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
596	free_sa_dir(&ctx->encrypt);
597	free_sa_dir(&ctx->decrypt);
598}
599
600static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
601		int init_len, u32 ctx_addr, const u8 *key, int key_len)
602{
603	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
604	struct crypt_ctl *crypt;
605	struct buffer_desc *buf;
606	int i;
607	u8 *pad;
608	u32 pad_phys, buf_phys;
609
610	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
611	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
612	if (!pad)
613		return -ENOMEM;
614	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
615	if (!buf) {
616		dma_pool_free(ctx_pool, pad, pad_phys);
617		return -ENOMEM;
618	}
619	crypt = get_crypt_desc_emerg();
620	if (!crypt) {
621		dma_pool_free(ctx_pool, pad, pad_phys);
622		dma_pool_free(buffer_pool, buf, buf_phys);
623		return -EAGAIN;
624	}
625
626	memcpy(pad, key, key_len);
627	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
628	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
629		pad[i] ^= xpad;
630	}
631
632	crypt->data.tfm = tfm;
633	crypt->regist_ptr = pad;
634	crypt->regist_buf = buf;
635
636	crypt->auth_offs = 0;
637	crypt->auth_len = HMAC_PAD_BLOCKLEN;
638	crypt->crypto_ctx = ctx_addr;
639	crypt->src_buf = buf_phys;
640	crypt->icv_rev_aes = target;
641	crypt->mode = NPE_OP_HASH_GEN_ICV;
642	crypt->init_len = init_len;
643	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
644
645	buf->next = 0;
646	buf->buf_len = HMAC_PAD_BLOCKLEN;
647	buf->pkt_len = 0;
648	buf->phys_addr = pad_phys;
649
650	atomic_inc(&ctx->configuring);
651	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
652	BUG_ON(qmgr_stat_overflow(SEND_QID));
653	return 0;
654}
655
656static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
657		const u8 *key, int key_len, unsigned digest_len)
658{
659	u32 itarget, otarget, npe_ctx_addr;
660	unsigned char *cinfo;
661	int init_len, ret = 0;
662	u32 cfgword;
663	struct ix_sa_dir *dir;
664	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
665	const struct ix_hash_algo *algo;
666
667	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
668	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
669	algo = ix_hash(tfm);
670
671	/* write cfg word to cryptinfo */
672	cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
673#ifndef __ARMEB__
674	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
675#endif
676	*(u32*)cinfo = cpu_to_be32(cfgword);
677	cinfo += sizeof(cfgword);
678
679	/* write ICV to cryptinfo */
680	memcpy(cinfo, algo->icv, digest_len);
681	cinfo += digest_len;
682
683	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
684				+ sizeof(algo->cfgword);
685	otarget = itarget + digest_len;
686	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
687	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
688
689	dir->npe_ctx_idx += init_len;
690	dir->npe_mode |= NPE_OP_HASH_ENABLE;
691
692	if (!encrypt)
693		dir->npe_mode |= NPE_OP_HASH_VERIFY;
694
695	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
696			init_len, npe_ctx_addr, key, key_len);
697	if (ret)
698		return ret;
699	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
700			init_len, npe_ctx_addr, key, key_len);
701}
702
703static int gen_rev_aes_key(struct crypto_tfm *tfm)
704{
705	struct crypt_ctl *crypt;
706	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
707	struct ix_sa_dir *dir = &ctx->decrypt;
708
709	crypt = get_crypt_desc_emerg();
710	if (!crypt) {
711		return -EAGAIN;
712	}
713	*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
714
715	crypt->data.tfm = tfm;
716	crypt->crypt_offs = 0;
717	crypt->crypt_len = AES_BLOCK128;
718	crypt->src_buf = 0;
719	crypt->crypto_ctx = dir->npe_ctx_phys;
720	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
721	crypt->mode = NPE_OP_ENC_GEN_KEY;
722	crypt->init_len = dir->npe_ctx_idx;
723	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
