• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/char/
1/*****************************************************************************/
2
3/*
4 *	istallion.c  -- stallion intelligent multiport serial driver.
5 *
6 *	Copyright (C) 1996-1999  Stallion Technologies
7 *	Copyright (C) 1994-1996  Greg Ungerer.
8 *
9 *	This code is loosely based on the Linux serial driver, written by
10 *	Linus Torvalds, Theodore T'so and others.
11 *
12 *	This program is free software; you can redistribute it and/or modify
13 *	it under the terms of the GNU General Public License as published by
14 *	the Free Software Foundation; either version 2 of the License, or
15 *	(at your option) any later version.
16 *
17 */
18
19/*****************************************************************************/
20
21#include <linux/module.h>
22#include <linux/sched.h>
23#include <linux/slab.h>
24#include <linux/smp_lock.h>
25#include <linux/interrupt.h>
26#include <linux/tty.h>
27#include <linux/tty_flip.h>
28#include <linux/serial.h>
29#include <linux/seq_file.h>
30#include <linux/cdk.h>
31#include <linux/comstats.h>
32#include <linux/istallion.h>
33#include <linux/ioport.h>
34#include <linux/delay.h>
35#include <linux/init.h>
36#include <linux/device.h>
37#include <linux/wait.h>
38#include <linux/eisa.h>
39#include <linux/ctype.h>
40
41#include <asm/io.h>
42#include <asm/uaccess.h>
43
44#include <linux/pci.h>
45
46/*****************************************************************************/
47
48/*
49 *	Define different board types. Not all of the following board types
50 *	are supported by this driver. But I will use the standard "assigned"
51 *	board numbers. Currently supported boards are abbreviated as:
52 *	ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
53 *	STAL = Stallion.
54 */
55#define	BRD_UNKNOWN	0
56#define	BRD_STALLION	1
57#define	BRD_BRUMBY4	2
58#define	BRD_ONBOARD2	3
59#define	BRD_ONBOARD	4
60#define	BRD_ONBOARDE	7
61#define	BRD_ECP		23
62#define BRD_ECPE	24
63#define	BRD_ECPMC	25
64#define	BRD_ECPPCI	29
65
66#define	BRD_BRUMBY	BRD_BRUMBY4
67
68/*
69 *	Define a configuration structure to hold the board configuration.
70 *	Need to set this up in the code (for now) with the boards that are
71 *	to be configured into the system. This is what needs to be modified
72 *	when adding/removing/modifying boards. Each line entry in the
73 *	stli_brdconf[] array is a board. Each line contains io/irq/memory
74 *	ranges for that board (as well as what type of board it is).
75 *	Some examples:
76 *		{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
77 *	This line will configure an EasyConnection 8/64 at io address 2a0,
78 *	and shared memory address of cc000. Multiple EasyConnection 8/64
79 *	boards can share the same shared memory address space. No interrupt
80 *	is required for this board type.
81 *	Another example:
82 *		{ BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
83 *	This line will configure an EasyConnection 8/64 EISA in slot 5 and
84 *	shared memory address of 0x80000000 (2 GByte). Multiple
85 *	EasyConnection 8/64 EISA boards can share the same shared memory
86 *	address space. No interrupt is required for this board type.
87 *	Another example:
88 *		{ BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
89 *	This line will configure an ONboard (ISA type) at io address 240,
90 *	and shared memory address of d0000. Multiple ONboards can share
91 *	the same shared memory address space. No interrupt required.
92 *	Another example:
93 *		{ BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
94 *	This line will configure a Brumby board (any number of ports!) at
95 *	io address 360 and shared memory address of c8000. All Brumby boards
96 *	configured into a system must have their own separate io and memory
97 *	addresses. No interrupt is required.
98 *	Another example:
99 *		{ BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
100 *	This line will configure an original Stallion board at io address 330
101 *	and shared memory address d0000 (this would only be valid for a "V4.0"
102 *	or Rev.O Stallion board). All Stallion boards configured into the
103 *	system must have their own separate io and memory addresses. No
104 *	interrupt is required.
105 */
106
107struct stlconf {
108	int		brdtype;
109	int		ioaddr1;
110	int		ioaddr2;
111	unsigned long	memaddr;
112	int		irq;
113	int		irqtype;
114};
115
116static unsigned int stli_nrbrds;
117
118/* stli_lock must NOT be taken holding brd_lock */
119static spinlock_t stli_lock;	/* TTY logic lock */
120static spinlock_t brd_lock;	/* Board logic lock */
121
122/*
123 *	There is some experimental EISA board detection code in this driver.
124 *	By default it is disabled, but for those that want to try it out,
125 *	then set the define below to be 1.
126 */
127#define	STLI_EISAPROBE	0
128
129/*****************************************************************************/
130
131/*
132 *	Define some important driver characteristics. Device major numbers
133 *	allocated as per Linux Device Registry.
134 */
135#ifndef	STL_SIOMEMMAJOR
136#define	STL_SIOMEMMAJOR		28
137#endif
138#ifndef	STL_SERIALMAJOR
139#define	STL_SERIALMAJOR		24
140#endif
141#ifndef	STL_CALLOUTMAJOR
142#define	STL_CALLOUTMAJOR	25
143#endif
144
145/*****************************************************************************/
146
147/*
148 *	Define our local driver identity first. Set up stuff to deal with
149 *	all the local structures required by a serial tty driver.
150 */
151static char	*stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
152static char	*stli_drvname = "istallion";
153static char	*stli_drvversion = "5.6.0";
154static char	*stli_serialname = "ttyE";
155
156static struct tty_driver	*stli_serial;
157static const struct tty_port_operations stli_port_ops;
158
159#define	STLI_TXBUFSIZE		4096
160
161/*
162 *	Use a fast local buffer for cooked characters. Typically a whole
163 *	bunch of cooked characters come in for a port, 1 at a time. So we
164 *	save those up into a local buffer, then write out the whole lot
165 *	with a large memcpy. Just use 1 buffer for all ports, since its
166 *	use it is only need for short periods of time by each port.
167 */
168static char			*stli_txcookbuf;
169static int			stli_txcooksize;
170static int			stli_txcookrealsize;
171static struct tty_struct	*stli_txcooktty;
172
173/*
174 *	Define a local default termios struct. All ports will be created
175 *	with this termios initially. Basically all it defines is a raw port
176 *	at 9600 baud, 8 data bits, no parity, 1 stop bit.
177 */
178static struct ktermios		stli_deftermios = {
179	.c_cflag	= (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
180	.c_cc		= INIT_C_CC,
181	.c_ispeed	= 9600,
182	.c_ospeed	= 9600,
183};
184
185/*
186 *	Define global stats structures. Not used often, and can be
187 *	re-used for each stats call.
188 */
189static comstats_t	stli_comstats;
190static combrd_t		stli_brdstats;
191static struct asystats	stli_cdkstats;
192
193/*****************************************************************************/
194
195static DEFINE_MUTEX(stli_brdslock);
196static struct stlibrd	*stli_brds[STL_MAXBRDS];
197
198static int		stli_shared;
199
200/*
201 *	Per board state flags. Used with the state field of the board struct.
202 *	Not really much here... All we need to do is keep track of whether
203 *	the board has been detected, and whether it is actually running a slave
204 *	or not.
205 */
206#define	BST_FOUND	0
207#define	BST_STARTED	1
208#define	BST_PROBED	2
209
210/*
211 *	Define the set of port state flags. These are marked for internal
212 *	state purposes only, usually to do with the state of communications
213 *	with the slave. Most of them need to be updated atomically, so always
214 *	use the bit setting operations (unless protected by cli/sti).
215 */
216#define	ST_OPENING	2
217#define	ST_CLOSING	3
218#define	ST_CMDING	4
219#define	ST_TXBUSY	5
220#define	ST_RXING	6
221#define	ST_DOFLUSHRX	7
222#define	ST_DOFLUSHTX	8
223#define	ST_DOSIGS	9
224#define	ST_RXSTOP	10
225#define	ST_GETSIGS	11
226
227/*
228 *	Define an array of board names as printable strings. Handy for
229 *	referencing boards when printing trace and stuff.
230 */
231static char	*stli_brdnames[] = {
232	"Unknown",
233	"Stallion",
234	"Brumby",
235	"ONboard-MC",
236	"ONboard",
237	"Brumby",
238	"Brumby",
239	"ONboard-EI",
240	NULL,
241	"ONboard",
242	"ONboard-MC",
243	"ONboard-MC",
244	NULL,
245	NULL,
246	NULL,
247	NULL,
248	NULL,
249	NULL,
250	NULL,
251	NULL,
252	"EasyIO",
253	"EC8/32-AT",
254	"EC8/32-MC",
255	"EC8/64-AT",
256	"EC8/64-EI",
257	"EC8/64-MC",
258	"EC8/32-PCI",
259	"EC8/64-PCI",
260	"EasyIO-PCI",
261	"EC/RA-PCI",
262};
263
264/*****************************************************************************/
265
266/*
267 *	Define some string labels for arguments passed from the module
268 *	load line. These allow for easy board definitions, and easy
269 *	modification of the io, memory and irq resoucres.
270 */
271
272static char	*board0[8];
273static char	*board1[8];
274static char	*board2[8];
275static char	*board3[8];
276
277static char	**stli_brdsp[] = {
278	(char **) &board0,
279	(char **) &board1,
280	(char **) &board2,
281	(char **) &board3
282};
283
284/*
285 *	Define a set of common board names, and types. This is used to
286 *	parse any module arguments.
287 */
288
289static struct stlibrdtype {
290	char	*name;
291	int	type;
292} stli_brdstr[] = {
293	{ "stallion", BRD_STALLION },
294	{ "1", BRD_STALLION },
295	{ "brumby", BRD_BRUMBY },
296	{ "brumby4", BRD_BRUMBY },
297	{ "brumby/4", BRD_BRUMBY },
298	{ "brumby-4", BRD_BRUMBY },
299	{ "brumby8", BRD_BRUMBY },
300	{ "brumby/8", BRD_BRUMBY },
301	{ "brumby-8", BRD_BRUMBY },
302	{ "brumby16", BRD_BRUMBY },
303	{ "brumby/16", BRD_BRUMBY },
304	{ "brumby-16", BRD_BRUMBY },
305	{ "2", BRD_BRUMBY },
306	{ "onboard2", BRD_ONBOARD2 },
307	{ "onboard-2", BRD_ONBOARD2 },
308	{ "onboard/2", BRD_ONBOARD2 },
309	{ "onboard-mc", BRD_ONBOARD2 },
310	{ "onboard/mc", BRD_ONBOARD2 },
311	{ "onboard-mca", BRD_ONBOARD2 },
312	{ "onboard/mca", BRD_ONBOARD2 },
313	{ "3", BRD_ONBOARD2 },
314	{ "onboard", BRD_ONBOARD },
315	{ "onboardat", BRD_ONBOARD },
316	{ "4", BRD_ONBOARD },
317	{ "onboarde", BRD_ONBOARDE },
318	{ "onboard-e", BRD_ONBOARDE },
319	{ "onboard/e", BRD_ONBOARDE },
320	{ "onboard-ei", BRD_ONBOARDE },
321	{ "onboard/ei", BRD_ONBOARDE },
322	{ "7", BRD_ONBOARDE },
323	{ "ecp", BRD_ECP },
324	{ "ecpat", BRD_ECP },
325	{ "ec8/64", BRD_ECP },
326	{ "ec8/64-at", BRD_ECP },
327	{ "ec8/64-isa", BRD_ECP },
328	{ "23", BRD_ECP },
329	{ "ecpe", BRD_ECPE },
330	{ "ecpei", BRD_ECPE },
331	{ "ec8/64-e", BRD_ECPE },
332	{ "ec8/64-ei", BRD_ECPE },
333	{ "24", BRD_ECPE },
334	{ "ecpmc", BRD_ECPMC },
335	{ "ec8/64-mc", BRD_ECPMC },
336	{ "ec8/64-mca", BRD_ECPMC },
337	{ "25", BRD_ECPMC },
338	{ "ecppci", BRD_ECPPCI },
339	{ "ec/ra", BRD_ECPPCI },
340	{ "ec/ra-pc", BRD_ECPPCI },
341	{ "ec/ra-pci", BRD_ECPPCI },
342	{ "29", BRD_ECPPCI },
343};
344
345/*
346 *	Define the module agruments.
347 */
348MODULE_AUTHOR("Greg Ungerer");
349MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
350MODULE_LICENSE("GPL");
351
352
353module_param_array(board0, charp, NULL, 0);
354MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
355module_param_array(board1, charp, NULL, 0);
356MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
357module_param_array(board2, charp, NULL, 0);
358MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
359module_param_array(board3, charp, NULL, 0);
360MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
361
362#if STLI_EISAPROBE != 0
363/*
364 *	Set up a default memory address table for EISA board probing.
365 *	The default addresses are all bellow 1Mbyte, which has to be the
366 *	case anyway. They should be safe, since we only read values from
367 *	them, and interrupts are disabled while we do it. If the higher
368 *	memory support is compiled in then we also try probing around
369 *	the 1Gb, 2Gb and 3Gb areas as well...
370 */
371static unsigned long	stli_eisamemprobeaddrs[] = {
372	0xc0000,    0xd0000,    0xe0000,    0xf0000,
373	0x80000000, 0x80010000, 0x80020000, 0x80030000,
374	0x40000000, 0x40010000, 0x40020000, 0x40030000,
375	0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
376	0xff000000, 0xff010000, 0xff020000, 0xff030000,
377};
378
379static int	stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
380#endif
381
382/*
383 *	Define the Stallion PCI vendor and device IDs.
384 */
385#ifndef PCI_DEVICE_ID_ECRA
386#define	PCI_DEVICE_ID_ECRA		0x0004
387#endif
388
389static struct pci_device_id istallion_pci_tbl[] = {
390	{ PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
391	{ 0 }
392};
393MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
394
395static struct pci_driver stli_pcidriver;
396
397/*****************************************************************************/
398
399/*
400 *	Hardware configuration info for ECP boards. These defines apply
401 *	to the directly accessible io ports of the ECP. There is a set of
402 *	defines for each ECP board type, ISA, EISA, MCA and PCI.
403 */
404#define	ECP_IOSIZE	4
405
406#define	ECP_MEMSIZE	(128 * 1024)
407#define	ECP_PCIMEMSIZE	(256 * 1024)
408
409#define	ECP_ATPAGESIZE	(4 * 1024)
410#define	ECP_MCPAGESIZE	(4 * 1024)
411#define	ECP_EIPAGESIZE	(64 * 1024)
412#define	ECP_PCIPAGESIZE	(64 * 1024)
413
414#define	STL_EISAID	0x8c4e
415
416/*
417 *	Important defines for the ISA class of ECP board.
418 */
419#define	ECP_ATIREG	0
420#define	ECP_ATCONFR	1
421#define	ECP_ATMEMAR	2
422#define	ECP_ATMEMPR	3
423#define	ECP_ATSTOP	0x1
424#define	ECP_ATINTENAB	0x10
425#define	ECP_ATENABLE	0x20
426#define	ECP_ATDISABLE	0x00
427#define	ECP_ATADDRMASK	0x3f000
428#define	ECP_ATADDRSHFT	12
429
430/*
431 *	Important defines for the EISA class of ECP board.
432 */
433#define	ECP_EIIREG	0
434#define	ECP_EIMEMARL	1
435#define	ECP_EICONFR	2
436#define	ECP_EIMEMARH	3
437#define	ECP_EIENABLE	0x1
438#define	ECP_EIDISABLE	0x0
439#define	ECP_EISTOP	0x4
440#define	ECP_EIEDGE	0x00
441#define	ECP_EILEVEL	0x80
442#define	ECP_EIADDRMASKL	0x00ff0000
443#define	ECP_EIADDRSHFTL	16
444#define	ECP_EIADDRMASKH	0xff000000
445#define	ECP_EIADDRSHFTH	24
446#define	ECP_EIBRDENAB	0xc84
447
448#define	ECP_EISAID	0x4
449
450/*
451 *	Important defines for the Micro-channel class of ECP board.
452 *	(It has a lot in common with the ISA boards.)
453 */
454#define	ECP_MCIREG	0
455#define	ECP_MCCONFR	1
456#define	ECP_MCSTOP	0x20
457#define	ECP_MCENABLE	0x80
458#define	ECP_MCDISABLE	0x00
459
460/*
461 *	Important defines for the PCI class of ECP board.
462 *	(It has a lot in common with the other ECP boards.)
463 */
464#define	ECP_PCIIREG	0
465#define	ECP_PCICONFR	1
466#define	ECP_PCISTOP	0x01
467
468/*
469 *	Hardware configuration info for ONboard and Brumby boards. These
470 *	defines apply to the directly accessible io ports of these boards.
471 */
472#define	ONB_IOSIZE	16
473#define	ONB_MEMSIZE	(64 * 1024)
474#define	ONB_ATPAGESIZE	(64 * 1024)
475#define	ONB_MCPAGESIZE	(64 * 1024)
476#define	ONB_EIMEMSIZE	(128 * 1024)
477#define	ONB_EIPAGESIZE	(64 * 1024)
478
479/*
480 *	Important defines for the ISA class of ONboard board.
481 */
482#define	ONB_ATIREG	0
483#define	ONB_ATMEMAR	1
484#define	ONB_ATCONFR	2
485#define	ONB_ATSTOP	0x4
486#define	ONB_ATENABLE	0x01
487#define	ONB_ATDISABLE	0x00
488#define	ONB_ATADDRMASK	0xff0000
489#define	ONB_ATADDRSHFT	16
490
491#define	ONB_MEMENABLO	0
492#define	ONB_MEMENABHI	0x02
493
494/*
495 *	Important defines for the EISA class of ONboard board.
