• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/char/
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10	Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *	1.11	Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 *	1.12b	David John: Remove calls to the BKL.
52 */
53
54#define RTC_VERSION		"1.12b"
55
56/*
57 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 *	design of the RTC, we don't want two different things trying to
60 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 *	this driver.)
62 */
63
64#include <linux/interrupt.h>
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/types.h>
68#include <linux/miscdevice.h>
69#include <linux/ioport.h>
70#include <linux/fcntl.h>
71#include <linux/mc146818rtc.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/proc_fs.h>
75#include <linux/seq_file.h>
76#include <linux/spinlock.h>
77#include <linux/sched.h>
78#include <linux/sysctl.h>
79#include <linux/wait.h>
80#include <linux/bcd.h>
81#include <linux/delay.h>
82#include <linux/uaccess.h>
83
84#include <asm/current.h>
85#include <asm/system.h>
86
87#ifdef CONFIG_X86
88#include <asm/hpet.h>
89#endif
90
91#ifdef CONFIG_SPARC32
92#include <linux/of.h>
93#include <linux/of_device.h>
94#include <asm/io.h>
95
96static unsigned long rtc_port;
97static int rtc_irq;
98#endif
99
100#ifdef	CONFIG_HPET_EMULATE_RTC
101#undef	RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled()			0
110#define hpet_set_alarm_time(hrs, min, sec)	0
111#define hpet_set_periodic_freq(arg)		0
112#define hpet_mask_rtc_irq_bit(arg)		0
113#define hpet_set_rtc_irq_bit(arg)		0
114#define hpet_rtc_timer_init()			do { } while (0)
115#define hpet_rtc_dropped_irq()			0
116#define hpet_register_irq_handler(h)		({ 0; })
117#define hpet_unregister_irq_handler(h)		({ 0; })
118#ifdef RTC_IRQ
119static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120{
121	return 0;
122}
123#endif
124#endif
125
126/*
127 *	We sponge a minor off of the misc major. No need slurping
128 *	up another valuable major dev number for this. If you add
129 *	an ioctl, make sure you don't conflict with SPARC's RTC
130 *	ioctls.
131 */
132
133static struct fasync_struct *rtc_async_queue;
134
135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136
137#ifdef RTC_IRQ
138static void rtc_dropped_irq(unsigned long data);
139
140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141#endif
142
143static ssize_t rtc_read(struct file *file, char __user *buf,
144			size_t count, loff_t *ppos);
145
146static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148
149#ifdef RTC_IRQ
150static unsigned int rtc_poll(struct file *file, poll_table *wait);
151#endif
152
153static void get_rtc_alm_time(struct rtc_time *alm_tm);
154#ifdef RTC_IRQ
155static void set_rtc_irq_bit_locked(unsigned char bit);
156static void mask_rtc_irq_bit_locked(unsigned char bit);
157
158static inline void set_rtc_irq_bit(unsigned char bit)
159{
160	spin_lock_irq(&rtc_lock);
161	set_rtc_irq_bit_locked(bit);
162	spin_unlock_irq(&rtc_lock);
163}
164
165static void mask_rtc_irq_bit(unsigned char bit)
166{
167	spin_lock_irq(&rtc_lock);
168	mask_rtc_irq_bit_locked(bit);
169	spin_unlock_irq(&rtc_lock);
170}
171#endif
172
173#ifdef CONFIG_PROC_FS
174static int rtc_proc_open(struct inode *inode, struct file *file);
175#endif
176
177/*
178 *	Bits in rtc_status. (6 bits of room for future expansion)
179 */
180
181#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
182#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
183
184/*
185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
187 * timer in rtc_status and then with del_timer after the interrupt has read
188 * rtc_status but before mod_timer is called, which would then reenable the
189 * timer (but you would need to have an awful timing before you'd trip on it)
190 */
191static unsigned long rtc_status;	/* bitmapped status byte.	*/
192static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
193static unsigned long rtc_irq_data;	/* our output to the world	*/
194static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195
196#ifdef RTC_IRQ
197/*
198 * rtc_task_lock nests inside rtc_lock.
199 */
200static DEFINE_SPINLOCK(rtc_task_lock);
201static rtc_task_t *rtc_callback;
202#endif
203
204/*
205 *	If this driver ever becomes modularised, it will be really nice
206 *	to make the epoch retain its value across module reload...
207 */
208
209static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
210
211static const unsigned char days_in_mo[] =
212{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
213
214/*
215 * Returns true if a clock update is in progress
216 */
217static inline unsigned char rtc_is_updating(void)
218{
219	unsigned long flags;
220	unsigned char uip;
221
222	spin_lock_irqsave(&rtc_lock, flags);
223	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224	spin_unlock_irqrestore(&rtc_lock, flags);
225	return uip;
226}
227
228#ifdef RTC_IRQ
229
230static irqreturn_t rtc_interrupt(int irq, void *dev_id)
231{
232	/*
233	 *	Can be an alarm interrupt, update complete interrupt,
234	 *	or a periodic interrupt. We store the status in the
235	 *	low byte and the number of interrupts received since
236	 *	the last read in the remainder of rtc_irq_data.
