1/*
2 *  Block device elevator/IO-scheduler.
3 *
4 *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 *
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
7 *
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 *   an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
14 *
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 *  when run without -bN
18 *
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
23 *
24 */
25#include <linux/kernel.h>
26#include <linux/fs.h>
27#include <linux/blkdev.h>
28#include <linux/elevator.h>
29#include <linux/bio.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/init.h>
33#include <linux/compiler.h>
34#include <linux/delay.h>
35#include <linux/blktrace_api.h>
36#include <linux/hash.h>
37#include <linux/uaccess.h>
38
39#include <trace/events/block.h>
40
41#include "blk.h"
42
43static DEFINE_SPINLOCK(elv_list_lock);
44static LIST_HEAD(elv_list);
45
46/*
47 * Merge hash stuff.
48 */
49static const int elv_hash_shift = 6;
50#define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51#define ELV_HASH_FN(sec)	\
52		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53#define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54#define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55
56/*
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
59 */
60static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61{
62	struct request_queue *q = rq->q;
63	struct elevator_queue *e = q->elevator;
64
65	if (e->ops->elevator_allow_merge_fn)
66		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67
68	return 1;
69}
70
71/*
72 * can we safely merge with this request?
73 */
74int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75{
76	if (!rq_mergeable(rq))
77		return 0;
78
79	/*
80	 * Don't merge file system requests and discard requests
81	 */
82	if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD))
83		return 0;
84
85	/*
86	 * Don't merge discard requests and secure discard requests
87	 */
88	if ((bio->bi_rw & REQ_SECURE) != (rq->bio->bi_rw & REQ_SECURE))
89		return 0;
90
91	/*
92	 * different data direction or already started, don't merge
93	 */
94	if (bio_data_dir(bio) != rq_data_dir(rq))
95		return 0;
96
97	/*
98	 * must be same device and not a special request
99	 */
100	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
101		return 0;
102
103	/*
104	 * only merge integrity protected bio into ditto rq
105	 */
106	if (bio_integrity(bio) != blk_integrity_rq(rq))
107		return 0;
108
109	if (!elv_iosched_allow_merge(rq, bio))
110		return 0;
111
112	return 1;
113}
114EXPORT_SYMBOL(elv_rq_merge_ok);
115
116static inline int elv_try_merge(struct request *__rq, struct bio *bio)
117{
118	int ret = ELEVATOR_NO_MERGE;
119
120	/*
121	 * we can merge and sequence is ok, check if it's possible
122	 */
123	if (elv_rq_merge_ok(__rq, bio)) {
124		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
125			ret = ELEVATOR_BACK_MERGE;
126		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
127			ret = ELEVATOR_FRONT_MERGE;
128	}
129
130	return ret;
131}
132
133static struct elevator_type *elevator_find(const char *name)
134{
135	struct elevator_type *e;
136
137	list_for_each_entry(e, &elv_list, list) {
138		if (!strcmp(e->elevator_name, name))
139			return e;
140	}
141
142	return NULL;
143}
144
145static void elevator_put(struct elevator_type *e)
146{
147	module_put(e->elevator_owner);
148}
149
150static struct elevator_type *elevator_get(const char *name)
151{
152	struct elevator_type *e;
153
154	spin_lock(&elv_list_lock);
155
156	e = elevator_find(name);
157	if (!e) {
158		char elv[ELV_NAME_MAX + strlen("-iosched")];
159
160		spin_unlock(&elv_list_lock);
161
162		snprintf(elv, sizeof(elv), "%s-iosched", name);
163
164		request_module("%s", elv);
165		spin_lock(&elv_list_lock);
166		e = elevator_find(name);
167	}
168
169	if (e && !try_module_get(e->elevator_owner))
170		e = NULL;
171
172	spin_unlock(&elv_list_lock);
173
174	return e;
175}
176
177static void *elevator_init_queue(struct request_queue *q,
178				 struct elevator_queue *eq)
179{
180	return eq->ops->elevator_init_fn(q);
181}
182
183static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
184			   void *data)
185{
186	q->elevator = eq;
187	eq->elevator_data = data;
188}
189
190static char chosen_elevator[16];
191
192static int __init elevator_setup(char *str)
193{
194	/*
195	 * Be backwards-compatible with previous kernels, so users
196	 * won't get the wrong elevator.