496 */
497#define	ONB_EIIREG	0
498#define	ONB_EIMEMARL	1
499#define	ONB_EICONFR	2
500#define	ONB_EIMEMARH	3
501#define	ONB_EIENABLE	0x1
502#define	ONB_EIDISABLE	0x0
503#define	ONB_EISTOP	0x4
504#define	ONB_EIEDGE	0x00
505#define	ONB_EILEVEL	0x80
506#define	ONB_EIADDRMASKL	0x00ff0000
507#define	ONB_EIADDRSHFTL	16
508#define	ONB_EIADDRMASKH	0xff000000
509#define	ONB_EIADDRSHFTH	24
510#define	ONB_EIBRDENAB	0xc84
511
512#define	ONB_EISAID	0x1
513
514/*
515 *	Important defines for the Brumby boards. They are pretty simple,
516 *	there is not much that is programmably configurable.
517 */
518#define	BBY_IOSIZE	16
519#define	BBY_MEMSIZE	(64 * 1024)
520#define	BBY_PAGESIZE	(16 * 1024)
521
522#define	BBY_ATIREG	0
523#define	BBY_ATCONFR	1
524#define	BBY_ATSTOP	0x4
525
526/*
527 *	Important defines for the Stallion boards. They are pretty simple,
528 *	there is not much that is programmably configurable.
529 */
530#define	STAL_IOSIZE	16
531#define	STAL_MEMSIZE	(64 * 1024)
532#define	STAL_PAGESIZE	(64 * 1024)
533
534/*
535 *	Define the set of status register values for EasyConnection panels.
536 *	The signature will return with the status value for each panel. From
537 *	this we can determine what is attached to the board - before we have
538 *	actually down loaded any code to it.
539 */
540#define	ECH_PNLSTATUS	2
541#define	ECH_PNL16PORT	0x20
542#define	ECH_PNLIDMASK	0x07
543#define	ECH_PNLXPID	0x40
544#define	ECH_PNLINTRPEND	0x80
545
546/*
547 *	Define some macros to do things to the board. Even those these boards
548 *	are somewhat related there is often significantly different ways of
549 *	doing some operation on it (like enable, paging, reset, etc). So each
550 *	board class has a set of functions which do the commonly required
551 *	operations. The macros below basically just call these functions,
552 *	generally checking for a NULL function - which means that the board
553 *	needs nothing done to it to achieve this operation!
554 */
555#define	EBRDINIT(brdp)						\
556	if (brdp->init != NULL)					\
557		(* brdp->init)(brdp)
558
559#define	EBRDENABLE(brdp)					\
560	if (brdp->enable != NULL)				\
561		(* brdp->enable)(brdp);
562
563#define	EBRDDISABLE(brdp)					\
564	if (brdp->disable != NULL)				\
565		(* brdp->disable)(brdp);
566
567#define	EBRDINTR(brdp)						\
568	if (brdp->intr != NULL)					\
569		(* brdp->intr)(brdp);
570
571#define	EBRDRESET(brdp)						\
572	if (brdp->reset != NULL)				\
573		(* brdp->reset)(brdp);
574
575#define	EBRDGETMEMPTR(brdp,offset)				\
576	(* brdp->getmemptr)(brdp, offset, __LINE__)
577
578/*
579 *	Define the maximal baud rate, and the default baud base for ports.
580 */
581#define	STL_MAXBAUD	460800
582#define	STL_BAUDBASE	115200
583#define	STL_CLOSEDELAY	(5 * HZ / 10)
584
585/*****************************************************************************/
586
587/*
588 *	Define macros to extract a brd or port number from a minor number.
589 */
590#define	MINOR2BRD(min)		(((min) & 0xc0) >> 6)
591#define	MINOR2PORT(min)		((min) & 0x3f)
592
593/*****************************************************************************/
594
595/*
596 *	Prototype all functions in this driver!
597 */
598
599static int	stli_parsebrd(struct stlconf *confp, char **argp);
600static int	stli_open(struct tty_struct *tty, struct file *filp);
601static void	stli_close(struct tty_struct *tty, struct file *filp);
602static int	stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
603static int	stli_putchar(struct tty_struct *tty, unsigned char ch);
604static void	stli_flushchars(struct tty_struct *tty);
605static int	stli_writeroom(struct tty_struct *tty);
606static int	stli_charsinbuffer(struct tty_struct *tty);
607static int	stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
608static void	stli_settermios(struct tty_struct *tty, struct ktermios *old);
609static void	stli_throttle(struct tty_struct *tty);
610static void	stli_unthrottle(struct tty_struct *tty);
611static void	stli_stop(struct tty_struct *tty);
612static void	stli_start(struct tty_struct *tty);
613static void	stli_flushbuffer(struct tty_struct *tty);
614static int	stli_breakctl(struct tty_struct *tty, int state);
615static void	stli_waituntilsent(struct tty_struct *tty, int timeout);
616static void	stli_sendxchar(struct tty_struct *tty, char ch);
617static void	stli_hangup(struct tty_struct *tty);
618
619static int	stli_brdinit(struct stlibrd *brdp);
620static int	stli_startbrd(struct stlibrd *brdp);
621static ssize_t	stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
622static ssize_t	stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
623static long	stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg);
624static void	stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
625static void	stli_poll(unsigned long arg);
626static int	stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
627static int	stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
628static int	stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629static int	stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
630static int	stli_setport(struct tty_struct *tty);
631static int	stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632static void	stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633static void	__stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634static void	stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
635static void	stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
636static void	stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
637static long	stli_mktiocm(unsigned long sigvalue);
638static void	stli_read(struct stlibrd *brdp, struct stliport *portp);
639static int	stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
640static int	stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
641static int	stli_getbrdstats(combrd_t __user *bp);
642static int	stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
643static int	stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
644static int	stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
645static int	stli_getportstruct(struct stliport __user *arg);
646static int	stli_getbrdstruct(struct stlibrd __user *arg);
647static struct stlibrd *stli_allocbrd(void);
648
649static void	stli_ecpinit(struct stlibrd *brdp);
650static void	stli_ecpenable(struct stlibrd *brdp);
651static void	stli_ecpdisable(struct stlibrd *brdp);
652static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
653static void	stli_ecpreset(struct stlibrd *brdp);
654static void	stli_ecpintr(struct stlibrd *brdp);
655static void	stli_ecpeiinit(struct stlibrd *brdp);
656static void	stli_ecpeienable(struct stlibrd *brdp);
657static void	stli_ecpeidisable(struct stlibrd *brdp);
658static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
659static void	stli_ecpeireset(struct stlibrd *brdp);
660static void	stli_ecpmcenable(struct stlibrd *brdp);
661static void	stli_ecpmcdisable(struct stlibrd *brdp);
662static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
663static void	stli_ecpmcreset(struct stlibrd *brdp);
664static void	stli_ecppciinit(struct stlibrd *brdp);
665static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
666static void	stli_ecppcireset(struct stlibrd *brdp);
667
668static void	stli_onbinit(struct stlibrd *brdp);
669static void	stli_onbenable(struct stlibrd *brdp);
670static void	stli_onbdisable(struct stlibrd *brdp);
671static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
672static void	stli_onbreset(struct stlibrd *brdp);
673static void	stli_onbeinit(struct stlibrd *brdp);
674static void	stli_onbeenable(struct stlibrd *brdp);
675static void	stli_onbedisable(struct stlibrd *brdp);
676static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
677static void	stli_onbereset(struct stlibrd *brdp);
678static void	stli_bbyinit(struct stlibrd *brdp);
679static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
680static void	stli_bbyreset(struct stlibrd *brdp);
681static void	stli_stalinit(struct stlibrd *brdp);
682static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
683static void	stli_stalreset(struct stlibrd *brdp);
684
685static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
686
687static int	stli_initecp(struct stlibrd *brdp);
688static int	stli_initonb(struct stlibrd *brdp);
689#if STLI_EISAPROBE != 0
690static int	stli_eisamemprobe(struct stlibrd *brdp);
691#endif
692static int	stli_initports(struct stlibrd *brdp);
693
694/*****************************************************************************/
695
696/*
697 *	Define the driver info for a user level shared memory device. This
698 *	device will work sort of like the /dev/kmem device - except that it
699 *	will give access to the shared memory on the Stallion intelligent
700 *	board. This is also a very useful debugging tool.
701 */
702static const struct file_operations	stli_fsiomem = {
703	.owner		= THIS_MODULE,
704	.read		= stli_memread,
705	.write		= stli_memwrite,
706	.unlocked_ioctl	= stli_memioctl,
707};
708
709/*****************************************************************************/
710
711/*
712 *	Define a timer_list entry for our poll routine. The slave board
713 *	is polled every so often to see if anything needs doing. This is
714 *	much cheaper on host cpu than using interrupts. It turns out to
715 *	not increase character latency by much either...
716 */
717static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
718
719static int	stli_timeron;
720
721/*
722 *	Define the calculation for the timeout routine.
723 */
724#define	STLI_TIMEOUT	(jiffies + 1)
725
726/*****************************************************************************/
727
728static struct class *istallion_class;
729
730static void stli_cleanup_ports(struct stlibrd *brdp)
731{
732	struct stliport *portp;
733	unsigned int j;
734	struct tty_struct *tty;
735
736	for (j = 0; j < STL_MAXPORTS; j++) {
737		portp = brdp->ports[j];
738		if (portp != NULL) {
739			tty = tty_port_tty_get(&portp->port);
740			if (tty != NULL) {
741				tty_hangup(tty);
742				tty_kref_put(tty);
743			}
744			kfree(portp);
745		}
746	}
747}
748
749/*****************************************************************************/
750
751/*
752 *	Parse the supplied argument string, into the board conf struct.
753 */
754
755static int stli_parsebrd(struct stlconf *confp, char **argp)
756{
757	unsigned int i;
758	char *sp;
759
760	if (argp[0] == NULL || *argp[0] == 0)
761		return 0;
762
763	for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
764		*sp = tolower(*sp);
765
766	for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
767		if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
768			break;
769	}
770	if (i == ARRAY_SIZE(stli_brdstr)) {
771		printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
772		return 0;
773	}
774
775	confp->brdtype = stli_brdstr[i].type;
776	if (argp[1] != NULL && *argp[1] != 0)
777		confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
778	if (argp[2] !=  NULL && *argp[2] != 0)
779		confp->memaddr = simple_strtoul(argp[2], NULL, 0);
780	return(1);
781}
782
783/*****************************************************************************/
784
785/*
786 *	On the first open of the device setup the port hardware, and
787 *	initialize the per port data structure. Since initializing the port
788 *	requires several commands to the board we will need to wait for any
789 *	other open that is already initializing the port.
790 *
791 *	Locking: protected by the port mutex.
792 */
793
794static int stli_activate(struct tty_port *port, struct tty_struct *tty)
795{
796	struct stliport *portp = container_of(port, struct stliport, port);
797	struct stlibrd *brdp = stli_brds[portp->brdnr];
798	int rc;
799
800	if ((rc = stli_initopen(tty, brdp, portp)) >= 0)
801		clear_bit(TTY_IO_ERROR, &tty->flags);
802	wake_up_interruptible(&portp->raw_wait);
803	return rc;
804}
805
806static int stli_open(struct tty_struct *tty, struct file *filp)
807{
808	struct stlibrd *brdp;
809	struct stliport *portp;
810	unsigned int minordev, brdnr, portnr;
811
812	minordev = tty->index;
813	brdnr = MINOR2BRD(minordev);
814	if (brdnr >= stli_nrbrds)
815		return -ENODEV;
816	brdp = stli_brds[brdnr];
817	if (brdp == NULL)
818		return -ENODEV;
819	if (!test_bit(BST_STARTED, &brdp->state))
820		return -ENODEV;
821	portnr = MINOR2PORT(minordev);
822	if (portnr > brdp->nrports)
823		return -ENODEV;
824
825	portp = brdp->ports[portnr];
826	if (portp == NULL)
827		return -ENODEV;
828	if (portp->devnr < 1)
829		return -ENODEV;
830
831	tty->driver_data = portp;
832	return tty_port_open(&portp->port, tty, filp);
833}
834
835
836/*****************************************************************************/
837
838static void stli_shutdown(struct tty_port *port)
839{
840	struct stlibrd *brdp;
841	unsigned long ftype;
842	unsigned long flags;
843	struct stliport *portp = container_of(port, struct stliport, port);
844
845	if (portp->brdnr >= stli_nrbrds)
846		return;
847	brdp = stli_brds[portp->brdnr];
848	if (brdp == NULL)
849		return;
850
851	/*
852	 *	May want to wait for data to drain before closing. The BUSY
853	 *	flag keeps track of whether we are still transmitting or not.
854	 *	It is updated by messages from the slave - indicating when all
855	 *	chars really have drained.
856	 */
857
858	if (!test_bit(ST_CLOSING, &portp->state))
859		stli_rawclose(brdp, portp, 0, 0);
860
861 	spin_lock_irqsave(&stli_lock, flags);
862	clear_bit(ST_TXBUSY, &portp->state);
863	clear_bit(ST_RXSTOP, &portp->state);
864	spin_unlock_irqrestore(&stli_lock, flags);
865
866	ftype = FLUSHTX | FLUSHRX;
867	stli_cmdwait(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
868}
869
870static void stli_close(struct tty_struct *tty, struct file *filp)
871{
872	struct stliport *portp = tty->driver_data;
873	unsigned long flags;
874	if (portp == NULL)
875		return;
876 	spin_lock_irqsave(&stli_lock, flags);
877	/*	Flush any internal buffering out first */
878	if (tty == stli_txcooktty)
879		stli_flushchars(tty);
880	spin_unlock_irqrestore(&stli_lock, flags);
881	tty_port_close(&portp->port, tty, filp);
882}
883
884/*****************************************************************************/
885
886/*
887 *	Carry out first open operations on a port. This involves a number of
888 *	commands to be sent to the slave. We need to open the port, set the
889 *	notification events, set the initial port settings, get and set the
890 *	initial signal values. We sleep and wait in between each one. But
891 *	this still all happens pretty quickly.
892 */
893
894static int stli_initopen(struct tty_struct *tty,
895				struct stlibrd *brdp, struct stliport *portp)
896{
897	asynotify_t nt;
898	asyport_t aport;
899	int rc;
900
901	if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
902		return rc;
903
904	memset(&nt, 0, sizeof(asynotify_t));
905	nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
906	nt.signal = SG_DCD;
907	if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
908	    sizeof(asynotify_t), 0)) < 0)
909		return rc;
910
911	stli_mkasyport(tty, portp, &aport, tty->termios);
912	if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
913	    sizeof(asyport_t), 0)) < 0)
914		return rc;
915
916	set_bit(ST_GETSIGS, &portp->state);
917	if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
918	    sizeof(asysigs_t), 1)) < 0)
919		return rc;
920	if (test_and_clear_bit(ST_GETSIGS, &portp->state))
921		portp->sigs = stli_mktiocm(portp->asig.sigvalue);
922	stli_mkasysigs(&portp->asig, 1, 1);
923	if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
924	    sizeof(asysigs_t), 0)) < 0)
925		return rc;
926
927	return 0;
928}
929
930/*****************************************************************************/
931
932/*
933 *	Send an open message to the slave. This will sleep waiting for the
934 *	acknowledgement, so must have user context. We need to co-ordinate
935 *	with close events here, since we don't want open and close events
936 *	to overlap.
937 */
938
939static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
940{
941	cdkhdr_t __iomem *hdrp;
942	cdkctrl_t __iomem *cp;
943	unsigned char __iomem *bits;
944	unsigned long flags;
945	int rc;
946
947/*
948 *	Send a message to the slave to open this port.
949 */
950
951/*
952 *	Slave is already closing this port. This can happen if a hangup
953 *	occurs on this port. So we must wait until it is complete. The
954 *	order of opens and closes may not be preserved across shared
955 *	memory, so we must wait until it is complete.
956 */
957	wait_event_interruptible_tty(portp->raw_wait,
958			!test_bit(ST_CLOSING, &portp->state));
959	if (signal_pending(current)) {
960		return -ERESTARTSYS;
961	}
962
963/*
964 *	Everything is ready now, so write the open message into shared
965 *	memory. Once the message is in set the service bits to say that
966 *	this port wants service.
967 */
968	spin_lock_irqsave(&brd_lock, flags);
969	EBRDENABLE(brdp);
970	cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
971	writel(arg, &cp->openarg);
972	writeb(1, &cp->open);
973	hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
974	bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
975		portp->portidx;
976	writeb(readb(bits) | portp->portbit, bits);
977	EBRDDISABLE(brdp);
978
979	if (wait == 0) {
980		spin_unlock_irqrestore(&brd_lock, flags);
981		return 0;
982	}
983
984/*
985 *	Slave is in action, so now we must wait for the open acknowledgment
986 *	to come back.
987 */
988	rc = 0;
989	set_bit(ST_OPENING, &portp->state);
990	spin_unlock_irqrestore(&brd_lock, flags);
991
992	wait_event_interruptible_tty(portp->raw_wait,
993			!test_bit(ST_OPENING, &portp->state));
994	if (signal_pending(current))
995		rc = -ERESTARTSYS;
996
997	if ((rc == 0) && (portp->rc != 0))
998		rc = -EIO;
999	return rc;
1000}
1001
1002/*****************************************************************************/
1003
1004/*
1005 *	Send a close message to the slave. Normally this will sleep waiting
1006 *	for the acknowledgement, but if wait parameter is 0 it will not. If
1007 *	wait is true then must have user context (to sleep).
1008 */
1009
1010static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1011{
1012	cdkhdr_t __iomem *hdrp;
1013	cdkctrl_t __iomem *cp;
1014	unsigned char __iomem *bits;
1015	unsigned long flags;
1016	int rc;
1017
1018/*
1019 *	Slave is already closing this port. This can happen if a hangup
1020 *	occurs on this port.