237	 */
238
239	spin_lock(&rtc_lock);
240	rtc_irq_data += 0x100;
241	rtc_irq_data &= ~0xff;
242	if (is_hpet_enabled()) {
243		/*
244		 * In this case it is HPET RTC interrupt handler
245		 * calling us, with the interrupt information
246		 * passed as arg1, instead of irq.
247		 */
248		rtc_irq_data |= (unsigned long)irq & 0xF0;
249	} else {
250		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
251	}
252
253	if (rtc_status & RTC_TIMER_ON)
254		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
255
256	spin_unlock(&rtc_lock);
257
258	/* Now do the rest of the actions */
259	spin_lock(&rtc_task_lock);
260	if (rtc_callback)
261		rtc_callback->func(rtc_callback->private_data);
262	spin_unlock(&rtc_task_lock);
263	wake_up_interruptible(&rtc_wait);
264
265	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
266
267	return IRQ_HANDLED;
268}
269#endif
270
271/*
272 * sysctl-tuning infrastructure.
273 */
274static ctl_table rtc_table[] = {
275	{
276		.procname	= "max-user-freq",
277		.data		= &rtc_max_user_freq,
278		.maxlen		= sizeof(int),
279		.mode		= 0644,
280		.proc_handler	= proc_dointvec,
281	},
282	{ }
283};
284
285static ctl_table rtc_root[] = {
286	{
287		.procname	= "rtc",
288		.mode		= 0555,
289		.child		= rtc_table,
290	},
291	{ }
292};
293
294static ctl_table dev_root[] = {
295	{
296		.procname	= "dev",
297		.mode		= 0555,
298		.child		= rtc_root,
299	},
300	{ }
301};
302
303static struct ctl_table_header *sysctl_header;
304
305static int __init init_sysctl(void)
306{
307    sysctl_header = register_sysctl_table(dev_root);
308    return 0;
309}
310
311static void __exit cleanup_sysctl(void)
312{
313    unregister_sysctl_table(sysctl_header);
314}
315
316/*
317 *	Now all the various file operations that we export.
318 */
319
320static ssize_t rtc_read(struct file *file, char __user *buf,
321			size_t count, loff_t *ppos)
322{
323#ifndef RTC_IRQ
324	return -EIO;
325#else
326	DECLARE_WAITQUEUE(wait, current);
327	unsigned long data;
328	ssize_t retval;
329
330	if (rtc_has_irq == 0)
331		return -EIO;
332
333	/*
334	 * Historically this function used to assume that sizeof(unsigned long)
335	 * is the same in userspace and kernelspace.  This lead to problems
336	 * for configurations with multiple ABIs such a the MIPS o32 and 64
337	 * ABIs supported on the same kernel.  So now we support read of both
338	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
339	 * userspace ABI.
340	 */
341	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
342		return -EINVAL;
343
344	add_wait_queue(&rtc_wait, &wait);
345
346	do {
347		/* First make it right. Then make it fast. Putting this whole
348		 * block within the parentheses of a while would be too
349		 * confusing. And no, xchg() is not the answer. */
350
351		__set_current_state(TASK_INTERRUPTIBLE);
352
353		spin_lock_irq(&rtc_lock);
354		data = rtc_irq_data;
355		rtc_irq_data = 0;
356		spin_unlock_irq(&rtc_lock);
357
358		if (data != 0)
359			break;
360
361		if (file->f_flags & O_NONBLOCK) {
362			retval = -EAGAIN;
363			goto out;
364		}
365		if (signal_pending(current)) {
366			retval = -ERESTARTSYS;
367			goto out;
368		}
369		schedule();
370	} while (1);
371
372	if (count == sizeof(unsigned int)) {
373		retval = put_user(data,
374				  (unsigned int __user *)buf) ?: sizeof(int);
375	} else {
376		retval = put_user(data,
377				  (unsigned long __user *)buf) ?: sizeof(long);
378	}
379	if (!retval)
380		retval = count;
381 out:
382	__set_current_state(TASK_RUNNING);
383	remove_wait_queue(&rtc_wait, &wait);
384
385	return retval;
386#endif
387}
388
389static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
390{
391	struct rtc_time wtime;
392
393#ifdef RTC_IRQ
394	if (rtc_has_irq == 0) {
395		switch (cmd) {
396		case RTC_AIE_OFF:
397		case RTC_AIE_ON:
398		case RTC_PIE_OFF:
399		case RTC_PIE_ON:
400		case RTC_UIE_OFF:
401		case RTC_UIE_ON:
402		case RTC_IRQP_READ:
403		case RTC_IRQP_SET:
404			return -EINVAL;
405		};
406	}
407#endif
408
409	switch (cmd) {
410#ifdef RTC_IRQ
411	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
412	{
413		mask_rtc_irq_bit(RTC_AIE);
414		return 0;
415	}
416	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
417	{
418		set_rtc_irq_bit(RTC_AIE);
419		return 0;
420	}
421	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
422	{
423		/* can be called from isr via rtc_control() */
424		unsigned long flags;
425
426		spin_lock_irqsave(&rtc_lock, flags);
427		mask_rtc_irq_bit_locked(RTC_PIE);
428		if (rtc_status & RTC_TIMER_ON) {
429			rtc_status &= ~RTC_TIMER_ON;
430			del_timer(&rtc_irq_timer);
431		}
432		spin_unlock_irqrestore(&rtc_lock, flags);
433
434		return 0;
435	}
436	case RTC_PIE_ON:	/* Allow periodic ints		*/
437	{
438		/* can be called from isr via rtc_control() */
439		unsigned long flags;
440
441		/*
442		 * We don't really want Joe User enabling more
443		 * than 64Hz of interrupts on a multi-user machine.
