• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/x86/mm/
1/*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5#include <linux/highmem.h>
6#include <linux/bootmem.h>
7#include <linux/module.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/interrupt.h>
11#include <linux/seq_file.h>
12#include <linux/debugfs.h>
13#include <linux/pfn.h>
14#include <linux/percpu.h>
15#include <linux/gfp.h>
16
17#include <asm/e820.h>
18#include <asm/processor.h>
19#include <asm/tlbflush.h>
20#include <asm/sections.h>
21#include <asm/setup.h>
22#include <asm/uaccess.h>
23#include <asm/pgalloc.h>
24#include <asm/proto.h>
25#include <asm/pat.h>
26
27/*
28 * The current flushing context - we pass it instead of 5 arguments:
29 */
30struct cpa_data {
31	unsigned long	*vaddr;
32	pgprot_t	mask_set;
33	pgprot_t	mask_clr;
34	int		numpages;
35	int		flags;
36	unsigned long	pfn;
37	unsigned	force_split : 1;
38	int		curpage;
39	struct page	**pages;
40};
41
42/*
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
47 */
48static DEFINE_SPINLOCK(cpa_lock);
49
50#define CPA_FLUSHTLB 1
51#define CPA_ARRAY 2
52#define CPA_PAGES_ARRAY 4
53
54#ifdef CONFIG_PROC_FS
55static unsigned long direct_pages_count[PG_LEVEL_NUM];
56
57void update_page_count(int level, unsigned long pages)
58{
59	unsigned long flags;
60
61	/* Protect against CPA */
62	spin_lock_irqsave(&pgd_lock, flags);
63	direct_pages_count[level] += pages;
64	spin_unlock_irqrestore(&pgd_lock, flags);
65}
66
67static void split_page_count(int level)
68{
69	direct_pages_count[level]--;
70	direct_pages_count[level - 1] += PTRS_PER_PTE;
71}
72
73void arch_report_meminfo(struct seq_file *m)
74{
75	seq_printf(m, "DirectMap4k:    %8lu kB\n",
76			direct_pages_count[PG_LEVEL_4K] << 2);
77#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78	seq_printf(m, "DirectMap2M:    %8lu kB\n",
79			direct_pages_count[PG_LEVEL_2M] << 11);
80#else
81	seq_printf(m, "DirectMap4M:    %8lu kB\n",
82			direct_pages_count[PG_LEVEL_2M] << 12);
83#endif
84#ifdef CONFIG_X86_64
85	if (direct_gbpages)
86		seq_printf(m, "DirectMap1G:    %8lu kB\n",
87			direct_pages_count[PG_LEVEL_1G] << 20);
88#endif
89}
90#else
91static inline void split_page_count(int level) { }
92#endif
93
94#ifdef CONFIG_X86_64
95
96static inline unsigned long highmap_start_pfn(void)
97{
98	return __pa(_text) >> PAGE_SHIFT;
99}
100
101static inline unsigned long highmap_end_pfn(void)
102{
103	return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104}
105
106#endif
107
108#ifdef CONFIG_DEBUG_PAGEALLOC
109# define debug_pagealloc 1
110#else
111# define debug_pagealloc 0
112#endif
113
114static inline int
115within(unsigned long addr, unsigned long start, unsigned long end)
116{
117	return addr >= start && addr < end;
118}
119
120/*
121 * Flushing functions
122 */
123
124/**
125 * clflush_cache_range - flush a cache range with clflush
126 * @addr:	virtual start address
127 * @size:	number of bytes to flush
128 *
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
131 */
132void clflush_cache_range(void *vaddr, unsigned int size)
133{
134	void *vend = vaddr + size - 1;
135
136	mb();
137
138	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139		clflush(vaddr);
140	/*
141	 * Flush any possible final partial cacheline:
142	 */
143	clflush(vend);
144
145	mb();
146}
147EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149static void __cpa_flush_all(void *arg)
150{
151	unsigned long cache = (unsigned long)arg;
152
153	__flush_tlb_all();
154
155	if (cache && boot_cpu_data.x86 >= 4)
156		wbinvd();
157}
158
159static void cpa_flush_all(unsigned long cache)
160{
161	BUG_ON(irqs_disabled());
162
163	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
164}
165
166static void __cpa_flush_range(void *arg)
167{
168	/*
169	 * We could optimize that further and do individual per page
170	 * tlb invalidates for a low number of pages. Caveat: we must
171	 * flush the high aliases on 64bit as well.