1021 */
1022	if (wait) {
1023		wait_event_interruptible_tty(portp->raw_wait,
1024				!test_bit(ST_CLOSING, &portp->state));
1025		if (signal_pending(current)) {
1026			return -ERESTARTSYS;
1027		}
1028	}
1029
1030/*
1031 *	Write the close command into shared memory.
1032 */
1033	spin_lock_irqsave(&brd_lock, flags);
1034	EBRDENABLE(brdp);
1035	cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1036	writel(arg, &cp->closearg);
1037	writeb(1, &cp->close);
1038	hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1039	bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1040		portp->portidx;
1041	writeb(readb(bits) |portp->portbit, bits);
1042	EBRDDISABLE(brdp);
1043
1044	set_bit(ST_CLOSING, &portp->state);
1045	spin_unlock_irqrestore(&brd_lock, flags);
1046
1047	if (wait == 0)
1048		return 0;
1049
1050/*
1051 *	Slave is in action, so now we must wait for the open acknowledgment
1052 *	to come back.
1053 */
1054	rc = 0;
1055	wait_event_interruptible_tty(portp->raw_wait,
1056			!test_bit(ST_CLOSING, &portp->state));
1057	if (signal_pending(current))
1058		rc = -ERESTARTSYS;
1059
1060	if ((rc == 0) && (portp->rc != 0))
1061		rc = -EIO;
1062	return rc;
1063}
1064
1065/*****************************************************************************/
1066
1067/*
1068 *	Send a command to the slave and wait for the response. This must
1069 *	have user context (it sleeps). This routine is generic in that it
1070 *	can send any type of command. Its purpose is to wait for that command
1071 *	to complete (as opposed to initiating the command then returning).
1072 */
1073
1074static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1075{
1076	/*
1077	 * no need for wait_event_tty because clearing ST_CMDING cannot block
1078	 * on BTM
1079	 */
1080	wait_event_interruptible(portp->raw_wait,
1081			!test_bit(ST_CMDING, &portp->state));
1082	if (signal_pending(current))
1083		return -ERESTARTSYS;
1084
1085	stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1086
1087	wait_event_interruptible(portp->raw_wait,
1088			!test_bit(ST_CMDING, &portp->state));
1089	if (signal_pending(current))
1090		return -ERESTARTSYS;
1091
1092	if (portp->rc != 0)
1093		return -EIO;
1094	return 0;
1095}
1096
1097/*****************************************************************************/
1098
1099/*
1100 *	Send the termios settings for this port to the slave. This sleeps
1101 *	waiting for the command to complete - so must have user context.
1102 */
1103
1104static int stli_setport(struct tty_struct *tty)
1105{
1106	struct stliport *portp = tty->driver_data;
1107	struct stlibrd *brdp;
1108	asyport_t aport;
1109
1110	if (portp == NULL)
1111		return -ENODEV;
1112	if (portp->brdnr >= stli_nrbrds)
1113		return -ENODEV;
1114	brdp = stli_brds[portp->brdnr];
1115	if (brdp == NULL)
1116		return -ENODEV;
1117
1118	stli_mkasyport(tty, portp, &aport, tty->termios);
1119	return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1120}
1121
1122/*****************************************************************************/
1123
1124static int stli_carrier_raised(struct tty_port *port)
1125{
1126	struct stliport *portp = container_of(port, struct stliport, port);
1127	return (portp->sigs & TIOCM_CD) ? 1 : 0;
1128}
1129
1130static void stli_dtr_rts(struct tty_port *port, int on)
1131{
1132	struct stliport *portp = container_of(port, struct stliport, port);
1133	struct stlibrd *brdp = stli_brds[portp->brdnr];
1134	stli_mkasysigs(&portp->asig, on, on);
1135	if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1136		sizeof(asysigs_t), 0) < 0)
1137			printk(KERN_WARNING "istallion: dtr set failed.\n");
1138}
1139
1140
1141/*****************************************************************************/
1142
1143/*
1144 *	Write routine. Take the data and put it in the shared memory ring
1145 *	queue. If port is not already sending chars then need to mark the
1146 *	service bits for this port.
1147 */
1148
1149static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1150{
1151	cdkasy_t __iomem *ap;
1152	cdkhdr_t __iomem *hdrp;
1153	unsigned char __iomem *bits;
1154	unsigned char __iomem *shbuf;
1155	unsigned char *chbuf;
1156	struct stliport *portp;
1157	struct stlibrd *brdp;
1158	unsigned int len, stlen, head, tail, size;
1159	unsigned long flags;
1160
1161	if (tty == stli_txcooktty)
1162		stli_flushchars(tty);
1163	portp = tty->driver_data;
1164	if (portp == NULL)
1165		return 0;
1166	if (portp->brdnr >= stli_nrbrds)
1167		return 0;
1168	brdp = stli_brds[portp->brdnr];
1169	if (brdp == NULL)
1170		return 0;
1171	chbuf = (unsigned char *) buf;
1172
1173/*
1174 *	All data is now local, shove as much as possible into shared memory.
1175 */
1176	spin_lock_irqsave(&brd_lock, flags);
1177	EBRDENABLE(brdp);
1178	ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1179	head = (unsigned int) readw(&ap->txq.head);
1180	tail = (unsigned int) readw(&ap->txq.tail);
1181	if (tail != ((unsigned int) readw(&ap->txq.tail)))
1182		tail = (unsigned int) readw(&ap->txq.tail);
1183	size = portp->txsize;
1184	if (head >= tail) {
1185		len = size - (head - tail) - 1;
1186		stlen = size - head;
1187	} else {
1188		len = tail - head - 1;
1189		stlen = len;
1190	}
1191
1192	len = min(len, (unsigned int)count);
1193	count = 0;
1194	shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1195
1196	while (len > 0) {
1197		stlen = min(len, stlen);
1198		memcpy_toio(shbuf + head, chbuf, stlen);
1199		chbuf += stlen;
1200		len -= stlen;
1201		count += stlen;
1202		head += stlen;
1203		if (head >= size) {
1204			head = 0;
1205			stlen = tail;
1206		}
1207	}
1208
1209	ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1210	writew(head, &ap->txq.head);
1211	if (test_bit(ST_TXBUSY, &portp->state)) {
1212		if (readl(&ap->changed.data) & DT_TXEMPTY)
1213			writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1214	}
1215	hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1216	bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1217		portp->portidx;
1218	writeb(readb(bits) | portp->portbit, bits);
1219	set_bit(ST_TXBUSY, &portp->state);
1220	EBRDDISABLE(brdp);
1221	spin_unlock_irqrestore(&brd_lock, flags);
1222
1223	return(count);
1224}
1225
1226/*****************************************************************************/
1227
1228/*
1229 *	Output a single character. We put it into a temporary local buffer
1230 *	(for speed) then write out that buffer when the flushchars routine
1231 *	is called. There is a safety catch here so that if some other port
1232 *	writes chars before the current buffer has been, then we write them
1233 *	first them do the new ports.
1234 */
1235
1236static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1237{
1238	if (tty != stli_txcooktty) {
1239		if (stli_txcooktty != NULL)
1240			stli_flushchars(stli_txcooktty);
1241		stli_txcooktty = tty;
1242	}
1243
1244	stli_txcookbuf[stli_txcooksize++] = ch;
1245	return 0;
1246}
1247
1248/*****************************************************************************/
1249
1250/*
1251 *	Transfer characters from the local TX cooking buffer to the board.
1252 *	We sort of ignore the tty that gets passed in here. We rely on the
1253 *	info stored with the TX cook buffer to tell us which port to flush
1254 *	the data on. In any case we clean out the TX cook buffer, for re-use
1255 *	by someone else.
1256 */
1257
1258static void stli_flushchars(struct tty_struct *tty)
1259{
1260	cdkhdr_t __iomem *hdrp;
1261	unsigned char __iomem *bits;
1262	cdkasy_t __iomem *ap;
1263	struct tty_struct *cooktty;
1264	struct stliport *portp;
1265	struct stlibrd *brdp;
1266	unsigned int len, stlen, head, tail, size, count, cooksize;
1267	unsigned char *buf;
1268	unsigned char __iomem *shbuf;
1269	unsigned long flags;
1270
1271	cooksize = stli_txcooksize;
1272	cooktty = stli_txcooktty;
1273	stli_txcooksize = 0;
1274	stli_txcookrealsize = 0;
1275	stli_txcooktty = NULL;
1276
1277	if (cooktty == NULL)
1278		return;
1279	if (tty != cooktty)
1280		tty = cooktty;
1281	if (cooksize == 0)
1282		return;
1283
1284	portp = tty->driver_data;
1285	if (portp == NULL)
1286		return;
1287	if (portp->brdnr >= stli_nrbrds)
1288		return;
1289	brdp = stli_brds[portp->brdnr];
1290	if (brdp == NULL)
1291		return;
1292
1293	spin_lock_irqsave(&brd_lock, flags);
1294	EBRDENABLE(brdp);
1295
1296	ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1297	head = (unsigned int) readw(&ap->txq.head);
1298	tail = (unsigned int) readw(&ap->txq.tail);
1299	if (tail != ((unsigned int) readw(&ap->txq.tail)))
1300		tail = (unsigned int) readw(&ap->txq.tail);
1301	size = portp->txsize;
1302	if (head >= tail) {
1303		len = size - (head - tail) - 1;
1304		stlen = size - head;
1305	} else {
1306		len = tail - head - 1;
1307		stlen = len;
1308	}
1309
1310	len = min(len, cooksize);
1311	count = 0;
1312	shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1313	buf = stli_txcookbuf;
1314
1315	while (len > 0) {
1316		stlen = min(len, stlen);
1317		memcpy_toio(shbuf + head, buf, stlen);
1318		buf += stlen;
1319		len -= stlen;
1320		count += stlen;
1321		head += stlen;
1322		if (head >= size) {
1323			head = 0;
1324			stlen = tail;
1325		}
1326	}
1327
1328	ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1329	writew(head, &ap->txq.head);
1330
1331	if (test_bit(ST_TXBUSY, &portp->state)) {
1332		if (readl(&ap->changed.data) & DT_TXEMPTY)
1333			writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1334	}
1335	hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1336	bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1337		portp->portidx;
1338	writeb(readb(bits) | portp->portbit, bits);
1339	set_bit(ST_TXBUSY, &portp->state);
1340
1341	EBRDDISABLE(brdp);
1342	spin_unlock_irqrestore(&brd_lock, flags);
1343}
1344
1345/*****************************************************************************/
1346
1347static int stli_writeroom(struct tty_struct *tty)
1348{
1349	cdkasyrq_t __iomem *rp;
1350	struct stliport *portp;
1351	struct stlibrd *brdp;
1352	unsigned int head, tail, len;
1353	unsigned long flags;
1354
1355	if (tty == stli_txcooktty) {
1356		if (stli_txcookrealsize != 0) {
1357			len = stli_txcookrealsize - stli_txcooksize;
1358			return len;
1359		}
1360	}
1361
1362	portp = tty->driver_data;
1363	if (portp == NULL)
1364		return 0;
1365	if (portp->brdnr >= stli_nrbrds)
1366		return 0;
1367	brdp = stli_brds[portp->brdnr];
1368	if (brdp == NULL)
1369		return 0;
1370
1371	spin_lock_irqsave(&brd_lock, flags);
1372	EBRDENABLE(brdp);
1373	rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1374	head = (unsigned int) readw(&rp->head);
1375	tail = (unsigned int) readw(&rp->tail);
1376	if (tail != ((unsigned int) readw(&rp->tail)))
1377		tail = (unsigned int) readw(&rp->tail);
1378	len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1379	len--;
1380	EBRDDISABLE(brdp);
1381	spin_unlock_irqrestore(&brd_lock, flags);
1382
1383	if (tty == stli_txcooktty) {
1384		stli_txcookrealsize = len;
1385		len -= stli_txcooksize;
1386	}
1387	return len;
1388}
1389
1390/*****************************************************************************/
1391
1392/*
1393 *	Return the number of characters in the transmit buffer. Normally we
1394 *	will return the number of chars in the shared memory ring queue.
1395 *	We need to kludge around the case where the shared memory buffer is
1396 *	empty but not all characters have drained yet, for this case just
1397 *	return that there is 1 character in the buffer!
1398 */
1399
1400static int stli_charsinbuffer(struct tty_struct *tty)
1401{
1402	cdkasyrq_t __iomem *rp;
1403	struct stliport *portp;
1404	struct stlibrd *brdp;
1405	unsigned int head, tail, len;
1406	unsigned long flags;
1407
1408	if (tty == stli_txcooktty)
1409		stli_flushchars(tty);
1410	portp = tty->driver_data;
1411	if (portp == NULL)
1412		return 0;
1413	if (portp->brdnr >= stli_nrbrds)
1414		return 0;
1415	brdp = stli_brds[portp->brdnr];
1416	if (brdp == NULL)
1417		return 0;
1418
1419	spin_lock_irqsave(&brd_lock, flags);
1420	EBRDENABLE(brdp);
1421	rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1422	head = (unsigned int) readw(&rp->head);
1423	tail = (unsigned int) readw(&rp->tail);
1424	if (tail != ((unsigned int) readw(&rp->tail)))
1425		tail = (unsigned int) readw(&rp->tail);
1426	len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1427	if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1428		len = 1;
1429	EBRDDISABLE(brdp);
1430	spin_unlock_irqrestore(&brd_lock, flags);
1431
1432	return len;
1433}
1434
1435/*****************************************************************************/
1436
1437/*
1438 *	Generate the serial struct info.
1439 */
1440
1441static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1442{
1443	struct serial_struct sio;
1444	struct stlibrd *brdp;
1445
1446	memset(&sio, 0, sizeof(struct serial_struct));
1447	sio.type = PORT_UNKNOWN;
1448	sio.line = portp->portnr;
1449	sio.irq = 0;
1450	sio.flags = portp->port.flags;
1451	sio.baud_base = portp->baud_base;
1452	sio.close_delay = portp->port.close_delay;
1453	sio.closing_wait = portp->closing_wait;
1454	sio.custom_divisor = portp->custom_divisor;
1455	sio.xmit_fifo_size = 0;
1456	sio.hub6 = 0;
1457
1458	brdp = stli_brds[portp->brdnr];
1459	if (brdp != NULL)
1460		sio.port = brdp->iobase;
1461
1462	return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1463			-EFAULT : 0;
1464}
1465
1466/*****************************************************************************/
1467
1468/*
1469 *	Set port according to the serial struct info.
1470 *	At this point we do not do any auto-configure stuff, so we will
1471 *	just quietly ignore any requests to change irq, etc.
1472 */
1473
1474static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1475{
1476	struct serial_struct sio;
1477	int rc;
1478	struct stliport *portp = tty->driver_data;
1479
1480	if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1481		return -EFAULT;
1482	if (!capable(CAP_SYS_ADMIN)) {
1483		if ((sio.baud_base != portp->baud_base) ||
1484		    (sio.close_delay != portp->port.close_delay) ||
1485		    ((sio.flags & ~ASYNC_USR_MASK) !=
1486		    (portp->port.flags & ~ASYNC_USR_MASK)))
1487			return -EPERM;
1488	}
1489
1490	portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1491		(sio.flags & ASYNC_USR_MASK);
1492	portp->baud_base = sio.baud_base;
1493	portp->port.close_delay = sio.close_delay;
1494	portp->closing_wait = sio.closing_wait;
1495	portp->custom_divisor = sio.custom_divisor;
1496
1497	if ((rc = stli_setport(tty)) < 0)
1498		return rc;
1499	return 0;
1500}
1501
1502/*****************************************************************************/
1503
1504static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1505{
1506	struct stliport *portp = tty->driver_data;
1507	struct stlibrd *brdp;
1508	int rc;
1509
1510	if (portp == NULL)
1511		return -ENODEV;
1512	if (portp->brdnr >= stli_nrbrds)
1513		return 0;
1514	brdp = stli_brds[portp->brdnr];
1515	if (brdp == NULL)
1516		return 0;
1517	if (tty->flags & (1 << TTY_IO_ERROR))
1518		return -EIO;
1519
1520	if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1521			       &portp->asig, sizeof(asysigs_t), 1)) < 0)
1522		return rc;
1523
1524	return stli_mktiocm(portp->asig.sigvalue);
1525}
1526
1527static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1528			 unsigned int set, unsigned int clear)
1529{
1530	struct stliport *portp = tty->driver_data;
1531	struct stlibrd *brdp;
1532	int rts = -1, dtr = -1;
1533
1534	if (portp == NULL)
1535		return -ENODEV;
1536	if (portp->brdnr >= stli_nrbrds)
1537		return 0;
1538	brdp = stli_brds[portp->brdnr];
1539	if (brdp == NULL)
1540		return 0;
1541	if (tty->flags & (1 << TTY_IO_ERROR))
1542		return -EIO;
1543
1544	if (set & TIOCM_RTS)
1545		rts = 1;
1546	if (set & TIOCM_DTR)
1547		dtr = 1;
1548	if (clear & TIOCM_RTS)
1549		rts = 0;
1550	if (clear & TIOCM_DTR)
1551		dtr = 0;
1552
1553	stli_mkasysigs(&portp->asig, dtr, rts);
1554
1555	return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1556			    sizeof(asysigs_t), 0);
1557}
1558
1559static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1560{
1561	struct stliport *portp;
1562	struct stlibrd *brdp;
1563	int rc;
1564	void __user *argp = (void __user *)arg;
1565
1566	portp = tty->driver_data;
1567	if (portp == NULL)
1568		return -ENODEV;
1569	if (portp->brdnr >= stli_nrbrds)
1570		return 0;
1571	brdp = stli_brds[portp->brdnr];
1572	if (brdp == NULL)
1573		return 0;
1574
1575	if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1576 	    (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1577		if (tty->flags & (1 << TTY_IO_ERROR))
1578			return -EIO;
1579	}
1580
1581	rc = 0;
1582
1583	switch (cmd) {
1584	case TIOCGSERIAL:
1585		rc = stli_getserial(portp, argp);
1586		break;
1587	case TIOCSSERIAL:
1588		rc = stli_setserial(tty, argp);
1589		break;
1590	case STL_GETPFLAG:
1591		rc = put_user(portp->pflag, (unsigned __user *)argp);
1592		break;
1593	case STL_SETPFLAG:
1594		if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1595			stli_setport(tty);
1596		break;
1597	case COM_GETPORTSTATS:
1598		rc = stli_getportstats(tty, portp, argp);
1599		break;
1600	case COM_CLRPORTSTATS:
1601		rc = stli_clrportstats(portp, argp);
1602		break;
1603	case TIOCSERCONFIG:
1604	case TIOCSERGWILD:
1605	case TIOCSERSWILD:
1606	case TIOCSERGETLSR:
1607	case TIOCSERGSTRUCT:
1608	case TIOCSERGETMULTI:
1609	case TIOCSERSETMULTI:
1610	default:
1611		rc = -ENOIOCTLCMD;
1612		break;
1613	}
1614
1615	return rc;
1616}
1617
1618/*****************************************************************************/
1619
1620/*
1621 *	This routine assumes that we have user context and can sleep.