444		 */
445		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
446						(!capable(CAP_SYS_RESOURCE)))
447			return -EACCES;
448
449		spin_lock_irqsave(&rtc_lock, flags);
450		if (!(rtc_status & RTC_TIMER_ON)) {
451			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
452					2*HZ/100);
453			rtc_status |= RTC_TIMER_ON;
454		}
455		set_rtc_irq_bit_locked(RTC_PIE);
456		spin_unlock_irqrestore(&rtc_lock, flags);
457
458		return 0;
459	}
460	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
461	{
462		mask_rtc_irq_bit(RTC_UIE);
463		return 0;
464	}
465	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
466	{
467		set_rtc_irq_bit(RTC_UIE);
468		return 0;
469	}
470#endif
471	case RTC_ALM_READ:	/* Read the present alarm time */
472	{
473		/*
474		 * This returns a struct rtc_time. Reading >= 0xc0
475		 * means "don't care" or "match all". Only the tm_hour,
476		 * tm_min, and tm_sec values are filled in.
477		 */
478		memset(&wtime, 0, sizeof(struct rtc_time));
479		get_rtc_alm_time(&wtime);
480		break;
481	}
482	case RTC_ALM_SET:	/* Store a time into the alarm */
483	{
484		/*
485		 * This expects a struct rtc_time. Writing 0xff means
486		 * "don't care" or "match all". Only the tm_hour,
487		 * tm_min and tm_sec are used.
488		 */
489		unsigned char hrs, min, sec;
490		struct rtc_time alm_tm;
491
492		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
493				   sizeof(struct rtc_time)))
494			return -EFAULT;
495
496		hrs = alm_tm.tm_hour;
497		min = alm_tm.tm_min;
498		sec = alm_tm.tm_sec;
499
500		spin_lock_irq(&rtc_lock);
501		if (hpet_set_alarm_time(hrs, min, sec)) {
502			/*
503			 * Fallthru and set alarm time in CMOS too,
504			 * so that we will get proper value in RTC_ALM_READ
505			 */
506		}
507		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
508							RTC_ALWAYS_BCD) {
509			if (sec < 60)
510				sec = bin2bcd(sec);
511			else
512				sec = 0xff;
513
514			if (min < 60)
515				min = bin2bcd(min);
516			else
517				min = 0xff;
518
519			if (hrs < 24)
520				hrs = bin2bcd(hrs);
521			else
522				hrs = 0xff;
523		}
524		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
525		CMOS_WRITE(min, RTC_MINUTES_ALARM);
526		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
527		spin_unlock_irq(&rtc_lock);
528
529		return 0;
530	}
531	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
532	{
533		memset(&wtime, 0, sizeof(struct rtc_time));
534		rtc_get_rtc_time(&wtime);
535		break;
536	}
537	case RTC_SET_TIME:	/* Set the RTC */
538	{
539		struct rtc_time rtc_tm;
540		unsigned char mon, day, hrs, min, sec, leap_yr;
541		unsigned char save_control, save_freq_select;
542		unsigned int yrs;
543#ifdef CONFIG_MACH_DECSTATION
544		unsigned int real_yrs;
545#endif
546
547		if (!capable(CAP_SYS_TIME))
548			return -EACCES;
549
550		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
551				   sizeof(struct rtc_time)))
552			return -EFAULT;
553
554		yrs = rtc_tm.tm_year + 1900;
555		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
556		day = rtc_tm.tm_mday;
557		hrs = rtc_tm.tm_hour;
558		min = rtc_tm.tm_min;
559		sec = rtc_tm.tm_sec;
560
561		if (yrs < 1970)
562			return -EINVAL;
563
564		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
565
566		if ((mon > 12) || (day == 0))
567			return -EINVAL;
568
569		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
570			return -EINVAL;
571
572		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
573			return -EINVAL;
574
575		yrs -= epoch;
576		if (yrs > 255)		/* They are unsigned */
577			return -EINVAL;
578
579		spin_lock_irq(&rtc_lock);
580#ifdef CONFIG_MACH_DECSTATION
581		real_yrs = yrs;
582		yrs = 72;
583
584		/*
585		 * We want to keep the year set to 73 until March
586		 * for non-leap years, so that Feb, 29th is handled
587		 * correctly.