172	 */
173	__flush_tlb_all();
174}
175
176static void cpa_flush_range(unsigned long start, int numpages, int cache)
177{
178	unsigned int i, level;
179	unsigned long addr;
180
181	BUG_ON(irqs_disabled());
182	WARN_ON(PAGE_ALIGN(start) != start);
183
184	on_each_cpu(__cpa_flush_range, NULL, 1);
185
186	if (!cache)
187		return;
188
189	/*
190	 * We only need to flush on one CPU,
191	 * clflush is a MESI-coherent instruction that
192	 * will cause all other CPUs to flush the same
193	 * cachelines:
194	 */
195	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
196		pte_t *pte = lookup_address(addr, &level);
197
198		/*
199		 * Only flush present addresses:
200		 */
201		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
202			clflush_cache_range((void *) addr, PAGE_SIZE);
203	}
204}
205
206static void cpa_flush_array(unsigned long *start, int numpages, int cache,
207			    int in_flags, struct page **pages)
208{
209	unsigned int i, level;
210	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
211
212	BUG_ON(irqs_disabled());
213
214	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
215
216	if (!cache || do_wbinvd)
217		return;
218
219	/*
220	 * We only need to flush on one CPU,
221	 * clflush is a MESI-coherent instruction that
222	 * will cause all other CPUs to flush the same
223	 * cachelines:
224	 */
225	for (i = 0; i < numpages; i++) {
226		unsigned long addr;
227		pte_t *pte;
228
229		if (in_flags & CPA_PAGES_ARRAY)
230			addr = (unsigned long)page_address(pages[i]);
231		else
232			addr = start[i];
233
234		pte = lookup_address(addr, &level);
235
236		/*
237		 * Only flush present addresses:
238		 */
239		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
240			clflush_cache_range((void *)addr, PAGE_SIZE);
241	}
242}
243
244/*
245 * Certain areas of memory on x86 require very specific protection flags,
246 * for example the BIOS area or kernel text. Callers don't always get this
247 * right (again, ioremap() on BIOS memory is not uncommon) so this function
248 * checks and fixes these known static required protection bits.
249 */
250static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
251				   unsigned long pfn)
252{
253	pgprot_t forbidden = __pgprot(0);
254
255	/*
256	 * The BIOS area between 640k and 1Mb needs to be executable for
257	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
258	 */
259	if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
260		pgprot_val(forbidden) |= _PAGE_NX;
261
262	/*
263	 * The kernel text needs to be executable for obvious reasons
264	 * Does not cover __inittext since that is gone later on. On
265	 * 64bit we do not enforce !NX on the low mapping
266	 */
267	if (within(address, (unsigned long)_text, (unsigned long)_etext))
268		pgprot_val(forbidden) |= _PAGE_NX;
269
270	/*
271	 * The .rodata section needs to be read-only. Using the pfn
272	 * catches all aliases.
273	 */
274	if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
275		   __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
276		pgprot_val(forbidden) |= _PAGE_RW;
277
278#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
279	/*
280	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
281	 * kernel text mappings for the large page aligned text, rodata sections
282	 * will be always read-only. For the kernel identity mappings covering
283	 * the holes caused by this alignment can be anything that user asks.
284	 *
285	 * This will preserve the large page mappings for kernel text/data
286	 * at no extra cost.
287	 */
288	if (kernel_set_to_readonly &&
289	    within(address, (unsigned long)_text,
290		   (unsigned long)__end_rodata_hpage_align)) {
291		unsigned int level;
292
293		/*
294		 * Don't enforce the !RW mapping for the kernel text mapping,
295		 * if the current mapping is already using small page mapping.
296		 * No need to work hard to preserve large page mappings in this
297		 * case.
298		 *
299		 * This also fixes the Linux Xen paravirt guest boot failure
300		 * (because of unexpected read-only mappings for kernel identity
301		 * mappings). In this paravirt guest case, the kernel text
302		 * mapping and the kernel identity mapping share the same
303		 * page-table pages. Thus we can't really use different
304		 * protections for the kernel text and identity mappings. Also,
305		 * these shared mappings are made of small page mappings.
306		 * Thus this don't enforce !RW mapping for small page kernel
307		 * text mapping logic will help Linux Xen parvirt guest boot
308		 * aswell.
309		 */
310		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
311			pgprot_val(forbidden) |= _PAGE_RW;
312	}
313#endif
314
315	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
316
317	return prot;
318}
319
320/*
321 * Lookup the page table entry for a virtual address. Return a pointer
322 * to the entry and the level of the mapping.
323 *
324 * Note: We return pud and pmd either when the entry is marked large
325 * or when the present bit is not set. Otherwise we would return a
326 * pointer to a nonexisting mapping.