1622 *	Looks like it is true for the current ttys implementation..!!
1623 */
1624
1625static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1626{
1627	struct stliport *portp;
1628	struct stlibrd *brdp;
1629	struct ktermios *tiosp;
1630	asyport_t aport;
1631
1632	portp = tty->driver_data;
1633	if (portp == NULL)
1634		return;
1635	if (portp->brdnr >= stli_nrbrds)
1636		return;
1637	brdp = stli_brds[portp->brdnr];
1638	if (brdp == NULL)
1639		return;
1640
1641	tiosp = tty->termios;
1642
1643	stli_mkasyport(tty, portp, &aport, tiosp);
1644	stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1645	stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1646	stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1647		sizeof(asysigs_t), 0);
1648	if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1649		tty->hw_stopped = 0;
1650	if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1651		wake_up_interruptible(&portp->port.open_wait);
1652}
1653
1654/*****************************************************************************/
1655
1656/*
1657 *	Attempt to flow control who ever is sending us data. We won't really
1658 *	do any flow control action here. We can't directly, and even if we
1659 *	wanted to we would have to send a command to the slave. The slave
1660 *	knows how to flow control, and will do so when its buffers reach its
1661 *	internal high water marks. So what we will do is set a local state
1662 *	bit that will stop us sending any RX data up from the poll routine
1663 *	(which is the place where RX data from the slave is handled).
1664 */
1665
1666static void stli_throttle(struct tty_struct *tty)
1667{
1668	struct stliport	*portp = tty->driver_data;
1669	if (portp == NULL)
1670		return;
1671	set_bit(ST_RXSTOP, &portp->state);
1672}
1673
1674/*****************************************************************************/
1675
1676/*
1677 *	Unflow control the device sending us data... That means that all
1678 *	we have to do is clear the RXSTOP state bit. The next poll call
1679 *	will then be able to pass the RX data back up.
1680 */
1681
1682static void stli_unthrottle(struct tty_struct *tty)
1683{
1684	struct stliport	*portp = tty->driver_data;
1685	if (portp == NULL)
1686		return;
1687	clear_bit(ST_RXSTOP, &portp->state);
1688}
1689
1690/*****************************************************************************/
1691
1692/*
1693 *	Stop the transmitter.
1694 */
1695
1696static void stli_stop(struct tty_struct *tty)
1697{
1698}
1699
1700/*****************************************************************************/
1701
1702/*
1703 *	Start the transmitter again.
1704 */
1705
1706static void stli_start(struct tty_struct *tty)
1707{
1708}
1709
1710/*****************************************************************************/
1711
1712
1713/*
1714 *	Hangup this port. This is pretty much like closing the port, only
1715 *	a little more brutal. No waiting for data to drain. Shutdown the
1716 *	port and maybe drop signals. This is rather tricky really. We want
1717 *	to close the port as well.
1718 */
1719
1720static void stli_hangup(struct tty_struct *tty)
1721{
1722	struct stliport *portp = tty->driver_data;
1723	tty_port_hangup(&portp->port);
1724}
1725
1726/*****************************************************************************/
1727
1728/*
1729 *	Flush characters from the lower buffer. We may not have user context
1730 *	so we cannot sleep waiting for it to complete. Also we need to check
1731 *	if there is chars for this port in the TX cook buffer, and flush them
1732 *	as well.
1733 */
1734
1735static void stli_flushbuffer(struct tty_struct *tty)
1736{
1737	struct stliport *portp;
1738	struct stlibrd *brdp;
1739	unsigned long ftype, flags;
1740
1741	portp = tty->driver_data;
1742	if (portp == NULL)
1743		return;
1744	if (portp->brdnr >= stli_nrbrds)
1745		return;
1746	brdp = stli_brds[portp->brdnr];
1747	if (brdp == NULL)
1748		return;
1749
1750	spin_lock_irqsave(&brd_lock, flags);
1751	if (tty == stli_txcooktty) {
1752		stli_txcooktty = NULL;
1753		stli_txcooksize = 0;
1754		stli_txcookrealsize = 0;
1755	}
1756	if (test_bit(ST_CMDING, &portp->state)) {
1757		set_bit(ST_DOFLUSHTX, &portp->state);
1758	} else {
1759		ftype = FLUSHTX;
1760		if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1761			ftype |= FLUSHRX;
1762			clear_bit(ST_DOFLUSHRX, &portp->state);
1763		}
1764		__stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1765	}
1766	spin_unlock_irqrestore(&brd_lock, flags);
1767	tty_wakeup(tty);
1768}
1769
1770/*****************************************************************************/
1771
1772static int stli_breakctl(struct tty_struct *tty, int state)
1773{
1774	struct stlibrd	*brdp;
1775	struct stliport	*portp;
1776	long		arg;
1777
1778	portp = tty->driver_data;
1779	if (portp == NULL)
1780		return -EINVAL;
1781	if (portp->brdnr >= stli_nrbrds)
1782		return -EINVAL;
1783	brdp = stli_brds[portp->brdnr];
1784	if (brdp == NULL)
1785		return -EINVAL;
1786
1787	arg = (state == -1) ? BREAKON : BREAKOFF;
1788	stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1789	return 0;
1790}
1791
1792/*****************************************************************************/
1793
1794static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1795{
1796	struct stliport *portp;
1797	unsigned long tend;
1798
1799	portp = tty->driver_data;
1800	if (portp == NULL)
1801		return;
1802
1803	if (timeout == 0)
1804		timeout = HZ;
1805	tend = jiffies + timeout;
1806
1807	while (test_bit(ST_TXBUSY, &portp->state)) {
1808		if (signal_pending(current))
1809			break;
1810		msleep_interruptible(20);
1811		if (time_after_eq(jiffies, tend))
1812			break;
1813	}
1814}
1815
1816/*****************************************************************************/
1817
1818static void stli_sendxchar(struct tty_struct *tty, char ch)
1819{
1820	struct stlibrd	*brdp;
1821	struct stliport	*portp;
1822	asyctrl_t	actrl;
1823
1824	portp = tty->driver_data;
1825	if (portp == NULL)
1826		return;
1827	if (portp->brdnr >= stli_nrbrds)
1828		return;
1829	brdp = stli_brds[portp->brdnr];
1830	if (brdp == NULL)
1831		return;
1832
1833	memset(&actrl, 0, sizeof(asyctrl_t));
1834	if (ch == STOP_CHAR(tty)) {
1835		actrl.rxctrl = CT_STOPFLOW;
1836	} else if (ch == START_CHAR(tty)) {
1837		actrl.rxctrl = CT_STARTFLOW;
1838	} else {
1839		actrl.txctrl = CT_SENDCHR;
1840		actrl.tximdch = ch;
1841	}
1842	stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1843}
1844
1845static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1846{
1847	char *uart;
1848	int rc;
1849
1850	rc = stli_portcmdstats(NULL, portp);
1851
1852	uart = "UNKNOWN";
1853	if (test_bit(BST_STARTED, &brdp->state)) {
1854		switch (stli_comstats.hwid) {
1855		case 0:	uart = "2681"; break;
1856		case 1:	uart = "SC26198"; break;
1857		default:uart = "CD1400"; break;
1858		}
1859	}
1860	seq_printf(m, "%d: uart:%s ", portnr, uart);
1861
1862	if (test_bit(BST_STARTED, &brdp->state) && rc >= 0) {
1863		char sep;
1864
1865		seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1866			(int) stli_comstats.rxtotal);
1867
1868		if (stli_comstats.rxframing)
1869			seq_printf(m, " fe:%d",
1870				(int) stli_comstats.rxframing);
1871		if (stli_comstats.rxparity)
1872			seq_printf(m, " pe:%d",
1873				(int) stli_comstats.rxparity);
1874		if (stli_comstats.rxbreaks)
1875			seq_printf(m, " brk:%d",
1876				(int) stli_comstats.rxbreaks);
1877		if (stli_comstats.rxoverrun)
1878			seq_printf(m, " oe:%d",
1879				(int) stli_comstats.rxoverrun);
1880
1881		sep = ' ';
1882		if (stli_comstats.signals & TIOCM_RTS) {
1883			seq_printf(m, "%c%s", sep, "RTS");
1884			sep = '|';
1885		}
1886		if (stli_comstats.signals & TIOCM_CTS) {
1887			seq_printf(m, "%c%s", sep, "CTS");
1888			sep = '|';
1889		}
1890		if (stli_comstats.signals & TIOCM_DTR) {
1891			seq_printf(m, "%c%s", sep, "DTR");
1892			sep = '|';
1893		}
1894		if (stli_comstats.signals & TIOCM_CD) {
1895			seq_printf(m, "%c%s", sep, "DCD");
1896			sep = '|';
1897		}
1898		if (stli_comstats.signals & TIOCM_DSR) {
1899			seq_printf(m, "%c%s", sep, "DSR");
1900			sep = '|';
1901		}
1902	}
1903	seq_putc(m, '\n');
1904}
1905
1906/*****************************************************************************/
1907
1908/*
1909 *	Port info, read from the /proc file system.
1910 */
1911
1912static int stli_proc_show(struct seq_file *m, void *v)
1913{
1914	struct stlibrd *brdp;
1915	struct stliport *portp;
1916	unsigned int brdnr, portnr, totalport;
1917
1918	totalport = 0;
1919
1920	seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1921
1922/*
1923 *	We scan through for each board, panel and port. The offset is
1924 *	calculated on the fly, and irrelevant ports are skipped.
1925 */
1926	for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1927		brdp = stli_brds[brdnr];
1928		if (brdp == NULL)
1929			continue;
1930		if (brdp->state == 0)
1931			continue;
1932
1933		totalport = brdnr * STL_MAXPORTS;
1934		for (portnr = 0; (portnr < brdp->nrports); portnr++,
1935		    totalport++) {
1936			portp = brdp->ports[portnr];
1937			if (portp == NULL)
1938				continue;
1939			stli_portinfo(m, brdp, portp, totalport);
1940		}
1941	}
1942	return 0;
1943}
1944
1945static int stli_proc_open(struct inode *inode, struct file *file)
1946{
1947	return single_open(file, stli_proc_show, NULL);
1948}
1949
1950static const struct file_operations stli_proc_fops = {
1951	.owner		= THIS_MODULE,
1952	.open		= stli_proc_open,
1953	.read		= seq_read,
1954	.llseek		= seq_lseek,
1955	.release	= single_release,
1956};
1957
1958/*****************************************************************************/
1959
1960/*
1961 *	Generic send command routine. This will send a message to the slave,
1962 *	of the specified type with the specified argument. Must be very
1963 *	careful of data that will be copied out from shared memory -
1964 *	containing command results. The command completion is all done from
1965 *	a poll routine that does not have user context. Therefore you cannot
1966 *	copy back directly into user space, or to the kernel stack of a
1967 *	process. This routine does not sleep, so can be called from anywhere.
1968 *
1969 *	The caller must hold the brd_lock (see also stli_sendcmd the usual
1970 *	entry point)
1971 */
1972
1973static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1974{
1975	cdkhdr_t __iomem *hdrp;
1976	cdkctrl_t __iomem *cp;
1977	unsigned char __iomem *bits;
1978
1979	if (test_bit(ST_CMDING, &portp->state)) {
1980		printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
1981				(int) cmd);
1982		return;
1983	}
1984
1985	EBRDENABLE(brdp);
1986	cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1987	if (size > 0) {
1988		memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
1989		if (copyback) {
1990			portp->argp = arg;
1991			portp->argsize = size;
1992		}
1993	}
1994	writel(0, &cp->status);
1995	writel(cmd, &cp->cmd);
1996	hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1997	bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1998		portp->portidx;
1999	writeb(readb(bits) | portp->portbit, bits);
2000	set_bit(ST_CMDING, &portp->state);
2001	EBRDDISABLE(brdp);
2002}
2003
2004static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2005{
2006	unsigned long		flags;
2007
2008	spin_lock_irqsave(&brd_lock, flags);
2009	__stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2010	spin_unlock_irqrestore(&brd_lock, flags);
2011}
2012
2013/*****************************************************************************/
2014
2015/*
2016 *	Read data from shared memory. This assumes that the shared memory
2017 *	is enabled and that interrupts are off. Basically we just empty out
2018 *	the shared memory buffer into the tty buffer. Must be careful to
2019 *	handle the case where we fill up the tty buffer, but still have
2020 *	more chars to unload.
2021 */
2022
2023static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2024{
2025	cdkasyrq_t __iomem *rp;
2026	char __iomem *shbuf;
2027	struct tty_struct	*tty;
2028	unsigned int head, tail, size;
2029	unsigned int len, stlen;
2030
2031	if (test_bit(ST_RXSTOP, &portp->state))
2032		return;
2033	tty = tty_port_tty_get(&portp->port);
2034	if (tty == NULL)
2035		return;
2036
2037	rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2038	head = (unsigned int) readw(&rp->head);
2039	if (head != ((unsigned int) readw(&rp->head)))
2040		head = (unsigned int) readw(&rp->head);
2041	tail = (unsigned int) readw(&rp->tail);
2042	size = portp->rxsize;
2043	if (head >= tail) {
2044		len = head - tail;
2045		stlen = len;
2046	} else {
2047		len = size - (tail - head);
2048		stlen = size - tail;
2049	}
2050
2051	len = tty_buffer_request_room(tty, len);
2052
2053	shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2054
2055	while (len > 0) {
2056		unsigned char *cptr;
2057
2058		stlen = min(len, stlen);
2059		tty_prepare_flip_string(tty, &cptr, stlen);
2060		memcpy_fromio(cptr, shbuf + tail, stlen);
2061		len -= stlen;
2062		tail += stlen;
2063		if (tail >= size) {
2064			tail = 0;
2065			stlen = head;
2066		}
2067	}
2068	rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2069	writew(tail, &rp->tail);
2070
2071	if (head != tail)
2072		set_bit(ST_RXING, &portp->state);
2073
2074	tty_schedule_flip(tty);
2075	tty_kref_put(tty);
2076}
2077
2078/*****************************************************************************/
2079
2080/*
2081 *	Set up and carry out any delayed commands. There is only a small set
2082 *	of slave commands that can be done "off-level". So it is not too
2083 *	difficult to deal with them here.
2084 */
2085
2086static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2087{
2088	int cmd;
2089
2090	if (test_bit(ST_DOSIGS, &portp->state)) {
2091		if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2092		    test_bit(ST_DOFLUSHRX, &portp->state))
2093			cmd = A_SETSIGNALSF;
2094		else if (test_bit(ST_DOFLUSHTX, &portp->state))
2095			cmd = A_SETSIGNALSFTX;
2096		else if (test_bit(ST_DOFLUSHRX, &portp->state))
2097			cmd = A_SETSIGNALSFRX;
2098		else
2099			cmd = A_SETSIGNALS;
2100		clear_bit(ST_DOFLUSHTX, &portp->state);
2101		clear_bit(ST_DOFLUSHRX, &portp->state);
2102		clear_bit(ST_DOSIGS, &portp->state);
2103		memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2104			sizeof(asysigs_t));
2105		writel(0, &cp->status);
2106		writel(cmd, &cp->cmd);
2107		set_bit(ST_CMDING, &portp->state);
2108	} else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2109	    test_bit(ST_DOFLUSHRX, &portp->state)) {
2110		cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2111		cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2112		clear_bit(ST_DOFLUSHTX, &portp->state);
2113		clear_bit(ST_DOFLUSHRX, &portp->state);
2114		memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2115		writel(0, &cp->status);
2116		writel(A_FLUSH, &cp->cmd);
2117		set_bit(ST_CMDING, &portp->state);
2118	}
2119}
2120
2121/*****************************************************************************/
2122
2123/*
2124 *	Host command service checking. This handles commands or messages
2125 *	coming from the slave to the host. Must have board shared memory
2126 *	enabled and interrupts off when called. Notice that by servicing the
2127 *	read data last we don't need to change the shared memory pointer
2128 *	during processing (which is a slow IO operation).
2129 *	Return value indicates if this port is still awaiting actions from
2130 *	the slave (like open, command, or even TX data being sent). If 0
2131 *	then port is still busy, otherwise no longer busy.