588		 */
589		if (!leap_yr && mon < 3) {
590			real_yrs--;
591			yrs = 73;
592		}
593#endif
594		/* These limits and adjustments are independent of
595		 * whether the chip is in binary mode or not.
596		 */
597		if (yrs > 169) {
598			spin_unlock_irq(&rtc_lock);
599			return -EINVAL;
600		}
601		if (yrs >= 100)
602			yrs -= 100;
603
604		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
605		    || RTC_ALWAYS_BCD) {
606			sec = bin2bcd(sec);
607			min = bin2bcd(min);
608			hrs = bin2bcd(hrs);
609			day = bin2bcd(day);
610			mon = bin2bcd(mon);
611			yrs = bin2bcd(yrs);
612		}
613
614		save_control = CMOS_READ(RTC_CONTROL);
615		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
616		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
617		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
618
619#ifdef CONFIG_MACH_DECSTATION
620		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
621#endif
622		CMOS_WRITE(yrs, RTC_YEAR);
623		CMOS_WRITE(mon, RTC_MONTH);
624		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
625		CMOS_WRITE(hrs, RTC_HOURS);
626		CMOS_WRITE(min, RTC_MINUTES);
627		CMOS_WRITE(sec, RTC_SECONDS);
628
629		CMOS_WRITE(save_control, RTC_CONTROL);
630		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
631
632		spin_unlock_irq(&rtc_lock);
633		return 0;
634	}
635#ifdef RTC_IRQ
636	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
637	{
638		return put_user(rtc_freq, (unsigned long __user *)arg);
639	}
640	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
641	{
642		int tmp = 0;
643		unsigned char val;
644		/* can be called from isr via rtc_control() */
645		unsigned long flags;
646
647		/*
648		 * The max we can do is 8192Hz.
649		 */
650		if ((arg < 2) || (arg > 8192))
651			return -EINVAL;
652		/*
653		 * We don't really want Joe User generating more
654		 * than 64Hz of interrupts on a multi-user machine.
655		 */
656		if (!kernel && (arg > rtc_max_user_freq) &&
657					!capable(CAP_SYS_RESOURCE))
658			return -EACCES;
659
660		while (arg > (1<<tmp))
661			tmp++;
662
663		/*
664		 * Check that the input was really a power of 2.
665		 */
666		if (arg != (1<<tmp))
667			return -EINVAL;
668
669		rtc_freq = arg;
670
671		spin_lock_irqsave(&rtc_lock, flags);
672		if (hpet_set_periodic_freq(arg)) {
673			spin_unlock_irqrestore(&rtc_lock, flags);
674			return 0;
675		}
676
677		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
678		val |= (16 - tmp);
679		CMOS_WRITE(val, RTC_FREQ_SELECT);
680		spin_unlock_irqrestore(&rtc_lock, flags);
681		return 0;
682	}
683#endif
684	case RTC_EPOCH_READ:	/* Read the epoch.	*/
685	{
686		return put_user(epoch, (unsigned long __user *)arg);
687	}
688	case RTC_EPOCH_SET:	/* Set the epoch.	*/
689	{
690		/*
691		 * There were no RTC clocks before 1900.
692		 */
693		if (arg < 1900)
694			return -EINVAL;
695
696		if (!capable(CAP_SYS_TIME))
697			return -EACCES;
698
699		epoch = arg;
700		return 0;
701	}
702	default:
703		return -ENOTTY;
704	}
705	return copy_to_user((void __user *)arg,
706			    &wtime, sizeof wtime) ? -EFAULT : 0;
707}
708
709static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
710{
711	long ret;
712	ret = rtc_do_ioctl(cmd, arg, 0);
713	return ret;
714}
715
716/*
717 *	We enforce only one user at a time here with the open/close.
718 *	Also clear the previous interrupt data on an open, and clean
719 *	up things on a close.
720 */
721static int rtc_open(struct inode *inode, struct file *file)
722{
723	spin_lock_irq(&rtc_lock);
724
725	if (rtc_status & RTC_IS_OPEN)
726		goto out_busy;
727
728	rtc_status |= RTC_IS_OPEN;
729
730	rtc_irq_data = 0;
731	spin_unlock_irq(&rtc_lock);
732	return 0;
733
734out_busy:
735	spin_unlock_irq(&rtc_lock);
736	return -EBUSY;
737}
738
739static int rtc_fasync(int fd, struct file *filp, int on)
740{
741	return fasync_helper(fd, filp, on, &rtc_async_queue);
742}
743
744static int rtc_release(struct inode *inode, struct file *file)
745{
746#ifdef RTC_IRQ
747	unsigned char tmp;
748
749	if (rtc_has_irq == 0)
750		goto no_irq;
751
752	/*
753	 * Turn off all interrupts once the device is no longer
754	 * in use, and clear the data.