327 */
328pte_t *lookup_address(unsigned long address, unsigned int *level)
329{
330	pgd_t *pgd = pgd_offset_k(address);
331	pud_t *pud;
332	pmd_t *pmd;
333
334	*level = PG_LEVEL_NONE;
335
336	if (pgd_none(*pgd))
337		return NULL;
338
339	pud = pud_offset(pgd, address);
340	if (pud_none(*pud))
341		return NULL;
342
343	*level = PG_LEVEL_1G;
344	if (pud_large(*pud) || !pud_present(*pud))
345		return (pte_t *)pud;
346
347	pmd = pmd_offset(pud, address);
348	if (pmd_none(*pmd))
349		return NULL;
350
351	*level = PG_LEVEL_2M;
352	if (pmd_large(*pmd) || !pmd_present(*pmd))
353		return (pte_t *)pmd;
354
355	*level = PG_LEVEL_4K;
356
357	return pte_offset_kernel(pmd, address);
358}
359EXPORT_SYMBOL_GPL(lookup_address);
360
361/*
362 * Set the new pmd in all the pgds we know about:
363 */
364static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
365{
366	/* change init_mm */
367	set_pte_atomic(kpte, pte);
368#ifdef CONFIG_X86_32
369	if (!SHARED_KERNEL_PMD) {
370		struct page *page;
371
372		list_for_each_entry(page, &pgd_list, lru) {
373			pgd_t *pgd;
374			pud_t *pud;
375			pmd_t *pmd;
376
377			pgd = (pgd_t *)page_address(page) + pgd_index(address);
378			pud = pud_offset(pgd, address);
379			pmd = pmd_offset(pud, address);
380			set_pte_atomic((pte_t *)pmd, pte);
381		}
382	}
383#endif
384}
385
386static int
387try_preserve_large_page(pte_t *kpte, unsigned long address,
388			struct cpa_data *cpa)
389{
390	unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
391	pte_t new_pte, old_pte, *tmp;
392	pgprot_t old_prot, new_prot;
393	int i, do_split = 1;
394	unsigned int level;
395
396	if (cpa->force_split)
397		return 1;
398
399	spin_lock_irqsave(&pgd_lock, flags);
400	/*
401	 * Check for races, another CPU might have split this page
402	 * up already:
403	 */
404	tmp = lookup_address(address, &level);
405	if (tmp != kpte)
406		goto out_unlock;
407
408	switch (level) {
409	case PG_LEVEL_2M:
410		psize = PMD_PAGE_SIZE;
411		pmask = PMD_PAGE_MASK;
412		break;
413#ifdef CONFIG_X86_64
414	case PG_LEVEL_1G:
415		psize = PUD_PAGE_SIZE;
416		pmask = PUD_PAGE_MASK;
417		break;
418#endif
419	default:
420		do_split = -EINVAL;
421		goto out_unlock;
422	}
423
424	/*
425	 * Calculate the number of pages, which fit into this large
426	 * page starting at address:
427	 */
428	nextpage_addr = (address + psize) & pmask;
429	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
430	if (numpages < cpa->numpages)
431		cpa->numpages = numpages;
432
433	/*
434	 * We are safe now. Check whether the new pgprot is the same:
435	 */
436	old_pte = *kpte;
437	old_prot = new_prot = pte_pgprot(old_pte);
438
439	pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
440	pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
441
442	/*
443	 * old_pte points to the large page base address. So we need
444	 * to add the offset of the virtual address:
445	 */
446	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
447	cpa->pfn = pfn;
448
449	new_prot = static_protections(new_prot, address, pfn);
450
451	/*
452	 * We need to check the full range, whether
453	 * static_protection() requires a different pgprot for one of
454	 * the pages in the range we try to preserve:
455	 */
456	addr = address + PAGE_SIZE;
457	pfn++;
458	for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
459		pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
460
461		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
462			goto out_unlock;
463	}
464
465	/*
466	 * If there are no changes, return. maxpages has been updated
467	 * above:
468	 */
469	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
470		do_split = 0;
471		goto out_unlock;
472	}
473
474	/*
475	 * We need to change the attributes. Check, whether we can
476	 * change the large page in one go. We request a split, when
477	 * the address is not aligned and the number of pages is
478	 * smaller than the number of pages in the large page. Note
479	 * that we limited the number of possible pages already to
480	 * the number of pages in the large page.
481	 */
482	if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
483		/*
484		 * The address is aligned and the number of pages
485		 * covers the full page.
486		 */
487		new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
488		__set_pmd_pte(kpte, address, new_pte);
489		cpa->flags |= CPA_FLUSHTLB;
490		do_split = 0;
491	}
492
493out_unlock:
494	spin_unlock_irqrestore(&pgd_lock, flags);
495
496	return do_split;
497}
498
499static int split_large_page(pte_t *kpte, unsigned long address)
500{
501	unsigned long flags, pfn, pfninc = 1;
502	unsigned int i, level;
503	pte_t *pbase, *tmp;
504	pgprot_t ref_prot;
505	struct page *base;
506
507	if (!debug_pagealloc)
508		spin_unlock(&cpa_lock);
509	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
510	if (!debug_pagealloc)
511		spin_lock(&cpa_lock);
512	if (!base)
513		return -ENOMEM;
514
515	spin_lock_irqsave(&pgd_lock, flags);
516	/*
517	 * Check for races, another CPU might have split this page
518	 * up for us already:
519	 */
520	tmp = lookup_address(address, &level);
521	if (tmp != kpte)
522		goto out_unlock;
523
524	pbase = (pte_t *)page_address(base);
525	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
526	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
527	/*
528	 * If we ever want to utilize the PAT bit, we need to
529	 * update this function to make sure it's converted from
530	 * bit 12 to bit 7 when we cross from the 2MB level to
531	 * the 4K level:
532	 */
533	WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
534
535#ifdef CONFIG_X86_64
536	if (level == PG_LEVEL_1G) {
537		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
538		pgprot_val(ref_prot) |= _PAGE_PSE;
539	}
540#endif
541
542	/*
543	 * Get the target pfn from the original entry:
544	 */
545	pfn = pte_pfn(*kpte);
546	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
547		set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
548
549	if (address >= (unsigned long)__va(0) &&
550		address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
551		split_page_count(level);
552
553#ifdef CONFIG_X86_64
554	if (address >= (unsigned long)__va(1UL<<32) &&
555		address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
556		split_page_count(level);
557#endif
558
559	/*
560	 * Install the new, split up pagetable.