197	 */
198	strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
199	return 1;
200}
201
202__setup("elevator=", elevator_setup);
203
204static struct kobj_type elv_ktype;
205
206static struct elevator_queue *elevator_alloc(struct request_queue *q,
207				  struct elevator_type *e)
208{
209	struct elevator_queue *eq;
210	int i;
211
212	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
213	if (unlikely(!eq))
214		goto err;
215
216	eq->ops = &e->ops;
217	eq->elevator_type = e;
218	kobject_init(&eq->kobj, &elv_ktype);
219	mutex_init(&eq->sysfs_lock);
220
221	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
222					GFP_KERNEL, q->node);
223	if (!eq->hash)
224		goto err;
225
226	for (i = 0; i < ELV_HASH_ENTRIES; i++)
227		INIT_HLIST_HEAD(&eq->hash[i]);
228
229	return eq;
230err:
231	kfree(eq);
232	elevator_put(e);
233	return NULL;
234}
235
236static void elevator_release(struct kobject *kobj)
237{
238	struct elevator_queue *e;
239
240	e = container_of(kobj, struct elevator_queue, kobj);
241	elevator_put(e->elevator_type);
242	kfree(e->hash);
243	kfree(e);
244}
245
246int elevator_init(struct request_queue *q, char *name)
247{
248	struct elevator_type *e = NULL;
249	struct elevator_queue *eq;
250	void *data;
251
252	if (unlikely(q->elevator))
253		return 0;
254
255	INIT_LIST_HEAD(&q->queue_head);
256	q->last_merge = NULL;
257	q->end_sector = 0;
258	q->boundary_rq = NULL;
259
260	if (name) {
261		e = elevator_get(name);
262		if (!e)
263			return -EINVAL;
264	}
265
266	if (!e && *chosen_elevator) {
267		e = elevator_get(chosen_elevator);
268		if (!e)
269			printk(KERN_ERR "I/O scheduler %s not found\n",
270							chosen_elevator);
271	}
272
273	if (!e) {
274		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
275		if (!e) {
276			printk(KERN_ERR
277				"Default I/O scheduler not found. " \
278				"Using noop.\n");
279			e = elevator_get("noop");
280		}
281	}
282
283	eq = elevator_alloc(q, e);
284	if (!eq)
285		return -ENOMEM;
286
287	data = elevator_init_queue(q, eq);
288	if (!data) {
289		kobject_put(&eq->kobj);
290		return -ENOMEM;
291	}
292
293	elevator_attach(q, eq, data);
294	return 0;
295}
296EXPORT_SYMBOL(elevator_init);
297
298void elevator_exit(struct elevator_queue *e)
299{
300	mutex_lock(&e->sysfs_lock);
301	if (e->ops->elevator_exit_fn)
302		e->ops->elevator_exit_fn(e);
303	e->ops = NULL;
304	mutex_unlock(&e->sysfs_lock);
305
306	kobject_put(&e->kobj);
307}
308EXPORT_SYMBOL(elevator_exit);
309
310static inline void __elv_rqhash_del(struct request *rq)
311{
312	hlist_del_init(&rq->hash);
313}
314
315static void elv_rqhash_del(struct request_queue *q, struct request *rq)
316{
317	if (ELV_ON_HASH(rq))
318		__elv_rqhash_del(rq);
319}
320
321static void elv_rqhash_add(struct request_queue *q, struct request *rq)
322{
323	struct elevator_queue *e = q->elevator;
324
325	BUG_ON(ELV_ON_HASH(rq));
326	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
327}
328
329static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
330{
331	__elv_rqhash_del(rq);
332	elv_rqhash_add(q, rq);
333}
334
335static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
336{
337	struct elevator_queue *e = q->elevator;
338	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
339	struct hlist_node *entry, *next;
340	struct request *rq;
341
342	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
343		BUG_ON(!ELV_ON_HASH(rq));
344
345		if (unlikely(!rq_mergeable(rq))) {
346			__elv_rqhash_del(rq);
347			continue;
348		}
349
350		if (rq_hash_key(rq) == offset)
351			return rq;
352	}
353
354	return NULL;
355}
356
357/*
358 * RB-tree support functions for inserting/lookup/removal of requests
359 * in a sorted RB tree.