755	 */
756
757	spin_lock_irq(&rtc_lock);
758	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
759		tmp = CMOS_READ(RTC_CONTROL);
760		tmp &=  ~RTC_PIE;
761		tmp &=  ~RTC_AIE;
762		tmp &=  ~RTC_UIE;
763		CMOS_WRITE(tmp, RTC_CONTROL);
764		CMOS_READ(RTC_INTR_FLAGS);
765	}
766	if (rtc_status & RTC_TIMER_ON) {
767		rtc_status &= ~RTC_TIMER_ON;
768		del_timer(&rtc_irq_timer);
769	}
770	spin_unlock_irq(&rtc_lock);
771
772no_irq:
773#endif
774
775	spin_lock_irq(&rtc_lock);
776	rtc_irq_data = 0;
777	rtc_status &= ~RTC_IS_OPEN;
778	spin_unlock_irq(&rtc_lock);
779
780	return 0;
781}
782
783#ifdef RTC_IRQ
784static unsigned int rtc_poll(struct file *file, poll_table *wait)
785{
786	unsigned long l;
787
788	if (rtc_has_irq == 0)
789		return 0;
790
791	poll_wait(file, &rtc_wait, wait);
792
793	spin_lock_irq(&rtc_lock);
794	l = rtc_irq_data;
795	spin_unlock_irq(&rtc_lock);
796
797	if (l != 0)
798		return POLLIN | POLLRDNORM;
799	return 0;
800}
801#endif
802
803int rtc_register(rtc_task_t *task)
804{
805#ifndef RTC_IRQ
806	return -EIO;
807#else
808	if (task == NULL || task->func == NULL)
809		return -EINVAL;
810	spin_lock_irq(&rtc_lock);
811	if (rtc_status & RTC_IS_OPEN) {
812		spin_unlock_irq(&rtc_lock);
813		return -EBUSY;
814	}
815	spin_lock(&rtc_task_lock);
816	if (rtc_callback) {
817		spin_unlock(&rtc_task_lock);
818		spin_unlock_irq(&rtc_lock);
819		return -EBUSY;
820	}
821	rtc_status |= RTC_IS_OPEN;
822	rtc_callback = task;
823	spin_unlock(&rtc_task_lock);
824	spin_unlock_irq(&rtc_lock);
825	return 0;
826#endif
827}
828EXPORT_SYMBOL(rtc_register);
829
830int rtc_unregister(rtc_task_t *task)
831{
832#ifndef RTC_IRQ
833	return -EIO;
834#else
835	unsigned char tmp;
836
837	spin_lock_irq(&rtc_lock);
838	spin_lock(&rtc_task_lock);
839	if (rtc_callback != task) {
840		spin_unlock(&rtc_task_lock);
841		spin_unlock_irq(&rtc_lock);
842		return -ENXIO;
843	}
844	rtc_callback = NULL;
845
846	/* disable controls */
847	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
848		tmp = CMOS_READ(RTC_CONTROL);
849		tmp &= ~RTC_PIE;
850		tmp &= ~RTC_AIE;
851		tmp &= ~RTC_UIE;
852		CMOS_WRITE(tmp, RTC_CONTROL);
853		CMOS_READ(RTC_INTR_FLAGS);
854	}
855	if (rtc_status & RTC_TIMER_ON) {
856		rtc_status &= ~RTC_TIMER_ON;
857		del_timer(&rtc_irq_timer);
858	}
859	rtc_status &= ~RTC_IS_OPEN;
860	spin_unlock(&rtc_task_lock);
861	spin_unlock_irq(&rtc_lock);
862	return 0;
863#endif
864}
865EXPORT_SYMBOL(rtc_unregister);
866
867int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
868{
869#ifndef RTC_IRQ
870	return -EIO;
871#else
872	unsigned long flags;
873	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
874		return -EINVAL;
875	spin_lock_irqsave(&rtc_task_lock, flags);
876	if (rtc_callback != task) {
877		spin_unlock_irqrestore(&rtc_task_lock, flags);
878		return -ENXIO;
879	}
880	spin_unlock_irqrestore(&rtc_task_lock, flags);
881	return rtc_do_ioctl(cmd, arg, 1);
882#endif
883}
884EXPORT_SYMBOL(rtc_control);
885
886/*
887 *	The various file operations we support.