724
725	atomic_inc(&ctx->configuring);
726	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
727	BUG_ON(qmgr_stat_overflow(SEND_QID));
728	return 0;
729}
730
731static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
732		const u8 *key, int key_len)
733{
734	u8 *cinfo;
735	u32 cipher_cfg;
736	u32 keylen_cfg = 0;
737	struct ix_sa_dir *dir;
738	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
739	u32 *flags = &tfm->crt_flags;
740
741	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
742	cinfo = dir->npe_ctx;
743
744	if (encrypt) {
745		cipher_cfg = cipher_cfg_enc(tfm);
746		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
747	} else {
748		cipher_cfg = cipher_cfg_dec(tfm);
749	}
750	if (cipher_cfg & MOD_AES) {
751		switch (key_len) {
752			case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
753			case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
754			case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
755			default:
756				*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
757				return -EINVAL;
758		}
759		cipher_cfg |= keylen_cfg;
760	} else if (cipher_cfg & MOD_3DES) {
761		const u32 *K = (const u32 *)key;
762		if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
763			     !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
764		{
765			*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
766			return -EINVAL;
767		}
768	} else {
769		u32 tmp[DES_EXPKEY_WORDS];
770		if (des_ekey(tmp, key) == 0) {
771			*flags |= CRYPTO_TFM_RES_WEAK_KEY;
772		}
773	}
774	/* write cfg word to cryptinfo */
775	*(u32*)cinfo = cpu_to_be32(cipher_cfg);
776	cinfo += sizeof(cipher_cfg);
777
778	/* write cipher key to cryptinfo */
779	memcpy(cinfo, key, key_len);
780	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
781	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
782		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
783		key_len = DES3_EDE_KEY_SIZE;
784	}
785	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
786	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
787	if ((cipher_cfg & MOD_AES) && !encrypt) {
788		return gen_rev_aes_key(tfm);
789	}
790	return 0;
791}
792
793static struct buffer_desc *chainup_buffers(struct device *dev,
794		struct scatterlist *sg,	unsigned nbytes,
795		struct buffer_desc *buf, gfp_t flags,
796		enum dma_data_direction dir)
797{
798	for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
799		unsigned len = min(nbytes, sg->length);
800		struct buffer_desc *next_buf;
801		u32 next_buf_phys;
802		void *ptr;
803
804		nbytes -= len;
805		ptr = page_address(sg_page(sg)) + sg->offset;
806		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
807		if (!next_buf) {
808			buf = NULL;
809			break;
810		}
811		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
812		buf->next = next_buf;
813		buf->phys_next = next_buf_phys;
814		buf = next_buf;
815
816		buf->phys_addr = sg_dma_address(sg);
817		buf->buf_len = len;
818		buf->dir = dir;
819	}
820	buf->next = NULL;
821	buf->phys_next = 0;
822	return buf;
823}
824
825static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
826			unsigned int key_len)
827{
828	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
829	u32 *flags = &tfm->base.crt_flags;
830	int ret;
831
832	init_completion(&ctx->completion);
833	atomic_inc(&ctx->configuring);
834
835	reset_sa_dir(&ctx->encrypt);
836	reset_sa_dir(&ctx->decrypt);
837
838	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
839	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
840
841	ret = setup_cipher(&tfm->base, 0, key, key_len);
842	if (ret)
843		goto out;
844	ret = setup_cipher(&tfm->base, 1, key, key_len);
845	if (ret)
846		goto out;
847
848	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
849		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
850			ret = -EINVAL;
851		} else {
852			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
853		}