360 */
361struct request *elv_rb_add(struct rb_root *root, struct request *rq)
362{
363	struct rb_node **p = &root->rb_node;
364	struct rb_node *parent = NULL;
365	struct request *__rq;
366
367	while (*p) {
368		parent = *p;
369		__rq = rb_entry(parent, struct request, rb_node);
370
371		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
372			p = &(*p)->rb_left;
373		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
374			p = &(*p)->rb_right;
375		else
376			return __rq;
377	}
378
379	rb_link_node(&rq->rb_node, parent, p);
380	rb_insert_color(&rq->rb_node, root);
381	return NULL;
382}
383EXPORT_SYMBOL(elv_rb_add);
384
385void elv_rb_del(struct rb_root *root, struct request *rq)
386{
387	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
388	rb_erase(&rq->rb_node, root);
389	RB_CLEAR_NODE(&rq->rb_node);
390}
391EXPORT_SYMBOL(elv_rb_del);
392
393struct request *elv_rb_find(struct rb_root *root, sector_t sector)
394{
395	struct rb_node *n = root->rb_node;
396	struct request *rq;
397
398	while (n) {
399		rq = rb_entry(n, struct request, rb_node);
400
401		if (sector < blk_rq_pos(rq))
402			n = n->rb_left;
403		else if (sector > blk_rq_pos(rq))
404			n = n->rb_right;
405		else
406			return rq;
407	}
408
409	return NULL;
410}
411EXPORT_SYMBOL(elv_rb_find);
412
413/*
414 * Insert rq into dispatch queue of q.  Queue lock must be held on
415 * entry.  rq is sort instead into the dispatch queue. To be used by
416 * specific elevators.
417 */
418void elv_dispatch_sort(struct request_queue *q, struct request *rq)
419{
420	sector_t boundary;
421	struct list_head *entry;
422	int stop_flags;
423
424	if (q->last_merge == rq)
425		q->last_merge = NULL;
426
427	elv_rqhash_del(q, rq);
428
429	q->nr_sorted--;
430
431	boundary = q->end_sector;
432	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
433	list_for_each_prev(entry, &q->queue_head) {
434		struct request *pos = list_entry_rq(entry);
435
436		if ((rq->cmd_flags & REQ_DISCARD) !=
437		    (pos->cmd_flags & REQ_DISCARD))
438			break;
439		if (rq_data_dir(rq) != rq_data_dir(pos))
440			break;
441		if (pos->cmd_flags & stop_flags)
442			break;
443		if (blk_rq_pos(rq) >= boundary) {
444			if (blk_rq_pos(pos) < boundary)
445				continue;
446		} else {
447			if (blk_rq_pos(pos) >= boundary)
448				break;
449		}
450		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
451			break;
452	}
453
454	list_add(&rq->queuelist, entry);
455}
456EXPORT_SYMBOL(elv_dispatch_sort);
457
458/*
459 * Insert rq into dispatch queue of q.  Queue lock must be held on
460 * entry.  rq is added to the back of the dispatch queue. To be used by
461 * specific elevators.
462 */
463void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
464{
465	if (q->last_merge == rq)
466		q->last_merge = NULL;
467
468	elv_rqhash_del(q, rq);
469
470	q->nr_sorted--;
471
472	q->end_sector = rq_end_sector(rq);
473	q->boundary_rq = rq;
474	list_add_tail(&rq->queuelist, &q->queue_head);
475}
476EXPORT_SYMBOL(elv_dispatch_add_tail);
477
478int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
479{
480	struct elevator_queue *e = q->elevator;
481	struct request *__rq;
482	int ret;
483
484	/*
485	 * Levels of merges:
486	 * 	nomerges:  No merges at all attempted
487	 * 	noxmerges: Only simple one-hit cache try
488	 * 	merges:	   All merge tries attempted
489	 */
490	if (blk_queue_nomerges(q))
491		return ELEVATOR_NO_MERGE;
492
493	/*
494	 * First try one-hit cache.