888 */
889
890static const struct file_operations rtc_fops = {
891	.owner		= THIS_MODULE,
892	.llseek		= no_llseek,
893	.read		= rtc_read,
894#ifdef RTC_IRQ
895	.poll		= rtc_poll,
896#endif
897	.unlocked_ioctl	= rtc_ioctl,
898	.open		= rtc_open,
899	.release	= rtc_release,
900	.fasync		= rtc_fasync,
901};
902
903static struct miscdevice rtc_dev = {
904	.minor		= RTC_MINOR,
905	.name		= "rtc",
906	.fops		= &rtc_fops,
907};
908
909#ifdef CONFIG_PROC_FS
910static const struct file_operations rtc_proc_fops = {
911	.owner		= THIS_MODULE,
912	.open		= rtc_proc_open,
913	.read		= seq_read,
914	.llseek		= seq_lseek,
915	.release	= single_release,
916};
917#endif
918
919static resource_size_t rtc_size;
920
921static struct resource * __init rtc_request_region(resource_size_t size)
922{
923	struct resource *r;
924
925	if (RTC_IOMAPPED)
926		r = request_region(RTC_PORT(0), size, "rtc");
927	else
928		r = request_mem_region(RTC_PORT(0), size, "rtc");
929
930	if (r)
931		rtc_size = size;
932
933	return r;
934}
935
936static void rtc_release_region(void)
937{
938	if (RTC_IOMAPPED)
939		release_region(RTC_PORT(0), rtc_size);
940	else
941		release_mem_region(RTC_PORT(0), rtc_size);
942}
943
944static int __init rtc_init(void)
945{
946#ifdef CONFIG_PROC_FS
947	struct proc_dir_entry *ent;
948#endif
949#if defined(__alpha__) || defined(__mips__)
950	unsigned int year, ctrl;
951	char *guess = NULL;
952#endif
953#ifdef CONFIG_SPARC32
954	struct device_node *ebus_dp;
955	struct platform_device *op;
956#else
957	void *r;
958#ifdef RTC_IRQ
959	irq_handler_t rtc_int_handler_ptr;
960#endif
961#endif
962
963#ifdef CONFIG_SPARC32
964	for_each_node_by_name(ebus_dp, "ebus") {
965		struct device_node *dp;
966		for (dp = ebus_dp; dp; dp = dp->sibling) {
967			if (!strcmp(dp->name, "rtc")) {
968				op = of_find_device_by_node(dp);
969				if (op) {
970					rtc_port = op->resource[0].start;
971					rtc_irq = op->irqs[0];
972					goto found;
973				}
974			}
975		}
976	}
977	rtc_has_irq = 0;
978	printk(KERN_ERR "rtc_init: no PC rtc found\n");
979	return -EIO;
980
981found:
982	if (!rtc_irq) {
983		rtc_has_irq = 0;
984		goto no_irq;
985	}
986
987	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
988			(void *)&rtc_port)) {
989		rtc_has_irq = 0;
990		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
991		return -EIO;
992	}
993no_irq:
994#else
995	r = rtc_request_region(RTC_IO_EXTENT);
996
997	/*
998	 * If we've already requested a smaller range (for example, because
999	 * PNPBIOS or ACPI told us how the device is configured), the request
1000	 * above might fail because it's too big.
1001	 *
1002	 * If so, request just the range we actually use.
1003	 */
1004	if (!r)
1005		r = rtc_request_region(RTC_IO_EXTENT_USED);
1006	if (!r) {
1007#ifdef RTC_IRQ
1008		rtc_has_irq = 0;
1009#endif
1010		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1011		       (long)(RTC_PORT(0)));
1012		return -EIO;
1013	}
1014
1015#ifdef RTC_IRQ
1016	if (is_hpet_enabled()) {
1017		int err;
1018
1019		rtc_int_handler_ptr = hpet_rtc_interrupt;
1020		err = hpet_register_irq_handler(rtc_interrupt);
1021		if (err != 0) {
1022			printk(KERN_WARNING "hpet_register_irq_handler failed "
1023					"in rtc_init().");
1024			return err;
1025		}
1026	} else {
1027		rtc_int_handler_ptr = rtc_interrupt;
1028	}
1029
1030	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1031			"rtc", NULL)) {
1032		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1033		rtc_has_irq = 0;
1034		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1035		rtc_release_region();
1036
1037		return -EIO;
1038	}
1039	hpet_rtc_timer_init();
1040
1041#endif
1042
1043#endif /* CONFIG_SPARC32 vs. others */
1044
1045	if (misc_register(&rtc_dev)) {
1046#ifdef RTC_IRQ
1047		free_irq(RTC_IRQ, NULL);
1048		hpet_unregister_irq_handler(rtc_interrupt);
1049		rtc_has_irq = 0;
1050#endif
1051		rtc_release_region();
1052		return -ENODEV;
1053	}
1054
1055#ifdef CONFIG_PROC_FS
1056	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1057	if (!ent)
1058		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1059#endif
1060
1061#if defined(__alpha__) || defined(__mips__)
1062	rtc_freq = HZ;
1063
1064	/* Each operating system on an Alpha uses its own epoch.