561	 *
562	 * We use the standard kernel pagetable protections for the new
563	 * pagetable protections, the actual ptes set above control the
564	 * primary protection behavior:
565	 */
566	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
567
568	__flush_tlb_all();
569
570	base = NULL;
571
572out_unlock:
573	/*
574	 * If we dropped out via the lookup_address check under
575	 * pgd_lock then stick the page back into the pool:
576	 */
577	if (base)
578		__free_page(base);
579	spin_unlock_irqrestore(&pgd_lock, flags);
580
581	return 0;
582}
583
584static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
585			       int primary)
586{
587	/*
588	 * Ignore all non primary paths.
589	 */
590	if (!primary)
591		return 0;
592
593	/*
594	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
595	 * to have holes.
596	 * Also set numpages to '1' indicating that we processed cpa req for
597	 * one virtual address page and its pfn. TBD: numpages can be set based
598	 * on the initial value and the level returned by lookup_address().
599	 */
600	if (within(vaddr, PAGE_OFFSET,
601		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
602		cpa->numpages = 1;
603		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
604		return 0;
605	} else {
606		WARN(1, KERN_WARNING "CPA: called for zero pte. "
607			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
608			*cpa->vaddr);
609
610		return -EFAULT;
611	}
612}
613
614static int __change_page_attr(struct cpa_data *cpa, int primary)
615{
616	unsigned long address;
617	int do_split, err;
618	unsigned int level;
619	pte_t *kpte, old_pte;
620
621	if (cpa->flags & CPA_PAGES_ARRAY) {
622		struct page *page = cpa->pages[cpa->curpage];
623		if (unlikely(PageHighMem(page)))
624			return 0;
625		address = (unsigned long)page_address(page);
626	} else if (cpa->flags & CPA_ARRAY)
627		address = cpa->vaddr[cpa->curpage];
628	else
629		address = *cpa->vaddr;
630repeat:
631	kpte = lookup_address(address, &level);
632	if (!kpte)
633		return __cpa_process_fault(cpa, address, primary);
634
635	old_pte = *kpte;
636	if (!pte_val(old_pte))
637		return __cpa_process_fault(cpa, address, primary);
638
639	if (level == PG_LEVEL_4K) {
640		pte_t new_pte;
641		pgprot_t new_prot = pte_pgprot(old_pte);
642		unsigned long pfn = pte_pfn(old_pte);
643
644		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
645		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
646
647		new_prot = static_protections(new_prot, address, pfn);
648
649		/*
650		 * We need to keep the pfn from the existing PTE,
651		 * after all we're only going to change it's attributes
652		 * not the memory it points to
653		 */
654		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
655		cpa->pfn = pfn;
656		/*
657		 * Do we really change anything ?
658		 */
659		if (pte_val(old_pte) != pte_val(new_pte)) {
660			set_pte_atomic(kpte, new_pte);
661			cpa->flags |= CPA_FLUSHTLB;
662		}
663		cpa->numpages = 1;
664		return 0;
665	}
666
667	/*
668	 * Check, whether we can keep the large page intact
669	 * and just change the pte:
670	 */
671	do_split = try_preserve_large_page(kpte, address, cpa);
672	/*
673	 * When the range fits into the existing large page,
674	 * return. cp->numpages and cpa->tlbflush have been updated in
675	 * try_large_page:
676	 */
677	if (do_split <= 0)
678		return do_split;
679
680	/*
681	 * We have to split the large page:
682	 */
683	err = split_large_page(kpte, address);
684	if (!err) {
685		/*
686	 	 * Do a global flush tlb after splitting the large page
687	 	 * and before we do the actual change page attribute in the PTE.
688	 	 *
689	 	 * With out this, we violate the TLB application note, that says
690	 	 * "The TLBs may contain both ordinary and large-page
691		 *  translations for a 4-KByte range of linear addresses. This
692		 *  may occur if software modifies the paging structures so that
693		 *  the page size used for the address range changes. If the two
694		 *  translations differ with respect to page frame or attributes
695		 *  (e.g., permissions), processor behavior is undefined and may
696		 *  be implementation-specific."