2132 */
2133
2134static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2135{
2136	cdkasy_t __iomem *ap;
2137	cdkctrl_t __iomem *cp;
2138	struct tty_struct *tty;
2139	asynotify_t nt;
2140	unsigned long oldsigs;
2141	int rc, donerx;
2142
2143	ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2144	cp = &ap->ctrl;
2145
2146/*
2147 *	Check if we are waiting for an open completion message.
2148 */
2149	if (test_bit(ST_OPENING, &portp->state)) {
2150		rc = readl(&cp->openarg);
2151		if (readb(&cp->open) == 0 && rc != 0) {
2152			if (rc > 0)
2153				rc--;
2154			writel(0, &cp->openarg);
2155			portp->rc = rc;
2156			clear_bit(ST_OPENING, &portp->state);
2157			wake_up_interruptible(&portp->raw_wait);
2158		}
2159	}
2160
2161/*
2162 *	Check if we are waiting for a close completion message.
2163 */
2164	if (test_bit(ST_CLOSING, &portp->state)) {
2165		rc = (int) readl(&cp->closearg);
2166		if (readb(&cp->close) == 0 && rc != 0) {
2167			if (rc > 0)
2168				rc--;
2169			writel(0, &cp->closearg);
2170			portp->rc = rc;
2171			clear_bit(ST_CLOSING, &portp->state);
2172			wake_up_interruptible(&portp->raw_wait);
2173		}
2174	}
2175
2176/*
2177 *	Check if we are waiting for a command completion message. We may
2178 *	need to copy out the command results associated with this command.
2179 */
2180	if (test_bit(ST_CMDING, &portp->state)) {
2181		rc = readl(&cp->status);
2182		if (readl(&cp->cmd) == 0 && rc != 0) {
2183			if (rc > 0)
2184				rc--;
2185			if (portp->argp != NULL) {
2186				memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2187					portp->argsize);
2188				portp->argp = NULL;
2189			}
2190			writel(0, &cp->status);
2191			portp->rc = rc;
2192			clear_bit(ST_CMDING, &portp->state);
2193			stli_dodelaycmd(portp, cp);
2194			wake_up_interruptible(&portp->raw_wait);
2195		}
2196	}
2197
2198/*
2199 *	Check for any notification messages ready. This includes lots of
2200 *	different types of events - RX chars ready, RX break received,
2201 *	TX data low or empty in the slave, modem signals changed state.
2202 */
2203	donerx = 0;
2204
2205	if (ap->notify) {
2206		nt = ap->changed;
2207		ap->notify = 0;
2208		tty = tty_port_tty_get(&portp->port);
2209
2210		if (nt.signal & SG_DCD) {
2211			oldsigs = portp->sigs;
2212			portp->sigs = stli_mktiocm(nt.sigvalue);
2213			clear_bit(ST_GETSIGS, &portp->state);
2214			if ((portp->sigs & TIOCM_CD) &&
2215			    ((oldsigs & TIOCM_CD) == 0))
2216				wake_up_interruptible(&portp->port.open_wait);
2217			if ((oldsigs & TIOCM_CD) &&
2218			    ((portp->sigs & TIOCM_CD) == 0)) {
2219				if (portp->port.flags & ASYNC_CHECK_CD) {
2220					if (tty)
2221						tty_hangup(tty);
2222				}
2223			}
2224		}
2225
2226		if (nt.data & DT_TXEMPTY)
2227			clear_bit(ST_TXBUSY, &portp->state);
2228		if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2229			if (tty != NULL) {
2230				tty_wakeup(tty);
2231				EBRDENABLE(brdp);
2232			}
2233		}
2234
2235		if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2236			if (tty != NULL) {
2237				tty_insert_flip_char(tty, 0, TTY_BREAK);
2238				if (portp->port.flags & ASYNC_SAK) {
2239					do_SAK(tty);
2240					EBRDENABLE(brdp);
2241				}
2242				tty_schedule_flip(tty);
2243			}
2244		}
2245		tty_kref_put(tty);
2246
2247		if (nt.data & DT_RXBUSY) {
2248			donerx++;
2249			stli_read(brdp, portp);
2250		}
2251	}
2252
2253/*
2254 *	It might seem odd that we are checking for more RX chars here.
2255 *	But, we need to handle the case where the tty buffer was previously
2256 *	filled, but we had more characters to pass up. The slave will not
2257 *	send any more RX notify messages until the RX buffer has been emptied.
2258 *	But it will leave the service bits on (since the buffer is not empty).
2259 *	So from here we can try to process more RX chars.
2260 */
2261	if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2262		clear_bit(ST_RXING, &portp->state);
2263		stli_read(brdp, portp);
2264	}
2265
2266	return((test_bit(ST_OPENING, &portp->state) ||
2267		test_bit(ST_CLOSING, &portp->state) ||
2268		test_bit(ST_CMDING, &portp->state) ||
2269		test_bit(ST_TXBUSY, &portp->state) ||
2270		test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2271}
2272
2273/*****************************************************************************/
2274
2275/*
2276 *	Service all ports on a particular board. Assumes that the boards
2277 *	shared memory is enabled, and that the page pointer is pointed
2278 *	at the cdk header structure.
2279 */
2280
2281static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2282{
2283	struct stliport *portp;
2284	unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2285	unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2286	unsigned char __iomem *slavep;
2287	int bitpos, bitat, bitsize;
2288	int channr, nrdevs, slavebitchange;
2289
2290	bitsize = brdp->bitsize;
2291	nrdevs = brdp->nrdevs;
2292
2293/*
2294 *	Check if slave wants any service. Basically we try to do as
2295 *	little work as possible here. There are 2 levels of service
2296 *	bits. So if there is nothing to do we bail early. We check
2297 *	8 service bits at a time in the inner loop, so we can bypass
2298 *	the lot if none of them want service.
2299 */
2300	memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2301		bitsize);
2302
2303	memset(&slavebits[0], 0, bitsize);
2304	slavebitchange = 0;
2305
2306	for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2307		if (hostbits[bitpos] == 0)
2308			continue;
2309		channr = bitpos * 8;
2310		for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2311			if (hostbits[bitpos] & bitat) {
2312				portp = brdp->ports[(channr - 1)];
2313				if (stli_hostcmd(brdp, portp)) {
2314					slavebitchange++;
2315					slavebits[bitpos] |= bitat;
2316				}
2317			}
2318		}
2319	}
2320
2321/*
2322 *	If any of the ports are no longer busy then update them in the
2323 *	slave request bits. We need to do this after, since a host port
2324 *	service may initiate more slave requests.
2325 */
2326	if (slavebitchange) {
2327		hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2328		slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2329		for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2330			if (readb(slavebits + bitpos))
2331				writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2332		}
2333	}
2334}
2335
2336/*****************************************************************************/
2337
2338/*
2339 *	Driver poll routine. This routine polls the boards in use and passes
2340 *	messages back up to host when necessary. This is actually very
2341 *	CPU efficient, since we will always have the kernel poll clock, it
2342 *	adds only a few cycles when idle (since board service can be
2343 *	determined very easily), but when loaded generates no interrupts
2344 *	(with their expensive associated context change).
2345 */
2346
2347static void stli_poll(unsigned long arg)
2348{
2349	cdkhdr_t __iomem *hdrp;
2350	struct stlibrd *brdp;
2351	unsigned int brdnr;
2352
2353	mod_timer(&stli_timerlist, STLI_TIMEOUT);
2354
2355/*
2356 *	Check each board and do any servicing required.
2357 */
2358	for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2359		brdp = stli_brds[brdnr];
2360		if (brdp == NULL)
2361			continue;
2362		if (!test_bit(BST_STARTED, &brdp->state))
2363			continue;
2364
2365		spin_lock(&brd_lock);
2366		EBRDENABLE(brdp);
2367		hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2368		if (readb(&hdrp->hostreq))
2369			stli_brdpoll(brdp, hdrp);
2370		EBRDDISABLE(brdp);
2371		spin_unlock(&brd_lock);
2372	}
2373}
2374
2375/*****************************************************************************/
2376
2377/*
2378 *	Translate the termios settings into the port setting structure of
2379 *	the slave.
2380 */
2381
2382static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2383				asyport_t *pp, struct ktermios *tiosp)
2384{
2385	memset(pp, 0, sizeof(asyport_t));
2386
2387/*
2388 *	Start of by setting the baud, char size, parity and stop bit info.
2389 */
2390	pp->baudout = tty_get_baud_rate(tty);
2391	if ((tiosp->c_cflag & CBAUD) == B38400) {
2392		if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2393			pp->baudout = 57600;
2394		else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2395			pp->baudout = 115200;
2396		else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2397			pp->baudout = 230400;
2398		else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2399			pp->baudout = 460800;
2400		else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2401			pp->baudout = (portp->baud_base / portp->custom_divisor);
2402	}
2403	if (pp->baudout > STL_MAXBAUD)
2404		pp->baudout = STL_MAXBAUD;
2405	pp->baudin = pp->baudout;
2406
2407	switch (tiosp->c_cflag & CSIZE) {
2408	case CS5:
2409		pp->csize = 5;
2410		break;
2411	case CS6:
2412		pp->csize = 6;
2413		break;
2414	case CS7:
2415		pp->csize = 7;
2416		break;
2417	default:
2418		pp->csize = 8;
2419		break;
2420	}
2421
2422	if (tiosp->c_cflag & CSTOPB)
2423		pp->stopbs = PT_STOP2;
2424	else
2425		pp->stopbs = PT_STOP1;
2426
2427	if (tiosp->c_cflag & PARENB) {
2428		if (tiosp->c_cflag & PARODD)
2429			pp->parity = PT_ODDPARITY;
2430		else
2431			pp->parity = PT_EVENPARITY;
2432	} else {
2433		pp->parity = PT_NOPARITY;
2434	}
2435
2436/*
2437 *	Set up any flow control options enabled.
2438 */
2439	if (tiosp->c_iflag & IXON) {
2440		pp->flow |= F_IXON;
2441		if (tiosp->c_iflag & IXANY)
2442			pp->flow |= F_IXANY;
2443	}
2444	if (tiosp->c_cflag & CRTSCTS)
2445		pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2446
2447	pp->startin = tiosp->c_cc[VSTART];
2448	pp->stopin = tiosp->c_cc[VSTOP];
2449	pp->startout = tiosp->c_cc[VSTART];
2450	pp->stopout = tiosp->c_cc[VSTOP];
2451
2452/*
2453 *	Set up the RX char marking mask with those RX error types we must
2454 *	catch. We can get the slave to help us out a little here, it will
2455 *	ignore parity errors and breaks for us, and mark parity errors in
2456 *	the data stream.
2457 */
2458	if (tiosp->c_iflag & IGNPAR)
2459		pp->iflag |= FI_IGNRXERRS;
2460	if (tiosp->c_iflag & IGNBRK)
2461		pp->iflag |= FI_IGNBREAK;
2462
2463	portp->rxmarkmsk = 0;
2464	if (tiosp->c_iflag & (INPCK | PARMRK))
2465		pp->iflag |= FI_1MARKRXERRS;
2466	if (tiosp->c_iflag & BRKINT)
2467		portp->rxmarkmsk |= BRKINT;
2468
2469/*
2470 *	Set up clocal processing as required.
2471 */
2472	if (tiosp->c_cflag & CLOCAL)
2473		portp->port.flags &= ~ASYNC_CHECK_CD;
2474	else
2475		portp->port.flags |= ASYNC_CHECK_CD;
2476
2477/*
2478 *	Transfer any persistent flags into the asyport structure.
2479 */
2480	pp->pflag = (portp->pflag & 0xffff);
2481	pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2482	pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2483	pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2484}
2485
2486/*****************************************************************************/
2487
2488/*
2489 *	Construct a slave signals structure for setting the DTR and RTS
2490 *	signals as specified.
2491 */
2492
2493static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2494{
2495	memset(sp, 0, sizeof(asysigs_t));
2496	if (dtr >= 0) {
2497		sp->signal |= SG_DTR;
2498		sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2499	}
2500	if (rts >= 0) {
2501		sp->signal |= SG_RTS;
2502		sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2503	}
2504}
2505
2506/*****************************************************************************/
2507
2508/*
2509 *	Convert the signals returned from the slave into a local TIOCM type
2510 *	signals value. We keep them locally in TIOCM format.
2511 */
2512
2513static long stli_mktiocm(unsigned long sigvalue)
2514{
2515	long	tiocm = 0;
2516	tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2517	tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2518	tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2519	tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2520	tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2521	tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2522	return(tiocm);
2523}
2524
2525/*****************************************************************************/
2526
2527/*
2528 *	All panels and ports actually attached have been worked out. All
2529 *	we need to do here is set up the appropriate per port data structures.
2530 */
2531
2532static int stli_initports(struct stlibrd *brdp)
2533{
2534	struct stliport	*portp;
2535	unsigned int i, panelnr, panelport;
2536
2537	for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2538		portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2539		if (!portp) {
2540			printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2541			continue;
2542		}
2543		tty_port_init(&portp->port);
2544		portp->port.ops = &stli_port_ops;
2545		portp->magic = STLI_PORTMAGIC;
2546		portp->portnr = i;
2547		portp->brdnr = brdp->brdnr;
2548		portp->panelnr = panelnr;
2549		portp->baud_base = STL_BAUDBASE;
2550		portp->port.close_delay = STL_CLOSEDELAY;
2551		portp->closing_wait = 30 * HZ;
2552		init_waitqueue_head(&portp->port.open_wait);
2553		init_waitqueue_head(&portp->port.close_wait);
2554		init_waitqueue_head(&portp->raw_wait);
2555		panelport++;
2556		if (panelport >= brdp->panels[panelnr]) {
2557			panelport = 0;
2558			panelnr++;
2559		}
2560		brdp->ports[i] = portp;
2561	}
2562
2563	return 0;
2564}
2565
2566/*****************************************************************************/
2567
2568/*
2569 *	All the following routines are board specific hardware operations.
2570 */
2571
2572static void stli_ecpinit(struct stlibrd *brdp)
2573{
2574	unsigned long	memconf;
2575
2576	outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2577	udelay(10);
2578	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2579	udelay(100);
2580
2581	memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2582	outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2583}
2584
2585/*****************************************************************************/
2586
2587static void stli_ecpenable(struct stlibrd *brdp)
2588{
2589	outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2590}
2591
2592/*****************************************************************************/
2593
2594static void stli_ecpdisable(struct stlibrd *brdp)
2595{
2596	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2597}
2598
2599/*****************************************************************************/
2600
2601static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2602{
2603	void __iomem *ptr;
2604	unsigned char val;
2605
2606	if (offset > brdp->memsize) {
2607		printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2608				"range at line=%d(%d), brd=%d\n",
2609			(int) offset, line, __LINE__, brdp->brdnr);
2610		ptr = NULL;
2611		val = 0;
2612	} else {
2613		ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2614		val = (unsigned char) (offset / ECP_ATPAGESIZE);
2615	}
2616	outb(val, (brdp->iobase + ECP_ATMEMPR));
2617	return(ptr);
2618}
2619
2620/*****************************************************************************/
2621
2622static void stli_ecpreset(struct stlibrd *brdp)
2623{
2624	outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2625	udelay(10);
2626	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2627	udelay(500);
2628}
2629
2630/*****************************************************************************/
2631
2632static void stli_ecpintr(struct stlibrd *brdp)
2633{
2634	outb(0x1, brdp->iobase);
2635}
2636
2637/*****************************************************************************/
2638
2639/*
2640 *	The following set of functions act on ECP EISA boards.
2641 */
2642
2643static void stli_ecpeiinit(struct stlibrd *brdp)
2644{
2645	unsigned long	memconf;
2646
2647	outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2648	outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2649	udelay(10);
2650	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2651	udelay(500);
2652
2653	memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2654	outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2655	memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2656	outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2657}
2658
2659/*****************************************************************************/
2660
2661static void stli_ecpeienable(struct stlibrd *brdp)
2662{
2663	outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2664}
2665
2666/*****************************************************************************/
2667
2668static void stli_ecpeidisable(struct stlibrd *brdp)
2669{
2670	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2671}
2672
2673/*****************************************************************************/
2674
2675static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2676{
2677	void __iomem *ptr;
2678	unsigned char	val;
2679
2680	if (offset > brdp->memsize) {
2681		printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2682				"range at line=%d(%d), brd=%d\n",
2683			(int) offset, line, __LINE__, brdp->brdnr);
2684		ptr = NULL;
2685		val = 0;
2686	} else {
2687		ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2688		if (offset < ECP_EIPAGESIZE)
2689			val = ECP_EIENABLE;
2690		else
2691			val = ECP_EIENABLE | 0x40;
2692	}
2693	outb(val, (brdp->iobase + ECP_EICONFR));
2694	return(ptr);
2695}
2696
2697/*****************************************************************************/
2698
2699static void stli_ecpeireset(struct stlibrd *brdp)
2700{
2701	outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2702	udelay(10);
2703	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2704	udelay(500);
2705}
2706
2707/*****************************************************************************/
2708
2709/*
2710 *	The following set of functions act on ECP MCA boards.
2711 */
2712
2713static void stli_ecpmcenable(struct stlibrd *brdp)
2714{
2715	outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2716}
2717
2718/*****************************************************************************/
2719
2720static void stli_ecpmcdisable(struct stlibrd *brdp)
2721{
2722	outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2723}
2724
2725/*****************************************************************************/
2726
2727static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2728{
2729	void __iomem *ptr;
2730	unsigned char val;
2731
2732	if (offset > brdp->memsize) {
2733		printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2734				"range at line=%d(%d), brd=%d\n",
2735			(int) offset, line, __LINE__, brdp->brdnr);
2736		ptr = NULL;
2737		val = 0;
2738	} else {
2739		ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2740		val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2741	}
2742	outb(val, (brdp->iobase + ECP_MCCONFR));
2743	return(ptr);
2744}
2745
2746/*****************************************************************************/
2747
2748static void stli_ecpmcreset(struct stlibrd *brdp)
2749{
2750	outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2751	udelay(10);
2752	outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2753	udelay(500);
2754}
2755
2756/*****************************************************************************/
2757
2758/*
2759 *	The following set of functions act on ECP PCI boards.