495	 */
496	if (q->last_merge) {
497		ret = elv_try_merge(q->last_merge, bio);
498		if (ret != ELEVATOR_NO_MERGE) {
499			*req = q->last_merge;
500			return ret;
501		}
502	}
503
504	if (blk_queue_noxmerges(q))
505		return ELEVATOR_NO_MERGE;
506
507	/*
508	 * See if our hash lookup can find a potential backmerge.
509	 */
510	__rq = elv_rqhash_find(q, bio->bi_sector);
511	if (__rq && elv_rq_merge_ok(__rq, bio)) {
512		*req = __rq;
513		return ELEVATOR_BACK_MERGE;
514	}
515
516	if (e->ops->elevator_merge_fn)
517		return e->ops->elevator_merge_fn(q, req, bio);
518
519	return ELEVATOR_NO_MERGE;
520}
521
522void elv_merged_request(struct request_queue *q, struct request *rq, int type)
523{
524	struct elevator_queue *e = q->elevator;
525
526	if (e->ops->elevator_merged_fn)
527		e->ops->elevator_merged_fn(q, rq, type);
528
529	if (type == ELEVATOR_BACK_MERGE)
530		elv_rqhash_reposition(q, rq);
531
532	q->last_merge = rq;
533}
534
535void elv_merge_requests(struct request_queue *q, struct request *rq,
536			     struct request *next)
537{
538	struct elevator_queue *e = q->elevator;
539
540	if (e->ops->elevator_merge_req_fn)
541		e->ops->elevator_merge_req_fn(q, rq, next);
542
543	elv_rqhash_reposition(q, rq);
544	elv_rqhash_del(q, next);
545
546	q->nr_sorted--;
547	q->last_merge = rq;
548}
549
550void elv_bio_merged(struct request_queue *q, struct request *rq,
551			struct bio *bio)
552{
553	struct elevator_queue *e = q->elevator;
554
555	if (e->ops->elevator_bio_merged_fn)
556		e->ops->elevator_bio_merged_fn(q, rq, bio);
557}
558
559void elv_requeue_request(struct request_queue *q, struct request *rq)
560{
561	/*
562	 * it already went through dequeue, we need to decrement the
563	 * in_flight count again
564	 */
565	if (blk_account_rq(rq)) {
566		q->in_flight[rq_is_sync(rq)]--;
567		if (rq->cmd_flags & REQ_SORTED)
568			elv_deactivate_rq(q, rq);
569	}
570
571	rq->cmd_flags &= ~REQ_STARTED;
572
573	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
574}
575
576void elv_drain_elevator(struct request_queue *q)
577{
578	static int printed;
579	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
580		;
581	if (q->nr_sorted == 0)
582		return;
583	if (printed++ < 10) {
584		printk(KERN_ERR "%s: forced dispatching is broken "
585		       "(nr_sorted=%u), please report this\n",
586		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
587	}
588}
589
590/*
591 * Call with queue lock held, interrupts disabled
592 */
593void elv_quiesce_start(struct request_queue *q)
594{
595	if (!q->elevator)
596		return;
597
598	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
599
600	/*
601	 * make sure we don't have any requests in flight
602	 */
603	elv_drain_elevator(q);
604	while (q->rq.elvpriv) {
605		__blk_run_queue(q);
606		spin_unlock_irq(q->queue_lock);
607		msleep(10);
608		spin_lock_irq(q->queue_lock);
609		elv_drain_elevator(q);
610	}
611}
612
613void elv_quiesce_end(struct request_queue *q)
614{
615	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
616}
617
618void elv_insert(struct request_queue *q, struct request *rq, int where)
619{
620	struct list_head *pos;
621	unsigned ordseq;
622	int unplug_it = 1;
623
624	trace_block_rq_insert(q, rq);
625
626	rq->q = q;
627
628	switch (where) {
629	case ELEVATOR_INSERT_FRONT:
630		rq->cmd_flags |= REQ_SOFTBARRIER;
631
632		list_add(&rq->queuelist, &q->queue_head);
633		break;
634
635	case ELEVATOR_INSERT_BACK:
636		rq->cmd_flags |= REQ_SOFTBARRIER;
637		elv_drain_elevator(q);
638		list_add_tail(&rq->queuelist, &q->queue_head);
639		/*
640		 * We kick the queue here for the following reasons.