854	}
855out:
856	if (!atomic_dec_and_test(&ctx->configuring))
857		wait_for_completion(&ctx->completion);
858	return ret;
859}
860
861static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
862		unsigned int key_len)
863{
864	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
865
866	/* the nonce is stored in bytes at end of key */
867	if (key_len < CTR_RFC3686_NONCE_SIZE)
868		return -EINVAL;
869
870	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
871			CTR_RFC3686_NONCE_SIZE);
872
873	key_len -= CTR_RFC3686_NONCE_SIZE;
874	return ablk_setkey(tfm, key, key_len);
875}
876
877static int ablk_perform(struct ablkcipher_request *req, int encrypt)
878{
879	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
880	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
881	unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
882	struct ix_sa_dir *dir;
883	struct crypt_ctl *crypt;
884	unsigned int nbytes = req->nbytes;
885	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
886	struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
887	struct buffer_desc src_hook;
888	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
889				GFP_KERNEL : GFP_ATOMIC;
890
891	if (qmgr_stat_full(SEND_QID))
892		return -EAGAIN;
893	if (atomic_read(&ctx->configuring))
894		return -EAGAIN;
895
896	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
897
898	crypt = get_crypt_desc();
899	if (!crypt)
900		return -ENOMEM;
901
902	crypt->data.ablk_req = req;
903	crypt->crypto_ctx = dir->npe_ctx_phys;
904	crypt->mode = dir->npe_mode;
905	crypt->init_len = dir->npe_ctx_idx;
906
907	crypt->crypt_offs = 0;
908	crypt->crypt_len = nbytes;
909
910	BUG_ON(ivsize && !req->info);
911	memcpy(crypt->iv, req->info, ivsize);
912	if (req->src != req->dst) {
913		struct buffer_desc dst_hook;
914		crypt->mode |= NPE_OP_NOT_IN_PLACE;
915		/* This was never tested by Intel
916		 * for more than one dst buffer, I think. */
917		BUG_ON(req->dst->length < nbytes);
918		req_ctx->dst = NULL;
919		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
920					flags, DMA_FROM_DEVICE))
921			goto free_buf_dest;
922		src_direction = DMA_TO_DEVICE;
923		req_ctx->dst = dst_hook.next;
924		crypt->dst_buf = dst_hook.phys_next;
925	} else {
926		req_ctx->dst = NULL;
927	}
928	req_ctx->src = NULL;
929	if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
930				flags, src_direction))
931		goto free_buf_src;
932
933	req_ctx->src = src_hook.next;
934	crypt->src_buf = src_hook.phys_next;
935	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
936	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
937	BUG_ON(qmgr_stat_overflow(SEND_QID));
938	return -EINPROGRESS;
939
940free_buf_src:
941	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
942free_buf_dest:
943	if (req->src != req->dst) {
944		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
945	}
946	crypt->ctl_flags = CTL_FLAG_UNUSED;
947	return -ENOMEM;
948}
949
950static int ablk_encrypt(struct ablkcipher_request *req)
951{
952	return ablk_perform(req, 1);
953}
954
955static int ablk_decrypt(struct ablkcipher_request *req)
956{
957	return ablk_perform(req, 0);
958}
959
960static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
961{
962	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
963	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
964	u8 iv[CTR_RFC3686_BLOCK_SIZE];
965	u8 *info = req->info;
966	int ret;
967
968	/* set up counter block */
969        memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
970	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
971
972	/* initialize counter portion of counter block */
973	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
974		cpu_to_be32(1);
975
976	req->info = iv;
977	ret = ablk_perform(req, 1);
978	req->info = info;
979	return ret;
980}
981
982static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
983		unsigned int nbytes)
984{
985	int offset = 0;
986