2760 */
2761
2762static void stli_ecppciinit(struct stlibrd *brdp)
2763{
2764	outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2765	udelay(10);
2766	outb(0, (brdp->iobase + ECP_PCICONFR));
2767	udelay(500);
2768}
2769
2770/*****************************************************************************/
2771
2772static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2773{
2774	void __iomem *ptr;
2775	unsigned char	val;
2776
2777	if (offset > brdp->memsize) {
2778		printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2779				"range at line=%d(%d), board=%d\n",
2780				(int) offset, line, __LINE__, brdp->brdnr);
2781		ptr = NULL;
2782		val = 0;
2783	} else {
2784		ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2785		val = (offset / ECP_PCIPAGESIZE) << 1;
2786	}
2787	outb(val, (brdp->iobase + ECP_PCICONFR));
2788	return(ptr);
2789}
2790
2791/*****************************************************************************/
2792
2793static void stli_ecppcireset(struct stlibrd *brdp)
2794{
2795	outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2796	udelay(10);
2797	outb(0, (brdp->iobase + ECP_PCICONFR));
2798	udelay(500);
2799}
2800
2801/*****************************************************************************/
2802
2803/*
2804 *	The following routines act on ONboards.
2805 */
2806
2807static void stli_onbinit(struct stlibrd *brdp)
2808{
2809	unsigned long	memconf;
2810
2811	outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2812	udelay(10);
2813	outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2814	mdelay(1000);
2815
2816	memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2817	outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2818	outb(0x1, brdp->iobase);
2819	mdelay(1);
2820}
2821
2822/*****************************************************************************/
2823
2824static void stli_onbenable(struct stlibrd *brdp)
2825{
2826	outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2827}
2828
2829/*****************************************************************************/
2830
2831static void stli_onbdisable(struct stlibrd *brdp)
2832{
2833	outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2834}
2835
2836/*****************************************************************************/
2837
2838static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2839{
2840	void __iomem *ptr;
2841
2842	if (offset > brdp->memsize) {
2843		printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2844				"range at line=%d(%d), brd=%d\n",
2845				(int) offset, line, __LINE__, brdp->brdnr);
2846		ptr = NULL;
2847	} else {
2848		ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2849	}
2850	return(ptr);
2851}
2852
2853/*****************************************************************************/
2854
2855static void stli_onbreset(struct stlibrd *brdp)
2856{
2857	outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2858	udelay(10);
2859	outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2860	mdelay(1000);
2861}
2862
2863/*****************************************************************************/
2864
2865/*
2866 *	The following routines act on ONboard EISA.
2867 */
2868
2869static void stli_onbeinit(struct stlibrd *brdp)
2870{
2871	unsigned long	memconf;
2872
2873	outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2874	outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2875	udelay(10);
2876	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2877	mdelay(1000);
2878
2879	memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2880	outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2881	memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2882	outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2883	outb(0x1, brdp->iobase);
2884	mdelay(1);
2885}
2886
2887/*****************************************************************************/
2888
2889static void stli_onbeenable(struct stlibrd *brdp)
2890{
2891	outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2892}
2893
2894/*****************************************************************************/
2895
2896static void stli_onbedisable(struct stlibrd *brdp)
2897{
2898	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2899}
2900
2901/*****************************************************************************/
2902
2903static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2904{
2905	void __iomem *ptr;
2906	unsigned char val;
2907
2908	if (offset > brdp->memsize) {
2909		printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2910				"range at line=%d(%d), brd=%d\n",
2911			(int) offset, line, __LINE__, brdp->brdnr);
2912		ptr = NULL;
2913		val = 0;
2914	} else {
2915		ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2916		if (offset < ONB_EIPAGESIZE)
2917			val = ONB_EIENABLE;
2918		else
2919			val = ONB_EIENABLE | 0x40;
2920	}
2921	outb(val, (brdp->iobase + ONB_EICONFR));
2922	return(ptr);
2923}
2924
2925/*****************************************************************************/
2926
2927static void stli_onbereset(struct stlibrd *brdp)
2928{
2929	outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2930	udelay(10);
2931	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2932	mdelay(1000);
2933}
2934
2935/*****************************************************************************/
2936
2937/*
2938 *	The following routines act on Brumby boards.
2939 */
2940
2941static void stli_bbyinit(struct stlibrd *brdp)
2942{
2943	outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2944	udelay(10);
2945	outb(0, (brdp->iobase + BBY_ATCONFR));
2946	mdelay(1000);
2947	outb(0x1, brdp->iobase);
2948	mdelay(1);
2949}
2950
2951/*****************************************************************************/
2952
2953static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2954{
2955	void __iomem *ptr;
2956	unsigned char val;
2957
2958	BUG_ON(offset > brdp->memsize);
2959
2960	ptr = brdp->membase + (offset % BBY_PAGESIZE);
2961	val = (unsigned char) (offset / BBY_PAGESIZE);
2962	outb(val, (brdp->iobase + BBY_ATCONFR));
2963	return(ptr);
2964}
2965
2966/*****************************************************************************/
2967
2968static void stli_bbyreset(struct stlibrd *brdp)
2969{
2970	outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2971	udelay(10);
2972	outb(0, (brdp->iobase + BBY_ATCONFR));
2973	mdelay(1000);
2974}
2975
2976/*****************************************************************************/
2977
2978/*
2979 *	The following routines act on original old Stallion boards.
2980 */
2981
2982static void stli_stalinit(struct stlibrd *brdp)
2983{
2984	outb(0x1, brdp->iobase);
2985	mdelay(1000);
2986}
2987
2988/*****************************************************************************/
2989
2990static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2991{
2992	BUG_ON(offset > brdp->memsize);
2993	return brdp->membase + (offset % STAL_PAGESIZE);
2994}
2995
2996/*****************************************************************************/
2997
2998static void stli_stalreset(struct stlibrd *brdp)
2999{
3000	u32 __iomem *vecp;
3001
3002	vecp = (u32 __iomem *) (brdp->membase + 0x30);
3003	writel(0xffff0000, vecp);
3004	outb(0, brdp->iobase);
3005	mdelay(1000);
3006}
3007
3008/*****************************************************************************/
3009
3010/*
3011 *	Try to find an ECP board and initialize it. This handles only ECP
3012 *	board types.
3013 */
3014
3015static int stli_initecp(struct stlibrd *brdp)
3016{
3017	cdkecpsig_t sig;
3018	cdkecpsig_t __iomem *sigsp;
3019	unsigned int status, nxtid;
3020	char *name;
3021	int retval, panelnr, nrports;
3022
3023	if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3024		retval = -ENODEV;
3025		goto err;
3026	}
3027
3028	brdp->iosize = ECP_IOSIZE;
3029
3030	if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3031		retval = -EIO;
3032		goto err;
3033	}
3034
3035/*
3036 *	Based on the specific board type setup the common vars to access
3037 *	and enable shared memory. Set all board specific information now
3038 *	as well.
3039 */
3040	switch (brdp->brdtype) {
3041	case BRD_ECP:
3042		brdp->memsize = ECP_MEMSIZE;
3043		brdp->pagesize = ECP_ATPAGESIZE;
3044		brdp->init = stli_ecpinit;
3045		brdp->enable = stli_ecpenable;
3046		brdp->reenable = stli_ecpenable;
3047		brdp->disable = stli_ecpdisable;
3048		brdp->getmemptr = stli_ecpgetmemptr;
3049		brdp->intr = stli_ecpintr;
3050		brdp->reset = stli_ecpreset;
3051		name = "serial(EC8/64)";
3052		break;
3053
3054	case BRD_ECPE:
3055		brdp->memsize = ECP_MEMSIZE;
3056		brdp->pagesize = ECP_EIPAGESIZE;
3057		brdp->init = stli_ecpeiinit;
3058		brdp->enable = stli_ecpeienable;
3059		brdp->reenable = stli_ecpeienable;
3060		brdp->disable = stli_ecpeidisable;
3061		brdp->getmemptr = stli_ecpeigetmemptr;
3062		brdp->intr = stli_ecpintr;
3063		brdp->reset = stli_ecpeireset;
3064		name = "serial(EC8/64-EI)";
3065		break;
3066
3067	case BRD_ECPMC:
3068		brdp->memsize = ECP_MEMSIZE;
3069		brdp->pagesize = ECP_MCPAGESIZE;
3070		brdp->init = NULL;
3071		brdp->enable = stli_ecpmcenable;
3072		brdp->reenable = stli_ecpmcenable;
3073		brdp->disable = stli_ecpmcdisable;
3074		brdp->getmemptr = stli_ecpmcgetmemptr;
3075		brdp->intr = stli_ecpintr;
3076		brdp->reset = stli_ecpmcreset;
3077		name = "serial(EC8/64-MCA)";
3078		break;
3079
3080	case BRD_ECPPCI:
3081		brdp->memsize = ECP_PCIMEMSIZE;
3082		brdp->pagesize = ECP_PCIPAGESIZE;
3083		brdp->init = stli_ecppciinit;
3084		brdp->enable = NULL;
3085		brdp->reenable = NULL;
3086		brdp->disable = NULL;
3087		brdp->getmemptr = stli_ecppcigetmemptr;
3088		brdp->intr = stli_ecpintr;
3089		brdp->reset = stli_ecppcireset;
3090		name = "serial(EC/RA-PCI)";
3091		break;
3092
3093	default:
3094		retval = -EINVAL;
3095		goto err_reg;
3096	}
3097
3098/*
3099 *	The per-board operations structure is all set up, so now let's go
3100 *	and get the board operational. Firstly initialize board configuration
3101 *	registers. Set the memory mapping info so we can get at the boards
3102 *	shared memory.
3103 */
3104	EBRDINIT(brdp);
3105
3106	brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3107	if (brdp->membase == NULL) {
3108		retval = -ENOMEM;
3109		goto err_reg;
3110	}
3111
3112/*
3113 *	Now that all specific code is set up, enable the shared memory and
3114 *	look for the a signature area that will tell us exactly what board
3115 *	this is, and what it is connected to it.
3116 */
3117	EBRDENABLE(brdp);
3118	sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3119	memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3120	EBRDDISABLE(brdp);
3121
3122	if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3123		retval = -ENODEV;
3124		goto err_unmap;
3125	}
3126
3127/*
3128 *	Scan through the signature looking at the panels connected to the
3129 *	board. Calculate the total number of ports as we go.
3130 */
3131	for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3132		status = sig.panelid[nxtid];
3133		if ((status & ECH_PNLIDMASK) != nxtid)
3134			break;
3135
3136		brdp->panelids[panelnr] = status;
3137		nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3138		if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3139			nxtid++;
3140		brdp->panels[panelnr] = nrports;
3141		brdp->nrports += nrports;
3142		nxtid++;
3143		brdp->nrpanels++;
3144	}
3145
3146
3147	set_bit(BST_FOUND, &brdp->state);
3148	return 0;
3149err_unmap:
3150	iounmap(brdp->membase);
3151	brdp->membase = NULL;
3152err_reg:
3153	release_region(brdp->iobase, brdp->iosize);
3154err:
3155	return retval;
3156}
3157
3158/*****************************************************************************/
3159
3160/*
3161 *	Try to find an ONboard, Brumby or Stallion board and initialize it.
3162 *	This handles only these board types.
3163 */
3164
3165static int stli_initonb(struct stlibrd *brdp)
3166{
3167	cdkonbsig_t sig;
3168	cdkonbsig_t __iomem *sigsp;
3169	char *name;
3170	int i, retval;
3171
3172/*
3173 *	Do a basic sanity check on the IO and memory addresses.
3174 */
3175	if (brdp->iobase == 0 || brdp->memaddr == 0) {
3176		retval = -ENODEV;
3177		goto err;
3178	}
3179
3180	brdp->iosize = ONB_IOSIZE;
3181
3182	if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3183		retval = -EIO;
3184		goto err;
3185	}
3186
3187/*
3188 *	Based on the specific board type setup the common vars to access
3189 *	and enable shared memory. Set all board specific information now
3190 *	as well.
3191 */
3192	switch (brdp->brdtype) {
3193	case BRD_ONBOARD:
3194	case BRD_ONBOARD2:
3195		brdp->memsize = ONB_MEMSIZE;
3196		brdp->pagesize = ONB_ATPAGESIZE;
3197		brdp->init = stli_onbinit;
3198		brdp->enable = stli_onbenable;
3199		brdp->reenable = stli_onbenable;
3200		brdp->disable = stli_onbdisable;
3201		brdp->getmemptr = stli_onbgetmemptr;
3202		brdp->intr = stli_ecpintr;
3203		brdp->reset = stli_onbreset;
3204		if (brdp->memaddr > 0x100000)
3205			brdp->enabval = ONB_MEMENABHI;
3206		else
3207			brdp->enabval = ONB_MEMENABLO;
3208		name = "serial(ONBoard)";
3209		break;
3210
3211	case BRD_ONBOARDE:
3212		brdp->memsize = ONB_EIMEMSIZE;
3213		brdp->pagesize = ONB_EIPAGESIZE;
3214		brdp->init = stli_onbeinit;
3215		brdp->enable = stli_onbeenable;
3216		brdp->reenable = stli_onbeenable;
3217		brdp->disable = stli_onbedisable;
3218		brdp->getmemptr = stli_onbegetmemptr;
3219		brdp->intr = stli_ecpintr;
3220		brdp->reset = stli_onbereset;
3221		name = "serial(ONBoard/E)";
3222		break;
3223
3224	case BRD_BRUMBY4:
3225		brdp->memsize = BBY_MEMSIZE;
3226		brdp->pagesize = BBY_PAGESIZE;
3227		brdp->init = stli_bbyinit;
3228		brdp->enable = NULL;
3229		brdp->reenable = NULL;
3230		brdp->disable = NULL;
3231		brdp->getmemptr = stli_bbygetmemptr;
3232		brdp->intr = stli_ecpintr;
3233		brdp->reset = stli_bbyreset;
3234		name = "serial(Brumby)";
3235		break;
3236
3237	case BRD_STALLION:
3238		brdp->memsize = STAL_MEMSIZE;
3239		brdp->pagesize = STAL_PAGESIZE;
3240		brdp->init = stli_stalinit;
3241		brdp->enable = NULL;
3242		brdp->reenable = NULL;
3243		brdp->disable = NULL;
3244		brdp->getmemptr = stli_stalgetmemptr;
3245		brdp->intr = stli_ecpintr;
3246		brdp->reset = stli_stalreset;
3247		name = "serial(Stallion)";
3248		break;
3249
3250	default:
3251		retval = -EINVAL;
3252		goto err_reg;
3253	}
3254
3255/*
3256 *	The per-board operations structure is all set up, so now let's go
3257 *	and get the board operational. Firstly initialize board configuration
3258 *	registers. Set the memory mapping info so we can get at the boards
3259 *	shared memory.
3260 */
3261	EBRDINIT(brdp);
3262
3263	brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3264	if (brdp->membase == NULL) {
3265		retval = -ENOMEM;
3266		goto err_reg;
3267	}
3268
3269/*
3270 *	Now that all specific code is set up, enable the shared memory and
3271 *	look for the a signature area that will tell us exactly what board
3272 *	this is, and how many ports.
3273 */
3274	EBRDENABLE(brdp);
3275	sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3276	memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3277	EBRDDISABLE(brdp);
3278
3279	if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3280	    sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3281	    sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3282	    sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3283		retval = -ENODEV;
3284		goto err_unmap;
3285	}
3286
3287/*
3288 *	Scan through the signature alive mask and calculate how many ports
3289 *	there are on this board.
3290 */
3291	brdp->nrpanels = 1;
3292	if (sig.amask1) {
3293		brdp->nrports = 32;
3294	} else {
3295		for (i = 0; (i < 16); i++) {
3296			if (((sig.amask0 << i) & 0x8000) == 0)
3297				break;
3298		}
3299		brdp->nrports = i;
3300	}
3301	brdp->panels[0] = brdp->nrports;
3302
3303
3304	set_bit(BST_FOUND, &brdp->state);
3305	return 0;
3306err_unmap:
3307	iounmap(brdp->membase);
3308	brdp->membase = NULL;
3309err_reg:
3310	release_region(brdp->iobase, brdp->iosize);
3311err:
3312	return retval;
3313}
3314
3315/*****************************************************************************/
3316
3317/*
3318 *	Start up a running board. This routine is only called after the
3319 *	code has been down loaded to the board and is operational. It will
3320 *	read in the memory map, and get the show on the road...
3321 */
3322
3323static int stli_startbrd(struct stlibrd *brdp)
3324{
3325	cdkhdr_t __iomem *hdrp;
3326	cdkmem_t __iomem *memp;
3327	cdkasy_t __iomem *ap;
3328	unsigned long flags;
3329	unsigned int portnr, nrdevs, i;
3330	struct stliport *portp;
3331	int rc = 0;
3332	u32 memoff;
3333
3334	spin_lock_irqsave(&brd_lock, flags);
3335	EBRDENABLE(brdp);
3336	hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3337	nrdevs = hdrp->nrdevs;
3338
3339
3340	if (nrdevs < (brdp->nrports + 1)) {
3341		printk(KERN_ERR "istallion: slave failed to allocate memory for "
3342				"all devices, devices=%d\n", nrdevs);
3343		brdp->nrports = nrdevs - 1;
3344	}
3345	brdp->nrdevs = nrdevs;
3346	brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3347	brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3348	brdp->bitsize = (nrdevs + 7) / 8;
3349	memoff = readl(&hdrp->memp);
3350	if (memoff > brdp->memsize) {
3351		printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3352		rc = -EIO;
3353		goto stli_donestartup;
3354	}
3355	memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3356	if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3357		printk(KERN_ERR "istallion: no slave control device found\n");
3358		goto stli_donestartup;
3359	}
3360	memp++;
3361
3362/*
3363 *	Cycle through memory allocation of each port. We are guaranteed to
3364 *	have all ports inside the first page of slave window, so no need to
3365 *	change pages while reading memory map.