697	 	 *
698	 	 * We do this global tlb flush inside the cpa_lock, so that we
699		 * don't allow any other cpu, with stale tlb entries change the
700		 * page attribute in parallel, that also falls into the
701		 * just split large page entry.
702	 	 */
703		flush_tlb_all();
704		goto repeat;
705	}
706
707	return err;
708}
709
710static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
711
712static int cpa_process_alias(struct cpa_data *cpa)
713{
714	struct cpa_data alias_cpa;
715	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
716	unsigned long vaddr;
717	int ret;
718
719	if (cpa->pfn >= max_pfn_mapped)
720		return 0;
721
722#ifdef CONFIG_X86_64
723	if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
724		return 0;
725#endif
726	/*
727	 * No need to redo, when the primary call touched the direct
728	 * mapping already:
729	 */
730	if (cpa->flags & CPA_PAGES_ARRAY) {
731		struct page *page = cpa->pages[cpa->curpage];
732		if (unlikely(PageHighMem(page)))
733			return 0;
734		vaddr = (unsigned long)page_address(page);
735	} else if (cpa->flags & CPA_ARRAY)
736		vaddr = cpa->vaddr[cpa->curpage];
737	else
738		vaddr = *cpa->vaddr;
739
740	if (!(within(vaddr, PAGE_OFFSET,
741		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
742
743		alias_cpa = *cpa;
744		alias_cpa.vaddr = &laddr;
745		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
746
747		ret = __change_page_attr_set_clr(&alias_cpa, 0);
748		if (ret)
749			return ret;
750	}
751
752#ifdef CONFIG_X86_64
753	/*
754	 * If the primary call didn't touch the high mapping already
755	 * and the physical address is inside the kernel map, we need
756	 * to touch the high mapped kernel as well:
757	 */
758	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
759	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
760		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
761					       __START_KERNEL_map - phys_base;
762		alias_cpa = *cpa;
763		alias_cpa.vaddr = &temp_cpa_vaddr;
764		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
765
766		/*
767		 * The high mapping range is imprecise, so ignore the
768		 * return value.
769		 */
770		__change_page_attr_set_clr(&alias_cpa, 0);
771	}
772#endif
773
774	return 0;
775}
776
777static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
778{
779	int ret, numpages = cpa->numpages;
780
781	while (numpages) {
782		/*
783		 * Store the remaining nr of pages for the large page
784		 * preservation check.
785		 */
786		cpa->numpages = numpages;
787		/* for array changes, we can't use large page */
788		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
789			cpa->numpages = 1;
790
791		if (!debug_pagealloc)
792			spin_lock(&cpa_lock);
793		ret = __change_page_attr(cpa, checkalias);
794		if (!debug_pagealloc)
795			spin_unlock(&cpa_lock);
796		if (ret)
797			return ret;
798
799		if (checkalias) {
800			ret = cpa_process_alias(cpa);
801			if (ret)
802				return ret;
803		}
804
805		/*
806		 * Adjust the number of pages with the result of the
807		 * CPA operation. Either a large page has been
808		 * preserved or a single page update happened.
809		 */
810		BUG_ON(cpa->numpages > numpages);
811		numpages -= cpa->numpages;
812		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
813			cpa->curpage++;
814		else
815			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
816
817	}
818	return 0;
819}
820
821static inline int cache_attr(pgprot_t attr)
822{
823	return pgprot_val(attr) &
824		(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
825}
826
827static int change_page_attr_set_clr(unsigned long *addr, int numpages,
828				    pgprot_t mask_set, pgprot_t mask_clr,
829				    int force_split, int in_flag,
830				    struct page **pages)
831{
832	struct cpa_data cpa;
833	int ret, cache, checkalias;
834	unsigned long baddr = 0;
835
836	/*
837	 * Check, if we are requested to change a not supported
838	 * feature:
839	 */
840	mask_set = canon_pgprot(mask_set);
841	mask_clr = canon_pgprot(mask_clr);
842	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
843		return 0;
844
845	/* Ensure we are PAGE_SIZE aligned */
846	if (in_flag & CPA_ARRAY) {
847		int i;
848		for (i = 0; i < numpages; i++) {
849			if (addr[i] & ~PAGE_MASK) {
850				addr[i] &= PAGE_MASK;
851				WARN_ON_ONCE(1);
852			}
853		}
854	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
855		/*
856		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
857		 * No need to cehck in that case
858		 */
859		if (*addr & ~PAGE_MASK) {
860			*addr &= PAGE_MASK;
861			/*
862			 * People should not be passing in unaligned addresses:
863			 */
864			WARN_ON_ONCE(1);
865		}
866		/*
867		 * Save address for cache flush. *addr is modified in the call
868		 * to __change_page_attr_set_clr() below.