1065	   Let's try to guess which one we are using now. */
1066
1067	if (rtc_is_updating() != 0)
1068		msleep(20);
1069
1070	spin_lock_irq(&rtc_lock);
1071	year = CMOS_READ(RTC_YEAR);
1072	ctrl = CMOS_READ(RTC_CONTROL);
1073	spin_unlock_irq(&rtc_lock);
1074
1075	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1076		year = bcd2bin(year);       /* This should never happen... */
1077
1078	if (year < 20) {
1079		epoch = 2000;
1080		guess = "SRM (post-2000)";
1081	} else if (year >= 20 && year < 48) {
1082		epoch = 1980;
1083		guess = "ARC console";
1084	} else if (year >= 48 && year < 72) {
1085		epoch = 1952;
1086		guess = "Digital UNIX";
1087#if defined(__mips__)
1088	} else if (year >= 72 && year < 74) {
1089		epoch = 2000;
1090		guess = "Digital DECstation";
1091#else
1092	} else if (year >= 70) {
1093		epoch = 1900;
1094		guess = "Standard PC (1900)";
1095#endif
1096	}
1097	if (guess)
1098		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1099			guess, epoch);
1100#endif
1101#ifdef RTC_IRQ
1102	if (rtc_has_irq == 0)
1103		goto no_irq2;
1104
1105	spin_lock_irq(&rtc_lock);
1106	rtc_freq = 1024;
1107	if (!hpet_set_periodic_freq(rtc_freq)) {
1108		/*
1109		 * Initialize periodic frequency to CMOS reset default,
1110		 * which is 1024Hz
1111		 */
1112		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1113			   RTC_FREQ_SELECT);
1114	}
1115	spin_unlock_irq(&rtc_lock);
1116no_irq2:
1117#endif
1118
1119	(void) init_sysctl();
1120
1121	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1122
1123	return 0;
1124}
1125
1126static void __exit rtc_exit(void)
1127{
1128	cleanup_sysctl();
1129	remove_proc_entry("driver/rtc", NULL);
1130	misc_deregister(&rtc_dev);
1131
1132#ifdef CONFIG_SPARC32
1133	if (rtc_has_irq)
1134		free_irq(rtc_irq, &rtc_port);
1135#else
1136	rtc_release_region();
1137#ifdef RTC_IRQ
1138	if (rtc_has_irq) {
1139		free_irq(RTC_IRQ, NULL);
1140		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1141	}
1142#endif
1143#endif /* CONFIG_SPARC32 */
1144}
1145
1146module_init(rtc_init);
1147module_exit(rtc_exit);
1148
1149#ifdef RTC_IRQ
1150/*
1151 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1152 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1153 *	Since the interrupt handler doesn't get called, the IRQ status
1154 *	byte doesn't get read, and the RTC stops generating interrupts.
1155 *	A timer is set, and will call this function if/when that happens.
1156 *	To get it out of this stalled state, we just read the status.
1157 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1158 *	(You *really* shouldn't be trying to use a non-realtime system
1159 *	for something that requires a steady > 1KHz signal anyways.)
1160 */
1161
1162static void rtc_dropped_irq(unsigned long data)
1163{
1164	unsigned long freq;
1165
1166	spin_lock_irq(&rtc_lock);
1167
1168	if (hpet_rtc_dropped_irq()) {
1169		spin_unlock_irq(&rtc_lock);
1170		return;
1171	}
1172
1173	/* Just in case someone disabled the timer from behind our back... */
1174	if (rtc_status & RTC_TIMER_ON)
1175		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1176
1177	rtc_irq_data += ((rtc_freq/HZ)<<8);
1178	rtc_irq_data &= ~0xff;
1179	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1180
1181	freq = rtc_freq;
1182
1183	spin_unlock_irq(&rtc_lock);
1184
1185	if (printk_ratelimit()) {
1186		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1187			freq);
1188	}
1189
1190	/* Now we have new data */
1191	wake_up_interruptible(&rtc_wait);
1192
1193	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1194}
1195#endif
1196
1197#ifdef CONFIG_PROC_FS
1198/*
1199 *	Info exported via "/proc/driver/rtc".
1200 */
1201
1202static int rtc_proc_show(struct seq_file *seq, void *v)
1203{
1204#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1205#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1206	struct rtc_time tm;
1207	unsigned char batt, ctrl;
1208	unsigned long freq;
1209
1210	spin_lock_irq(&rtc_lock);
1211	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1212	ctrl = CMOS_READ(RTC_CONTROL);
1213	freq = rtc_freq;
1214	spin_unlock_irq(&rtc_lock);
1215
1216
1217	rtc_get_rtc_time(&tm);
1218
1219	/*
1220	 * There is no way to tell if the luser has the RTC set for local
1221	 * time or for Universal Standard Time (GMT). Probably local though.