3366 */
3367	for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3368		if (readw(&memp->dtype) != TYP_ASYNC)
3369			break;
3370		portp = brdp->ports[portnr];
3371		if (portp == NULL)
3372			break;
3373		portp->devnr = i;
3374		portp->addr = readl(&memp->offset);
3375		portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3376		portp->portidx = (unsigned char) (i / 8);
3377		portp->portbit = (unsigned char) (0x1 << (i % 8));
3378	}
3379
3380	writeb(0xff, &hdrp->slavereq);
3381
3382/*
3383 *	For each port setup a local copy of the RX and TX buffer offsets
3384 *	and sizes. We do this separate from the above, because we need to
3385 *	move the shared memory page...
3386 */
3387	for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3388		portp = brdp->ports[portnr];
3389		if (portp == NULL)
3390			break;
3391		if (portp->addr == 0)
3392			break;
3393		ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3394		if (ap != NULL) {
3395			portp->rxsize = readw(&ap->rxq.size);
3396			portp->txsize = readw(&ap->txq.size);
3397			portp->rxoffset = readl(&ap->rxq.offset);
3398			portp->txoffset = readl(&ap->txq.offset);
3399		}
3400	}
3401
3402stli_donestartup:
3403	EBRDDISABLE(brdp);
3404	spin_unlock_irqrestore(&brd_lock, flags);
3405
3406	if (rc == 0)
3407		set_bit(BST_STARTED, &brdp->state);
3408
3409	if (! stli_timeron) {
3410		stli_timeron++;
3411		mod_timer(&stli_timerlist, STLI_TIMEOUT);
3412	}
3413
3414	return rc;
3415}
3416
3417/*****************************************************************************/
3418
3419/*
3420 *	Probe and initialize the specified board.
3421 */
3422
3423static int __devinit stli_brdinit(struct stlibrd *brdp)
3424{
3425	int retval;
3426
3427	switch (brdp->brdtype) {
3428	case BRD_ECP:
3429	case BRD_ECPE:
3430	case BRD_ECPMC:
3431	case BRD_ECPPCI:
3432		retval = stli_initecp(brdp);
3433		break;
3434	case BRD_ONBOARD:
3435	case BRD_ONBOARDE:
3436	case BRD_ONBOARD2:
3437	case BRD_BRUMBY4:
3438	case BRD_STALLION:
3439		retval = stli_initonb(brdp);
3440		break;
3441	default:
3442		printk(KERN_ERR "istallion: board=%d is unknown board "
3443				"type=%d\n", brdp->brdnr, brdp->brdtype);
3444		retval = -ENODEV;
3445	}
3446
3447	if (retval)
3448		return retval;
3449
3450	stli_initports(brdp);
3451	printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3452		"nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3453		brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3454		brdp->nrpanels, brdp->nrports);
3455	return 0;
3456}
3457
3458#if STLI_EISAPROBE != 0
3459/*****************************************************************************/
3460
3461/*
3462 *	Probe around trying to find where the EISA boards shared memory
3463 *	might be. This is a bit if hack, but it is the best we can do.
3464 */
3465
3466static int stli_eisamemprobe(struct stlibrd *brdp)
3467{
3468	cdkecpsig_t	ecpsig, __iomem *ecpsigp;
3469	cdkonbsig_t	onbsig, __iomem *onbsigp;
3470	int		i, foundit;
3471
3472/*
3473 *	First up we reset the board, to get it into a known state. There
3474 *	is only 2 board types here we need to worry about. Don;t use the
3475 *	standard board init routine here, it programs up the shared
3476 *	memory address, and we don't know it yet...
3477 */
3478	if (brdp->brdtype == BRD_ECPE) {
3479		outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3480		outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3481		udelay(10);
3482		outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3483		udelay(500);
3484		stli_ecpeienable(brdp);
3485	} else if (brdp->brdtype == BRD_ONBOARDE) {
3486		outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3487		outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3488		udelay(10);
3489		outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3490		mdelay(100);
3491		outb(0x1, brdp->iobase);
3492		mdelay(1);
3493		stli_onbeenable(brdp);
3494	} else {
3495		return -ENODEV;
3496	}
3497
3498	foundit = 0;
3499	brdp->memsize = ECP_MEMSIZE;
3500
3501/*
3502 *	Board shared memory is enabled, so now we have a poke around and
3503 *	see if we can find it.
3504 */
3505	for (i = 0; (i < stli_eisamempsize); i++) {
3506		brdp->memaddr = stli_eisamemprobeaddrs[i];
3507		brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3508		if (brdp->membase == NULL)
3509			continue;
3510
3511		if (brdp->brdtype == BRD_ECPE) {
3512			ecpsigp = stli_ecpeigetmemptr(brdp,
3513				CDK_SIGADDR, __LINE__);
3514			memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3515			if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3516				foundit = 1;
3517		} else {
3518			onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3519				CDK_SIGADDR, __LINE__);
3520			memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3521			if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3522			    (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3523			    (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3524			    (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3525				foundit = 1;
3526		}
3527
3528		iounmap(brdp->membase);
3529		if (foundit)
3530			break;
3531	}
3532
3533/*
3534 *	Regardless of whether we found the shared memory or not we must
3535 *	disable the region. After that return success or failure.
3536 */
3537	if (brdp->brdtype == BRD_ECPE)
3538		stli_ecpeidisable(brdp);
3539	else
3540		stli_onbedisable(brdp);
3541
3542	if (! foundit) {
3543		brdp->memaddr = 0;
3544		brdp->membase = NULL;
3545		printk(KERN_ERR "istallion: failed to probe shared memory "
3546				"region for %s in EISA slot=%d\n",
3547			stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3548		return -ENODEV;
3549	}
3550	return 0;
3551}
3552#endif
3553
3554static int stli_getbrdnr(void)
3555{
3556	unsigned int i;
3557
3558	for (i = 0; i < STL_MAXBRDS; i++) {
3559		if (!stli_brds[i]) {
3560			if (i >= stli_nrbrds)
3561				stli_nrbrds = i + 1;
3562			return i;
3563		}
3564	}
3565	return -1;
3566}
3567
3568#if STLI_EISAPROBE != 0
3569/*****************************************************************************/
3570
3571/*
3572 *	Probe around and try to find any EISA boards in system. The biggest
3573 *	problem here is finding out what memory address is associated with
3574 *	an EISA board after it is found. The registers of the ECPE and
3575 *	ONboardE are not readable - so we can't read them from there. We
3576 *	don't have access to the EISA CMOS (or EISA BIOS) so we don't
3577 *	actually have any way to find out the real value. The best we can
3578 *	do is go probing around in the usual places hoping we can find it.
3579 */
3580
3581static int __init stli_findeisabrds(void)
3582{
3583	struct stlibrd *brdp;
3584	unsigned int iobase, eid, i;
3585	int brdnr, found = 0;
3586
3587/*
3588 *	Firstly check if this is an EISA system.  If this is not an EISA system then
3589 *	don't bother going any further!
3590 */
3591	if (EISA_bus)
3592		return 0;
3593
3594/*
3595 *	Looks like an EISA system, so go searching for EISA boards.
3596 */
3597	for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3598		outb(0xff, (iobase + 0xc80));
3599		eid = inb(iobase + 0xc80);
3600		eid |= inb(iobase + 0xc81) << 8;
3601		if (eid != STL_EISAID)
3602			continue;
3603
3604/*
3605 *		We have found a board. Need to check if this board was
3606 *		statically configured already (just in case!).
3607 */
3608		for (i = 0; (i < STL_MAXBRDS); i++) {
3609			brdp = stli_brds[i];
3610			if (brdp == NULL)
3611				continue;
3612			if (brdp->iobase == iobase)
3613				break;
3614		}
3615		if (i < STL_MAXBRDS)
3616			continue;
3617
3618/*
3619 *		We have found a Stallion board and it is not configured already.
3620 *		Allocate a board structure and initialize it.
3621 */
3622		if ((brdp = stli_allocbrd()) == NULL)
3623			return found ? : -ENOMEM;
3624		brdnr = stli_getbrdnr();
3625		if (brdnr < 0)
3626			return found ? : -ENOMEM;
3627		brdp->brdnr = (unsigned int)brdnr;
3628		eid = inb(iobase + 0xc82);
3629		if (eid == ECP_EISAID)
3630			brdp->brdtype = BRD_ECPE;
3631		else if (eid == ONB_EISAID)
3632			brdp->brdtype = BRD_ONBOARDE;
3633		else
3634			brdp->brdtype = BRD_UNKNOWN;
3635		brdp->iobase = iobase;
3636		outb(0x1, (iobase + 0xc84));
3637		if (stli_eisamemprobe(brdp))
3638			outb(0, (iobase + 0xc84));
3639		if (stli_brdinit(brdp) < 0) {
3640			kfree(brdp);
3641			continue;
3642		}
3643
3644		stli_brds[brdp->brdnr] = brdp;
3645		found++;
3646
3647		for (i = 0; i < brdp->nrports; i++)
3648			tty_register_device(stli_serial,
3649					brdp->brdnr * STL_MAXPORTS + i, NULL);
3650	}
3651
3652	return found;
3653}
3654#else
3655static inline int stli_findeisabrds(void) { return 0; }
3656#endif
3657
3658/*****************************************************************************/
3659
3660/*
3661 *	Find the next available board number that is free.
3662 */
3663
3664/*****************************************************************************/
3665
3666/*
3667 *	We have a Stallion board. Allocate a board structure and
3668 *	initialize it. Read its IO and MEMORY resources from PCI
3669 *	configuration space.
3670 */
3671
3672static int __devinit stli_pciprobe(struct pci_dev *pdev,
3673		const struct pci_device_id *ent)
3674{
3675	struct stlibrd *brdp;
3676	unsigned int i;
3677	int brdnr, retval = -EIO;
3678
3679	retval = pci_enable_device(pdev);
3680	if (retval)
3681		goto err;
3682	brdp = stli_allocbrd();
3683	if (brdp == NULL) {
3684		retval = -ENOMEM;
3685		goto err;
3686	}
3687	mutex_lock(&stli_brdslock);
3688	brdnr = stli_getbrdnr();
3689	if (brdnr < 0) {
3690		printk(KERN_INFO "istallion: too many boards found, "
3691			"maximum supported %d\n", STL_MAXBRDS);
3692		mutex_unlock(&stli_brdslock);
3693		retval = -EIO;
3694		goto err_fr;
3695	}
3696	brdp->brdnr = (unsigned int)brdnr;
3697	stli_brds[brdp->brdnr] = brdp;
3698	mutex_unlock(&stli_brdslock);
3699	brdp->brdtype = BRD_ECPPCI;
3700/*
3701 *	We have all resources from the board, so lets setup the actual
3702 *	board structure now.
3703 */
3704	brdp->iobase = pci_resource_start(pdev, 3);
3705	brdp->memaddr = pci_resource_start(pdev, 2);
3706	retval = stli_brdinit(brdp);
3707	if (retval)
3708		goto err_null;
3709
3710	set_bit(BST_PROBED, &brdp->state);
3711	pci_set_drvdata(pdev, brdp);
3712
3713	EBRDENABLE(brdp);
3714	brdp->enable = NULL;
3715	brdp->disable = NULL;
3716
3717	for (i = 0; i < brdp->nrports; i++)
3718		tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3719				&pdev->dev);
3720
3721	return 0;
3722err_null:
3723	stli_brds[brdp->brdnr] = NULL;
3724err_fr:
3725	kfree(brdp);
3726err:
3727	return retval;
3728}
3729
3730static void __devexit stli_pciremove(struct pci_dev *pdev)
3731{
3732	struct stlibrd *brdp = pci_get_drvdata(pdev);
3733
3734	stli_cleanup_ports(brdp);
3735
3736	iounmap(brdp->membase);
3737	if (brdp->iosize > 0)
3738		release_region(brdp->iobase, brdp->iosize);
3739
3740	stli_brds[brdp->brdnr] = NULL;
3741	kfree(brdp);
3742}
3743
3744static struct pci_driver stli_pcidriver = {
3745	.name = "istallion",
3746	.id_table = istallion_pci_tbl,
3747	.probe = stli_pciprobe,
3748	.remove = __devexit_p(stli_pciremove)
3749};
3750/*****************************************************************************/
3751
3752/*
3753 *	Allocate a new board structure. Fill out the basic info in it.
3754 */
3755
3756static struct stlibrd *stli_allocbrd(void)
3757{
3758	struct stlibrd *brdp;
3759
3760	brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3761	if (!brdp) {
3762		printk(KERN_ERR "istallion: failed to allocate memory "
3763				"(size=%Zd)\n", sizeof(struct stlibrd));
3764		return NULL;
3765	}
3766	brdp->magic = STLI_BOARDMAGIC;
3767	return brdp;
3768}
3769
3770/*****************************************************************************/
3771
3772/*
3773 *	Scan through all the boards in the configuration and see what we
3774 *	can find.
3775 */
3776
3777static int __init stli_initbrds(void)
3778{
3779	struct stlibrd *brdp, *nxtbrdp;
3780	struct stlconf conf;
3781	unsigned int i, j, found = 0;
3782	int retval;
3783
3784	for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3785			stli_nrbrds++) {
3786		memset(&conf, 0, sizeof(conf));
3787		if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3788			continue;
3789		if ((brdp = stli_allocbrd()) == NULL)
3790			continue;
3791		brdp->brdnr = stli_nrbrds;
3792		brdp->brdtype = conf.brdtype;
3793		brdp->iobase = conf.ioaddr1;
3794		brdp->memaddr = conf.memaddr;
3795		if (stli_brdinit(brdp) < 0) {
3796			kfree(brdp);
3797			continue;
3798		}
3799		stli_brds[brdp->brdnr] = brdp;
3800		found++;
3801
3802		for (i = 0; i < brdp->nrports; i++)
3803			tty_register_device(stli_serial,
3804					brdp->brdnr * STL_MAXPORTS + i, NULL);
3805	}
3806
3807	retval = stli_findeisabrds();
3808	if (retval > 0)
3809		found += retval;
3810
3811/*
3812 *	All found boards are initialized. Now for a little optimization, if
3813 *	no boards are sharing the "shared memory" regions then we can just
3814 *	leave them all enabled. This is in fact the usual case.
3815 */
3816	stli_shared = 0;
3817	if (stli_nrbrds > 1) {
3818		for (i = 0; (i < stli_nrbrds); i++) {
3819			brdp = stli_brds[i];
3820			if (brdp == NULL)
3821				continue;
3822			for (j = i + 1; (j < stli_nrbrds); j++) {
3823				nxtbrdp = stli_brds[j];
3824				if (nxtbrdp == NULL)
3825					continue;
3826				if ((brdp->membase >= nxtbrdp->membase) &&
3827				    (brdp->membase <= (nxtbrdp->membase +
3828				    nxtbrdp->memsize - 1))) {
3829					stli_shared++;
3830					break;
3831				}
3832			}
3833		}
3834	}
3835
3836	if (stli_shared == 0) {
3837		for (i = 0; (i < stli_nrbrds); i++) {
3838			brdp = stli_brds[i];
3839			if (brdp == NULL)
3840				continue;
3841			if (test_bit(BST_FOUND, &brdp->state)) {
3842				EBRDENABLE(brdp);
3843				brdp->enable = NULL;
3844				brdp->disable = NULL;
3845			}
3846		}
3847	}
3848
3849	retval = pci_register_driver(&stli_pcidriver);
3850	if (retval && found == 0) {
3851		printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3852				"driver can be registered!\n");
3853		goto err;
3854	}
3855
3856	return 0;
3857err:
3858	return retval;
3859}
3860
3861/*****************************************************************************/
3862
3863/*
3864 *	Code to handle an "staliomem" read operation. This device is the
3865 *	contents of the board shared memory. It is used for down loading
3866 *	the slave image (and debugging :-)
3867 */
3868
3869static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3870{
3871	unsigned long flags;
3872	void __iomem *memptr;
3873	struct stlibrd *brdp;
3874	unsigned int brdnr;
3875	int size, n;
3876	void *p;
3877	loff_t off = *offp;
3878
3879	brdnr = iminor(fp->f_path.dentry->d_inode);
3880	if (brdnr >= stli_nrbrds)
3881		return -ENODEV;
3882	brdp = stli_brds[brdnr];
3883	if (brdp == NULL)
3884		return -ENODEV;
3885	if (brdp->state == 0)
3886		return -ENODEV;
3887	if (off >= brdp->memsize || off + count < off)
3888		return 0;
3889
3890	size = min(count, (size_t)(brdp->memsize - off));
3891
3892	/*
3893	 *	Copy the data a page at a time
3894	 */
3895
3896	p = (void *)__get_free_page(GFP_KERNEL);
3897	if(p == NULL)
3898		return -ENOMEM;
3899
3900	while (size > 0) {
3901		spin_lock_irqsave(&brd_lock, flags);
3902		EBRDENABLE(brdp);
3903		memptr = EBRDGETMEMPTR(brdp, off);
3904		n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3905		n = min(n, (int)PAGE_SIZE);
3906		memcpy_fromio(p, memptr, n);
3907		EBRDDISABLE(brdp);
3908		spin_unlock_irqrestore(&brd_lock, flags);
3909		if (copy_to_user(buf, p, n)) {
3910			count = -EFAULT;
3911			goto out;
3912		}
3913		off += n;
3914		buf += n;
3915		size -= n;
3916	}
3917out:
3918	*offp = off;
3919	free_page((unsigned long)p);
3920	return count;
3921}
3922
3923/*****************************************************************************/
3924
3925
3926static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3927{
3928	unsigned long flags;
3929	void __iomem *memptr;
3930	struct stlibrd *brdp;
3931	char __user *chbuf;
3932	unsigned int brdnr;
3933	int size, n;
3934	void *p;
3935	loff_t off = *offp;
3936
3937	brdnr = iminor(fp->f_path.dentry->d_inode);
3938
3939	if (brdnr >= stli_nrbrds)
3940		return -ENODEV;
3941	brdp = stli_brds[brdnr];
3942	if (brdp == NULL)
3943		return -ENODEV;
3944	if (brdp->state == 0)
3945		return -ENODEV;
3946	if (off >= brdp->memsize || off + count < off)
3947		return 0;
3948
3949	chbuf = (char __user *) buf;
3950	size = min(count, (size_t)(brdp->memsize - off));
3951
3952	/*
3953	 *	Copy the data a page at a time
3954	 */
3955
3956	p = (void *)__get_free_page(GFP_KERNEL);
3957	if(p == NULL)
3958		return -ENOMEM;
3959
3960	while (size > 0) {
3961		n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3962		n = min(n, (int)PAGE_SIZE);
3963		if (copy_from_user(p, chbuf, n)) {
3964			if (count == 0)
3965				count = -EFAULT;
3966			goto out;
3967		}
3968		spin_lock_irqsave(&brd_lock, flags);
3969		EBRDENABLE(brdp);
3970		memptr = EBRDGETMEMPTR(brdp, off);
3971		memcpy_toio(memptr, p, n);
3972		EBRDDISABLE(brdp);
3973		spin_unlock_irqrestore(&brd_lock, flags);
3974		off += n;
3975		chbuf += n;
3976		size -= n;
3977	}
3978out:
3979	free_page((unsigned long) p);
3980	*offp = off;
3981	return count;
3982}
3983
3984/*****************************************************************************/
3985
3986/*
3987 *	Return the board stats structure to user app.