869		 */
870		baddr = *addr;
871	}
872
873	/* Must avoid aliasing mappings in the highmem code */
874	kmap_flush_unused();
875
876	vm_unmap_aliases();
877
878	cpa.vaddr = addr;
879	cpa.pages = pages;
880	cpa.numpages = numpages;
881	cpa.mask_set = mask_set;
882	cpa.mask_clr = mask_clr;
883	cpa.flags = 0;
884	cpa.curpage = 0;
885	cpa.force_split = force_split;
886
887	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
888		cpa.flags |= in_flag;
889
890	/* No alias checking for _NX bit modifications */
891	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
892
893	ret = __change_page_attr_set_clr(&cpa, checkalias);
894
895	/*
896	 * Check whether we really changed something:
897	 */
898	if (!(cpa.flags & CPA_FLUSHTLB))
899		goto out;
900
901	/*
902	 * No need to flush, when we did not set any of the caching
903	 * attributes:
904	 */
905	cache = cache_attr(mask_set);
906
907	/*
908	 * On success we use clflush, when the CPU supports it to
909	 * avoid the wbindv. If the CPU does not support it and in the
910	 * error case we fall back to cpa_flush_all (which uses
911	 * wbindv):
912	 */
913	if (!ret && cpu_has_clflush) {
914		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
915			cpa_flush_array(addr, numpages, cache,
916					cpa.flags, pages);
917		} else
918			cpa_flush_range(baddr, numpages, cache);
919	} else
920		cpa_flush_all(cache);
921
922out:
923	return ret;
924}
925
926static inline int change_page_attr_set(unsigned long *addr, int numpages,
927				       pgprot_t mask, int array)
928{
929	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
930		(array ? CPA_ARRAY : 0), NULL);
931}
932
933static inline int change_page_attr_clear(unsigned long *addr, int numpages,
934					 pgprot_t mask, int array)
935{
936	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
937		(array ? CPA_ARRAY : 0), NULL);
938}
939
940static inline int cpa_set_pages_array(struct page **pages, int numpages,
941				       pgprot_t mask)
942{
943	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
944		CPA_PAGES_ARRAY, pages);
945}
946
947static inline int cpa_clear_pages_array(struct page **pages, int numpages,
948					 pgprot_t mask)
949{
950	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
951		CPA_PAGES_ARRAY, pages);
952}
953
954int _set_memory_uc(unsigned long addr, int numpages)
955{
956	/*
957	 * for now UC MINUS. see comments in ioremap_nocache()
958	 */
959	return change_page_attr_set(&addr, numpages,
960				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
961}
962
963int set_memory_uc(unsigned long addr, int numpages)
964{
965	int ret;
966
967	/*
968	 * for now UC MINUS. see comments in ioremap_nocache()
969	 */
970	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
971			    _PAGE_CACHE_UC_MINUS, NULL);
972	if (ret)
973		goto out_err;
974
975	ret = _set_memory_uc(addr, numpages);
976	if (ret)
977		goto out_free;
978
979	return 0;
980
981out_free:
982	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
983out_err:
984	return ret;
985}
986EXPORT_SYMBOL(set_memory_uc);
987
988int _set_memory_array(unsigned long *addr, int addrinarray,
989		unsigned long new_type)
990{
991	int i, j;
992	int ret;
993
994	/*
995	 * for now UC MINUS. see comments in ioremap_nocache()
996	 */
997	for (i = 0; i < addrinarray; i++) {
998		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
999					new_type, NULL);
1000		if (ret)
1001			goto out_free;
1002	}
1003
1004	ret = change_page_attr_set(addr, addrinarray,
1005				    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1006
1007	if (!ret && new_type == _PAGE_CACHE_WC)
1008		ret = change_page_attr_set_clr(addr, addrinarray,
1009					       __pgprot(_PAGE_CACHE_WC),
1010					       __pgprot(_PAGE_CACHE_MASK),
1011					       0, CPA_ARRAY, NULL);
1012	if (ret)
1013		goto out_free;
1014
1015	return 0;
1016
1017out_free:
1018	for (j = 0; j < i; j++)
1019		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1020
1021	return ret;
1022}
1023
1024int set_memory_array_uc(unsigned long *addr, int addrinarray)
1025{
1026	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1027}
1028EXPORT_SYMBOL(set_memory_array_uc);
1029
1030int set_memory_array_wc(unsigned long *addr, int addrinarray)
1031{
1032	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1033}
1034EXPORT_SYMBOL(set_memory_array_wc);
1035
1036int _set_memory_wc(unsigned long addr, int numpages)
1037{
1038	int ret;
1039	unsigned long addr_copy = addr;
1040
1041	ret = change_page_attr_set(&addr, numpages,