1222	 */
1223	seq_printf(seq,
1224		   "rtc_time\t: %02d:%02d:%02d\n"
1225		   "rtc_date\t: %04d-%02d-%02d\n"
1226		   "rtc_epoch\t: %04lu\n",
1227		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1228		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1229
1230	get_rtc_alm_time(&tm);
1231
1232	/*
1233	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1234	 * match any value for that particular field. Values that are
1235	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1236	 */
1237	seq_puts(seq, "alarm\t\t: ");
1238	if (tm.tm_hour <= 24)
1239		seq_printf(seq, "%02d:", tm.tm_hour);
1240	else
1241		seq_puts(seq, "**:");
1242
1243	if (tm.tm_min <= 59)
1244		seq_printf(seq, "%02d:", tm.tm_min);
1245	else
1246		seq_puts(seq, "**:");
1247
1248	if (tm.tm_sec <= 59)
1249		seq_printf(seq, "%02d\n", tm.tm_sec);
1250	else
1251		seq_puts(seq, "**\n");
1252
1253	seq_printf(seq,
1254		   "DST_enable\t: %s\n"
1255		   "BCD\t\t: %s\n"
1256		   "24hr\t\t: %s\n"
1257		   "square_wave\t: %s\n"
1258		   "alarm_IRQ\t: %s\n"
1259		   "update_IRQ\t: %s\n"
1260		   "periodic_IRQ\t: %s\n"
1261		   "periodic_freq\t: %ld\n"
1262		   "batt_status\t: %s\n",
1263		   YN(RTC_DST_EN),
1264		   NY(RTC_DM_BINARY),
1265		   YN(RTC_24H),
1266		   YN(RTC_SQWE),
1267		   YN(RTC_AIE),
1268		   YN(RTC_UIE),
1269		   YN(RTC_PIE),
1270		   freq,
1271		   batt ? "okay" : "dead");
1272
1273	return  0;
1274#undef YN
1275#undef NY
1276}
1277
1278static int rtc_proc_open(struct inode *inode, struct file *file)
1279{
1280	return single_open(file, rtc_proc_show, NULL);
1281}
1282#endif
1283
1284static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1285{
1286	unsigned long uip_watchdog = jiffies, flags;
1287	unsigned char ctrl;
1288#ifdef CONFIG_MACH_DECSTATION
1289	unsigned int real_year;
1290#endif
1291
1292	/*
1293	 * read RTC once any update in progress is done. The update
1294	 * can take just over 2ms. We wait 20ms. There is no need to
1295	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1296	 * If you need to know *exactly* when a second has started, enable
1297	 * periodic update complete interrupts, (via ioctl) and then
1298	 * immediately read /dev/rtc which will block until you get the IRQ.
1299	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1300	 */
1301
1302	while (rtc_is_updating() != 0 &&
1303	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1304		cpu_relax();
1305
1306	/*
1307	 * Only the values that we read from the RTC are set. We leave
1308	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1309	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1310	 * only updated by the RTC when initially set to a non-zero value.
1311	 */
1312	spin_lock_irqsave(&rtc_lock, flags);
1313	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1314	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1315	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1316	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1317	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1318	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1319	/* Only set from 2.6.16 onwards */
1320	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1321
1322#ifdef CONFIG_MACH_DECSTATION
1323	real_year = CMOS_READ(RTC_DEC_YEAR);
1324#endif
1325	ctrl = CMOS_READ(RTC_CONTROL);
1326	spin_unlock_irqrestore(&rtc_lock, flags);
1327
1328	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1329		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1330		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1331		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1332		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1333		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1334		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1335		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1336	}
1337
1338#ifdef CONFIG_MACH_DECSTATION
1339	rtc_tm->tm_year += real_year - 72;
1340#endif
1341
1342	/*
1343	 * Account for differences between how the RTC uses the values
1344	 * and how they are defined in a struct rtc_time;
1345	 */
1346	rtc_tm->tm_year += epoch - 1900;
1347	if (rtc_tm->tm_year <= 69)
1348		rtc_tm->tm_year += 100;
1349
1350	rtc_tm->tm_mon--;
1351}
1352
1353static void get_rtc_alm_time(struct rtc_time *alm_tm)
1354{
1355	unsigned char ctrl;
1356
1357	/*
1358	 * Only the values that we read from the RTC are set. That
1359	 * means only tm_hour, tm_min, and tm_sec.
1360	 */
1361	spin_lock_irq(&rtc_lock);
1362	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1363	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1364	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1365	ctrl = CMOS_READ(RTC_CONTROL);
1366	spin_unlock_irq(&rtc_lock);
1367
1368	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1369		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1370		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1371		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1372	}
1373}
1374
1375#ifdef RTC_IRQ
1376/*
1377 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1378 * Rumour has it that if you frob the interrupt enable/disable
1379 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1380 * ensure you actually start getting interrupts. Probably for
1381 * compatibility with older/broken chipset RTC implementations.
1382 * We also clear out any old irq data after an ioctl() that
1383 * meddles with the interrupt enable/disable bits.
1384 */
1385
1386static void mask_rtc_irq_bit_locked(unsigned char bit)
1387{
1388	unsigned char val;
1389
1390	if (hpet_mask_rtc_irq_bit(bit))
1391		return;
1392	val = CMOS_READ(RTC_CONTROL);
1393	val &=  ~bit;
1394	CMOS_WRITE(val, RTC_CONTROL);
1395	CMOS_READ(RTC_INTR_FLAGS);
1396
1397	rtc_irq_data = 0;
1398}
1399
1400static void set_rtc_irq_bit_locked(unsigned char bit)
1401{
1402	unsigned char val;
1403
1404	if (hpet_set_rtc_irq_bit(bit))
1405		return;
1406	val = CMOS_READ(RTC_CONTROL);
1407	val |= bit;
1408	CMOS_WRITE(val, RTC_CONTROL);
1409	CMOS_READ(RTC_INTR_FLAGS);
1410
1411	rtc_irq_data = 0;
1412}
1413#endif
1414
1415MODULE_AUTHOR("Paul Gortmaker");
1416MODULE_LICENSE("GPL");
1417MODULE_ALIAS_MISCDEV(RTC_MINOR);
1418