641		 * - The elevator might have returned NULL previously
642		 *   to delay requests and returned them now.  As the
643		 *   queue wasn't empty before this request, ll_rw_blk
644		 *   won't run the queue on return, resulting in hang.
645		 * - Usually, back inserted requests won't be merged
646		 *   with anything.  There's no point in delaying queue
647		 *   processing.
648		 */
649		__blk_run_queue(q);
650		break;
651
652	case ELEVATOR_INSERT_SORT:
653		BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
654		       !(rq->cmd_flags & REQ_DISCARD));
655		rq->cmd_flags |= REQ_SORTED;
656		q->nr_sorted++;
657		if (rq_mergeable(rq)) {
658			elv_rqhash_add(q, rq);
659			if (!q->last_merge)
660				q->last_merge = rq;
661		}
662
663		/*
664		 * Some ioscheds (cfq) run q->request_fn directly, so
665		 * rq cannot be accessed after calling
666		 * elevator_add_req_fn.
667		 */
668		q->elevator->ops->elevator_add_req_fn(q, rq);
669		break;
670
671	case ELEVATOR_INSERT_REQUEUE:
672		/*
673		 * If ordered flush isn't in progress, we do front
674		 * insertion; otherwise, requests should be requeued
675		 * in ordseq order.
676		 */
677		rq->cmd_flags |= REQ_SOFTBARRIER;
678
679		/*
680		 * Most requeues happen because of a busy condition,
681		 * don't force unplug of the queue for that case.
682		 */
683		unplug_it = 0;
684
685		if (q->ordseq == 0) {
686			list_add(&rq->queuelist, &q->queue_head);
687			break;
688		}
689
690		ordseq = blk_ordered_req_seq(rq);
691
692		list_for_each(pos, &q->queue_head) {
693			struct request *pos_rq = list_entry_rq(pos);
694			if (ordseq <= blk_ordered_req_seq(pos_rq))
695				break;
696		}
697
698		list_add_tail(&rq->queuelist, pos);
699		break;
700
701	default:
702		printk(KERN_ERR "%s: bad insertion point %d\n",
703		       __func__, where);
704		BUG();
705	}
706
707	if (unplug_it && blk_queue_plugged(q)) {
708		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
709				- queue_in_flight(q);
710
711		if (nrq >= q->unplug_thresh)
712			__generic_unplug_device(q);
713	}
714}
715
716void __elv_add_request(struct request_queue *q, struct request *rq, int where,
717		       int plug)
718{
719	if (q->ordcolor)
720		rq->cmd_flags |= REQ_ORDERED_COLOR;
721
722	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
723		/*
724		 * toggle ordered color
725		 */
726		if (rq->cmd_flags & REQ_HARDBARRIER)
727			q->ordcolor ^= 1;
728
729		/*
730		 * barriers implicitly indicate back insertion
731		 */
732		if (where == ELEVATOR_INSERT_SORT)
733			where = ELEVATOR_INSERT_BACK;
734
735		/*
736		 * this request is scheduling boundary, update
737		 * end_sector
738		 */
739		if (rq->cmd_type == REQ_TYPE_FS ||
740		    (rq->cmd_flags & REQ_DISCARD)) {
741			q->end_sector = rq_end_sector(rq);
742			q->boundary_rq = rq;
743		}
744	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
745		    where == ELEVATOR_INSERT_SORT)
746		where = ELEVATOR_INSERT_BACK;
747
748	if (plug)