3988 */
3989
3990static int stli_getbrdstats(combrd_t __user *bp)
3991{
3992	struct stlibrd *brdp;
3993	unsigned int i;
3994
3995	if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
3996		return -EFAULT;
3997	if (stli_brdstats.brd >= STL_MAXBRDS)
3998		return -ENODEV;
3999	brdp = stli_brds[stli_brdstats.brd];
4000	if (brdp == NULL)
4001		return -ENODEV;
4002
4003	memset(&stli_brdstats, 0, sizeof(combrd_t));
4004
4005	stli_brdstats.brd = brdp->brdnr;
4006	stli_brdstats.type = brdp->brdtype;
4007	stli_brdstats.hwid = 0;
4008	stli_brdstats.state = brdp->state;
4009	stli_brdstats.ioaddr = brdp->iobase;
4010	stli_brdstats.memaddr = brdp->memaddr;
4011	stli_brdstats.nrpanels = brdp->nrpanels;
4012	stli_brdstats.nrports = brdp->nrports;
4013	for (i = 0; (i < brdp->nrpanels); i++) {
4014		stli_brdstats.panels[i].panel = i;
4015		stli_brdstats.panels[i].hwid = brdp->panelids[i];
4016		stli_brdstats.panels[i].nrports = brdp->panels[i];
4017	}
4018
4019	if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4020		return -EFAULT;
4021	return 0;
4022}
4023
4024/*****************************************************************************/
4025
4026/*
4027 *	Resolve the referenced port number into a port struct pointer.
4028 */
4029
4030static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4031		unsigned int portnr)
4032{
4033	struct stlibrd *brdp;
4034	unsigned int i;
4035
4036	if (brdnr >= STL_MAXBRDS)
4037		return NULL;
4038	brdp = stli_brds[brdnr];
4039	if (brdp == NULL)
4040		return NULL;
4041	for (i = 0; (i < panelnr); i++)
4042		portnr += brdp->panels[i];
4043	if (portnr >= brdp->nrports)
4044		return NULL;
4045	return brdp->ports[portnr];
4046}
4047
4048/*****************************************************************************/
4049
4050/*
4051 *	Return the port stats structure to user app. A NULL port struct
4052 *	pointer passed in means that we need to find out from the app
4053 *	what port to get stats for (used through board control device).
4054 */
4055
4056static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4057{
4058	unsigned long	flags;
4059	struct stlibrd	*brdp;
4060	int		rc;
4061
4062	memset(&stli_comstats, 0, sizeof(comstats_t));
4063
4064	if (portp == NULL)
4065		return -ENODEV;
4066	brdp = stli_brds[portp->brdnr];
4067	if (brdp == NULL)
4068		return -ENODEV;
4069
4070	mutex_lock(&portp->port.mutex);
4071	if (test_bit(BST_STARTED, &brdp->state)) {
4072		if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4073		    &stli_cdkstats, sizeof(asystats_t), 1)) < 0) {
4074			mutex_unlock(&portp->port.mutex);
4075			return rc;
4076		}
4077	} else {
4078		memset(&stli_cdkstats, 0, sizeof(asystats_t));
4079	}
4080
4081	stli_comstats.brd = portp->brdnr;
4082	stli_comstats.panel = portp->panelnr;
4083	stli_comstats.port = portp->portnr;
4084	stli_comstats.state = portp->state;
4085	stli_comstats.flags = portp->port.flags;
4086
4087	spin_lock_irqsave(&brd_lock, flags);
4088	if (tty != NULL) {
4089		if (portp->port.tty == tty) {
4090			stli_comstats.ttystate = tty->flags;
4091			stli_comstats.rxbuffered = -1;
4092			if (tty->termios != NULL) {
4093				stli_comstats.cflags = tty->termios->c_cflag;
4094				stli_comstats.iflags = tty->termios->c_iflag;
4095				stli_comstats.oflags = tty->termios->c_oflag;
4096				stli_comstats.lflags = tty->termios->c_lflag;
4097			}
4098		}
4099	}
4100	spin_unlock_irqrestore(&brd_lock, flags);
4101
4102	stli_comstats.txtotal = stli_cdkstats.txchars;
4103	stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4104	stli_comstats.txbuffered = stli_cdkstats.txringq;
4105	stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4106	stli_comstats.rxoverrun = stli_cdkstats.overruns;
4107	stli_comstats.rxparity = stli_cdkstats.parity;
4108	stli_comstats.rxframing = stli_cdkstats.framing;
4109	stli_comstats.rxlost = stli_cdkstats.ringover;
4110	stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4111	stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4112	stli_comstats.txxon = stli_cdkstats.txstart;
4113	stli_comstats.txxoff = stli_cdkstats.txstop;
4114	stli_comstats.rxxon = stli_cdkstats.rxstart;
4115	stli_comstats.rxxoff = stli_cdkstats.rxstop;
4116	stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4117	stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4118	stli_comstats.modem = stli_cdkstats.dcdcnt;
4119	stli_comstats.hwid = stli_cdkstats.hwid;
4120	stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4121	mutex_unlock(&portp->port.mutex);
4122
4123	return 0;
4124}
4125
4126/*****************************************************************************/
4127
4128/*
4129 *	Return the port stats structure to user app. A NULL port struct
4130 *	pointer passed in means that we need to find out from the app
4131 *	what port to get stats for (used through board control device).
4132 */
4133
4134static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4135							comstats_t __user *cp)
4136{
4137	struct stlibrd *brdp;
4138	int rc;
4139
4140	if (!portp) {
4141		if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4142			return -EFAULT;
4143		portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4144			stli_comstats.port);
4145		if (!portp)
4146			return -ENODEV;
4147	}
4148
4149	brdp = stli_brds[portp->brdnr];
4150	if (!brdp)
4151		return -ENODEV;
4152
4153	if ((rc = stli_portcmdstats(tty, portp)) < 0)
4154		return rc;
4155
4156	return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4157			-EFAULT : 0;
4158}
4159
4160/*****************************************************************************/
4161
4162/*
4163 *	Clear the port stats structure. We also return it zeroed out...
4164 */
4165
4166static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4167{
4168	struct stlibrd *brdp;
4169	int rc;
4170
4171	if (!portp) {
4172		if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4173			return -EFAULT;
4174		portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4175			stli_comstats.port);
4176		if (!portp)
4177			return -ENODEV;
4178	}
4179
4180	brdp = stli_brds[portp->brdnr];
4181	if (!brdp)
4182		return -ENODEV;
4183
4184	mutex_lock(&portp->port.mutex);
4185
4186	if (test_bit(BST_STARTED, &brdp->state)) {
4187		if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0) {
4188			mutex_unlock(&portp->port.mutex);
4189			return rc;
4190		}
4191	}
4192
4193	memset(&stli_comstats, 0, sizeof(comstats_t));
4194	stli_comstats.brd = portp->brdnr;
4195	stli_comstats.panel = portp->panelnr;
4196	stli_comstats.port = portp->portnr;
4197	mutex_unlock(&portp->port.mutex);
4198
4199	if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4200		return -EFAULT;
4201	return 0;
4202}
4203
4204/*****************************************************************************/
4205
4206/*
4207 *	Return the entire driver ports structure to a user app.
4208 */
4209
4210static int stli_getportstruct(struct stliport __user *arg)
4211{
4212	struct stliport stli_dummyport;
4213	struct stliport *portp;
4214
4215	if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4216		return -EFAULT;
4217	portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4218		 stli_dummyport.portnr);
4219	if (!portp)
4220		return -ENODEV;
4221	if (copy_to_user(arg, portp, sizeof(struct stliport)))
4222		return -EFAULT;
4223	return 0;
4224}
4225
4226/*****************************************************************************/
4227
4228/*
4229 *	Return the entire driver board structure to a user app.
4230 */
4231
4232static int stli_getbrdstruct(struct stlibrd __user *arg)
4233{
4234	struct stlibrd stli_dummybrd;
4235	struct stlibrd *brdp;
4236
4237	if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4238		return -EFAULT;
4239	if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4240		return -ENODEV;
4241	brdp = stli_brds[stli_dummybrd.brdnr];
4242	if (!brdp)
4243		return -ENODEV;
4244	if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4245		return -EFAULT;
4246	return 0;
4247}
4248
4249/*****************************************************************************/
4250
4251/*
4252 *	The "staliomem" device is also required to do some special operations on
4253 *	the board. We need to be able to send an interrupt to the board,
4254 *	reset it, and start/stop it.
4255 */
4256
4257static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg)
4258{
4259	struct stlibrd *brdp;
4260	int brdnr, rc, done;
4261	void __user *argp = (void __user *)arg;
4262
4263/*
4264 *	First up handle the board independent ioctls.
4265 */
4266	done = 0;
4267	rc = 0;
4268
4269	switch (cmd) {
4270	case COM_GETPORTSTATS:
4271		rc = stli_getportstats(NULL, NULL, argp);
4272		done++;
4273		break;
4274	case COM_CLRPORTSTATS:
4275		rc = stli_clrportstats(NULL, argp);
4276		done++;
4277		break;
4278	case COM_GETBRDSTATS:
4279		rc = stli_getbrdstats(argp);
4280		done++;
4281		break;
4282	case COM_READPORT:
4283		rc = stli_getportstruct(argp);
4284		done++;
4285		break;
4286	case COM_READBOARD:
4287		rc = stli_getbrdstruct(argp);
4288		done++;
4289		break;
4290	}
4291	if (done)
4292		return rc;
4293
4294/*
4295 *	Now handle the board specific ioctls. These all depend on the
4296 *	minor number of the device they were called from.
4297 */
4298	brdnr = iminor(fp->f_dentry->d_inode);
4299	if (brdnr >= STL_MAXBRDS)
4300		return -ENODEV;
4301	brdp = stli_brds[brdnr];
4302	if (!brdp)
4303		return -ENODEV;
4304	if (brdp->state == 0)
4305		return -ENODEV;
4306
4307	switch (cmd) {
4308	case STL_BINTR:
4309		EBRDINTR(brdp);
4310		break;
4311	case STL_BSTART:
4312		rc = stli_startbrd(brdp);
4313		break;
4314	case STL_BSTOP:
4315		clear_bit(BST_STARTED, &brdp->state);
4316		break;
4317	case STL_BRESET:
4318		clear_bit(BST_STARTED, &brdp->state);
4319		EBRDRESET(brdp);
4320		if (stli_shared == 0) {
4321			if (brdp->reenable != NULL)
4322				(* brdp->reenable)(brdp);
4323		}
4324		break;
4325	default:
4326		rc = -ENOIOCTLCMD;
4327		break;
4328	}
4329	return rc;
4330}
4331
4332static const struct tty_operations stli_ops = {
4333	.open = stli_open,
4334	.close = stli_close,
4335	.write = stli_write,
4336	.put_char = stli_putchar,
4337	.flush_chars = stli_flushchars,
4338	.write_room = stli_writeroom,
4339	.chars_in_buffer = stli_charsinbuffer,
4340	.ioctl = stli_ioctl,
4341	.set_termios = stli_settermios,
4342	.throttle = stli_throttle,
4343	.unthrottle = stli_unthrottle,
4344	.stop = stli_stop,
4345	.start = stli_start,
4346	.hangup = stli_hangup,
4347	.flush_buffer = stli_flushbuffer,
4348	.break_ctl = stli_breakctl,
4349	.wait_until_sent = stli_waituntilsent,
4350	.send_xchar = stli_sendxchar,
4351	.tiocmget = stli_tiocmget,
4352	.tiocmset = stli_tiocmset,
4353	.proc_fops = &stli_proc_fops,
4354};
4355
4356static const struct tty_port_operations stli_port_ops = {
4357	.carrier_raised = stli_carrier_raised,
4358	.dtr_rts = stli_dtr_rts,
4359	.activate = stli_activate,
4360	.shutdown = stli_shutdown,
4361};
4362
4363/*****************************************************************************/
4364/*
4365 *	Loadable module initialization stuff.
4366 */
4367
4368static void istallion_cleanup_isa(void)
4369{
4370	struct stlibrd	*brdp;
4371	unsigned int j;
4372
4373	for (j = 0; (j < stli_nrbrds); j++) {
4374		if ((brdp = stli_brds[j]) == NULL ||
4375				test_bit(BST_PROBED, &brdp->state))
4376			continue;
4377
4378		stli_cleanup_ports(brdp);
4379
4380		iounmap(brdp->membase);
4381		if (brdp->iosize > 0)
4382			release_region(brdp->iobase, brdp->iosize);
4383		kfree(brdp);
4384		stli_brds[j] = NULL;
4385	}
4386}
4387
4388static int __init istallion_module_init(void)
4389{
4390	unsigned int i;
4391	int retval;
4392
4393	printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4394
4395	spin_lock_init(&stli_lock);
4396	spin_lock_init(&brd_lock);
4397
4398	stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4399	if (!stli_txcookbuf) {
4400		printk(KERN_ERR "istallion: failed to allocate memory "
4401				"(size=%d)\n", STLI_TXBUFSIZE);
4402		retval = -ENOMEM;
4403		goto err;
4404	}
4405
4406	stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4407	if (!stli_serial) {
4408		retval = -ENOMEM;
4409		goto err_free;
4410	}
4411
4412	stli_serial->owner = THIS_MODULE;
4413	stli_serial->driver_name = stli_drvname;
4414	stli_serial->name = stli_serialname;
4415	stli_serial->major = STL_SERIALMAJOR;
4416	stli_serial->minor_start = 0;
4417	stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4418	stli_serial->subtype = SERIAL_TYPE_NORMAL;
4419	stli_serial->init_termios = stli_deftermios;
4420	stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4421	tty_set_operations(stli_serial, &stli_ops);
4422
4423	retval = tty_register_driver(stli_serial);
4424	if (retval) {
4425		printk(KERN_ERR "istallion: failed to register serial driver\n");
4426		goto err_ttyput;
4427	}
4428
4429	retval = stli_initbrds();
4430	if (retval)
4431		goto err_ttyunr;
4432
4433/*
4434 *	Set up a character driver for the shared memory region. We need this
4435 *	to down load the slave code image. Also it is a useful debugging tool.
4436 */
4437	retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4438	if (retval) {
4439		printk(KERN_ERR "istallion: failed to register serial memory "
4440				"device\n");
4441		goto err_deinit;
4442	}
4443
4444	istallion_class = class_create(THIS_MODULE, "staliomem");
4445	for (i = 0; i < 4; i++)
4446		device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4447			      NULL, "staliomem%d", i);
4448
4449	return 0;
4450err_deinit:
4451	pci_unregister_driver(&stli_pcidriver);
4452	istallion_cleanup_isa();
4453err_ttyunr:
4454	tty_unregister_driver(stli_serial);
4455err_ttyput:
4456	put_tty_driver(stli_serial);
4457err_free:
4458	kfree(stli_txcookbuf);
4459err:
4460	return retval;
4461}
4462
4463/*****************************************************************************/
4464
4465static void __exit istallion_module_exit(void)
4466{
4467	unsigned int j;
4468
4469	printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4470		stli_drvversion);
4471
4472	if (stli_timeron) {
4473		stli_timeron = 0;
4474		del_timer_sync(&stli_timerlist);
4475	}
4476
4477	unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4478
4479	for (j = 0; j < 4; j++)
4480		device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4481	class_destroy(istallion_class);
4482
4483	pci_unregister_driver(&stli_pcidriver);
4484	istallion_cleanup_isa();
4485
4486	tty_unregister_driver(stli_serial);
4487	put_tty_driver(stli_serial);
4488
4489	kfree(stli_txcookbuf);
4490}
4491
4492module_init(istallion_module_init);
4493module_exit(istallion_module_exit);
4494