• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/x86/mm/
1#include <linux/mm.h>
2#include <linux/gfp.h>
3#include <asm/pgalloc.h>
4#include <asm/pgtable.h>
5#include <asm/tlb.h>
6#include <asm/fixmap.h>
7
8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10#ifdef CONFIG_HIGHPTE
11#define PGALLOC_USER_GFP __GFP_HIGHMEM
12#else
13#define PGALLOC_USER_GFP 0
14#endif
15
16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19{
20	return (pte_t *)__get_free_page(PGALLOC_GFP);
21}
22
23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24{
25	struct page *pte;
26
27	pte = alloc_pages(__userpte_alloc_gfp, 0);
28	if (pte)
29		pgtable_page_ctor(pte);
30	return pte;
31}
32
33static int __init setup_userpte(char *arg)
34{
35	if (!arg)
36		return -EINVAL;
37
38	/*
39	 * "userpte=nohigh" disables allocation of user pagetables in
40	 * high memory.
41	 */
42	if (strcmp(arg, "nohigh") == 0)
43		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44	else
45		return -EINVAL;
46	return 0;
47}
48early_param("userpte", setup_userpte);
49
50void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51{
52	pgtable_page_dtor(pte);
53	paravirt_release_pte(page_to_pfn(pte));
54	tlb_remove_page(tlb, pte);
55}
56
57#if PAGETABLE_LEVELS > 2
58void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59{
60	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61	tlb_remove_page(tlb, virt_to_page(pmd));
62}
63
64#if PAGETABLE_LEVELS > 3
65void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66{
67	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68	tlb_remove_page(tlb, virt_to_page(pud));
69}
70#endif	/* PAGETABLE_LEVELS > 3 */
71#endif	/* PAGETABLE_LEVELS > 2 */
72
73static inline void pgd_list_add(pgd_t *pgd)
74{
75	struct page *page = virt_to_page(pgd);
76
77	list_add(&page->lru, &pgd_list);
78}
79
80static inline void pgd_list_del(pgd_t *pgd)
81{
82	struct page *page = virt_to_page(pgd);
83
84	list_del(&page->lru);
85}
86
87#define UNSHARED_PTRS_PER_PGD				\
88	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89
90static void pgd_ctor(pgd_t *pgd)
91{
92	/* If the pgd points to a shared pagetable level (either the
93	   ptes in non-PAE, or shared PMD in PAE), then just copy the
94	   references from swapper_pg_dir. */
95	if (PAGETABLE_LEVELS == 2 ||
96	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
97	    PAGETABLE_LEVELS == 4) {
98		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
99				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
100				KERNEL_PGD_PTRS);
101		paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
102					 __pa(swapper_pg_dir) >> PAGE_SHIFT,
103					 KERNEL_PGD_BOUNDARY,
104					 KERNEL_PGD_PTRS);
105	}
106
107	/* list required to sync kernel mapping updates */
108	if (!SHARED_KERNEL_PMD)
109		pgd_list_add(pgd);
110}
111
112static void pgd_dtor(pgd_t *pgd)
113{
114	unsigned long flags; /* can be called from interrupt context */
115
116	if (SHARED_KERNEL_PMD)
117		return;
118
119	spin_lock_irqsave(&pgd_lock, flags);
120	pgd_list_del(pgd);
121	spin_unlock_irqrestore(&pgd_lock, flags);
122}
123
124/*
125 * List of all pgd's needed for non-PAE so it can invalidate entries
126 * in both cached and uncached pgd's; not needed for PAE since the
127 * kernel pmd is shared. If PAE were not to share the pmd a similar
128 * tactic would be needed. This is essentially codepath-based locking
129 * against pageattr.c; it is the unique case in which a valid change
130 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
131 * vmalloc faults work because attached pagetables are never freed.
132 * -- wli
133 */
134
135#ifdef CONFIG_X86_PAE
136/*
137 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
138 * updating the top-level pagetable entries to guarantee the
139 * processor notices the update.  Since this is expensive, and
140 * all 4 top-level entries are used almost immediately in a
141 * new process's life, we just pre-populate them here.
142 *
143 * Also, if we're in a paravirt environment where the kernel pmd is
144 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
145 * and initialize the kernel pmds here.
146 */
147#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
148
149void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
150{
151	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
152
153	/* Note: almost everything apart from _PAGE_PRESENT is
154	   reserved at the pmd (PDPT) level. */
155	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
156
157	/*
158	 * According to Intel App note "TLBs, Paging-Structure Caches,
159	 * and Their Invalidation", April 2007, document 317080-001,
160	 * section 8.1: in PAE mode we explicitly have to flush the
161	 * TLB via cr3 if the top-level pgd is changed...