1042				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1043	if (!ret) {
1044		ret = change_page_attr_set_clr(&addr_copy, numpages,
1045					       __pgprot(_PAGE_CACHE_WC),
1046					       __pgprot(_PAGE_CACHE_MASK),
1047					       0, 0, NULL);
1048	}
1049	return ret;
1050}
1051
1052int set_memory_wc(unsigned long addr, int numpages)
1053{
1054	int ret;
1055
1056	if (!pat_enabled)
1057		return set_memory_uc(addr, numpages);
1058
1059	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1060		_PAGE_CACHE_WC, NULL);
1061	if (ret)
1062		goto out_err;
1063
1064	ret = _set_memory_wc(addr, numpages);
1065	if (ret)
1066		goto out_free;
1067
1068	return 0;
1069
1070out_free:
1071	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1072out_err:
1073	return ret;
1074}
1075EXPORT_SYMBOL(set_memory_wc);
1076
1077int _set_memory_wb(unsigned long addr, int numpages)
1078{
1079	return change_page_attr_clear(&addr, numpages,
1080				      __pgprot(_PAGE_CACHE_MASK), 0);
1081}
1082
1083int set_memory_wb(unsigned long addr, int numpages)
1084{
1085	int ret;
1086
1087	ret = _set_memory_wb(addr, numpages);
1088	if (ret)
1089		return ret;
1090
1091	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1092	return 0;
1093}
1094EXPORT_SYMBOL(set_memory_wb);
1095
1096int set_memory_array_wb(unsigned long *addr, int addrinarray)
1097{
1098	int i;
1099	int ret;
1100
1101	ret = change_page_attr_clear(addr, addrinarray,
1102				      __pgprot(_PAGE_CACHE_MASK), 1);
1103	if (ret)
1104		return ret;
1105
1106	for (i = 0; i < addrinarray; i++)
1107		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1108
1109	return 0;
1110}
1111EXPORT_SYMBOL(set_memory_array_wb);
1112
1113int set_memory_x(unsigned long addr, int numpages)
1114{
1115	if (!(__supported_pte_mask & _PAGE_NX))
1116		return 0;
1117
1118	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1119}
1120EXPORT_SYMBOL(set_memory_x);
1121
1122int set_memory_nx(unsigned long addr, int numpages)
1123{
1124	if (!(__supported_pte_mask & _PAGE_NX))
1125		return 0;
1126
1127	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1128}
1129EXPORT_SYMBOL(set_memory_nx);
1130
1131int set_memory_ro(unsigned long addr, int numpages)
1132{
1133	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1134}
1135EXPORT_SYMBOL_GPL(set_memory_ro);
1136
1137int set_memory_rw(unsigned long addr, int numpages)
1138{
1139	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1140}
1141EXPORT_SYMBOL_GPL(set_memory_rw);
1142
1143int set_memory_np(unsigned long addr, int numpages)
1144{
1145	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1146}
1147
1148int set_memory_4k(unsigned long addr, int numpages)
1149{
1150	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1151					__pgprot(0), 1, 0, NULL);
1152}
1153
1154int set_pages_uc(struct page *page, int numpages)
1155{
1156	unsigned long addr = (unsigned long)page_address(page);
1157
1158	return set_memory_uc(addr, numpages);
1159}
1160EXPORT_SYMBOL(set_pages_uc);
1161
1162static int _set_pages_array(struct page **pages, int addrinarray,
1163		unsigned long new_type)
1164{
1165	unsigned long start;
1166	unsigned long end;
1167	int i;
1168	int free_idx;
1169	int ret;
1170
1171	for (i = 0; i < addrinarray; i++) {
1172		if (PageHighMem(pages[i]))
1173			continue;
1174		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1175		end = start + PAGE_SIZE;
1176		if (reserve_memtype(start, end, new_type, NULL))
1177			goto err_out;
1178	}
1179
1180	ret = cpa_set_pages_array(pages, addrinarray,
1181			__pgprot(_PAGE_CACHE_UC_MINUS));
1182	if (!ret && new_type == _PAGE_CACHE_WC)
1183		ret = change_page_attr_set_clr(NULL, addrinarray,
1184					       __pgprot(_PAGE_CACHE_WC),
1185					       __pgprot(_PAGE_CACHE_MASK),
1186					       0, CPA_PAGES_ARRAY, pages);
1187	if (ret)
1188		goto err_out;
1189	return 0; /* Success */
1190err_out:
1191	free_idx = i;
1192	for (i = 0; i < free_idx; i++) {
1193		if (PageHighMem(pages[i]))
1194			continue;
1195		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1196		end = start + PAGE_SIZE;
1197		free_memtype(start, end);
1198	}
1199	return -EINVAL;
1200}
1201
1202int set_pages_array_uc(struct page **pages, int addrinarray)
1203{
1204	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1205}
1206EXPORT_SYMBOL(set_pages_array_uc);
1207
1208int set_pages_array_wc(struct page **pages, int addrinarray)
1209{
1210	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1211}
1212EXPORT_SYMBOL(set_pages_array_wc);