987	if (!nbytes)
988		return 0;
989
990	for (;;) {
991		if (start < offset + sg->length)
992			break;
993
994		offset += sg->length;
995		sg = scatterwalk_sg_next(sg);
996	}
997	return (start + nbytes > offset + sg->length);
998}
999
1000static int aead_perform(struct aead_request *req, int encrypt,
1001		int cryptoffset, int eff_cryptlen, u8 *iv)
1002{
1003	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1004	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1005	unsigned ivsize = crypto_aead_ivsize(tfm);
1006	unsigned authsize = crypto_aead_authsize(tfm);
1007	struct ix_sa_dir *dir;
1008	struct crypt_ctl *crypt;
1009	unsigned int cryptlen;
1010	struct buffer_desc *buf, src_hook;
1011	struct aead_ctx *req_ctx = aead_request_ctx(req);
1012	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1013				GFP_KERNEL : GFP_ATOMIC;
1014
1015	if (qmgr_stat_full(SEND_QID))
1016		return -EAGAIN;
1017	if (atomic_read(&ctx->configuring))
1018		return -EAGAIN;
1019
1020	if (encrypt) {
1021		dir = &ctx->encrypt;
1022		cryptlen = req->cryptlen;
1023	} else {
1024		dir = &ctx->decrypt;
1025		/* req->cryptlen includes the authsize when decrypting */
1026		cryptlen = req->cryptlen -authsize;
1027		eff_cryptlen -= authsize;
1028	}
1029	crypt = get_crypt_desc();
1030	if (!crypt)
1031		return -ENOMEM;
1032
1033	crypt->data.aead_req = req;
1034	crypt->crypto_ctx = dir->npe_ctx_phys;
1035	crypt->mode = dir->npe_mode;
1036	crypt->init_len = dir->npe_ctx_idx;
1037
1038	crypt->crypt_offs = cryptoffset;
1039	crypt->crypt_len = eff_cryptlen;
1040
1041	crypt->auth_offs = 0;
1042	crypt->auth_len = req->assoclen + ivsize + cryptlen;
1043	BUG_ON(ivsize && !req->iv);
1044	memcpy(crypt->iv, req->iv, ivsize);
1045
1046	if (req->src != req->dst) {
1047		BUG(); /* -ENOTSUP because of my lazyness */
1048	}
1049
1050	/* ASSOC data */
1051	buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1052		flags, DMA_TO_DEVICE);
1053	req_ctx->buffer = src_hook.next;
1054	crypt->src_buf = src_hook.phys_next;
1055	if (!buf)
1056		goto out;
1057	/* IV */
1058	sg_init_table(&req_ctx->ivlist, 1);
1059	sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1060	buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1061			DMA_BIDIRECTIONAL);
1062	if (!buf)
1063		goto free_chain;
1064	if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1065		/* The 12 hmac bytes are scattered,
1066		 * we need to copy them into a safe buffer */
1067		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1068				&crypt->icv_rev_aes);
1069		if (unlikely(!req_ctx->hmac_virt))
1070			goto free_chain;
1071		if (!encrypt) {
1072			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1073				req->src, cryptlen, authsize, 0);
1074		}
1075		req_ctx->encrypt = encrypt;
1076	} else {
1077		req_ctx->hmac_virt = NULL;
1078	}
1079	/* Crypt */
1080	buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1081			DMA_BIDIRECTIONAL);
1082	if (!buf)
1083		goto free_hmac_virt;
1084	if (!req_ctx->hmac_virt) {
1085		crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1086	}
1087
1088	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1089	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1090	BUG_ON(qmgr_stat_overflow(SEND_QID));
1091	return -EINPROGRESS;
1092free_hmac_virt:
1093	if (req_ctx->hmac_virt) {
1094		dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1095				crypt->icv_rev_aes);
1096	}
1097free_chain:
1098	free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1099out:
1100	crypt->ctl_flags = CTL_FLAG_UNUSED;
1101	return -ENOMEM;
1102}
1103
1104static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1105{
1106	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1107	u32 *flags = &tfm->base.crt_flags;
1108	unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1109	int ret;
1110
1111	if (!ctx->enckey_len && !ctx->authkey_len)
1112		return 0;
1113	init_completion(&ctx->completion);
1114	atomic_inc(&ctx->configuring);