162	 */
163	if (mm == current->active_mm)
164		write_cr3(read_cr3());
165}
166#else  /* !CONFIG_X86_PAE */
167
168/* No need to prepopulate any pagetable entries in non-PAE modes. */
169#define PREALLOCATED_PMDS	0
170
171#endif	/* CONFIG_X86_PAE */
172
173static void free_pmds(pmd_t *pmds[])
174{
175	int i;
176
177	for(i = 0; i < PREALLOCATED_PMDS; i++)
178		if (pmds[i])
179			free_page((unsigned long)pmds[i]);
180}
181
182static int preallocate_pmds(pmd_t *pmds[])
183{
184	int i;
185	bool failed = false;
186
187	for(i = 0; i < PREALLOCATED_PMDS; i++) {
188		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
189		if (pmd == NULL)
190			failed = true;
191		pmds[i] = pmd;
192	}
193
194	if (failed) {
195		free_pmds(pmds);
196		return -ENOMEM;
197	}
198
199	return 0;
200}
201
202/*
203 * Mop up any pmd pages which may still be attached to the pgd.
204 * Normally they will be freed by munmap/exit_mmap, but any pmd we
205 * preallocate which never got a corresponding vma will need to be
206 * freed manually.
207 */
208static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
209{
210	int i;
211
212	for(i = 0; i < PREALLOCATED_PMDS; i++) {
213		pgd_t pgd = pgdp[i];
214
215		if (pgd_val(pgd) != 0) {
216			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
217
218			pgdp[i] = native_make_pgd(0);
219
220			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
221			pmd_free(mm, pmd);
222		}
223	}
224}
225
226static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
227{
228	pud_t *pud;
229	unsigned long addr;
230	int i;
231
232	if (PREALLOCATED_PMDS == 0)
233		return;
234
235	pud = pud_offset(pgd, 0);
236
237 	for (addr = i = 0; i < PREALLOCATED_PMDS;
238	     i++, pud++, addr += PUD_SIZE) {
239		pmd_t *pmd = pmds[i];
240
241		if (i >= KERNEL_PGD_BOUNDARY)
242			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
243			       sizeof(pmd_t) * PTRS_PER_PMD);
244
245		pud_populate(mm, pud, pmd);
246	}
247}
248
249pgd_t *pgd_alloc(struct mm_struct *mm)
250{
251	pgd_t *pgd;
252	pmd_t *pmds[PREALLOCATED_PMDS];
253	unsigned long flags;
254
255	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
256
257	if (pgd == NULL)
258		goto out;
259
260	mm->pgd = pgd;
261
262	if (preallocate_pmds(pmds) != 0)
263		goto out_free_pgd;
264
265	if (paravirt_pgd_alloc(mm) != 0)
266		goto out_free_pmds;
267
268	/*
269	 * Make sure that pre-populating the pmds is atomic with
270	 * respect to anything walking the pgd_list, so that they
271	 * never see a partially populated pgd.
272	 */
273	spin_lock_irqsave(&pgd_lock, flags);
274
275	pgd_ctor(pgd);
276	pgd_prepopulate_pmd(mm, pgd, pmds);
277
278	spin_unlock_irqrestore(&pgd_lock, flags);
279
280	return pgd;
281
282out_free_pmds:
283	free_pmds(pmds);
284out_free_pgd:
285	free_page((unsigned long)pgd);
286out:
287	return NULL;
288}
289
290void pgd_free(struct mm_struct *mm, pgd_t *pgd)
291{
292	pgd_mop_up_pmds(mm, pgd);
293	pgd_dtor(pgd);
294	paravirt_pgd_free(mm, pgd);
295	free_page((unsigned long)pgd);
296}
297
298int ptep_set_access_flags(struct vm_area_struct *vma,
299			  unsigned long address, pte_t *ptep,
300			  pte_t entry, int dirty)
301{
302	int changed = !pte_same(*ptep, entry);
303
304	if (changed && dirty) {
305		*ptep = entry;
306		pte_update_defer(vma->vm_mm, address, ptep);
307		flush_tlb_page(vma, address);
308	}
309
310	return changed;
311}
312
313int ptep_test_and_clear_young(struct vm_area_struct *vma,
314			      unsigned long addr, pte_t *ptep)
315{
316	int ret = 0;
317
318	if (pte_young(*ptep))
319		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
320					 (unsigned long *) &ptep->pte);
321
322	if (ret)
323		pte_update(vma->vm_mm, addr, ptep);
324
325	return ret;
326}
327
328int ptep_clear_flush_young(struct vm_area_struct *vma,
329			   unsigned long address, pte_t *ptep)
330{
331	int young;
332
333	young = ptep_test_and_clear_young(vma, address, ptep);
334	if (young)
335		flush_tlb_page(vma, address);
336
337	return young;
338}
339
340/**
341 * reserve_top_address - reserves a hole in the top of kernel address space
342 * @reserve - size of hole to reserve
343 *
344 * Can be used to relocate the fixmap area and poke a hole in the top
345 * of kernel address space to make room for a hypervisor.
346 */
347void __init reserve_top_address(unsigned long reserve)
348{
349#ifdef CONFIG_X86_32
350	BUG_ON(fixmaps_set > 0);
351	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
352	       (int)-reserve);
353	__FIXADDR_TOP = -reserve - PAGE_SIZE;
354#endif
355}
356
357int fixmaps_set;
358
359void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
360{
361	unsigned long address = __fix_to_virt(idx);
362
363	if (idx >= __end_of_fixed_addresses) {
364		BUG();
365		return;
366	}
367	set_pte_vaddr(address, pte);
368	fixmaps_set++;
369}
370
371void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
372		       pgprot_t flags)
373{
374	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
375}
376