1213
1214int set_pages_wb(struct page *page, int numpages)
1215{
1216	unsigned long addr = (unsigned long)page_address(page);
1217
1218	return set_memory_wb(addr, numpages);
1219}
1220EXPORT_SYMBOL(set_pages_wb);
1221
1222int set_pages_array_wb(struct page **pages, int addrinarray)
1223{
1224	int retval;
1225	unsigned long start;
1226	unsigned long end;
1227	int i;
1228
1229	retval = cpa_clear_pages_array(pages, addrinarray,
1230			__pgprot(_PAGE_CACHE_MASK));
1231	if (retval)
1232		return retval;
1233
1234	for (i = 0; i < addrinarray; i++) {
1235		if (PageHighMem(pages[i]))
1236			continue;
1237		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1238		end = start + PAGE_SIZE;
1239		free_memtype(start, end);
1240	}
1241
1242	return 0;
1243}
1244EXPORT_SYMBOL(set_pages_array_wb);
1245
1246int set_pages_x(struct page *page, int numpages)
1247{
1248	unsigned long addr = (unsigned long)page_address(page);
1249
1250	return set_memory_x(addr, numpages);
1251}
1252EXPORT_SYMBOL(set_pages_x);
1253
1254int set_pages_nx(struct page *page, int numpages)
1255{
1256	unsigned long addr = (unsigned long)page_address(page);
1257
1258	return set_memory_nx(addr, numpages);
1259}
1260EXPORT_SYMBOL(set_pages_nx);
1261
1262int set_pages_ro(struct page *page, int numpages)
1263{
1264	unsigned long addr = (unsigned long)page_address(page);
1265
1266	return set_memory_ro(addr, numpages);
1267}
1268
1269int set_pages_rw(struct page *page, int numpages)
1270{
1271	unsigned long addr = (unsigned long)page_address(page);
1272
1273	return set_memory_rw(addr, numpages);
1274}
1275
1276#ifdef CONFIG_DEBUG_PAGEALLOC
1277
1278static int __set_pages_p(struct page *page, int numpages)
1279{
1280	unsigned long tempaddr = (unsigned long) page_address(page);
1281	struct cpa_data cpa = { .vaddr = &tempaddr,
1282				.numpages = numpages,
1283				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1284				.mask_clr = __pgprot(0),
1285				.flags = 0};
1286
1287	/*
1288	 * No alias checking needed for setting present flag. otherwise,
1289	 * we may need to break large pages for 64-bit kernel text
1290	 * mappings (this adds to complexity if we want to do this from
1291	 * atomic context especially). Let's keep it simple!
1292	 */
1293	return __change_page_attr_set_clr(&cpa, 0);
1294}
1295
1296static int __set_pages_np(struct page *page, int numpages)
1297{
1298	unsigned long tempaddr = (unsigned long) page_address(page);
1299	struct cpa_data cpa = { .vaddr = &tempaddr,
1300				.numpages = numpages,
1301				.mask_set = __pgprot(0),
1302				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1303				.flags = 0};
1304
1305	/*
1306	 * No alias checking needed for setting not present flag. otherwise,
1307	 * we may need to break large pages for 64-bit kernel text
1308	 * mappings (this adds to complexity if we want to do this from
1309	 * atomic context especially). Let's keep it simple!
1310	 */
1311	return __change_page_attr_set_clr(&cpa, 0);
1312}
1313
1314void kernel_map_pages(struct page *page, int numpages, int enable)
1315{
1316	if (PageHighMem(page))
1317		return;
1318	if (!enable) {
1319		debug_check_no_locks_freed(page_address(page),
1320					   numpages * PAGE_SIZE);
1321	}
1322
1323	/*
1324	 * If page allocator is not up yet then do not call c_p_a():
1325	 */
1326	if (!debug_pagealloc_enabled)
1327		return;
1328
1329	/*
1330	 * The return value is ignored as the calls cannot fail.
1331	 * Large pages for identity mappings are not used at boot time
1332	 * and hence no memory allocations during large page split.
1333	 */
1334	if (enable)
1335		__set_pages_p(page, numpages);
1336	else
1337		__set_pages_np(page, numpages);
1338
1339	/*
1340	 * We should perform an IPI and flush all tlbs,
1341	 * but that can deadlock->flush only current cpu:
1342	 */
1343	__flush_tlb_all();
1344}
1345
1346#ifdef CONFIG_HIBERNATION
1347
1348bool kernel_page_present(struct page *page)
1349{
1350	unsigned int level;
1351	pte_t *pte;
1352
1353	if (PageHighMem(page))
1354		return false;
1355
1356	pte = lookup_address((unsigned long)page_address(page), &level);
1357	return (pte_val(*pte) & _PAGE_PRESENT);
1358}
1359
1360#endif /* CONFIG_HIBERNATION */
1361
1362#endif /* CONFIG_DEBUG_PAGEALLOC */
1363
1364/*
1365 * The testcases use internal knowledge of the implementation that shouldn't
1366 * be exposed to the rest of the kernel. Include these directly here.
1367 */
1368#ifdef CONFIG_CPA_DEBUG
1369#include "pageattr-test.c"
1370#endif
1371