1115
1116	reset_sa_dir(&ctx->encrypt);
1117	reset_sa_dir(&ctx->decrypt);
1118
1119	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1120	if (ret)
1121		goto out;
1122	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1123	if (ret)
1124		goto out;
1125	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1126			ctx->authkey_len, digest_len);
1127	if (ret)
1128		goto out;
1129	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1130			ctx->authkey_len, digest_len);
1131	if (ret)
1132		goto out;
1133
1134	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1135		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1136			ret = -EINVAL;
1137			goto out;
1138		} else {
1139			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1140		}
1141	}
1142out:
1143	if (!atomic_dec_and_test(&ctx->configuring))
1144		wait_for_completion(&ctx->completion);
1145	return ret;
1146}
1147
1148static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1149{
1150	int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1151
1152	if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1153		return -EINVAL;
1154	return aead_setup(tfm, authsize);
1155}
1156
1157static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1158			unsigned int keylen)
1159{
1160	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1161	struct rtattr *rta = (struct rtattr *)key;
1162	struct crypto_authenc_key_param *param;
1163
1164	if (!RTA_OK(rta, keylen))
1165		goto badkey;
1166	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1167		goto badkey;
1168	if (RTA_PAYLOAD(rta) < sizeof(*param))
1169		goto badkey;
1170
1171	param = RTA_DATA(rta);
1172	ctx->enckey_len = be32_to_cpu(param->enckeylen);
1173
1174	key += RTA_ALIGN(rta->rta_len);
1175	keylen -= RTA_ALIGN(rta->rta_len);
1176
1177	if (keylen < ctx->enckey_len)
1178		goto badkey;
1179
1180	ctx->authkey_len = keylen - ctx->enckey_len;
1181	memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1182	memcpy(ctx->authkey, key, ctx->authkey_len);
1183
1184	return aead_setup(tfm, crypto_aead_authsize(tfm));
1185badkey:
1186	ctx->enckey_len = 0;
1187	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1188	return -EINVAL;
1189}
1190
1191static int aead_encrypt(struct aead_request *req)
1192{
1193	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1194	return aead_perform(req, 1, req->assoclen + ivsize,
1195			req->cryptlen, req->iv);
1196}
1197
1198static int aead_decrypt(struct aead_request *req)
1199{
1200	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1201	return aead_perform(req, 0, req->assoclen + ivsize,
1202			req->cryptlen, req->iv);
1203}
1204
1205static int aead_givencrypt(struct aead_givcrypt_request *req)
1206{
1207	struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1208	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1209	unsigned len, ivsize = crypto_aead_ivsize(tfm);
1210	__be64 seq;
1211
1212	/* copied from eseqiv.c */
1213	if (!ctx->salted) {
1214		get_random_bytes(ctx->salt, ivsize);
1215		ctx->salted = 1;
1216	}
1217	memcpy(req->areq.iv, ctx->salt, ivsize);
1218	len = ivsize;
1219	if (ivsize > sizeof(u64)) {
1220		memset(req->giv, 0, ivsize - sizeof(u64));
1221		len = sizeof(u64);
1222	}
1223	seq = cpu_to_be64(req->seq);
1224	memcpy(req->giv + ivsize - len, &seq, len);
1225	return aead_perform(&req->areq, 1, req->areq.assoclen,
1226			req->areq.cryptlen +ivsize, req->giv);
1227}
1228
1229static struct ixp_alg ixp4xx_algos[] = {
1230{
1231	.crypto	= {
1232		.cra_name	= "cbc(des)",
1233		.cra_blocksize	= DES_BLOCK_SIZE,
1234		.cra_u		= { .ablkcipher = {
1235			.min_keysize	= DES_KEY_SIZE,
1236			.max_keysize	= DES_KEY_SIZE,
1237			.ivsize		= DES_BLOCK_SIZE,
1238			.geniv		= "eseqiv",
1239			}
1240		}
1241	},
1242	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1243	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1244
1245}, {
1246	.crypto	= {
1247		.cra_name	= "ecb(des)",