749		blk_plug_device(q);
750
751	elv_insert(q, rq, where);
752}
753EXPORT_SYMBOL(__elv_add_request);
754
755void elv_add_request(struct request_queue *q, struct request *rq, int where,
756		     int plug)
757{
758	unsigned long flags;
759
760	spin_lock_irqsave(q->queue_lock, flags);
761	__elv_add_request(q, rq, where, plug);
762	spin_unlock_irqrestore(q->queue_lock, flags);
763}
764EXPORT_SYMBOL(elv_add_request);
765
766int elv_queue_empty(struct request_queue *q)
767{
768	struct elevator_queue *e = q->elevator;
769
770	if (!list_empty(&q->queue_head))
771		return 0;
772
773	if (e->ops->elevator_queue_empty_fn)
774		return e->ops->elevator_queue_empty_fn(q);
775
776	return 1;
777}
778EXPORT_SYMBOL(elv_queue_empty);
779
780struct request *elv_latter_request(struct request_queue *q, struct request *rq)
781{
782	struct elevator_queue *e = q->elevator;
783
784	if (e->ops->elevator_latter_req_fn)
785		return e->ops->elevator_latter_req_fn(q, rq);
786	return NULL;
787}
788
789struct request *elv_former_request(struct request_queue *q, struct request *rq)
790{
791	struct elevator_queue *e = q->elevator;
792
793	if (e->ops->elevator_former_req_fn)
794		return e->ops->elevator_former_req_fn(q, rq);
795	return NULL;
796}
797
798int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
799{
800	struct elevator_queue *e = q->elevator;
801
802	if (e->ops->elevator_set_req_fn)
803		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
804
805	rq->elevator_private = NULL;
806	return 0;
807}
808
809void elv_put_request(struct request_queue *q, struct request *rq)
810{
811	struct elevator_queue *e = q->elevator;
812
813	if (e->ops->elevator_put_req_fn)
814		e->ops->elevator_put_req_fn(rq);
815}
816
817int elv_may_queue(struct request_queue *q, int rw)
818{
819	struct elevator_queue *e = q->elevator;
820
821	if (e->ops->elevator_may_queue_fn)
822		return e->ops->elevator_may_queue_fn(q, rw);
823
824	return ELV_MQUEUE_MAY;
825}
826
827void elv_abort_queue(struct request_queue *q)
828{
829	struct request *rq;
830
831	while (!list_empty(&q->queue_head)) {
832		rq = list_entry_rq(q->queue_head.next);
833		rq->cmd_flags |= REQ_QUIET;
834		trace_block_rq_abort(q, rq);
835		/*
836		 * Mark this request as started so we don't trigger
837		 * any debug logic in the end I/O path.
838		 */
839		blk_start_request(rq);
840		__blk_end_request_all(rq, -EIO);
841	}
842}
843EXPORT_SYMBOL(elv_abort_queue);
844
845void elv_completed_request(struct request_queue *q, struct request *rq)
846{
847	struct elevator_queue *e = q->elevator;
848
849	/*
850	 * request is released from the driver, io must be done
851	 */
852	if (blk_account_rq(rq)) {
853		q->in_flight[rq_is_sync(rq)]--;
854		if ((rq->cmd_flags & REQ_SORTED) &&
855		    e->ops->elevator_completed_req_fn)
856			e->ops->elevator_completed_req_fn(q, rq);
857	}
858
859	/*
860	 * Check if the queue is waiting for fs requests to be
861	 * drained for flush sequence.