1248		.cra_blocksize	= DES_BLOCK_SIZE,
1249		.cra_u		= { .ablkcipher = {
1250			.min_keysize	= DES_KEY_SIZE,
1251			.max_keysize	= DES_KEY_SIZE,
1252			}
1253		}
1254	},
1255	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1256	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1257}, {
1258	.crypto	= {
1259		.cra_name	= "cbc(des3_ede)",
1260		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1261		.cra_u		= { .ablkcipher = {
1262			.min_keysize	= DES3_EDE_KEY_SIZE,
1263			.max_keysize	= DES3_EDE_KEY_SIZE,
1264			.ivsize		= DES3_EDE_BLOCK_SIZE,
1265			.geniv		= "eseqiv",
1266			}
1267		}
1268	},
1269	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1270	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1271}, {
1272	.crypto	= {
1273		.cra_name	= "ecb(des3_ede)",
1274		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1275		.cra_u		= { .ablkcipher = {
1276			.min_keysize	= DES3_EDE_KEY_SIZE,
1277			.max_keysize	= DES3_EDE_KEY_SIZE,
1278			}
1279		}
1280	},
1281	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1282	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283}, {
1284	.crypto	= {
1285		.cra_name	= "cbc(aes)",
1286		.cra_blocksize	= AES_BLOCK_SIZE,
1287		.cra_u		= { .ablkcipher = {
1288			.min_keysize	= AES_MIN_KEY_SIZE,
1289			.max_keysize	= AES_MAX_KEY_SIZE,
1290			.ivsize		= AES_BLOCK_SIZE,
1291			.geniv		= "eseqiv",
1292			}
1293		}
1294	},
1295	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1296	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1297}, {
1298	.crypto	= {
1299		.cra_name	= "ecb(aes)",
1300		.cra_blocksize	= AES_BLOCK_SIZE,
1301		.cra_u		= { .ablkcipher = {
1302			.min_keysize	= AES_MIN_KEY_SIZE,
1303			.max_keysize	= AES_MAX_KEY_SIZE,
1304			}
1305		}
1306	},
1307	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1308	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1309}, {
1310	.crypto	= {
1311		.cra_name	= "ctr(aes)",
1312		.cra_blocksize	= AES_BLOCK_SIZE,
1313		.cra_u		= { .ablkcipher = {
1314			.min_keysize	= AES_MIN_KEY_SIZE,
1315			.max_keysize	= AES_MAX_KEY_SIZE,
1316			.ivsize		= AES_BLOCK_SIZE,
1317			.geniv		= "eseqiv",
1318			}
1319		}
1320	},
1321	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1322	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1323}, {
1324	.crypto	= {
1325		.cra_name	= "rfc3686(ctr(aes))",
1326		.cra_blocksize	= AES_BLOCK_SIZE,
1327		.cra_u		= { .ablkcipher = {
1328			.min_keysize	= AES_MIN_KEY_SIZE,
1329			.max_keysize	= AES_MAX_KEY_SIZE,
1330			.ivsize		= AES_BLOCK_SIZE,
1331			.geniv		= "eseqiv",
1332			.setkey		= ablk_rfc3686_setkey,
1333			.encrypt	= ablk_rfc3686_crypt,
1334			.decrypt	= ablk_rfc3686_crypt }
1335		}
1336	},
1337	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1338	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1339}, {
1340	.crypto	= {
1341		.cra_name	= "authenc(hmac(md5),cbc(des))",
1342		.cra_blocksize	= DES_BLOCK_SIZE,
1343		.cra_u		= { .aead = {
1344			.ivsize		= DES_BLOCK_SIZE,
1345			.maxauthsize	= MD5_DIGEST_SIZE,
1346			}
1347		}
1348	},
1349	.hash = &hash_alg_md5,
1350	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1351	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1352}, {
1353	.crypto	= {
1354		.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1355		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1356		.cra_u		= { .aead = {
1357			.ivsize		= DES3_EDE_BLOCK_SIZE,
1358			.maxauthsize	= MD5_DIGEST_SIZE,
1359			}
1360		}
1361	},
1362	.hash = &hash_alg_md5,
1363	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1364	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1365}, {
1366	.crypto	= {
1367		.cra_name	= "authenc(hmac(sha1),cbc(des))",
1368		.cra_blocksize	= DES_BLOCK_SIZE,
1369		.cra_u		= { .aead = {
1370			.ivsize		= DES_BLOCK_SIZE,
1371			.maxauthsize	= SHA1_DIGEST_SIZE,
1372			}
1373		}
1374	},
1375	.hash = &hash_alg_sha1,
1376	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1377	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1378}, {
1379	.crypto	= {
1380		.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1381		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1382		.cra_u		= { .aead = {
1383			.ivsize		= DES3_EDE_BLOCK_SIZE,
1384			.maxauthsize	= SHA1_DIGEST_SIZE,
1385			}
1386		}
1387	},
1388	.hash = &hash_alg_sha1,
1389	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1390	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1391}, {
1392	.crypto	= {
1393		.cra_name	= "authenc(hmac(md5),cbc(aes))",
1394		.cra_blocksize	= AES_BLOCK_SIZE,
1395		.cra_u		= { .aead = {
1396			.ivsize		= AES_BLOCK_SIZE,
1397			.maxauthsize	= MD5_DIGEST_SIZE,
1398			}
1399		}
1400	},
1401	.hash = &hash_alg_md5,
1402	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1403	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1404}, {
1405	.crypto	= {
1406		.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1407		.cra_blocksize	= AES_BLOCK_SIZE,
1408		.cra_u		= { .aead = {
1409			.ivsize		= AES_BLOCK_SIZE,
1410			.maxauthsize	= SHA1_DIGEST_SIZE,
1411			}
1412		}
1413	},
1414	.hash = &hash_alg_sha1,
1415	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1416	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1417} };
1418
1419#define IXP_POSTFIX "-ixp4xx"
1420static int __init ixp_module_init(void)
1421{
1422	int num = ARRAY_SIZE(ixp4xx_algos);
1423	int i,err ;
1424
1425	if (platform_device_register(&pseudo_dev))
1426		return -ENODEV;
1427
1428	spin_lock_init(&desc_lock);
1429	spin_lock_init(&emerg_lock);
1430
1431	err = init_ixp_crypto();
1432	if (err) {
1433		platform_device_unregister(&pseudo_dev);
1434		return err;
1435	}
1436	for (i=0; i< num; i++) {
1437		struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1438
1439		if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1440			"%s"IXP_POSTFIX, cra->cra_name) >=
1441			CRYPTO_MAX_ALG_NAME)
1442		{
1443			continue;
1444		}
1445		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1446			continue;
1447		}
1448		if (!ixp4xx_algos[i].hash) {
1449			/* block ciphers */
1450			cra->cra_type = &crypto_ablkcipher_type;
1451			cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1452					 CRYPTO_ALG_ASYNC;
1453			if (!cra->cra_ablkcipher.setkey)
1454				cra->cra_ablkcipher.setkey = ablk_setkey;
1455			if (!cra->cra_ablkcipher.encrypt)
1456				cra->cra_ablkcipher.encrypt = ablk_encrypt;
1457			if (!cra->cra_ablkcipher.decrypt)
1458				cra->cra_ablkcipher.decrypt = ablk_decrypt;
1459			cra->cra_init = init_tfm_ablk;
1460		} else {
1461			/* authenc */
1462			cra->cra_type = &crypto_aead_type;
1463			cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1464					 CRYPTO_ALG_ASYNC;
1465			cra->cra_aead.setkey = aead_setkey;
1466			cra->cra_aead.setauthsize = aead_setauthsize;
1467			cra->cra_aead.encrypt = aead_encrypt;
1468			cra->cra_aead.decrypt = aead_decrypt;
1469			cra->cra_aead.givencrypt = aead_givencrypt;
1470			cra->cra_init = init_tfm_aead;
1471		}
1472		cra->cra_ctxsize = sizeof(struct ixp_ctx);
1473		cra->cra_module = THIS_MODULE;
1474		cra->cra_alignmask = 3;
1475		cra->cra_priority = 300;
1476		cra->cra_exit = exit_tfm;
1477		if (crypto_register_alg(cra))
1478			printk(KERN_ERR "Failed to register '%s'\n",
1479				cra->cra_name);
1480		else
1481			ixp4xx_algos[i].registered = 1;
1482	}
1483	return 0;
1484}
1485
1486static void __exit ixp_module_exit(void)
1487{
1488	int num = ARRAY_SIZE(ixp4xx_algos);
1489	int i;
1490
1491	for (i=0; i< num; i++) {
1492		if (ixp4xx_algos[i].registered)
1493			crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1494	}
1495	release_ixp_crypto();
1496	platform_device_unregister(&pseudo_dev);
1497}
1498
1499module_init(ixp_module_init);
1500module_exit(ixp_module_exit);
1501
1502MODULE_LICENSE("GPL");
1503MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1504MODULE_DESCRIPTION("IXP4xx hardware crypto");
1505