862	 */
863	if (unlikely(q->ordseq)) {
864		struct request *next = NULL;
865
866		if (!list_empty(&q->queue_head))
867			next = list_entry_rq(q->queue_head.next);
868
869		if (!queue_in_flight(q) &&
870		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
871		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
872			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
873			__blk_run_queue(q);
874		}
875	}
876}
877
878#define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
879
880static ssize_t
881elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
882{
883	struct elv_fs_entry *entry = to_elv(attr);
884	struct elevator_queue *e;
885	ssize_t error;
886
887	if (!entry->show)
888		return -EIO;
889
890	e = container_of(kobj, struct elevator_queue, kobj);
891	mutex_lock(&e->sysfs_lock);
892	error = e->ops ? entry->show(e, page) : -ENOENT;
893	mutex_unlock(&e->sysfs_lock);
894	return error;
895}
896
897static ssize_t
898elv_attr_store(struct kobject *kobj, struct attribute *attr,
899	       const char *page, size_t length)
900{
901	struct elv_fs_entry *entry = to_elv(attr);
902	struct elevator_queue *e;
903	ssize_t error;
904
905	if (!entry->store)
906		return -EIO;
907
908	e = container_of(kobj, struct elevator_queue, kobj);
909	mutex_lock(&e->sysfs_lock);
910	error = e->ops ? entry->store(e, page, length) : -ENOENT;
911	mutex_unlock(&e->sysfs_lock);
912	return error;
913}
914
915static const struct sysfs_ops elv_sysfs_ops = {
916	.show	= elv_attr_show,
917	.store	= elv_attr_store,
918};
919
920static struct kobj_type elv_ktype = {
921	.sysfs_ops	= &elv_sysfs_ops,
922	.release	= elevator_release,
923};
924
925int elv_register_queue(struct request_queue *q)
926{
927	struct elevator_queue *e = q->elevator;
928	int error;
929
930	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
931	if (!error) {
932		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
933		if (attr) {
934			while (attr->attr.name) {
935				if (sysfs_create_file(&e->kobj, &attr->attr))
936					break;
937				attr++;
938			}
939		}
940		kobject_uevent(&e->kobj, KOBJ_ADD);
941		e->registered = 1;
942	}
943	return error;
944}
945EXPORT_SYMBOL(elv_register_queue);
946
947static void __elv_unregister_queue(struct elevator_queue *e)
948{
949	kobject_uevent(&e->kobj, KOBJ_REMOVE);
950	kobject_del(&e->kobj);
951	e->registered = 0;
952}
953
954void elv_unregister_queue(struct request_queue *q)
955{
956	if (q)
957		__elv_unregister_queue(q->elevator);
958}
959EXPORT_SYMBOL(elv_unregister_queue);
960
961void elv_register(struct elevator_type *e)
962{
963	char *def = "";
964
965	spin_lock(&elv_list_lock);
966	BUG_ON(elevator_find(e->elevator_name));
967	list_add_tail(&e->list, &elv_list);
968	spin_unlock(&elv_list_lock);
969
970	if (!strcmp(e->elevator_name, chosen_elevator) ||
971			(!*chosen_elevator &&
972			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
973				def = " (default)";
974
975	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
976								def);
977}
978EXPORT_SYMBOL_GPL(elv_register);
979
980void elv_unregister(struct elevator_type *e)
981{
982	struct task_struct *g, *p;
983
984	/*
985	 * Iterate every thread in the process to remove the io contexts.
986	 */
987	if (e->ops.trim) {
988		read_lock(&tasklist_lock);
989		do_each_thread(g, p) {
990			task_lock(p);
991			if (p->io_context)
992				e->ops.trim(p->io_context);
993			task_unlock(p);
994		} while_each_thread(g, p);
995		read_unlock(&tasklist_lock);
996	}
997
998	spin_lock(&elv_list_lock);
999	list_del_init(&e->list);
1000	spin_unlock(&elv_list_lock);
1001}
1002EXPORT_SYMBOL_GPL(elv_unregister);
1003
1004/*
1005 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1006 * we don't free the old io scheduler, before we have allocated what we
1007 * need for the new one. this way we have a chance of going back to the old
1008 * one, if the new one fails init for some reason.
1009 */
1010static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1011{
1012	struct elevator_queue *old_elevator, *e;
1013	void *data;
1014	int err;
1015
1016	/*
1017	 * Allocate new elevator
1018	 */
1019	e = elevator_alloc(q, new_e);
1020	if (!e)
1021		return -ENOMEM;
1022
1023	data = elevator_init_queue(q, e);
1024	if (!data) {
1025		kobject_put(&e->kobj);
1026		return -ENOMEM;
1027	}
1028
1029	/*
1030	 * Turn on BYPASS and drain all requests w/ elevator private data
1031	 */
1032	spin_lock_irq(q->queue_lock);
1033	elv_quiesce_start(q);
1034
1035	/*
1036	 * Remember old elevator.
1037	 */
1038	old_elevator = q->elevator;
1039
1040	/*
1041	 * attach and start new elevator
1042	 */
1043	elevator_attach(q, e, data);
1044
1045	spin_unlock_irq(q->queue_lock);
1046
1047	if (old_elevator->registered) {
1048		__elv_unregister_queue(old_elevator);
1049
1050		err = elv_register_queue(q);
1051		if (err)
1052			goto fail_register;
1053	}
1054
1055	/*
1056	 * finally exit old elevator and turn off BYPASS.
1057	 */
1058	elevator_exit(old_elevator);
1059	spin_lock_irq(q->queue_lock);
1060	elv_quiesce_end(q);
1061	spin_unlock_irq(q->queue_lock);
1062
1063	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1064
1065	return 0;
1066
1067fail_register:
1068	/*
1069	 * switch failed, exit the new io scheduler and reattach the old
1070	 * one again (along with re-adding the sysfs dir)
1071	 */
1072	elevator_exit(e);
1073	q->elevator = old_elevator;
1074	elv_register_queue(q);
1075
1076	spin_lock_irq(q->queue_lock);
1077	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1078	spin_unlock_irq(q->queue_lock);
1079
1080	return err;
1081}
1082
1083/*
1084 * Switch this queue to the given IO scheduler.
1085 */
1086int elevator_change(struct request_queue *q, const char *name)
1087{
1088	char elevator_name[ELV_NAME_MAX];
1089	struct elevator_type *e;
1090
1091	if (!q->elevator)
1092		return -ENXIO;
1093
1094	strlcpy(elevator_name, name, sizeof(elevator_name));
1095	e = elevator_get(strstrip(elevator_name));
1096	if (!e) {
1097		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1098		return -EINVAL;
1099	}
1100
1101	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1102		elevator_put(e);
1103		return 0;
1104	}
1105
1106	return elevator_switch(q, e);
1107}
1108EXPORT_SYMBOL(elevator_change);
1109
1110ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1111			  size_t count)
1112{
1113	int ret;
1114
1115	if (!q->elevator)
1116		return count;
1117
1118	ret = elevator_change(q, name);
1119	if (!ret)
1120		return count;
1121
1122	printk(KERN_ERR "elevator: switch to %s failed\n", name);
1123	return ret;
1124}
1125
1126ssize_t elv_iosched_show(struct request_queue *q, char *name)
1127{
1128	struct elevator_queue *e = q->elevator;
1129	struct elevator_type *elv;
1130	struct elevator_type *__e;
1131	int len = 0;
1132
1133	if (!q->elevator || !blk_queue_stackable(q))
1134		return sprintf(name, "none\n");
1135
1136	elv = e->elevator_type;
1137
1138	spin_lock(&elv_list_lock);
1139	list_for_each_entry(__e, &elv_list, list) {
1140		if (!strcmp(elv->elevator_name, __e->elevator_name))
1141			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1142		else
1143			len += sprintf(name+len, "%s ", __e->elevator_name);
1144	}
1145	spin_unlock(&elv_list_lock);
1146
1147	len += sprintf(len+name, "\n");
1148	return len;
1149}
1150
1151struct request *elv_rb_former_request(struct request_queue *q,
1152				      struct request *rq)
1153{
1154	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1155
1156	if (rbprev)
1157		return rb_entry_rq(rbprev);
1158
1159	return NULL;
1160}
1161EXPORT_SYMBOL(elv_rb_former_request);
1162
1163struct request *elv_rb_latter_request(struct request_queue *q,
1164				      struct request *rq)
1165{
1166	struct rb_node *rbnext = rb_next(&rq->rb_node);
1167
1168	if (rbnext)
1169		return rb_entry_rq(rbnext);
1170
1171	return NULL;
1172}
1173EXPORT_SYMBOL(elv_rb_latter_request);
1174